
Re-engineering Relational Databases: The Way Forward

Abdelsalam Maatuk
Faculty of Sciences,

Department of Computer,
Omar Al-Mukhtar University,

Libya
ammaatuk@yahoo.com

M. Akhtar Ali
School of Computing,

Engineering & Information
Sciences, Northumbria

University, UK
akhtar.ali@unn.ac.uk

Nick Rossiter
School of Computing,

Engineering & Information
Sciences, Northumbria

University, UK
nick.rossiter@unn.ac.uk

ABSTRACT
This paper surveys the recent literature about various re-
search trends relevant to Relational DataBase (RDB) re-
engineering. The paper presents an analysis of approaches
and techniques used in this context, including construction
of object views on top of RDBs, database integration and
database migration. A categorisation is presented of the se-
lected work, concentrating on migrating an RDB as a source
into object-based and XML databases as targets. Database
migration from the source into each of the targets is dis-
cussed and critically evaluated, including the semantic en-
richment, schema translation and data conversion. Based on
a detailed analysis of the existing literature, it seems that
the existing work does not provide a complete solution for
more than one target database for either schema or data
conversion. Besides, none of the existing proposals can be
considered as a method for migrating an RDB into an object-
relational database. We propose such a method based on an
intermediate canonical data model, which enriches the se-
mantics of the source RDB and captures characteristics of
the target databases.

Keywords
Re-engineering databases; database migration; semantic en-
richment; schema translation; data conversion

1. INTRODUCTION
The increasing popularity of new object-based and World

Wide Web (WWW) technologies and non-traditional appli-
cations (e.g., multimedia, computer aided design) are con-
sidered to be among the most significant recent changes in
information technology. These novel technologies have been
dominant in the area of information systems due to their
productivity, flexibility and extensibility. Object-Oriented
DataBase (OODB), Object-Relational DataBase (ORDB)
and eXtensible Markup Language (XML), all which sup-
port various diverse concepts, have been proposed in order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

to fulfil the demands of newer and more complex applica-
tions. However, as the majority of today’s data are still
stored in Relational DataBases (RDBs), therefore it is ex-
pected that the need to convert such RDBs into the technolo-
gies that have emerged recently will grow substantially [18,
25]. Numerous methods have been proposed in the past for
re-engineering RDBs into the newer databases. This paper
provides a survey of this literature.

We focus on the case where the input is an RDB and
the outputs are OODB, ORDB and XML. Hence, we do
not cover the inverse of the process (e.g., from OODB into
RDB). Three aspects of re-engineering have been discussed:
semantics enrichment, schema translation and data conver-
sion. There are three approaches used to accomplish database
re-engineering: 1) viewing objects on top of RDBs where
data is processed in object/XML form and stored in re-
lational form; 2) database integration where a gateway is
used on top of multiple heterogeneous databases to support
a single view; and 3) database migration where an RDB is
migrated into its equivalents. On the other hand, transla-
tion techniques are divided into two categories: i) source-to-
target translation, in which a source database is translated
directly into a target database, and ii) source-to-conceptual-
to-target translation, in which a source schema is enriched
by semantics or recovered to a conceptual schema before be-
ing translated into a target schema. The source-to-target
translation includes flat, clustering and nesting translation.
The proposals for RDB re-engineering in the literature have
been discussed in separate categories according to the differ-
ent target databases. Within each category, existing propos-
als have been compared in terms of translation techniques,
prerequisites, and specific features. The aims have been to
provide a comprehensive view of the problem of RDB migra-
tion, to review various techniques and proposals, to identify
their commonalities and differences, to assess the impact of
pervious research, and to show how it has shaped current
and future research in this area.

The remainder of this paper is organised as follows. Sec-
tion 2 provides a brief introduction to the database re-engineering
process. Section 3 reviews current approaches and tech-
niques related to database re-engineering. Section 4 gives
an overview of proposals for RDB migration. Section 5
presents a review of existing proposals for migrating RDBs
into OODBs, and work on mapping RDBs into ORDBs is
reviewed in Section 6. Section 7 then provides a review of
work on migrating RDBs into XML. Section 8 concludes the
paper.

2. DATABASE RE-ENGINEERING
Database application re-engineering is a process in which

all components (i.e., schema, data, application programs,
queries and update operations) of a source database applica-
tion are converted into their equivalents in a target database
environment. However, application programs and queries
conversion is a software engineering job and is, therefore, out
of the scope of this paper, i.e., we assume that database re-
engineering (or migration) includes schema translation and
data conversion.

Schema Translation: A schema of an existing data
model can be translated into an equivalent target schema
expressed in the target data model through applying a set
of mapping rules [41]. The generation of a well-designed tar-
get schema depends on the flexibility of these rules. Each
rule maps a specific construct, e.g., attribute or relationship.
Both schemas should hold equivalent semantics. The trans-
lation of a source schema to a target schema consists of two
steps. The first step, called DataBase Reverse Engineering
(DBRE), aims to recover the conceptual schema, e.g., an En-
tity Relationship (ER) model, which expresses the explicit
and implicit data semantics of the source schema. Explicit
semantics involve relations, attributes, keys and data de-
pendencies. It is necessary to extract extra semantics that
are not expressed explicitly in RDBs (e.g., inheritance rela-
tionship, cardinality constraints, relationship names). The
second step, called DataBase Forward Engineering (DBFE),
aims to obtain the target physical schema from the concep-
tual schema obtained in the first step. The first step is gener-
ally known as the semantic enrichment process, which is es-
sential for database migration and database integration [29].
However, the source schema can be translated directly to a
target one without intermediate representation [19]. An ex-
pert user or a tool might be required to provide the missing
semantics or to refine the results to exploit the concepts of
the target database [39, 19].

Data Conversion: This is a process for converting data
instances from the source database into the target database.
Data stored as tuples in an RDB are converted into com-
plex objects/literals in object-based databases or elements
in XML documents. This involves extracting and restructur-
ing RDB data, and then reloading the converted data into a
target database in order to populate the schema generated
earlier during the schema translation process [22].

3. APPROACHES AND TECHNIQUES
This section introduces approaches and techniques related

to database re-engineering. Section 3.1 discusses approaches
to database conversion whereas Section 3.2 discusses existing
translation techniques.

3.1 Conversion Approaches
There are three approaches related to database re-engineering.

The first approach is for handling data stored in RDBs
through Object-Oriented (OO)/XML interfaces. Connect-
ing an existing RDB to a conceptually different database
system is the basis of the second approach, and the third
approach is to migrate an RDB into a target database. The
first and second approaches deal with schema translation,
whereas in the third approach both schema and data are
completely migrated into a target database. Due to substan-
tial investments in many traditional RDBs, part of their data
may need to be formatted and implemented in a new and

different platform. Hence, constructing a gateway interface
between the two databases might be preferred. Migrating to
a new database system (DBMS) might be a good decision
to make if the existing system is too expensive to maintain.

