
An Overview about the Polymorphic Worms Signatures

ABSTRACT
With the proliferation of the internet among casual users as well

as businesses, the range and frequency of security threats have

increased dramatically. One of these threats is a particular type of

malware known as a polymorphic worm. This is a program that

can mutate its appearance with each infection and spreads through

the network via semantics-preserving code manipulation methods

or self-encryption techniques. This paper describes the

characteristics of polymorphic worms and then explains the most

common forms of pattern based detection, such as Autograph.

General Terms

Measurement, Design, Reliability, Security, Verification.

Keywords

Polymorphic Worms, Security, Pattern, IDS, Vulnerability.

1. INTRODUCTION
A worm propagates causing an online security threat by spreading

its pattern each time to other machines on the network. By

exploiting system vulnerability, each instance of the worm

requires an invariant byte string in its payload, which is important

as these sequences are distinctive to different types of worm and

can be identified by signature [1]. Various security experts have

proposed IDS systems, which are used to preserve networks

against worms, such as Bro and Snort databases deployed at the

edge of the network and the internet [2]. An important function of

IDSs is to examine traffic in order to compare it against the

signatures accumulated in their databases. When a novel worm is

detected, analysis of the worm code is typically done manually by

security experts in order to generate a signature. The signature is

subsequently distributed, allowing each IDS to update their

databases with the new signature. This sometimes occurs days

after the worm is released, which is dangerously slow if the worm

threat is extremely fast replicating and able to spread through an

entire network in seconds [3].

 Additionally, the problem arises from the use of these

databases is that they are inefficient in detecting more recent types

of worms, such as polymorphic worms, which have the ability to

alter their appearance and hence have many differences in the

signatures for the same worm [4].

 The speed of worms generally outbreak in zero day and the

polymorphic worm are approximately the same; they can mutate

at every copy, in addition to keeping the original algorithm

unchanged (invariant bytes). Within each exploit, the worms

begin to modify the bytes by deleting the portions of some pieces

of code, inserting or modifying some byte sequences thereby

avoiding detection through a simple signature matching

techniques. However, the parts of the code that remain unchanged

can be used to characterise the signature of a polychromic worm

[1]. For this purpose, security experts have developed a number

of automatic and faster methods to derive more accurate and

efficient signatures for worms. Generating a signature

automatically can ultimately be read by firewalls or Intrusion

Prevention Systems to quickly contain the worm spread. These

automatic methods can be used to extract good quality signatures,

which preserve all invariant bytes and restriction distances which

make identification and preventing worm easier [6].

 This paper describes the characteristics of polymorphic worms

and then explains the most common forms of pattern based

detection, such as Autograph.

2. POLYMORPHIC WORMS
Noh et al. [7] stated that most of the internet worms cause damage

to networks through consumption of bandwidth that threatens the

security of internet infrastructures and the information about the

platform. This threat has become increasingly likely, with the

development of advanced worms such as polymorphic worms that

can change their program code without human interaction by

replicating themselves, enabling them to exploit operating

systems and software vulnerabilities in order to contaminate a

system [8]. Bayoglu et al. [8] also argued that this type of worm

harms the internet by exploiting network infrastructure to transmit

copies of itself to other computers. This mechanism of self-

propagation helps the worm to spread to many networks very

quickly. Each copy keeps the novel algorithm intact during the

mutation process, enabling the evasion of detection by a

straightforward signature matching technique based IDS. This

means that the worm changes its prototype each time, sending this

copy to infect other systems, although there are some fractions of

its code remaining unchanged. Xiao et al. [9, 10, 11] explained

that the propagation of a worm includes three stages:

Raja A. Moftah

Faculty of Information Technology
Benghazi University, Libya
rajaMoftah@hotmail.com

Abdelsalam M. Maatuk

Faculty of Information Technology
Benghazi University, Libya

abdelsalam.maatuk@uob.edu.ly

Peter Plasmann
Faculty of Computing, Engineering and Science

University of South Wales, UK
peter.plassmann@southwales.ac.uk

Shadi Aljawarneh
Software Engineering Department

Jordan University of Science and Technology
Irbid, Jordan

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
ICEMIS '15, September 24-26, 2015, Istanbul, Turkey

© 2015 ACM. ISBN 978-1-4503-3418-1/15/09…$15.00

DOI: http://dx.doi.org/10.1145/2832987.2833031

mailto:rajaMoftah@hotmail.com
mailto:abdelsalam.maatuk@uob.edu.ly
mailto:peter.plassmann@southwales.ac.uk
http://dx.doi.org/10.1145/2832987.2833031

 Target finding: each copy decides on the next victim by

IP address.

