
An Experimental Study on Detecting Semantic Defects in
Object-Oriented Programs using Software Reading

Techniques

ABSTRACT

Software defects are categorized into two main types: Syntax and

Semantic defects. Syntax defects are easily to capture using

compliers (or interpreters) that programming languages have.

However, compliers are incapable to detect semantic defects, and

this makes programmers re-read the source code a number of

times to figure out where the defects locations are. Semantic

defects are unable to be detected by compilers, as they are logical

errors, and need the code file to be inspected carefully to catch

them. This paper presents an approach to help programmers in

discovering semantic defects in object oriented programming. As

software code reading techniques play the most important role in

capturing semantic defects, we have conducted a number of

controlled experiments using three reading techniques, in order to

test their efficiency and effectiveness.

Keywords

Semantic defects, software reading techniques, object oriented

programming.

1. INTRODUCTION
Software companies and stand alone programmers always look

forward to produce high quality software that are flexible,

updateable, efficient and most importantly free of defects.

Generally speaking, quality is the software reputation described

by the user, a good quality must satisfy the user’s needs and

provide more additional services to guarantee longer age for the

software in markets [12]. Nowadays, most software companies

make an effort to avoid to create poor quality products by

consulting software experts, developing new techniques, etc. Poor

products always lead to repeated execution, never-ending

maintenance, and the need for more experts, which lead to heavy-

load cost [25].

As software quality has become an important issue, many

organizations, e.g., IEEE, British Computer Society and American

Society for Quality, concern about software testing to produce

high quality products. Therefore, the purpose of software testing

from the developer perspective is to make sure that the software

meets requirement specifications or developed free of bug [20].

 Software reading is the merely technique in hand towards

achieving high quality software. It is the only analysis technique

used throughout the entire life cycle of development and

maintenance process [1]. Because of software reading plays an

important role towards creating high quality software, several

experiments conducted to develop and create reading techniques.

 A reading technique is a set of steps for the individual analysis of

a textual software product to reach the understanding needed for a

particular task [3]. Reading techniques vary from each other in

use, purpose and family, hence we can rely on each reading

technique in a specific phase, in which it is more effective in [2].

Several empirical studies have been conducted aiming to answer

questions related to software reading techniques [18, 19, 1].

 This paper presents an experimental study to determine which

reading techniques are effective and efficient, in order to produce

the required results. The main idea behind this research is to

understand software quality by investigating different defect

detection techniques once applied for object oriented software.

Defect detection methods may take a static approach (no

execution) or a dynamic approach (test execution) [24]. This study

can be considered as an extension to the work that is described in

the ESERNET project [9, 17]. This project emphasizes on the

importance of empirical software engineering as one mean to

understand and measure software quality. However, we focus on

white-box testing through software reading by conducting a

family of controlled experiments in the context of laboratory

environment from a researcher point of view. Three static testing

techniques have been used, which are: Checklist Based Reading

(CBR), Functional Based Reading (FBR) and Systematic Based

Reading (SBR). Based on these techniques, we have conducted

two experiments: Basic Experiment (BE) and its Replications

Experiment (RE). We replicated the experiment to double-check

its results and increase the confidence. The results of these

experiments are discussed, where their nominated subjects are

undergraduate and postgraduate students.

 The rest of the paper is organized as follows: Section 2

summarizes the related work. Section 3 presents the experimental

study. The reading techniques productivity is described in Section

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICEMIS '15, September 24-26, 2015, Istanbul, Turkey © 2015 ACM.

ISBN 978-1-4503-3418-1/15/09…$15.00

DOI: http://dx.doi.org/10.1145/2832987.2833025

Ziad A. Abdelnabi
Academy of Graduate Studies, Libya

abdelnabi@yahoo.com

Abdelsalam M. Maatuk

Faculty of Information Technology
Benghazi University, Libya

abdelsalam.maatuk@uob.edu.ly

Alfaroq O. Mohammed
Faculty of Sciences

Omar Al-Mukhtar University, Libya
fomf200@yahoo.co.uk

Abdalmunam S. Abdalla
Faculty of Sciences

Omar Al-Mukhtar University, Libya
abdalmenam1980@gmail.com

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2832987.2833025

4, whereas their efficiency is discussed in Section 5. Finally,

Section 6 summarizes the main conclusion of the paper.

