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CHAPTER FOUR

 ANALYSIS OF DYNAMIC NETWORK MODELS 

   Several techniques have been developed for the analysis of Petri nets, but many problems in the analysis of Petri nets still open. To better evaluate the usefulness of analysis techniques which have been for Petri nets. The objective of the analysis of a Petri net to determine the answer to a question about Petri net. What types of questions might be asked about Petri net[3][4].

4.1:   Analysis Problems for Petri Nets 
   The following properties and questions have been considered about Petri nets.

4.1.1:   Safeness 

   A place in the Petri net is safe if the number of tokens in that place never exceeds one. A Petri net is safe if all places in the net are safe as shown in Fig. 4.1.
Definition 4.1:  A place pi [image: image2.png]


 P of a Petri net C = ( P, T, I, O ) with initial marking μ is safe if for all μ' [image: image4.png]


 R ( C , μ ), μ' ( pi ) ≤ 1. A Petri net is safe if each place in that net is safe.
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Fig. 4.1: Safeness Petri Net[3]
4.1.2:  Boundedness 
    Safeness is a special case of the more general boundedness property. A place is k – bounded if the number of tokens in that place can not exceed an integer k. A Petri net is bounded if all places are bounded as shown in Fig. 4.2.
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Fig. 4.2: Boundedness ( k – Safeness ) Petri Net[3]
Definition 4.2:  A place pi [image: image8.png]


 P of a Petri net C = ( P, T, I, O ) with an initial marking μ is k - safe if for all μ' [image: image10.png]


 R ( C , μ ), μ' ( pi ) ≤ k. 

4.1.3:  Conservation
   Conservation is an important property, which is to show that number of tokens which is represent resources ( Equipments, Labors, Workpieces, …, etc. ) are neither created nor destroyed. The simplest way to do this would be to require that total number of tokens in the net remain constant ( number of inputs to each transition must equal the number of outputs, [image: image12.png][I(t)]



 = [image: image14.png]lo(t)l



 as shown in Fig. 4.3.
Definition 4.3:   A Petri net C = ( P, T, I, O ) with initial marking μ is strictly conservative if for all μ' [image: image16.png]


 R ( C, μ ).

[image: image17.png]



               [image: image18.emf]p1


t1


p3


t3


p5


p2


t2


p4


t4


l


l


l




p1

t1

p3

t3

p5

p2

t2

p4

t4

 




4.3: Strictly Conservative Petri Net[3]
4.1.4:  Liveness  

   The concept of liveness is closely related to the complete absence of deadlocks in operating systems. A deadlock in a Petri net is a transition ( or a set of transitions ) which can not fire. A transition tj of a Petri net C is potentially fireable in marking μ if there exists a marking μ' [image: image20.png]


 R ( C, μ ) and tj is enabled in μ'. These can be categorized as levels of liveness and can be defined for a Petri net C with marking μ as[3]: 
Level 0:  A transition tj is live at level 0 if it can never be fired.
Level 1:   A transition tj is live at level 1 if it is potentially fireable; that is, if there exists a μ' [image: image22.png]


 R ( C, μ ) such that tj is enabled in μ'.

Level 2:   A transition tj is live at level 2 for every integer n there exists a firing sequence in which tj occurs at least n times.
Level 3:   A transition tj is live at level 3 if there is an infinite firing sequence in which tj occurs infinitely, often in some firing sequence in μ0.
Level 4:    A transition tj is live at level 4 if for each μ' [image: image24.png]


 R ( C, μ ) there exists a firing sequence σ such that tj is enabled in δ ( μ', σ ).

   The Petri net shown in Fig. 4.4 is strictly Level 1 – live since each transition can be fired exactly once in the order of t2, t4, t5, t1, and t3. The transitions t0, t1, t2, and t3 in Fig. 4.5 are Level 0 – live ( deadlock ), Level 1 – live, Level 2 – live, and Level 3 – live, respectively, all strictly. 
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Fig. 4.4: A Safe, Nonlive Petri net. But it is Strictly Level 1- live [3]
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Fig.4.5: Transitions t0, t1, t2, and t3, are Dead ( L0 – Live ),  L1 – Live, L2 - Live, 
and L3 – Live, Respectively[3]
4.1.5:   Reachability and coverability 
   Most of the problems which have been mentioned so far are concerned with reachable markings.
Definition 4.4:   The reachability problem Given a Petri net C with marking μ and marking μ', is μ' [image: image28.png]


 R ( C, μ ).