 Worm transferring: after finding a target, the worm

sends itself to the victim device.

 Infection stage: when the worm's code has transferred to

victim machine, the code will be executed.

 Kim et al. [5] described the extensive costs of Internet worm

epidemics on the network. Through rapid spreading from the

victim host to other target hosts and interruption to the computers,

network services such as Code Red worm epidemic were

estimated to have cost 2.6 billion dollars [5].

2.1 Polymorphism Techniques
According to Tang et al. [4] polymorphism techniques have been

exploited to generate worm flows. Polymorphic engines have

published shellcode generators with various techniques include

ADMmutate, Clet and TAPiON [4]. These techniques have been

used to write shellcode of polymorphic that contains Garbage,

register shuffling, equivalent code substitution and encoding

[encryption/decryption] to evade worm detection. However, the

polymorphic worms require invariant bytes and restricted

distances to exploit the vulnerability of servers.

 The polymorphic mechanism leads to confusion of worm

detection approaches by concealing the worm's payload through

the use of encoding techniques to write polymorphic shellcodes. If

the worm mutates, its payload will generate a different form from

its copy, but still have the same function. Polymorphic worms

commonly include four parts: Decryption Routine, Decryption

Key, Encrypted Worm Code along with Exploit Code [8, 10]. A

polymorphic worm exploits an initial vulnerability and then

decrypts the encrypted worm code utilizing the decryption routine

along with the decrypted key [8]. Various keys of encryption and

decryption are applied to encrypt the worm code for each worm

sample. Decryption Key along with Encrypted Worm Code

models vary for each worm sample, while the Decryption Routine

and Exploit code models stay unchanged [8]. Thus, obfuscation

mechanisms are used by each worm sample to formulate different

Decryption Routine models, which creates an Exploit Code in the

unchanged part of the polymorphic worm code that is a source of

high false positives if individually utilized to detect the worm. In

addition, Bayoglu et al. [8] argued that encryption does not

include the full code of the worm as that would make the code

inoperative. Each worm therefore has a part of the code that exists

for the purposes of exploiting prospective victims. The

unencrypted part is used afterwards to branch the implementation

cycle to the decryption routine along with the initial code.

2.2 Polymorphic Body
Tang et al. [4] explain that the polymorphic worm sample

(infection flow) contains a string sequence. These strings include

invariant bytes and wildcard bytes. Invariant bytes contain fixed

values and should be present in each worm sample in order to

ensure that the infection is successful. Wild card bytes change

their values for each diverse worm sample. For instance, a

polymorphic Code Red II worm has a sequence of seven invariant

contents: "GET",".ida?","XX","%u","%u780","=", along with

"HTTP/1.0 r n". So, security professional people attempt to

extract the invariant contents of polymorphic worm as a signature.

Invariant bytes in a worm flow create a number of invariant

contents that are essential to successful worm infection. In other

words, the invariant content,"%u 7801" is 4 bytes after "%u",

which illustrates the number of characters between two substrings.

These distance restrictions are important for the exploitation of a

vulnerable server [3]. According to Tang et al. [4], this causes a

number of difficulties, as some invariant components cannot be

extracted in polymorphic worms. Previous approaches were able

to simply generate a single invariant component [5], whereas

polygraph [3] is able to extract most invariant components expect

for one-byte invariant component such as "=" in the Code Red II

worm. Most approaches also do not take into account the all

distance restriction in the Code Red II. Despite this, each one-byte

invariant components and distance restriction are crucial in worm

detection.

2.3 Worm Detection Signature
A worm detection signature is an approach used to find activities

of polymorphic worms. The key idea of an extracted signature is

to discover match invariant substrings or sequence similarities in

all different aspects of a payload. Bayoglu et al. [8] claimed that

these methods dealing with polymorphic worms can be further

classified into content based detection and behaviour based

detection. Content based polymorphic worm detection systems

use the worm content to generate information to facilitate matches

with the worm. Behaviour based approaches are concerned with

the behaviour of the worm in the flow of the network along with

system activities. Nevertheless, Xiao et al. [9] stated that worm

detection techniques should be classified into two schemas:

signature-based and anomaly-based. Currently, automatic

signature generation techniques can be associated between two

detection schemes.