2. RELATED WORK
Software defects have always been the main obstacle that most

software companies and software engineers face, towards making

excellent products, which satisfy the needs of the user. Therefore,

several researches and experiments, which are vary from white-

box to black-box testing experiments, are conducted to find an

ideal solution for the software defects problem. Software

inspection is as old as programming itself, since it was introduced

in the 1970s at IBM, which pioneered its early adoption and later

evolution [5]. It is a way of detecting faults in software

requirements document, design or codes. Existing empirical

studies have demonstrated that the defects detection process is

more individual than a group activity as assumed by many

inspection methods [6]. Inspection results depend on inspection

participants themselves and their strategies for understanding the

inspected artifacts [7].

 Gilb and Grahams’ manuscript on software inspection states that

Checklist questions interpret specified rules within a project or an

organization [20]. It was found that the systematic approach

offered a number of benefits: a rigorous reading strategy, potential

to help address delocalization through abstract specifications,

potential to encourage deeper understanding, and to discover

different defects from an ad-hoc approach [10]. Weakness in SBR

is that, it does not address adequately the highly dynamic nature

of object-oriented software. Reading by stepwise abstraction is a

technique that requires more rigorous examination of the software

artifact than either ad-hoc or Checklists do [12, 13]. Scenario-

based reading techniques [1] extends the work in [14] and allocate

specific responsibilities to inspectors.

 Some experiments with students as subjects found that subjects

using the defect-based reading technique detect more defects in

requirement documents than subjects applying either ad-hoc or

CBR [8, 15], and similarly with professional subjects [16]. In

CBR technique, the reader is responsible for all the inspection

processes and finding all possible defects [20]. A perspective-

based reading scenario consists of activities an inspector is to

perform to extract information from the inspected document and

questions to analyze the extracted information. In the context of a

controlled experiment at NASA [4], the researchers have

compared the PBR approach to a specific NASA reading

approach, which is evolved over several years. For some

requirements documents, it is found that the individual subjects

using the PBR technique have been more effective at defect

detection in the requirement documents than subjects using the

NASA reading approach.

3. EXPERIMENTAL STUDY
This section describes how the research experiments have been

conducted, executed and eventually replicated for several

replications, regardless of the changes made to the experiment

planning. We have conducted, the Basic Experiment, BE, with the

participation of undergraduate students in two Libyan

Universities. The first experiment has been conducted in the

department of computer science at Omar Al-Mukhtar University,

whereas the second one conducted in the department of software

engineering at Benghazi University. Table 1 shows the number of

students employed in each university and the assigned reading

techniques.

Table 1. Number of subjects assigned to reading techniques

 SBR CBR FBR

Oma El-Mukhtar University 3 4 5

Benghazi University 5 4 4

Merged (BE) 8 8 9

 The BE experiment has been also replicated with postgraduate

students in the department of computer science at the Academy of

Graduate Studies, Libya. We replicated the experiment to double-

check its results and increase the confidence, with respect to the

factors shown in Table 2. Cartwright refers to replications as

repeating an experiment, closely following the experimental

procedures of the original ones, and refers to reproductions when

re-examining the results from previous experiment, using a

different experimental protocol [22]. Basically, replication

produces an additional set of results and it is a mechanism for

building knowledge [23]. More details on the experiments that we

have conducted can be found in [21].

Table 2. Replicated experiment factors
Factor Description

Object Oriented The use of object oriented concepts

Time Experiments are restricted to a specific duration of

time

Level of

experience

It depends on the experiment’s subjects (juniors or

masters)

Programming

language

The programming language that supports OO

Type of defect The seeded defects are taken from IBM table

Technique The technique used to capture the defect

 The resulted Replicated Experiment, RE, passed the same

common settings compared to the BE experiment. Other new

variables were taking place during the experiment planning and

execution. In the RE, it is expected that the change of subjects’

experience and the usage of technology during the experiment

execution would effect on the number of detected defects and

their types. Table 3 shows the number of students at the Academy

of Graduate Studies arranged by the reading technique.