3.1.1 Approach 1: Non-relational applications on
top of RDBs

Data may be required to be processed in object/XML
form and stored in relational form based on the concept
of object for programs and RDB for persistence. This pro-
cess requires object-to/from-Relational and XML-to/from-
relational mapping techniques, which link RDBs to non-
relational applications. Such mapping is bi-directional on
demand of updating an RDB using OO/XML interfaces.
This is the reverse direction from where object-based/XML
schemas are translated into an RDB schema.

Viewing objects on top of RDBs: While OO objects
are associated via references, data in RDB tables are linked
through the values of primary keys and foreign keys. A
single object might be represented by several tuples in sev-
eral tables, and therefore, joining these tables is required
for queries. The problem lies in converting these objects
to tabular forms in order for them to be stored in and re-
trieved from RDB systems when needed. This constant
conversion leads to a semantic gap between the two dif-
ferent paradigms, which is known as the object-relational
impedance mismatch [29]. To avoid this, developers have
to write huge amount of code to map objects in programs
into tuples in an RDB, which can be very time-consuming
to write and execute. Another solution would be to use
mapping query system/middleware. Query systems, e.g.,
Penguin [30] support object views for RDBs, which enable
non-traditional applications to share data with their object
schema. Penguin is an object-based DBMS that relies on
RDBs for persistent [30]. Middleware is a software that
links OO Programming Language (OOPL) concepts to data
stored in RDBs through ODBC/JDBC, thus creating a vir-
tual object database. Such middlewares provide mapping
tools for binding tuples in RDBs, making them appear as
objects for OOPLs. However, mapping using middleware
requires time for schema mapping, on each occasion that
stored data are accessed.

Publishing RDB data as XML documents: RDB
data can be published as XML documents, using special
declarative languages, to be exchanged over the Web. Var-
ious proposals, which make RDB data accessible to XML
have been described [9, 26]. Through converting an RDB
into XML, users see views that can be queried using XML
query languages. However, data in such applications is not
fully materialized in XML form, whereas the results are.
Furthermore, adapting the object view for representing XML
data in an RDB faces restrictions, such as data collection
representations and tag naming. XPERANTO [9] and XTA-
BLES [26] are among the systems taking this approach.
The XPERANTO system translates XML-based queries into
SQL over (object-)RDBs [9]. The system receives and de-
constructs SQL queries and returns XML documents. How-
ever, users have to specify the queries and define more com-
plex views using an appropriate query language, once the
system publishes a default XML view. In addition, mis-
matches exist between XML and SQL query syntax, and
more advanced object features and integrity constraints are
not considered precisely. XTABLES provides the user with

a single query language which can be used to query seam-
lessly over relational data and metadata [26]. In addition,
XTABLES can query and store XML documents in RDBs.
XML documents can be stored in relational DBMSs [25]. A
database that allows XML data to be stored in it is called an
XML-enabled database. A whole document can be stored
in a large single column in a table. The column can be
a binary large object (BLOB) or a character large object
(CLOB). XML-enabled databases are useful for retrieving
and storing data which conform to XML form. However,
they cannot effectively store a complete document with its
identity, order and comments.

3.1.2 Approach 2: Database Integration
A connection can be established between RDBs and other

databases which allows the applications built on top of a new
DBMS to access both relational and object/XML DBMSs,
giving the impression that all data are stored in one database.
This represents a simple level of database integration be-
tween systems [40]. This is achieved using a special type
of software called gateways, which support connectivity be-
tween DBMSs and do not involve the user in SQL and RDB
schema. Hence, queries and operations are converted into
SQL and the results are translated into target objects. Many
applications use two or more underlying databases. On re-
trieving data from both systems, the unification of their two
schemas is necessary by providing two-way mapping. During
integration, systems cooperate autonomously by creating a
unified and consistent data view for several databases, hiding
heterogeneities and query languages [29]. Most commercial
DBMSs such as Objectivity and ObjectStore provide flexi-
bility of mapping and gateways construction among hetero-
geneous databases. The difference between gateways and
object-relational mapping tools is that, in the former, ob-
jects are persistently stored in the new developed database
system; whereas in mapping or publishing data, objects are
created and handled in the normal way but are stored in an
RDB. However, in both approaches old data stored in an
RDB are retained.

3.1.3 Approach 3: Database Migration
Migration of an RDB into its equivalents is usually accom-

plished between two databases according the literature. The
first database is an RDB, called the source, and the second,
called the target, which represents the result of the migration
process. In addition, the process is performed with or with-
out the help of an intermediate conceptual representation,
e.g., an ER model as a stage of enrichment. The input source
schema is enriched semantically and translated into a target
schema. Data stored in the source database are converted
into the target database based on the target schema. Gen-
erally, relations and attributes are translated into equivalent
target objects. Foreign keys may be replaced by another do-
main or relationship attributes. Weak entity relations may
be mapped into component classes, multi-valued or compos-
ite attributes inside their parent class/entity. Other rela-
tionships, such as associations and inheritance, can also be
extracted by analysing data dependencies or database in-
stances. In data conversion, attributes that are not foreign
keys become literal attribute values of objects, elements or
sets of elements. Foreign keys realise relationships among
tuples, which are converted into value-based or object refer-
ences in a target database. The challenge in this process is

that the data of one relation may be converted into a collec-
tion of literal/references rather than into one corresponding
type. This is because of the heterogeneity of concepts and
structures in the source and target data models.

3.2 Translation Techniques
Existing techniques used for RDB schema translation can

be classified into two types: (i) Source-to-Target (S2T), in-
cluding flat, clustering and nesting translation techniques,
and (ii) Source-to-Conceptual-to-Target (SCT) translation.
In some of these techniques, data might be converted based
on the resulting target schema.

3.2.1 Source-to-Target (S2T) technique
This type of technique translates a physical schema source

code directly into an equivalent target. However, as the
target schema is generated using one-step mapping with no
intermediate stage for enrichment, this technique usually re-
sults in an ill-designed database because some of the data se-
mantics (e.g., integrity constraints) are not considered. This
approach can take the following three forms:

Flat technique: This technique converts each relation
into an object class/XML element in the target database [39,
22, 46]. Foreign keys are mapped into references to connect
objects. However, due to the one-to-one mapping, the flat-
tened form of RDBs is preserved in the generated database,
so that object-based model features and the hierarchical
form of the XML model are not exploited. This means that
the target database is semantically weaker and of a poorer
quality than the source. Moreover, creating too many refer-
ences causes degraded performance during data retrieval.