2.3.1 Signature–Based Worm Detection
Signature–Based Worm Detection is a typical approach used in

IDSs, which works by representing the behaviour and prototypes

of the worms and examining for a match. If a match is detected,

the detection of the prevention systems IDSs will be raised. This

model includes the Network signature type that contains regular

expressions, which is intended to match each infection within the

network stream of a worm. There are also other types that aim to

track a worm in a file system such as File signatures, or to expose

the behaviour of the worm in the target host, such as Log

signature applications [9]. This study will focus on Network

signature types, divided into exploit signatures and vulnerability

signatures. Most IDSs and anti-virus vendors provide two types of

signatures and offer information on both exploits and

vulnerabilities used for worms [9].

2.3.2 Anomaly-Based Worm Detection:
Anomaly-Based Worm Detection schemes construct models of

program behaviour or normal networks, raising an alarm when the

program or behaviour of a host departs from these models

[9].Various means can be used to perform this, by checking the

payload of each packet to ensure that each packet satisfies the

normal model to detect the payload from polymorphic worms,

based on real and dynamic execution of network data [9].

2.3.3 Automatic Signature Generation
Signature-based detection systems are precise, efficient and

simple to progress and deploy [9]. On the other hand, they are not

able to discover unknown worms unless novel signatures are

available. Anomaly-based detection systems are capable of

detecting unknown worms. However, they suffer from high levels

of false alarms (false positives) while modelling normal behaviour

is extremely complex. Automatic signature generations have been

developed to associate between advantages of signature-based

detections and anomaly-based detections. Computer security

experts can use anomaly-based detection to find unknown worms,

along with automatic signature generation systems to produce

accurate signatures for detection. Worm containment will then

reacts quickly after the worm detection and reduce the harm

which can be caused. Currently, automatic signature generation

has become an important issue and numbers of techniques have

been projected. These systems are classified into two subtypes

Host-based and Network-based [9].

2.3.3.1 Host-based Signature Generation (HSG)
HSG systems run to defend the hosts, utilising the host

information to discover the attempts of the infection and extract

signatures from these attempts. Usually, HSG systems generate

precise signatures rapidly, but they also have several negative

effects on the defending host recital and configuration such as

requirements that the host recompiles the kernel [9].

2.3.3.2 Network-based Signature Generation (NSG)
NSG systems only analyze the suspicious network flow along

with output content-based signatures [9]. Compared with HSG

systems, NSG systems are more sensitive at early stages of worm

propagation, because they able to capture worm samples earlier

from the network router and gateway level. Early networks-based

signature generation systems contain Autograph, which was

capable of generating solely single-string signatures. Polygraph

and Hamsa generate token-based approaches, in which a token is a

byte sequence that occurs in a significant number of suspicious

traffics. These tokens have a high exposure of suspicious flows

and low false positive reactions to the normal flow pool. Recently,

Simplified Regular Expression was developed to apply multiple

sequence alignment to generate signatures [9].

2.3.4 Exploit-Bashed Signature Generation Schemes
As mentioned above, there are various approaches for automatic

signature generation that is able to output exploit-based

signatures: Network-based and Host-based [4]. These types can be

further classified with Exploit based signatures into:

2.3.5 Network-based and Exploit-based Schemes
This has exploited by early network-based signature generation

approaches, containing Honeycomb, Autograph, PAYL and

Earlybird which only deal with a single infection. Meanwhile,

Polygraph and Hamsa approaches choose a set of token that has a

high coverage of suspicious flow and provides a high level of

false positive results. Recently, generation SER signature has been

shown to be more accurate and does not depend on well classified

worm flow pools [4].

2.3.6 Host-based and Exploit-based Schemes
There are a number of approaches including TaintCheck that

apply dynamic taint examination to detect anomaly instruction

implementation and output three-byte signatures, which are used

to overwrite a jump target. DACOD assumes a similar technique

and outputs a set of token as signatures to detect intrusions. DIRA

is a compiler that is able to transform random programs so it can

detect control hijacking attacks in which malicious packets are

recognized as the signature [4]. However, this study does not

require the identification of several unrevealed information

sources, such as TaintCheck and DACOD, which require

distinguishing the vulnerable programs or having the source code

as DIRA [4]. They cannot automatically create the signature of a

worm also require knowledge of certain hidden information

because all methods are based on Host-based schemes that seek

to collect more information at a host as binary/sources code of

vulnerable programs [12]. This study seeks to discover the

approaches such as autograph and aims to generate more accurate

signatures to identify and filter out polymorphic worms.