Table 3. Number of subjects at Academy of Graduate Studies

arranged by reading techniques

 SBR CBR FBR

Academy of Graduate Studies 11 11 12

 We consider the planning and execution phases of one BE and

one replicated RE with subjects in different levels of experience

having almost the same environmental settings. For each

experiment, subjects have been assigned to a certain reading

technique as shown in Table 4.

Table 4. Number of subjects assigned to techniques in BE and RE

 SBR CBR FBR

Basic Experiment (BE) 8 8 9

Replicated Experiment (RE) 11 11 12

 In this research, the aim of using reading techniques is to

navigate through software document and capture seeded defects.

Each captured defect should be classified into a specific category

according to the IBM table of categorizations for object oriented

defects [11]. A description of each type of defects is included in

the table of defects as shown in Table 5.

3.1 Basic Experiment (BE)

3.1.1 BE Experiment Planning
The BE experiment is performed on students from the computer

science and software engineering departments. The students

participating in this experiment were given an introductory lecture

to software quality, software testing, and the targeted software

reading techniques. Eventually the students are participated to an

offline homework that consists of different software documents

(code file in Java programming language seeded with semantic

defects, some basic class diagrams and guidelines). The students

had sufficient time to work on the given homework and they have

been in contact with the research team via E-mails. During two

weeks period of time, the students started their training on the

homework and continued to ask more questions about the

techniques, the experiment structure, and how to take advantage

of using the supported documents associated (attached guidelines,

which clarify the nature of the software and explain the code file).

Table 5. IBM table of categorizations for object oriented defects [11]

In order to make object oriented software easy to understand for

the students, we have used the UML basic diagrams. By using

UML diagrams, the students would not have hard time in trying to

read the code file looking for the seeded defects directly.

However, comments were included to facilitate the process of

reading the code file, precise description for each line explaining

the new programming methods (functions) that students may face,

and the meaning and the purpose of each variable or function.

 The selected software we planned to use during RE has been

made in Java, an object oriented software of banking system is

chosen for the class experiment. We have seeded semantic defects

in the software code to compare the three reading techniques.

These defects are categorized, seeded and then tested before the

class experiment begins. Our seeded defects are based on the IBM

table of categorization mentioned in Table 4. Once the defects

have been injected, we have tested the program and run it to make

sure that those seeded defects do not affect on the syntax

expression causing a syntax error. Table 6 shows some seeded

defects details in the source code documents.

Table 6. Details of seeded defects in source code documents

Category Number Percentage

Total number of defects 30 0.04

Category A 8 0.01

Category B 6 0.008

Category C 7 0.009

Category D 2 0.002

Category F 7 0.009

Lines of code (LOC) 749 1

 We have calculated the percentage through dividing the number

of defects by the lines of code. For subjects, the aim of using

reading techniques is to navigate through software documents and

capture seeded defects. Then each captured defect have be

classified into a specific category according to the IBM table.

Besides, a description of each defect includes the faulted line of

code, time when the defect is captured in hours and minutes, name

of the class where the captured defect is located, starting time,

ending time, technique used, and some notes about the defect the

inspector may desire to write. Table 7 shows an example of the

student’s answer form, which contains the information given in

Table 6 and needs to be filled by the participant.

Table 7. Student's answer form

Starting Time: Ending Time: Technique:

Class Line

Number

Type of

Defect

Time Notes

Bank 44 A 10:10

Bank 60 A 10:27

Account 22 C 10:33

Transaction 32 B 10:41

Transaction 37 B 10:53

3.1.2 BE Experiment Execution
The experiment was performed in offline environment, and

students have been divided into groups of one subject. Each group

has been assigned randomly to a specific reading technique. The

specifically designed guidelines for each technique were given to

each group. Guidelines have been distributed to the groups with

lines of code seeded with defects, and asked to begin inspecting

the documents on a certain time. At the end of the experiment,

students submitted the answer forms filled with the defects they

detected.