Clustering technique: This technique is performed re-
cursively by grouping entities and relationships together start-
ing from atomic entities to construct more complex entities
until the desired level of abstraction (e.g., aggregation) is
achieved [47, 34]. A strong entity is wrapped with all of its
direct weak entities, forming a complex cluster labelled with
the strong entity name. This technique works well when the
aim is to produce hierarchical forms with one root. This
technique may reduce search time by avoiding join opera-
tions, and thus speeding up query processing, however, it
may lead to complex structures and is prone to errors in
translation. In addition, materializing component entities
within their parent/whole entities may cause data redun-
dancy, the loss of semantics and the breaking of relationships
among objects.

Nesting technique: This technique uses the iterated
mechanism of a nest operator to generate a nested target
structure from tuples of an input relation [18]. The target
type is extracted from the best possible nesting outcome.
For a table T with a set of columns X, nesting on a non-
empty column(s) Y ∈ X collects all tuples that agree on
the remaining columns X − Y into a set [18]. However, the
technique has various limitations, e.g., mapping each table
separately and ignoring integrity constraints. Besides, the
process is quite expensive, since it needs all tuples of a table
to be scanned repeatedly in order to achieve the best possible
nesting.

3.2.2 Source-to-Conceptual-to-Target (SCT) technique
This type of technique enriches a source schema by data

semantics that might not have been clearly expressed. The
schema is translated from a logical into a conceptual schema

through recovering the domain semantics (e.g., primary keys,
foreign keys, cardinalities, etc.) and making them explicit.
The results are represented as a conceptual schema using
DBRE process [10]. The resulting conceptual schema can
be translated into the target logical schema effectively us-
ing DBFE process. In this way, the technique results in a
well-designed target database.

3.2.3 DataBase Reverse Engineering (DBRE)
DBRE is a process for enriching a source schema using

semantics that might have not been clearly expressed by ac-
quiring as much information as possible about objects and
the relationships that exist among them [8]. Inferring con-
ceptual schema from a logical RDB schema via DBRE has
been extensively studied [28, 5, 10, 2]. Such conversions
are usually specified by rules, which describe how to derive
RDB constructs (e.g., relations, attributes, data dependen-
cies, keys), classify them, and identify relationships among
them. Semantic information is extracted by an in-depth
analysis of relations in an RDB schema together with their
data dependencies into a conceptual schema such as ER,
UML, OO and XML data models. Data and query state-
ments have also been used in some studies to extract data
semantics. In addition, data dictionary and expert users are
considered in some proposals, whereas others are based on
schema design. However, some of these techniques could be
combined together to form a more comprehensive solution.

Schema-based proposals: Most of the existing DBRE
studies fall into this category, where the inputs are RDB
schemas and the outputs are data semantics from analysing
relations and attributes [12, 27, 20, 10]. The extraction
of data semantics by converting an RDB schema into an
Extended ER (EER) model has been studied in the early
nineties [20, 10]. Two algorithms are proposed to extract
a conceptual ER from an existing RDB based of the clas-
sification of relations and attributes [12, 27]. However, all
those algorithms do not consider inheritance relationships.
Fonkam and Gray presented a more general algorithm that
is based on these algorithms, where the original contribu-
tion of this algorithm was to establish generalisation hier-
archies [20]. Chiang et al. proposed a method that focuses
on deriving an EER from a 3NF RDB [10]. This type of
method uses a variety of heuristics to recover domain seman-
tics through the classification of relations, attributes and
key-based inclusion dependencies using the schema. How-
ever, expert involvement is required to distinguish between
similar EER constructs, i.e., weak entities and specific re-
lationship types [10]. In addition, the consistency of key
naming and a well-formed schema is assumed.

Data content-based proposals: Several studies have
proposed the extraction of semantics by analysing data in-
stances and possibly schemas [10, 42, 2]. Soutou proposed a
process for extracting the cardinalities of n-ary relations rep-
resenting relationships by generating a set of SQL queries [42].
Data instances are used for relation classifications with re-
spect to their keys [10]. Alhajj developed algorithms that
utilise data to derive all possible candidate keys for iden-
tifying the foreign keys of each given relation in a legacy
RDB [2]. This information is then used to derive a graph
called RID, which includes all possible relationships among
RDB relations. The RID graph works as a conceptual schema [2].

Query-based proposals: Inferring a conceptual schema
based on the analysis of DDL and SQL queries embedded

in applications has been suggested by several authors [5, 37,
4]. Petit et al. presented a method to extract EER model
constructs from an RDB by analysing SQL queries in ap-
plication programs [37]. In common with Andersson, Petit
et al. extracted a conceptual schema by investigating equi-
join statements [5, 37]. The method uses a join condition
and the distinct keyword for attribute elimination during
key identification. Akoka et al. focused on extracting gener-
alisation hierarchies in an RDB using DDL, DML and data
analysis [4].

Other proposals: Soutou presented an algorithm for
inferring n-ary relationships from RDBs through a com-
bination of a data dictionary, and the analysis of schema
and data [43]. Alhajj and Polat re-engineered an RDB
into an OODB using an expert user and the data dictio-
nary as primary sources of information [3]. Since an RDB
does not enable a natural way of representing inheritances,
several heuristic and algorithmic methods have been pro-
posed to elicit inheritance relationships hidden in RDBs [20,
4]. Data instances, schemas, DDL and DML specifications,
along with understanding null value semantics, are used to
detect inheritance.

Design-based proposals: Some works that have design
characteristics can be used for DBRE [28, 33]. A method
based on a generic schema specification model and DBRE
techniques has been proposed to deal with design and re-
engineering database applications [28]. Marcos et al. pre-
sented rules to translate a UML class diagram into an ORDB
schema in SQL3 and Oracle 8i [33].

The problems of DBRE process arise from processing badly-
designed and poorly documented applications [28]. Many
RDBs might have been specified without definition of con-
straints, such as keys and integrity constraints [7]. These
semantics specified into conceptual schema might not be pre-
sented explicitly in data dictionaries. For example, foreign
keys are not possible in Oracle 5. Moreover, many RDBs do
not contain semantic constraints for optimization reasons,
and not all databases are built by experienced developers,
who may produce poor or inadequate structures [28].

3.2.4 DataBase Forward Engineering (DBFE)
This process is known as schema translation. A concep-

tual schema generated from the DBRE process can be trans-
lated into a high level data model through the application of
a set of rules, called schema mapping rules. Several propos-
als have been made for transforming conceptual schemas,
e.g., ER, EER, UML or other specific models into object-
based/XML schemas [35, 28, 14, 31, 33, 45]. These proposals
and many others have been used as a basis for middlewares,
gateways and CASE tools.