3. PATTERN-BASED DECTION

3.1 Autograph
Autograph is one of an early pattern which was constructed to

automatically generate signatures for novel Internet worms. This

approach is used to generate signatures that demonstrate high true

positive rate (high sensitivity) and low false positive rate (high

specificity), using content based filtering. Kim et al. [5] restrict

their analysis to worms that propagate over TCP transport. The

signature is a tuple, including: IP protocol number, destination

port number, along with byte sequence. The content is based on

filtering and considers the payload in the network stream, when it

matches the byte sequences in the signature by utilising the same

IP protocol destined for the destination port number, and is then

classified as a worm.

3.2 Architecture of Autograph
In general, for an overview of this system, all traffic crossing the

Demilitarized Zone (DMZ) inputs to an Autograph monitor and

outputs a list of the worm signatures. This system comprises of

two phases: suspicious flow selection and signature generation.

The suspicious flow selection is used to classify the network

stream as a suspicious flow pool (malicious) along with non-

suspicious flow pool (innocuous). The signature generation is

found in the veracity of how worms propagate to exploit the

software vulnerability and to execute; thus all instances consist of

one or an additional common byte sequence. The worm spreads in

a bulky number, so the amount of common content block is high.

The suspicious flow is used to generate a signature by dividing it

into smaller content blocks, and the number of suspicious flows in

which every block’s content arises is counted. This content block

is ranked according as its prevalence, with a higher prevalence

achieving a higher count. The commonly occurring content block

is utilised as the signature [5].

 The authors explain that this system relies on heuristics to

investigate network traffic and to derive a packet classifier which

is usually used as a port scanner discovery mechanism to classify

incoming traffic as either malicious or innocuous [5]. Scanning

discovery is executed through monitoring inbound unsuccessful

TCP connections. Every external host which has accomplished an

unsuccessful connection and tries additional than x internal IP

addresses is measured to be a scanner. Therefore, the autograph

generates signatures for worms that transmit by randomly

scanning IP addresses only. The discovered mechanism is

inapplicable if port scanners utilise spoof platform address. In

order to deal with this issue, the authors plan in the future to apply

various anomaly detection mechanisms [5].

 Autograph carries out TCP flow reassembly for inbound

payloads which are malicious. In addition, all malicious flow is

accumulated with regard to its destination port. The process of

signature generation is initiated when the malicious flow pool

consists of more than a threshold number of flows for a particular

destination port. While for the signature generation, autograph

computes the frequency with which non-overlapping payload

substrings occur across all malicious payloads, along with noting

the frequently occurring substring for the candidate’s signature.

To achieve this, each flow’s payload is separated into variable-

length content blocks by COntent-based Payload Partitioning

(COPP), along with the number of malicious payloads, as every

content block that occurs is counted. Kim et al. [5] indicate this

count as the content’s prevalence. Also, COPP is initiated in the

file scheme domain, and calculates a series of Rabin fingerprints

and a sliding window of the flow’s payload to make the content

blocks. The content blocks emerging only in flows originating

from single platform IP addresses are removed. Moreover, Kim et

al. [5] identifies that these content blocks sometimes occurred due

to misconfigured systems which are not malicious. Also, the byte

strings that are identified as achieving a high false positive could

be blacklisted through a local administrator. The content blocks

remaining are utilised for generating a signature. Autographing

repetitively the process for the majority of prevalent content block

is chosen as signature and then all flows found in this content

block are eliminated. This process is repetitive, with remaining

flows continuing until the fraction of the entire flows in the pool

has been enclosed. Autograph will report the set of chosen

signatures in Bro’s signature feature at the end of the process.

3.3 Evaluation of Autograph System
In a general evaluation, the quality of the signature generated by

this system depends upon the size of the content block. When the

size of the content block has been made small, it is in most cases

autograph signature generating. Then, the suspicious flow after

that passes through the generator signatures, which automatically

generates various classes of signatures. The authors provide more

detail about the evolution of the generation of signatures in their

paper through Autograph, and they also describe their prototype

implementation. However, the client can easily guess from the

performed experiments that a prototype exists. Initially, they have

explored the effect of the content size on the quality of signature

generation. In their experiment, Autograph is supplied with

packets traces from DMZ from two different research labs, each

of the research’s 29 IP address include the complete packet

payload. For computing Autograph’s true positive rate, the

identical trace was experimented with initially by applying Bro

with well-known signatures- the scanning-based HTTP worms

Code-Red, Code-RedII, Nimda, and this was followed by

applying Autograph’s signatures.