3.2 The Replicated Experiment (RE)

3.2.1 RE Experiment Planning
The RE experiment is performed with postgraduate students. We

believe that doing the experiment with master students would

allow us to get better results and have more defects captured, as

they might have more experience in programming, especially

object oriented than the sophomore. We have accomplished the

same preparations in RE as used in BE, including the introductory

lecture, software documents, homework, code files, etc. This

experiment is different from the previous one as the required data

(i.e., students’ answers) is collected electronically.

 We have designed a website and a database to store the data in

SQL Server system. We have been able to have a free hosting

(from www.aspspider.com) for three months, which was enough

to accomplish the experiment and collect the results. The website

was enhanced to provide complete guidelines for subjects, from

initial authentication up to defect submission through web forms.

Every student had his own unique identity (i.e., username and

password) to login, view the pages and fill in the answer

http://www.aspspider.com/

electronic form. The answer form has the same design as in BE,

so that there was no difficulty in filling the form electronically.

Then, we collected the data directly organized and ordered from

the database system. Before that, we have arranged with a lab

supervisor to reserve the computer laboratory (provided with

internet connection) at the Academy of Graduate Studies for time

duration of two hours a day, before the experiment time.

3.2.2 BE Experiment Execution
The BE experiment has been conducted in a computer laboratory

at the Academy of Graduate Studies, and students are divided

into groups. Each group contains of one student assigned

randomly to a specific reading technique. After the student logs

into the website by displaying a text forcing him to use that

technique, and the guidelines for each technique have been given

to the student assigned to use that technique. Guidelines differ

from each other according to the technique, e.g., the student uses

FBR technique needs the table describes each method (function)

in the code.

 Before the experiment starts, students are given some helping

documents about the experiment code file giving them an idea in

advance about the software nature of the class experiment. At the

beginning of the experiments, students were given the website

link and a username and password for each one of them. Once

students log in, they can navigate through webpage, e.g., student

can see a welcome statement, the technique that have be used,

links with names of code classes, and display each class code once

the link is clicked. Moreover, the page contains the electronic

submission form, so that the student can switch between different

classes and can use the electronic form to send his defect

detection results to the website database, The data stored in

database includes class name, username who performs the

inspection process and the time (in minutes and seconds) when

each defect is captured. A message appears after clicking the

submit button telling the subject that saving the result done

successfully.

4. TECHNIQUES PRODUCTIVITY
In this section, collected data from BE and RE experiments are

statistically analyzed and some observational graphs are drawn to

facilitate the meaning of data in terms of techniques productivity,

using the following equation:

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑓𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑒𝑒𝑑𝑒𝑑𝐷𝑒𝑓𝑒𝑐𝑡𝑠

 We have also developed a model to calculate the productivity for

each type of defect as well as the overall productivity for all

defects in both BE and RE, as given in Table 8.

Table 8. Model of productivity used in BE and RE experiments

 True Defect &

True

Categorization

True Defect &

False

Categorization

False Defect &

False

Categorization

C CTT CTF CFF

* *TT *T* *TF *FF

 CTT: C is a specific category of defect, T is a true

defect, T is a true classification.

 CTF: C is a specific category of defect, T is a true

defect, F is a false classification.

 CFF: C for specific category of defect, F for false

defect, F for false classification.

 *TT: * for overall average of CTT and CTF for a

specific defect category.

 *T*: * for overall average of CTT and CTF for all

defects categories.

 *TF: * for overall average of CTF for a specific

defect category.

 *FF: * for overall average CTT and CTF for a

specific defect category.