4. RBD MIGRATION PROPOSALS
Before we embark on a detailed review on proposals used

in an RDB migration, this section describes a set of prop-
erties, which can be used to compare and evaluate existing
proposals. Indeed each proposal has its properties, e.g., pre-
requisites and data model used. These properties lead to
different mapping rules for the migration process, which in
turn affect the results and quality of the process. Table 1
provides a comparison and classification of some of these
proposals showing the input and target generated databases,
the preservation of data semantics, and technique used and
prerequisites of each proposal. However, detailed descrip-

tions on these proposals as works for migrating RDBs into
OODBs, ORDBs and XML according to these properties are
given in Sections 5, 6 and 7, respectively.

4.1 Migration prerequisites
Existing work of database migration enforces different pre-

requisites on the source databases being migrated. These in-
clude the consistency of naming attributes, the availability
of all keys and schema, inclusion and functional dependen-
cies, and database instances. Most existing proposals are
limited by the assumptions that they make. For instance,
a source schema is required to be available for further nor-
malisation to Third Normal Form (3NF) [10, 19] or even to
4NF [48] before the migration process can begin. However,
this is not a practical choice for existing RDBs. Data depen-
dency, which is most often represented by key constraints,
plays the most important role in this process. Evaluation of
functional, inclusion and key-based dependency is assumed
in many proposals. Other kinds of data dependency may
also be required, e.g., Multi-valued Dependency (MVD) [48,
24] and Exclusion Dependency (ED) [8, 22]. The problem
of synonyms and homonyms may be assumed to has been
resolved [39]. Also, the classification of relations with re-
spect to their keys, e.g., to know whether the primary keys
and foreign keys are constructed from each other may be
required [10]. Other frequent assumptions are that the ini-
tial schema is well-designed and that all basic relevant con-
straints are given in the descriptions of the schema or pro-
vided by the user [7, 2, 46].

4.2 Input and output models
In existing work, the RDB migration process usually takes

one RDB as input and aims to generate one target database.
A source schema is translated into another equivalent schema
and data are converted in accordance with schema transla-
tion. However, most work to date has focused on translat-
ing RDB schemas directly into other non-standard target
schemas, in the context of database integration [8, 22, 48].
Few attempts have been made to generate target data mod-
els based on their conceptual schemas or other representa-
tions, as an intermediate stage for enrichment. Numerous
methods have been proposed for DBRE by transforming log-
ical data models into ER, EER, UML models. A large body
of literature exists on DBFE (or database design) aiming to
transform such conceptual models to logical data models.
In addition, only few works consider current standards, i.e.,
ODMG 3.0, SQL4 and XML Schema as target models [19,
46].

4.3 Conceptual models used
Earlier models such as ER, EER and Object-Modeling

Technique (OMT) are assumed in most studies as a con-
ceptual model or target data models, whereas other works
are restricted to a particular product, e.g., Oracle [45]. To
enrich a source RDB structurally and semantically, graphs
and models are proposed as an intermediate stage [1, 13,
14, 2, 23]. A graph called an RID, developed by Alhajj [2],
has been used to translate an RDB into an OODB [3] or
into an XML [46]. This graph, similar to an ER diagram is
used for identifying relationships and cardinalities. A model,
called BarceLona Object Oriented Model (BLOOM), has
also been developed to act like a canonical model for feder-
ated DBMSs [1]. Its main goal is to upgrade the semantic

level of the local schemas of different databases and to facili-
tate their integration. Behm et al. proposed a model, called
Semi Object Type (SOT), to facilitate the restructuring of
schemas during the translation of an RDB into an OODB [7].
Another model, called ORA-SS, has been proposed to sup-
port the design of non-redundant storage of semi-structured
data models [13]. The ORA-SS is used as an intermediate
model to map an RDB into an XML Schema [13]. The model
has its own diagrammatic notations for expressing class at-
tributes and relationships, similar to those of ER and OO
data models. The model represents data as directed graphs,
and focuses on modelling n-ary relationships as well as dis-
tinguishing between the attributes of relationships and those
of objects. However, it uses the technique of nesting and ref-
erencing in representing relationships among objects.

4.4 Semantic preservation
RDBs typically contain implicit and explicit data seman-

tics, concerning integrity constraints and relationships among
relations. Target databases should hold equivalents to these
semantics. Several previous proposals have failed to explic-
itly maintain all of the data semantics (e.g., integrity con-
straints and inheritance). Constraints are instead mapped
into class methods [19] or into separate constraint classes [35].
Relationships are translated in most of the work, however,
inheritance relationships have not been fully addressed. Few
studies address database optimization issues, e.g., horizontal
and vertical partitioning [35, 41]. Object-based data mod-
els consist of static properties (attributes and relationships)
and dynamic properties (methods or functions), which make
them richer than relational data models. Most existing pro-
posals focus on constructing a static rather than dynamic
target schema.

4.5 User involvement
A common observation in the different proposals is that

user interaction is necessary at some point to provide addi-
tional information to achieve the desired results. User in-
tervention might be required for the classification and un-
derstanding of keys in an RDB [8], choosing the appropriate
transformation rule [6], or identifying complex relationship
structures [19]. User involvement is also required for resolv-
ing optimization issues such as naming conflicts and verti-
cally or horizontally partitioned relations [10, 39, 41], and
for selecting XML documents’ roots and directing the con-
version process [18, 24].

5. MIGRATING RBD INTO OODB
In this section, existing proposals for the migration of

RDBs into OODBs are discussed in further detail.
ER-to-OODB: Narasimhan et al. proposed a procedure

that deals with an RDB abstraction through mapping its
related ER model into an OO schema to exploit the ER
model features, e.g., multi-valued attributes [35]. This work
suggests creating a separate constraint class with methods
as a sub-class for each of the OODB classes. The trans-
lation of EER models into OO models by a set of transfo-
ration rules has been illustrated [21]. EER strong entities
are mapped into classes with corresponding attributes [21].
Weak entities and aggregations are mapped into compo-
nent and composite object-classes, respectively. Relation-
ships among entities are mapped into associations, general-
isation/specialisation into inheritance, and categorizations

Table 1: RDB migration (prerequisites, input and output databases)
Proposal S2T DC Tec Input Prerequisites Data Semantics Output Target

AS AG IN RI OP OODB ORDB XML model
[22]

√ √
S2T RDB FD,ID,ED

√ × √ × × √ × × NS
[47]

√ × S2T RDB keys, ID
√ √ √ × × √ × × NS

[41]
√ × S2T RDB FD, PKs, FKs, 2NF

√ √ √ × √ √ × × OMT
[48]

√ × S2T RDB FD, ID, 4NF, MVD
√ √ √ × × √ × × NS

[19]
√ × S2T RDB keys, FD, ID, 3NF

√ √ √ √ √ √ × × ODMG-93
[7]

√ √
SCT RDB keys, DD, Ins

√ × √ √ × √ × × ODMG-93
[3]