Definition 4.5: The coverability problem Given a Petri net C with initial markings μ and marking μ' , is there a reachable marking  μ" [image: image30.png]


 R ( C, μ ) such that μ" ≥ μ'?
4.2.   Analysis Techniques 
   The major analysis technique which has been used with Petri nets is the reachability tree; the other technique involves matrix equations.
4.2.1.   The reachability tree 

   The reachability tree represents the reachability set of a Petri net. Every marking in the reachability set will be produced, and so for any Petri net with infinite reachability set, the corresponding tree would also be infinite. Even a Petri net with a finite reachability set can have an infinite tree. The tree represents all the possible sequences of transition firings. Every path in the tree, starting at the root, corresponding to a legal transition sequence. 

Each node i ( i=1,2,...) in the tree is associated with an extended marking µ(i), the marking is extended to allow the number of the tokens in a place to be nonnegative integer. Each node is also classified as[3],[4]:  

· Frontier nodes: Are nodes which have not yet been processed by the algorithm ( the algorithm begins by defining the initial marking to be the root of the tree and, initially, a frontier node). They  converted by the algorithm to terminal or duplicated nodes.

· Duplicate nodes: Another class of markings are those markings which have previously appeared in the tree.

· Terminal (Deadlocks) nodes: markings in which no transition is enabled.

   This example ( Fig.4.6) will give more details about the reachability tree ( Fig. 4.7 ) which is generated by algorithm.
              [image: image31.emf]p5


p1


p2


t1


t2


t3


t4


t5


t6


p3


p4


l


l




p5

p1

p2 t1

t2

t3

t4

t5

t6

p3

p4






Fig. 4.6: Petri Net model[4
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Fig.4.7: Reachability Tree for Fig.4.6
   From the reachability tree which is generated by algorithm, there are two nodes were deadlock, the deadlock nodes are t1t2t3t3t5t5 and t1t2t3t3t5t6t1t3t4t2 . This means that the system is not deadlock-free, which is let’s us to looking for the reason of this deadlock.

4.2.2:   Matrix equations  
    A second approach to the analysis of Petri nets is based on a matrix view of Petri nets. An alternative to the ( P, T, I, O ) definition of Petri nets is to define two matrices D- and D+ to represent the input and output functions. Each matrix is m rows ( one for each transition ) by n columns ( one for each place ). Defining D- [ j, i ] = # ( pi , I ( tj ) ) and D+ [ j, i ] = # ( pi , O ( tj ) ). D- defines the inputs to the transitions, D+ defines the outputs, and D defines the composite change matrix ( incidence matrix ). 
 Where:



 D = D+ - D-                   ( 1 )
   Assume that a marking μ' is reached from a marking μ, and there exists a sequence           σ ( possibly null ) of transition firings which will lead from μ to μ'. This means that [image: image34.png]f(o)



 is a solution, in nonnegative integers, for x in the following matrix equation[4].

                     


             μ' = μ + x . D                ( 2 )
   Thus, if μ' is reachable from μ, then equation ( 2 ) has a solution in nonnegative integers; if equation ( 2 ) has no solution, then μ' is not reachable from μ.
   As an example, consider the marked Petri net of Figure 4.6. The matrices D- , D+, and D  ( equation (1) ) are:

D =     
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   With an initial marking [image: image39.png]


 = ( 1, 0, 0, 0, 1 ), transition t2 is enabled and leads to marking μ', and transitions t1t2t3t3t5t5 were leads to μ" where:
μ' =  ( 1 0 0 0 1 )T +    
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   ( 0 1 0 0 0 0 )T  =  ( 1 1 0 0 0 )T        
  μ" =  ( 1 0 0 0 1 )T +   
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   (1 1 2 0 2 0 )T  =  ( 0 0 0 2 0)T         

   From the matrix equations, the two nodes t1 and t1t2t3t3t5t5 are the same results of the of the two nodes of the reachability tree.
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