For a lack of space, we describe here the CTT results using the

three techniques for capturing semantic defects in BE and RE

experiments. Further details on the results of the other categories

can be found in [21]. Because we have a case of failure in SBR

test of normality results, we have investigated on groups

submissions and we found that one of the groups have submitted a

huge amount of false defects. Thus, this group has been reduced

from SBR in BE experiment, and our subjects groups would be as

in Table 9.
Table 9. Experiment groups after data reduction

 SBR CBR FBR

Basic Experiment (BE) 7 8 9

Replicated Experiment (RE) 11 11 12

4.1 Productivity in CBR Technique
The CTT results using CBR technique for capturing semantic

defects and the classification of the defects as well in BE and RE

are shown in Figure 1. At glance, we have noticed that the data

obtained from both experiments are proximate, the highest values

are in class C, 36% in RE and 32% in BE, while the least values

are in type F, 8% in RE and 9% in BE, respectively. Clearly, there

is an equality in type B where BE and RE have the same value

23%. In type A, RE has 16%, which is higher than 13% in BE,

while in type D, the value of 19% in BE is higher than 14% in RE.

Generally, BE has higher values in types D and F, while RE has

higher values in types A and C, while there is equality in type B.

Figure 1. CBR productivity of CTT in BE and RE

4.2 Productivity in SBR Technique

The CTT results using SBR technique for capturing semantic

defects and the classification of the defects in BE and RE are

shown in Figure 2. There is a sharp increase in the values for both

BE and RE in type A to type C. We can clearly notice that the

highest value in the graph 40% for RE in type C, while BE has

27% in type C either. We can also see that BE and RE have the

same value, but in different types, RE has 5% in type D, but BE

has 5% in type A. In type A, RE has 20% while in type D, BE has

36%. Values in type F are proximate, 8% for BE and 10% for RE,

13%

23%

32%

19%

9%

16%
23%

36%

14%

8%

-10%

0%

10%

20%

30%

40%

50%

60%

A B C D F

CTT Productivity BE

CTT Productivity RE

where the values in type B are not proximate, as BE has 14% and

RE has 29%.

Figure 2. SBR productivity of CTT in BE and RE

4.3 Productivity in FBR Technique

The CTT results using FBR technique for capturing semantic

defects and the classification of the defects in BE and RE are

described in Figure 3. Obviously, the two highest values are 47%

in type B and 48% in type C for RE, while the BE value in type B

22% and 14% in type C. On the other hand, the type D has values

of 17% for BE and 8% for RE, where in type F, there is a

difference of three points between BE value 16% and RE value

13%. Finally, in type A, RE value is 26% where BE value is 15%.

Figure 3. FBR productivity of CTT in BE and RE

5. TECHNIQUES EFFICIENCY
The efficiency in this research determines the efforts made by the

three reading techniques, when the time is limited. This section is

concerned with the analysis and the description of techniques’

efforts in both BE and RE experiments. Both experiments had a

period of time of two hours. In order to test their efficiency, we

have divided the two hours into six periods of minutes. We have

collected the data in every 20 minutes and classified them into TT,

TF and FF as performed in testing the productivity. The efficiency

is calculated according to the following equation:

𝐷𝑒𝑓𝑒𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑓𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙𝑂𝑓𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑖𝑚𝑒𝑠

5.1 Efficiency in BE
The correct detected defects for every technique in the six periods

of 20 minutes of two hours are given in Figure 4. The first 20

minutes begins with fewer values for all techniques respectively,

and then the numbers increased to 13 defects between 20-40 for

all of the techniques, except of 12% in SBR. A steady increment

of two defects in the values for SBR from 20-40 to 40-60, before

it has got to 15 defects in 60-80, a sharply decrement in 80-100 to

9 defects followed by another decrease in 100-120 to 2 defects.

 A strong increment in the period 40-60 of 11 points for FBR

from 13 defects to 24 defects, then the numbers are sharply

decreased to 15 defects in 60-80 and continued to decrease to 7

defects, and finally decreased to 4 defects. A dramatic increase in

40-60 for CBR to 19 defects and continued to increase to 21

defects in 60-80, quickly decreased to 9 defects in 80-100 period,

and to 4 defects in 100-120 either.

Figure 4. Line chart of techniques’ efficiency in detecting true

defects in BE

5.2 Efficiency in RE

The correct detected defects for every technique in every 20

minutes are presented in Figure 5.