√ √
SCT RDB keys, DD, Ins

√ √ √ × × √ × × NS
[35]

√ × S2T ER ER
√ √ × × × √ × × NS

[39]
√ × S2T RDB keys, non-3NF

√ √ √ × √ √ × × OMT
[8]

√ × S2T RDB FD, ID, ED, non-3NF
√ √ √ × × √ × × BLOOM

[44]
√ × S2T UML UML class diagram

√ √ × √ √ × √ × Oracle 8i
[33]

√ × S2T UML UML class diagram
√ √ √ √ √ × √ × SQL3

[45]
√ × S2T UML UML class diagram

√ √ √ √ × × √ × Oracle 8i
[23]

√ √
SCT RDB PKs, FKs

√ √ √ √ × × × √
XML Schema

[31]
√ √

S2T EER FD, ID
√ × × × × × × √

DTD
[14]

√ × SCT RDB 3NF
√ √ √ √ × × × √

XML Schema
[24]

√ √
SCT RDB FD, MVD, JD, TD

√ √ × × √ × × √
DTD

[18]
√ × S2T RDB PKs, FKs

√ √ × × √ × × √
DTD

[46]
√ √

SCT RDB PKs, FKs, DD
√ × × √ × × × √

XML Schema
[16]

√ × S2T RDB PKs, FKs
√ √ × × × × × √

DTD
[25]

√ √
SCT RDB keys, FD, IN, MVD

√ √ √ × × × × √
DTD

S2T: Schema Translation DC: Data Conversion Tec: Technique FD: Functional ID: Inclusion Dependency TD: Transitive Dependency Ins: Data instances
Dependency JD: Join Dependency PK: primary key FK: foreign key AS: Association AG: Aggregation IN: Inheritance RI: Referential Integrity OP: Optimization

NS: Non-standard

into multi-inheritance.
RDB-to-OODB: Several methods have been proposed

for migrating RDBs into OODBs directly, i.e., without us-
ing an intermediate conceptual representation [8, 39, 19, 22,
41, 48]. However, all these proposals, except [22], concern
only schema translation. Premerlani and Blaha proposed
a procedure for mapping an RDB schema into an OMT
schema [39]. An initial schema is produced by represent-
ing each table and its attributes as a tentative class, and
primary keys and foreign keys are determined by resolving
synonyms and homonyms. Then, horizontally partitioned
classes are refined into single classes, and associations and
generalisations are identified using the evaluation of keys.
Finally, OO classes are refined through eliminating redun-
dant associations. Fahrner and Vossen described a method,
in which an RDB schema is normalised to 3NF, enriched
by semantics using data dependencies, and translated into
an ODMG-93 ODL schema [19]. This method makes ex-
tensive use of inclusion and exclusion dependencies. More-
over, the resulting schema is then restructured by the user
with respect to OO paradigm options, e.g., binary relation-
ship relations are eliminated and integrity constraints are
mapped into class methods. Castellanos et al. presented
a method that generates the BLOOM [1] schema from an
RDB [8]. The method consists of two phases. An RDB
schema is improved semantically based on a knowledge ac-
quisition process to discover implicit semantics by analysing
the schema and data instances. Then the enriched RDB
schema is converted into a BLOOM schema. The knowl-
edge acquisition phase involves the determination of keys
and their types, of data dependencies such as functional,
inclusion and exclusion dependencies, and of the normal-
ization of the schema to 3NF. However, unlike in Premer-
lani and Blaha method [39] optimization structures, e.g.,
horizontal decomposition or different representation possi-
bilities of complex attribute structures are not considered.
Fong suggested a sound theoretical method for converting
RDBs data into OODBs [22]. Relation tuples are converted,
downloaded into sequential files, and then reloaded into the
OODB. However, weak entities and multi-valued and com-
posite attributes are not clearly tackled in this work. Ra-
manathan and Hodges presented a method for mapping an
RDB schema that is at least in 2NF into an OODB schema

without the explicit use of inclusion dependencies, and with-
out changing the existing schema [41]. All of the informa-
tion required during the process comes from information on
primary keys and foreign keys. However, the method also
addresses database optimisation issues such as BLOBs, hor-
izontal and vertical partitioning, which cannot be mapped
into object schema without using data dependencies. Zhang
et al. described a method based on MVD to remove data
redundancy and update anomalies [48]. A composition pro-
cess is proposed to reduce the input RDB schema. Then, the
simplified relations are mapped into equivalent OO classes.

Clustering RDB relations-to-OODB: Yan and Ling
presented a method that produces an OODB schema from an
RDB using a clustering technique, in which clusters of rela-
tions that represent object classes, aggregation, association
and inheritance relationships are identified [47]. A strong
entity is wrapped with all of its direct weak entities, form-
ing a complex cluster which holds the strong entity name.
In the case of deep levels of clustering, a dominant entity
may aggregate its component entities if they have no rela-
tionships with other entities. The method proposes gener-
ating OIDs for identified objects by concatenating the key
values of each tuple with the relation name. Missaoui et
al. adapted the clustering technique to produce a clustered
EER diagram [34]. In this method, related entities are iden-
tified and defined as one unit. The diagram produced is then
translated into an OO schema.

RDB-SOT -OODB: Behm et al. proposed a model called
SOT to facilitate RDBs migration [7]. An RDB schema is
mapped into the SOT schema, which is then translated into
an OO schema. An SOT schema consists of a set of SOTs
where each has a set of attributes of basic type, collection
and reference. The references represent the relationship be-
tween SOTs. Every SOT and attribute is identified by a
unique identifier to avoid naming conflicts. Transformation
rules consist of five parts, namely, definitions, patterns, pre-
conditions, schema and data operations [6]. The data mi-
gration process is accomplished automatically.

6. MIGRATING RDB INTO ORDB
Transforming conceptual models (e.g., EER, UML class

diagrams) into ORDB have been studied extensively over the
past ten years [44, 33, 36, 15]. A common finding from these

studies is that the logical structure of an ORDB schema
is achieved by creating object-types from UML diagrams.
Tables are created based on the pre-defined object-types.
An association relationship is mapped using ref or a collec-
tion of refs depending on the multiplicity of the association.
Multi-valued attributes are defined using arrays/nested ta-
bles. Inheritance is defined using foreign keys or ref types
in Oracle 8i and the under clause in Oracle 9i/SQL3 [33].

