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Abstract: This paper presents a method of improving the 

least square channel estimator accuracy without 

increasing the pilot density. The Kalman filter process 

equation can be represented as Autoregressive model, 

and the least square channel estimate is seen as a noisy 

measurement of the true channel state, so the Kalman 
filter measurement equation can be represented as the 

least square estimated channel. The process equation and 

the measurement equation jointly form a state space 

model of the dynamic of the channel. Thus the Kalman 

filter can be used to estimate the state variable, i.e., the 

time varying channel. The Kalman filter based channel 

estimator leads to a significant gain in performance as 

compared to the least square channel estimator. 

Key words: least square channel estimator, OFDM 

system, Kalman filter.  

 

I- Introduction 

      Kalman filter has been applied to estimate the 

channel of OFDM systems in the frequency domain 

dimension in [4].Although the proposed algorithm 

utilizes time and frequency domain channel correlation at 

the same time, and achieves optimum performance., Its 

drawback is the high complexity due to the high 

dimension of the state variable, which can be 

significantly high when there are large number of 

subcarriers. One solution to reduce the complexity of the 

Kalman filter channel estimator in [4] is to implement it 

at a per- subcarrier fashion [5,6]. In [6] a per-subcarrier 
Kalman filter based on comb-type pilot arrangement is 

applied to estimate of fast and frequency selective fading 

channel. However, the per-subcarrier Kalman filter only 

uses the time-domain correlation of the channel fading 

and fails to take advantage of the frequency-domain 

correlation. Therefore, the proposed algorithms in [5,6] 

refine the “rough” channel estimation in per-subcarrier 

through exploiting the frequency domain channel 

correlation. The received pilot signals is used directly in 

Kalman filter algorithm as the kalman measurement 

equation in [4,5], which increases the computational 

complexity of theses algorithms, since the pilot signal 
recursively will be used in these algorithms. 

 

 

 

 

II   Channel estimation algorithm 

 

     Given the state space model for the time varying 

channel to be estimated as follows: 

  𝑇ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙 
 

𝐻𝑝(𝑛) = 𝐴 𝐻𝑝(𝑛 − 1) + 𝑉𝑝(𝑛)         
 

𝑇ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙 
 

                 𝐻𝐿𝑆
𝑝 (𝑛) = 𝐻𝑝(𝑛) +  𝑊𝑝

𝐿𝑆(𝑛)                
 
The Kalman filter algorithm can be applied to solve this 

state-space model to obtain the estimate of the channel 

gain 𝐻𝑝(𝑛). The channel estimation algorithm based on 
Kalman filter can be described in four steps LS channel 

estimation, filter initialization, time update, and 

measurement update. 

Step 1: LS channel estimation 

  

𝐻𝑝(𝑛)𝐿𝑆 =
𝑌𝑝(𝑛)

𝑋𝑝(𝑛)
     (LS channel estimate) 

 

Step 2: Filter initialization 

  

�̂�𝑝(0) = 0𝑝     &     �̂�(0) = 𝐼𝑝  (Initial 

conditions)  

 

Where 0𝑝  and 𝐼𝑝 are 𝑁𝑝 × 𝑁𝑝  null and identity 

matrixes respectively 

 

Step 3:  Time update 

 

 �̃�𝑝(𝑛 + 1) =  𝐴 �̂�𝑝(𝑛)   (State prediction) 

�̃�(𝑛 + 1) = 𝐴�̂�(𝑛)𝐴𝐻 + 𝑄  (Prediction error 
covariance) 

 

Step 4:  Measurement update  

𝐾 = �̃�(𝑛)(�̃�(𝑛) + 𝑅)−1   (Kalman Gain) 

�̂�𝑝(𝑛) =  �̃�𝑝(𝑛) + 𝐾(  𝐻𝐿𝑆
𝑝 (𝑛) − �̃�𝑝(𝑛) )   

(State estimation) 

�̂�(𝑛) = 𝑝(𝑛)(𝐼 − 𝐾)    (Estimation error 

covariance) 
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III   Description of simulation 

 

OFDM system parameters used in the simulation are 

shown in Table 1. 