Figure 5. Line chart of techniques’ efficiency in detecting true

defects in RE

It is obvious that, all techniques have zero defects in the period 0-

20, a dramatic increase in the period after to 9 defects for CBR, 8

defects for SBR and 15 defects for FBR. Regarding the technique

FBR, in the period of 40-60, numbers have raised up to 27 defects

and continued to increase up to 61 defects in 60-80, before they

are sharply decreased to 36 defects in 80-100, and yet again to 2

defects in 100-120 period. For the SBR, a sharp increment starts

from 8 defects in 20-40 period and increased to 24 defects in 40-

60 and continued to increase up to 31 defects in 60-0. The defect

numbers are started to increase from 9 defects in 20-40 to 20

defects in 40-60. Besides, there is a slight increment to 24 defects

in 60-80 followed by a slight decrement of one point to 23 defects

5%

14%
27%

36%

8%

20%

29%

40%

5%
10%

-20%

0%

20%

40%

60%

A B C D F

CTT Productivity BE

CTT Productivity RE

15%

22%

14% 17% 16%

26%

47% 48%

8%
13%

-10%

0%

10%

20%

30%

40%

50%

60%

A B C D F

CTT Productivity BE

CTT Productivity RE

in 80-100, and finally decreased to 9 defects in the last 20

minutes.

6. CONCLUSION
This paper presents an experimental study to evaluate software

reading techniques used in detecting semantic defects in object

oriented programming. A number of controlled experiments have

been conducted using three reading techniques, in order to test

their efficiency and effectiveness. The techniques, which have

been considered, are CBR, FBR and SBR. A basic experiment and

its replications are accomplished and their results discussed,

where their study subjects have been undergraduate and

postgraduate students.

 The study recommends to use the FBR technique because of its

appropriation with human nature. Human understanding is an

important factor in software production. The FBR technique is

promising, productive and effective technique. The SBR and CBR

are designed independently from human factor. The performance

of SBR and CBR is in a lack of defining a method for navigation

through programming codes. The efficiency varies among the

three reading techniques. The 120 minutes in detecting software

defects is insufficient period to expose most of software defects.

According to the numbers of defects detected in the 120 minutes

period of time, the FBR is more efficient than the SBR and CBR.

With the given period of time, the number of detected defects

increases up to 40%. In addition, based on their categories,

defects of type C are the most detected, whereas defects of type A

and B come next, and defects of types D and F are the minimum

detections.

7. REFERENCES
[1] V. Basili. Evolving and Packaging Reading Technologies.

1997. University of Maryland at College Park, USA.

[2] F. Shull, F. Lanubile and V. Basili. 2000. Investigating

Reading Techniques for Object-Oriented Framework

Learning. In IEEE Trans. Soft. Eng. vol 26(11), pp. 1101-

1118. DOI=http://dx.doi.org/10.1109/32.881720

[3] F. Shull. 2002. Software Reading Techniques. John Wiley &

Sons, Inc.

[4] V. Basili, S. Green, O. Laitenberger, F. Shull, S. Sørumgård,

and M. Zelkowitz. 1995. The Empirical Investigation of

Perspective-Based Reading. In Empirical Soft. Eng. vol 1(2),

pp. 133-164.

[5] M. Fagan. 2002. A History of Software Inspections. In

Software Pioneers. M. Broy and E. Denert (Eds.). Springer-

Verlag, New York, Inc., New York, NY, USA, pp. 562-573.

[6] O. Akinola and A. Osofisan. 2009. An Empirical

Comparative Study of Checklist-based and Ad-Hoc Code

Reading Techniques in a Distributed Groupware

Environment. In Int. Journal of Computer Science and Info.

Security, IJCSIS. vol 5, pp. 11.

[7] O. Laitenberger. 2002. A survey of software inspection

technologies. In Handbook Soft. Eng. Knowl. Eng. vol. 2, pp.

517–555.

[8] A. Porter, L. Votta, and V. Basili. 1995. Comparing detection

methods for software requirements inspections: A replicated

experiment. In IEEE Trans. on Soft. Eng. vol. 21. pp. 563-

575.