A method of mapping and preserving collection seman-
tics into an ORDB has recently been proposed [36]. The
method transforms UML conceptual aggregation and asso-
ciation relationships into ORDB using row and multiset
provided by SQL4. More recent work has focused on map-
ping UML aggregation/composition relationships into OR-
DBs [33, 15]. Urban et al. described essential rules for
converting UML class diagrams into ORDB schemas, using
triggers to preserve inverse relationships between objects for
bi-directional relationships [44]. Marcos et al. proposed new
UML stereotype extensions for an ORDB design, focusing
on aggregation and composition relationships [33]. Although
most ORDB concepts are present in these proposals, their
focus has been on the design of ORDBs rather than on mi-
gration. However, if a migration process uses a conceptual
model as an intermediate stage, then these proposals could
be useful in schema translation.

7. MIGRATING RDB INTO XML
Some proposals for migrating RDBs into XML use data

dictionaries and assume well-designed RDB [14, 3, 18] whereas
others consider legacy RDB for migration into XML docu-
ments [46]. Besides, the resulting XML schemas might be
a DTD [18], XML Schema [46] or independent XML lan-
guage [13]. However, several researchers have proposed ways
to transform UML class diagrams to XML [11, 45].

RDB-to-ER-to-XML: Wang et al. proposed a method
focusing on legacy RDBs [46]. Firstly, the ER model is ex-
tracted from the RDB by applying the DBRE technique
described in [2], which results in an RID graph. Then, the
RID graph is mapped into an XML Schema. The structure
of the generated XML document is based on user specifi-
cation into a flat or nested structure. After the schema is
translated, an XML document is generated from RDB data.
However, inheritance and aggregation relationships are not
considered properly in this study. Fong and Cheung intro-
duced a method in which data semantics are extracted from
an RDB schema into an EER model, which is then mapped
into an XSD graph [23]. The XSD graph captures relation-
ships and constraints and is mapped in turn into an XML
Schema. However, the authors suggested mapping foreign
keys into a hierarchy of element/sub-elements, which may
cause redundancy when an element has a relationship with
more than one element. Fong et al. used the EER model
to enrich an existing RDB semantically and translating it
into a corresponding DTD schema. The RDB data are con-
verted and loaded into an XML document according to the
translated DTD schema [25].

RDB-to-DTD: Laforest and Boumediene described two
algorithms to extract data-centric and paragraph-centric DTD
from RDBs automatically [16]. One table is determined to
be the main root element, and then columns of that table,
which are neither primary key nor foreign keys are mapped
as its sub-elements. The primary key is added to its root el-
ements as an attribute. Other tables that hold the primary

key of the root table as foreign keys are translated as sub-
elements with cardinality “*”. For each foreign key included
in the primary key, a new sub-element with PCDATA type
is generated, holding the same name as its reference table.
Foreign keys that are not included in the primary key are
converted into sub-elements in the root. Their composition
then has to be defined, and their cardinalities defined as “1”
or “?” depending on integrity constraints.

ER-to-XML: Kleiner and Lipeck translated a well-known
EER model to DTD [31]. However, some data semantics
cannot be represented, e.g., the limitations of DTD in spec-
ifying composite keys. Moreover, some relationships, i.e.,
inheritance and aggregation are not considered in this work.
The work has been extended considering inheritance rela-
tionships, and generate an XML Schema from an EER model [38].
However, the algorithm tries to create a hierarchal struc-
ture that is deeper rather than larger. This may cause re-
dundancy or disconnected elements in the resulting XML
document.

UML-to-XML: Conrad et al. proposed a method for
transforming UML into DTD in the context of OO soft-
ware design [11]. Vela and Marcos proposed a method for
extending UML to represent an XML Schema in graphi-
cal notation, which has a unique equivalence with an XML
Schema [45]. However, although UML can model data se-
mantics such as aggregation and inheritance, it is still weak
and unsuitable in handling the hierarchal structure of the
XML data model [23].

RDB-to-ORA-SS-to-XML Schema: Du et al. devel-
oped a method that employs an ORA-SS model to support
the translation of an RDB schema into an XML Schema [14].
They proposed a variety of translation rules for mapping a
semantically enriched RDB schema into an ORA-SS model [13],
which in turn is then translated into the XML Schema. How-
ever, they adopted an exceptionally deep clustering tech-
nique, which is prone to errors.

RDB-to-DOMs-to-DTD document: Fong et al. pro-
posed a procedure to translate RDBs into XML documents [24].
Based on data dependency constraints, this work de-normalises
an RDB into joined tables, which are then translated to Doc-
ument Object Models (DOMs). These DOMs are integrated
into one DOM, which is then mapped into a DTD schema.
Based on the DTD schema generated and data dependen-
cies, each tuple of the joined tables is loaded into an object
instance in DOM and then transformed into a DTD docu-
ment.

NeT and CoT algorithms: Lee et al. presented the
Flat Translation (FT) algorithm that maps RDB tables into
DTD elements [17]. However, the algorithm neither utilises
features provided by the XML model nor considers integrity
constraints. Another algorithm known as Nesting-based Trans-
lation (NeT) has been proposed to remedy the drawbacks of
FT using an iterated mechanism of the nest operator to gen-
erate nested structures of DTD schema from relational in-
puts [18]. However, this algorithm has some limitations, e.g.,
the mapping of each table separately and the nesting opera-
tions are too time consuming, as all tuples in a table need to
be scanned repeatedly to achieve the best nesting outcome.
Together with NeT, Lee et al. presented a Constraints-based
Translation (CoT) algorithm that considers the preservation
of integrity constraints.

8. DISCUSSION

The investigation into the problem of RDB re-engineering
shows that proposals made so far have had different focuses.
Each proposal has made certain assumptions to facilitate
the process, which might be a point of limitations or a draw-
back. While existing works for migrating into OODBs focus
on schema translation using source-to-target techniques, we
have noted that most works for migrating to XML have used
source-to-conceptual-to-target techniques, focusing on gen-
erating a DTD schema and data. Moreover, all research
on the generation of ORDBs has focused on design rather
than migration. It could be concluded, based on our anal-
ysis of the literature, that research into the migration of
RDBs into object-based/XML databases is still immature,
and that therefore several areas are in need of further atten-
tion.

Due to their focus on schema rather than data, the pro-
posals reviewed above either ignore data conversion or as-
sume working on virtual target databases (using mapping
and gateways middleware) and data retain stored in RDBs.
Moreover, there are still shortcomings in the implementation
of RDB data conversion in a more effective manner into more
than one environment. Using middleware may lead to slow
performance, making the process expensive at run-time be-
cause of the dynamic mapping of tuples to complex objects.
However, using object-based DBMSs and native-XML, ob-
jects can be stored and retrieved directly without any need
for translation layers, hence saving development time and
increasing performance.