 
Table 1.  OFDM system parameters 

Parameters Specification 

FFT size(𝑁𝐹𝐹𝑇) 256 

Nominal Channel Bandwidth, 

𝐵𝑤𝑛𝑜𝑚𝑖𝑛𝑎𝑙 

5 MHz 

Number of data Subcarriers, 

𝑁𝑑𝑎𝑡𝑎  

174 

Number of pilot 

Subcarriers, 𝑁𝑝𝑖𝑙𝑜𝑡 

26 

Number of guard 

Subcarriers, 𝑁𝑔𝑢𝑎𝑟𝑑  

56 

Sampling Factor, 𝑛 144/125 

Guard Interval, 𝐺 1/4 from symbol period 

Number of used Subcarriers 

, 𝑁𝑢𝑠𝑒𝑑 

𝑁𝑑𝑎𝑡𝑎 + 𝑁𝑝𝑖𝑙𝑜𝑡 = 200 

Sampling Frequency, 𝑓𝑠  5.76 MHz 

Subcarrier Spacing, ∆𝑓 
∆𝑓 =

𝑓𝑠

𝑁𝐹𝐹𝑇

= 22.5 𝐾𝐻𝑧 

Used bandwidth, 𝐵𝑤𝑢𝑠𝑒𝑑  𝐵𝑤𝑢𝑠𝑒𝑑 = 𝑁𝑢𝑠𝑒𝑑 × ∆𝑓
= 4.5 MHz 

Useful Symbol Time, 𝑇𝑠  
𝑇𝑠 =

1

∆𝑓
= 44.444 μs 

Cyclic Prefix Time, 𝑇𝐶𝑃 𝑇𝐶𝑃 = 𝐺 × 𝑇𝑠 = 11.111 μs 

OFDM Symbol Time, 𝑇𝑠𝑦𝑚 𝑇𝑠𝑦𝑚 = 𝑇𝑠 + 𝑇𝐶𝑃 = 100 μs 

Signal Constellation QAM &PSK 

Pilot Ratio 1/8 

Channel model Rayleigh (Jakes spectrum) 

Number of Channel taps (L) 3 

Maximum delay spread 35 μs 

 

IV.   Channel Model Used in Simulations 

 

The wireless channel is assumed to be a multipath 

Rayleigh fading channel corrupted by additive white 

Gaussian noise (AWGN), consisting of 𝐿 paths 

ℎ(𝜏) = ∑ 𝛼𝑙𝛿(𝑡 − 𝜏𝑙)

𝐿−1

𝑙=0

                                    

Where 𝛼𝑙 is Rayleigh distributed channel taps, each path 
of the channel is modeled with a Jakes Doppler spectrum 

with a maximum Doppler shift of 70 Hz. In this thesis, 

the discrete-time channel impulse response is assumed to 

have 3 paths, in which the first fading path always has a 

zero-delay, and other fading paths have delays that are 

always less than the length of cyclic prefix CP. Table 4.2 

gives paths delays and power of channel used in 

Simulations. 

 
Table 2.  Path delays and power for channel Used in Simulations 

Path Delay (𝛍𝐬) Power (𝐝𝐁) 

1 0 0 

2 0.1 -5 

3 0.3 -10 

 

 

V.  Simulation Results 

 

 The performances of the Least square and 

Kalman filter channel estimators are compared in figure 

1 .The result shows that  the Kalman filter algorithm  
achieved about 3-4 dB signal to noise ratio improvement  

compared to the  LS  method. It is worthy of mention, 

that improvement in term signal to noise ratio obtained 

without increasing the pilot density, as a result there is no 

more waste of the used bandwidth. 

 
Figure 1. Performance of  Least Square vs. Kalman channel estimators 

 

Applying the described OFDM system with different 
Doppler frequencies, it can be noticed that the 

performance is worse when the Doppler frequency is 

increased for Least square as shown in figure 2, either for 

Kalmen estimator as shown in figure 3. 

 
Figure 2.  Doppler frequency effect on the least square estimator 
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Figure 3. Doppler frequency effect on the Kalman estimator 

 

Figure 4 and 5 show the performance of the different 

interpolation methods with Least Square and Kalman 

channel estimations respectively. The performance of 

interpolation techniques ranges from the best to the worst 

method as follows: spline, linear, nearest neighbor. 

 

 
Figure 4. Interpolation methods using Least Square estimator 

 

 
Figure 5. Interpolation methods using Kalman estimator 

 

 Figure 6 and 7 show the performance of the simulated 

system using Least Square and Kalman estimator 

methods with MPSK and MQAM for modulation order 

of 2,4,16, and 64. 

 

 
Figure 6. Performance of MPSK and MQAM modulation schemes, 

least square estimator 

 
Figure 7. Performance of MPSK and MQAM modulation shcems 

,Kalman estimator 

 

VI.  Conclusion 

      The main conclusion of this paper is the improvement 

of least square channel estimator without increasing the 

pilot density. The channel frequency response on the 

pilot subcarriers is obtained using least square channel, 

and then the estimated channel frequency response is 

improved by Kalman filter algorithm; and interpolated 

over frequency coefficients to the data symbols. The 

performance of the channel estimation algorithm is tested 

under different Doppler frequencies, modulation 
schemes, and interpolation methods.  

The Kalman filter is proven as an efficient technique to 

improve the channel estimate without wasting in 

bandwidth, Where the Kalman filter estimator improved 

upon the performance of the least square estimator by 

almost 2-4 dB in term of signal to noise ratio. 
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LS, Spline Interpolation
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   However, the performance of the simulated system has 

been degraded when the Doppler frequency was 

increased. For a high Doppler frequency, no matter how 

high we increase the signal to noise ratio (i.e. the power 

of the transmitter signal), there is always irreducible error 

rate in the system which called tail error in the fading 
environment.  

      In this thesis the comb-type pilot arrangement is 

adopted  which is fit for fast fading channels, in the case 

of frequency selective channels, it is better to use the 

block-type pilot arrangement to keep track of the 

frequency selective channel characteristics. However, 

when the channel is frequency selective and fast fading 

the lattice-type pilot arrangement is recommended to be 
used.  

      The choice of digital modulation scheme will 

significantly affect performane Simulation. Results show 

that the performance of all modulation schemes degrades 

with the increase of the modulation order. 4QAM 

modulation is exactly the same  performance as QPSK. 

However, in comparison with PSK, QAM is more power 
efficient for higher order modulation.  
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