 For computing the rate of the false positive, a sanitised trace

was performed by taking out the entire flows from the traces that

were formerly known through Bro as worms. Subsequently, Bro

and Autograph’s signatures were run in the sanitised trace. This

testing shows that the presentation of generated signatures differs

for varies parameters, which is the fraction flows detected through

the generated signatures, along with the content block size. The

author states that the optimal parameters established may not be

related to other traces. Also, they assert that the Autograph system

is able to generate extremely short signatures or worms, along

with imperfect polymorphism (set 56-byte sequence). Even so,

they point out that the short signature may cause high false

positive rates. Autograph’s distributed signature discovery system

is estimated to determine how quickly Autograph discovers and

generates a signature for a newly released worm.

 The results show that there exists a range of processes whereby

the system produces signatures which have not sourced any false

positive, in an appropriate fashion. Finally, to accelerate the

accumulation of the Internet worm payloads, Autograph is

developed along with a technique to share suspicious resource

addresses among whole monitors. This technique is a so-called

tattler protocol, and is in addition to RTPC protocol which is

utilised for controlling multimedia conferencing sessions;

furthermore, it has been revealed to scale to thousands of senders.

The tattler protocol is applied to allow the monitors to announce

the IP address and destination port of scans received, and every

announcement includes around one to 100 port scanner reports.

Simulations demonstrate that the peak bandwidth consumed by

tattler through a Code-RedI epidemic is just 15Kbps, but that does

not include the background port scanning [5].

4. CONCLUSONS
This paper provides a survey on the polymeric worms and the

characteristics of polymorphic worms and then the most common

forms of pattern based detection have been explained, such as

Autograph. As a part of future work, we will develop a

framework architecture to describe the polymorphic signature.

5. REFERENCES
[1] Saudi, MM. Tamil, EM. Nor, SAM. Idris, MYI. Seman, K..

2008. EDOWA Worm Classification. In Proceedings of the

World Congress on Engineering 2008, vol. 1.

[2] Unterleitner M. 2012. Computer Immune System for Intrusion

and Virus Detection: Adaptive Detection Mechanisms and their

Implementation. AV Akademikerverlag.

[3] Newsome, J. Song, D. 2005. Dynamic taint analysis for

automatic detection, analysis, and signature generation of

exploits on commodity software. In the 12th annual network and

distributed system security symposium.

[4] Tang, Y., Xiao, B., Lu, X. 2009. Using a bioinformatics

approach to generate accurate exploit-based signatures for

polymorphic worms. Comput. Secur, vol. 28(8), pp. 827-842.

http://dx.doi.org/10.1016/j.cose.2009.06.003

[5] Kim, H.A. 2010. Privacy-Preserving Distributed, Automated

Signature-Based Detection of New Internet Worms. Ph.D. Thesis,

Carnegie Mellon University, Pittsburgh.

[6] Wang, J., Hamadeh, I., Kesidis, G. And Miller, D. 2006.

Polymorphic worm detection and defense: system design,

experimental methodology, and data resources. In Proceedings of

the 2006 SIGCOMM. ACM, New York, NY, USA, pp. 169-176.

DOI=http://doi.acm.org/10.1145/1162666.1162676

[7] Noh, H., Kim, J., Yeun, C.Y. and Kim, K. 2008. New

Polymorphic Worm Detection based on Instruction Distribution

and Signature. In the 2008 Symposium on Cryptography and

Information Security. Miyazaki, Japan.

[8] Bayoglu, B. and Sogukpinar, I. 2008. Polymorphic Worm

Detection Using Token–Pair Signatures. In Proceedings of the

4th int. workshop (SecPerU '08), ACM, NY, USA, pp. 7-12.

DOI=http://doi.acm.org/10.1145/1387329.1387331

[9] Xiao, B., Tang, Y., Luo, J. And Wei, G. 2009. Concept,

characteristics and defending mechanism of worms. In IEICE

Transactions on Info. and Syst. vol. E92-D(5), pp. 799–809.

[10] Aljawarneh, S. 2011. A web engineering security methodology

for e-learning systems. In Network Security, Elsevier. vol.

2011(3), pp. 12-15. doi:10.1016/S1353-4858(11)70026-5

[11] Aljawarneh, S. 2011. Cloud Security Engineering: Avoiding

Security Threats the Right Way. In IJCAC, vol. 1(2), pp. 64-70.

doi:10.4018/ijcac.2011040105.

[12] Li, Z., Sanghi, M., Chen, Y., Kao, MY. And Chavez, B. 2006.

Hamsa: fast signature generation for zero-day polymorphic

worms with provable attack resilience. In Security and Privacy,

2006 IEEE Symposium on.

http://dx.doi.org/10.1016/j.cose.2009.06.003
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10812
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10812
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10812