Some semantics (e.g., inheritance, aggregation) are not
considered in some work. This is mainly due to their lack
of support for such semantics either in source or target data
models, e.g., ER model and DTD lack support for inheri-
tance. Despite the ability of UML to model data semantics
such as aggregations and inheritances, UML is still weak
and unsuitable for handling the hierarchical structure of the
XML data model [23]. Although inheritance relationships
could be indirectly realized in an RDB, they have been ei-
ther ignored or only briefly considered. Different types of
inheritance have not been tackled, such as unions, mutual
exclusion, partition and multiple inheritance; and neither
have their constraints, e.g., total/partial, disjoint and over-
lapping. Translating inheritance relationships from RDBs
to object-based/XML databases and capturing their data
semantics, needs more attention.

There has been less efforts to use standards such as the
ODMG 3.0, SQL4 and XML Schema as target models. The
adoption of standards is essential for better semantic preser-
vations, portability and flexibility. In the ODMG 3.0 model,
referential integrity is maintained automatically via inverse
references. SQL4 has the ability to address complex objects
in ORDBs. Compared to DTD, the XML Schema offers a
much more extensive set of data types, and provides pow-
erful referencing, nesting and inheritance mechanisms of at-
tributes and elements.

The majority of work so far has generated databases that
are either like flat relational, in which object-based model
features and the hierarchical form of the XML model are
usually missed, or have deep levels of clustering/nesting,
which may cause data redundancy. It would be desirable to
avoid the flattened form and to reduce the levels of cluster-
ing object structures as much as possible in order to increase
the utilisations of the target models and to avoid undesirable
redundancy. This requires the preservation of the semantics

of the source database into a conceptual model, which takes
into account the relatively richer data model of the target
database environment. The success of the migration process
depends on the extent to which data semantics are retained
in the conceptual model and how they are translated into a
target database.

Although known conceptual models, e.g., ER, EER and
UML may be used as an intermediate representation during
RDB migration, it has been argued here that they are not
appropriate for the characteristics and constructs of more
than one target data model, and are not supporting data
representation. UML should be extended by adding new
stereotypes or other constructs to specify the peculiarities
of ORDB and XML models [33, 45]. In addition, several
dependent models have been developed for specific applica-
tions, but these are inappropriate to be applied to generate
three different data models. The SOT model [7] has been de-
signed only for migrating RDBs into OODBs. The BLOOM
model [1] was defined for different local schemas to be inte-
grated in federated systems, whereas the ORA-SS model [14]
has been designed to support semi-structured data models.

The evaluation of the different techniques and proposals
has shown that very few of the existing studies provide so-
lutions to the problems mentioned above. Viewing objects
on top of existing RDBs and establishing gateways to ac-
cess existing data for only data retrieval purposes cannot
solve the problem of mismatch between different paradigms
or preserve RDB data semantics. In addition, the existing
work on database migration does not provide a complete so-
lution for more than one target database for either schema
or data conversion. Besides, none of the existing proposals
can be considered as a method for migrating an RDB into
an ORDB. An integrated method, which deals with migra-
tion from RDB to OODB/ORDB/XML, which covers both
schema and data does not yet exist.

We propose a complete method called MIGROX [32], which
takes an existing RDB as an input, enriches its metadata
representation with required semantics, and constructs a
Canonical Data Model (CDM). The CDM captures the es-
sential characteristics of the target data models, for the pur-
pose of migration. MIGROX is superior to existing pro-
posals as it produces three different output databases, and
exploits the range of powerful features provided by target
data models, i.e., ODMG 3.0 and SQL4. MIGROX has
three phases: 1) semantic enrichment, 2) schema transla-
tion, and 3) data conversion. In the first phase, the CDM
is produced which is enriched with the RDB’s constraints
and data semantics that may not have been explicitly ex-
pressed in its metadata. The CDM so obtained is mapped
into target schemas in the second phase. The third phase
converts RDB data into its equivalents in the new database
environment.

9. ADDITIONAL AUTHORS

10. REFERENCES
[1] Abelló, A., Oliva, M., Rodŕıguez, M. E. and Saltor, F.,

The Syntax of BLOOM99 Schemas. TR LSI-99-34-R
Dept LSI, Jul., 1999.

[2] Alhajj, R., Extracting the Extended
Entity-Relationship Model from a Legacy Relationals
Database, Information Systems, vol. 28, pp. 597–618,
2003.

[3] Alhajj, R. and Polat, F., Reengineering Relational
Databases to Object-Oriented, Constructing the Class
Hierarchy and Migrating the Data, WCRE’01, pp.
335–344, 2001.

[4] Akoka, J., Comyn-Wattiau, I. and Lammari, N.:
Relational Database Reverse Engineering, Elicitation
of Generalization Hierarchies, in ER ’99, pp. 173–185,
1999.

[5] Andersson, M., Extracting an Entity Relationship
Schema from a Relational Database through Reverse
Engineering, in 13th Int. Conf. on the ER Approach,
pp. 403–419, 1994.

[6] Behm, A., Geppert, A. and Dittrich, K. R., On the
Migration of Relational Schemas and Data to
Object-Oriented Database Systems, in 5th Int. Conf.
on Re-Technologies for Info. Syst., pp. 13–33, 1997.

[7] Behm, A., Geppert, A. and Dittrich, K. R., Algebraic
Database Migration to Object Technology, in ER, pp.
440–453, 2000.

[8] Castellanos, M., Saltor, F. and Garćıa-Solaco, M.,
Semantically Enriching Relational Databases into an
Object Oriented Semantic Model, DEXA, pp.
125–134, 1994.

[9] Carey, M., Florescu, D., Ives, Z., Lu, Y.,
Shanmugasundaram, J., Shekita, E. and Subramanian,
S., XPERANTO, Publishing Object-Relational Data
as XML, in WebDB (Informal Proceedings), pp.
105–110, 2000.

[10] Chiang, R. H., Barron, T. M. and Storey, V. C.,
Reverse Engineering of Relational Databases,
Extraction of an EER Model from a Relational
Database, Data Knowl. Eng., vol. 12, pp. 107–142,
1994.

[11] Conrad, R., Scheffner, D. and Freitag J. C., XML
Conceptual Modeling Using UML, in 19th Int. Conf.
on Conceptual Modeling, vol. 1920, pp. 558–571, 2000.

[12] Davis, K. H. and Arora, A. K., Converting a
Relational Database Model into an
Entity-Relationship Model, in 6th Int. Conf. on ER
Approach, pp. 271–285, 1988.

[13] Dobbie, G., Wu, X., Ling, T. and Lee, M., ORA-SS:
Object-Relationship-Attribute Model for
Semistructured Data. TR 21/00 National University of
Singapore, 2001.

[14] Du, W., Lee, M. and Ling, T. W., XML Structures for
Relational Data, in WISE (1), pp. 151–160, 2001.

[15] Eessaar, E., Whole-Part Relationships in the
Object-Relational Databases, in WSEAS, pp.
1263-1268, 2006.

[16] Laforest, F. and Boumediene, M., Study of the
Automatic Construction of XML Documents Models
from a Relational Data Model, in DEXA Workshops,
pp. 566–570, 2003.