[9] Z. Abdelnabi. 2006. From Statistical Analysis to Cluster-

impact Approach for Manipulating Experimental Data Using

Fuzzy Sets. PhD Thesis. University of Rome Tor Vergata,

Roma, Italy.

[10] A. Dunsmore, M. Roper and M. Wood. 2003. The

development and evaluation of three diverse techniques for

object-oriented code inspection. In Software Eng., IEEE

Transactions on. vol. 29(8), pp. 677-686.

[11] IBM Corp. 2003. S/390 Orthogonal Defect Classification

Education [Online]. Available:
www.1.ibm.com/servers/eserver/zseries/odc/nonshock/odc8s.html.

[12] M. Dyer. 1992. The Cleanroom Approach to Quality

Software Development. John Wiley & Sons, Inc., New York,

NY, USA.

[13] R. Linger, H. Mills, and B. Witt. 1979. Structured

Programming: Theory and Practice. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

[14] D. Parnas and D. Weiss. 1987. Active Design Reviews:

Principles and Practice. In Journal of Syst. and Soft. vol. 7,

pp. 259–265.

[15] J. Miller, M. Wood and M. Roper. 1998. Further

Experiences with Scenarios and Checklists. In Empirical

Soft. Engineering. vol. 3(1), pp. 37–64.

[16] A. Porter and L. Votta. 1998. Comparing Detection

Methods for Software Requirements Inspections: A

Replication Using Professional Subjects. In Empirical Soft.

Engineering. vol. 3, pp. 355-370.

[17] ESERNET EC Project. 2003. Empirical Methods and Studies

in Software Engineering: Experiences from ESERNET. R.

Conradi and A. Wang (Eds), LNCS 2765, Springer.

[18] P. ReidarConradi, A. Tayyaba, L. Hegde, G. Bunde and A.

Pedersen. 2003. Object Oriented Reading Techniques for

Inspection of UML Models – An Industrial Experiment. In

Proceedings of the ECOOP'03, 13 p.

[19] G. Cantone1, L. Colasanti1, Z. Abdulnabi1, A. Lomartire

and G. Calavaro. 2003. Evaluating Checklist-Based and Use-

Case-Driven Reading Techniques as Applied to Software

Analysis and Design UML Artifacts. R. Conradi and A.

Wang (Eds.). In ESERNET 2001-03, LNCS 2765, pp. 142–

165. Springer-Verlag, Berlin.

[20] A. Alshazly, A. Elfatatry and M. Abougabal. 2014. Detecting

defects in software requirements specification. Institute of

Graduate Studies & Research, Alexandria University, Egypt.

[21] A. Fannush. 2012. Defect Detection and Identification in

Object Oriented Software: An experimental study. MSc

Thesis. Academy of Graduate Studies, Libya.

[22] N. Juristo and O. Gomez. 2012. Replication of Software

Engineering Experiments. In Empirical Soft. Engineering

and Verification. B. Meyer and M. Nordio (Eds.). Springer-

Verlag, Berlin. vol. 7007, pp. 60-88.

[23] J. Krein. 2014. Replication and Knowledge Production in

EmpiricalSoftware Engineering Research. PhD Thesis.

Brigham Young University, USA.

[24] R. Per, A. Stefik and A. Andrews. 2014. Variation factors in

the design and analysis of replicated controlled experiments.

In Empirical Soft. Engineering. vol. 19(6), pp. 1781-1808.

[25] S. Dehaghani, N. Hajrahimi. 2013. Which Factors Affect

Software Projects Maintenance Cost More? In Acta

Informatica Medica. vol. 21(1), pp. 63-66.

http://dx.doi.org/10.1109/32.881720
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dunsmore,%20A..QT.&searchWithin=p_Author_Ids:37329661100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dunsmore,%20A..QT.&searchWithin=p_Author_Ids:37329661100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dunsmore,%20A..QT.&searchWithin=p_Author_Ids:37329661100&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=27483
http://www.1.ibm.com/servers/eserver/zseries/odc/nonshock/odc8s.html

	OLE_LINK9
	OLE_LINK10
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK7
	OLE_LINK8
	OLE_LINK5
	OLE_LINK6