[17] Lee, D., Mani, M., Chiu, F. and Chu, W. W.,
Nesting-Based Relational-to-XML Schema
Translation, in WebDB, pp. 61–66, 2001.

[18] Lee, D., Mani, M., Chiu, F. and Chu, W. W., NeT
and CoT: Translating Relational Schemas to XML
Schemas using Semantic Constraints, in CIKM, pp.
282–291, 2002.

[19] Fahrner, C. and Vossen, G., Transforming Relational

Database Schemas into Object-Oriented Schemas
according to ODMG-93, in DOOD ’95, pp. 429–446,
1995.

[20] Fonkam, M. M. and Gray, W. A., An Approach to
Eliciting the Semantics of Relational Databases, in 4th
Int. Conf. on Advanced Info. Syst. Eng., vol. 593, pp.
463–480, 1992.

[21] Fong, J., Mapping Extended Entity Relationship
Model to Object Modeling Technique, SIGMOD
Record, vol. 24(3), pp. 18–22, 1995.

[22] Fong, J., Converting Relational to Object-Oriented
Databases, SIGMOD Record, vol. 26, pp. 53–58, 1997.

[23] Fong, J. and Cheung, S. K., Translating Relational
Schema into XML Schema Definition with Data
Semantic Preservation and XSD Graph, Information
& Software Technology, vol. 47, pp. 437–462, 2005.

[24] Fong, J., Wong, H. K. and Cheng, Z., Converting
Relational Database into XML Documents with
DOM, Information & Software Technology, vol. 45,
pp. 335–355, 2003.

[25] Fong, J., Fong, A., Wong, H. and Yu, P., Translating
Relational Schema with Constraints into XML
Schema, Int. Journal of Software Engineering and
Knowledge Engineering, vol. 16(2), pp. 201–244, 2006.

[26] Funderburk, J., Kiernan, G., Shanmugasundaram, J.,
Shekita, E. and Wei, C., XTABLES: Bridging
Relational Technology and XML, IBM Systems
Journal, vol. 41(4), pp. 616–641, 2002.

[27] Johannesson, P and Kalman, K., A Method for
Translating Relational Schemas into Conceptual
Schemas, in 8ht Int. Conf. on Enity-Relationship
Approach, pp. 271–285, 1989.

[28] Hainaut, J., Tonneau, C., Joris, M. and Chandelon,
M., Schema Transformation Techniques for Database
Reverse Engineering, in 12th Int. Conf. on the
Entity-Relationship Approach, vol. 823, pp. 364–375,
1994.

[29] Hohenstein, U. and Plesser, V., Semantic Enrichment,
A First Step to provide Database Interoperability,
Workshop Föderierte Datenbanken, pp. 3–17, 1996.

[30] Keller, A. and Wiederhold, G., Penguin: Objects for
programs, relations for persistence, Succeeding with
Object Databases, John Wiley & Sons, 2001.

[31] Kleiner, C. and Lipeck, U. W., Automatic Generation
of XML DTDs from Conceptual Database Schemas,
GI Jahrestagung (1), pp. 396–405, 2001.

[32] Maatuk, A., Ali, A. and Rossiter, N., An Integrated
Approach to Relational Database Migration, in Int.
Conf. on Information and Communication
Technologies, Bannu, Pakistan, pp. 6pp, 2008 (In
Press).

[33] Marcos, E., Vela, B. and Cavero, J. M., A
Methodological Approach for Object-Relational
Database Design using UML, Soft. and Syst.
Modeling, vol. 2, pp. 59–75, 2003.

[34] Missaoui, R., Gagnon, J. and Godin, R., Mapping an
Extended Entity-Relationship Schema into a Schema
of Complex Objects, in 14th Int. Conf. on
Object-Oriented and Entity-Relationship Modelling,
vol. 1021, pp. 204–215, 1995.

[35] Narasimhan, B., Navathe, S. B. and Jayaraman, S.,

On Mapping ER Models into OO Schemas, in 12th
Int. Conf. on the Entity-Relationship Approach, vol.
823, pp. 402–413, 1993.

[36] Pardede, E., Rahayu, J. and Taniar, D., Mapping
Methods and Query for Aggregation and Association
in Object-Relational Database using Collection, In
ITCC (1), pp.539-, 2004.

[37] Petit, J., Kouloumdjian, J., Boulicaut, J. and
Toumani, F., Using Queries to Improve Database
Reverse Engineering, in 13th Int. Conf. on the
Entity-Relationship Approach, vol. 881, pp. 369–386,
1994.

[38] Pigozzo, P. and Quintarelli, E., An Algorithm for
Generating XML Schemas from ER Schemas, in
SEBD, pp. 192–199, 2005.

[39] Premerlani, W. J. and Blaha, M. R., An Approach for
Reverse Engineering of Relational Databases,
Communications of the ACM, vol. 37, pp. 42–49, 1994.

[40] Parent, C. and Spaccapietra, S., Database Integration:
The Key to Data Interoperability, Advances in
Object-Oriented Data Modeling, pp. 221–253, 2000.

[41] Ramanathan, S. and Hodges, J., Extraction of
Object-Oriented Structures from Existing Relational
Databases, SIGMOD Record, vol. 26(1), pp. 59–64,
1997.

[42] Soutou, C., Extracting N-ary Relationships Through
Database Reverse Engineering, in 15th Int. Conf. on
Conceptual Modeling, vol. 1157, pp. 392–405, 1996.

[43] Soutou, C., Inference of Aggregate Relationships
through Database Reverse Engineering, in 17th Int.
Conf. on Conceptual Modeling, vol. 1507, pp. 135–149,
1998.

[44] Urban, S. D., Dietrich, S. W. and Tapia, P.,
Succeeding with Object Databases: Mapping UML
Diagrams to Object-Relational Schemas in Oracle 8.
John Wiley and Sons, Ltd, pp. 29–51, 2001.

[45] Vela, B. and Marcos, E., Extending UML to
Represent XML Schemas, in CAiSE Short Paper
Proceedings, 2003.

[46] Wang, C., Lo, A., Alhajj, R. and Barker, K., Novel
Approach for Reengineering Relational Databases into
XML, in ICDEW ’05 Workshops, pp. 1284, 2005.

[47] Yan, L. and Ling, T. W., Translating Relational
Schema with Constraints into OODB Schema, in the
IFIP WG 2.6 Database Semantics Conf. on
Interoperable Database Systems, vol. A-25, pp. 69–85,
1993.

[48] Zhang, X., Zhang, Y., Fong, J. and Jia, X.,
Transforming RDB Schema to Well-structured OODB
Schema, Information & Software Technology, vol. 41,
pp. 275–281, 1999.

