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Inconsistent treatment estimates from
mis-specified logistic regression analyses
of randomized trials

J. N. S. Matthews*' and N. H. Badi®

When the difference between treatments in a clinical trial is estimated by a difference in means, then it is well
known that randomization ensures unbiassed estimation, even if no account is taken of important baseline covari-
ates. However, when the treatment effect is assessed by other summaries, for example by an odds ratio if the
outcome is binary, then bias can arise if some covariates are omitted, regardless of the use of randomization for
treatment allocation or the size of the trial. We present accurate closed-form approximations for this asymptotic
bias when important normally distributed covariates are omitted from a logistic regression. We compare this
approximation with ones in the literature and derive more convenient forms for some of these existing results.
The expressions give insight into the form of the bias, which simulations show is usable for distributions other
than the normal. The key result applies even when there are additional binary covariates in the model. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. Introduction

Randomized trials are often analyzed using a linear or generalized linear model, so that the treatment
effect can be adjusted for important baseline covariates. However, if some baseline variables cannot be
measured, or if their importance is not appreciated, then they will be omitted from the model. Random-
ization ensures that the estimate of the treatment effect is unbiassed when relevant covariates are omitted
from a linear model. This is a consequence of the unit-treatment additivity in such models [1, Chapter 5]
and does not necessarily carry over to generalized linear models. Several non-linear models for which
unbiassed estimators are obtained, notwithstanding the omission of covariates, are identified in [2], which
also shows that the important case of binary outcomes analyzed using a logistic model is asymptotically
biassed when covariates are omitted.

Numerous authors have addressed the problem of the effect of the omission of covariates in logistic
regression. In biostatistical contributions, an epidemiological perspective is perhaps more common [3-8],
but some authors do focus on randomized trials [2,9-11]. Gail and colleagues [2] derive approximations
for the asymptotic bias in the treatment estimator when all covariates other than the treatment indicator
are omitted. The case of two general scalar covariates, one of which is fitted, and the other omitted is
considered in [8, 10]. The main exposition in [10] assumes that the covariates are independent, but, as the
authors explain, this restriction can be relaxed. In all these articles, Taylor series approximations are used
to provide some indication of the size and direction of the bias, so the expressions derived are necessarily
restricted to small parameter values, although whether it is the parameter of the fitted or omitted covariate
that needs to be small varies between these contributions.

In this article, we make use of the properties of the extended skew-normal distribution [12] and
an approximation of the logistic function by the probit to obtain expressions for the least false (LF)
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values [13, p.25] of the fitted covariates when other covariates are omitted. No use of Taylor series approx-
imations is required, so the expressions give excellent numerical results for a wide range of parameter
values and provide useful insight into the form the bias takes in a randomized trial. Our main result
applies to a logistic regression with a single binary covariate, which we usually take to indicate the treat-
ment allocation, and an arbitrary number of continuous covariates. The latter are assumed to follow a
multivariate normal distribution, but simulation studies show that the results hold for a wider class of
covariates. Explicit forms for the asymptotic bias given in [9, 10] are derived for our case and compared
with that found using the skew-normal distribution. Extensions to allow additional binary covariates are
possible, although these extensions require further assumptions.

In the next section, we present the expression for the LF values, and in Section 3, related work is
explored. Extensions to allow additional binary covariates are discussed in Section 4, and some simulation
results and numerical examples are given in Section 5. In the final section, the implications for the analysis
of trials with a binary outcome are discussed.

2. Least false values

Suppose that the random variable ¥ € {0, 1} is related to a binary covariate T € {—1, 1} and further
covariates X, and X,, which have p and ¢ dimensions respectively, by

Pr(Y = 1| T, X, X,) = expit (u + aT + B X, + A1 X;) 1))
where expit(u) = exp(u)/[1 + exp(u)]. If the fitted model omits X,, that is if
Pr(Y =1|T,X,) = expit (4 + aT + [ X,) (2)

is assumed to apply, then our model is mis-specified and the consequences for the maximum likelihood
estimates ({1, @, ﬁl) are described by the theory of mis-specified models first outlined by White [14].
Briefly, as the sample size increases the maximum likelihood estimates tend not to the ‘true’ values, as
they would for a correctly specified model, but to the LF values, (u4*, a*, ﬂl*). These are the values that
minimize the Kullback—Liebler (KL) divergence between the fitted model and the true model. The KL
divergence is E(log[g(Y, X)/f(Y,X; 0)]), where g(Y, X) is the true joint density of the response, Y, and
covariates, X, and (Y, X; 6) is the density under the assumed model: the expectation is taken with respect
to g(-, ). The KL divergence has much in common with a measure of distance between densities, as it
is positive and vanishes only if g(¥,X) = f(Y, X; 0). In the present application, the LF values are the
values of p*, a*, B} such that the model (2) is as close as possible, in the KL sense, to the model in (1). A
succinct treatment can be found in Chapter 2 of [13], where it is shown that the expected score statistic
is zero at the LF values. This observation provides a way to obtain equations determining the LF values,
which, for the present application, are as follows:

E [expit (4" + a*T + p;"X,)| = E [expit (u + aT + B/ X, + 5, X,)] 3)
E [T expit (4" + a*T + B;7X,)| = E [Texpit (4 + T + ] X, + 5, X,) | (4)
E [X);expit (u* + a*T + p7X, )| = E [X,;expit (u + aT + B X, + 5, X,)] , (5)

where X;; is the j-th element of X;,j = 1,...,p and expectations are taken with respect to the joint
distribution of (7, X;, X;).

We consider the case when, conditional on 7 = £, X = (XIT,XZT )T follows a multivariate normal
distribution with mean v, and dispersion €, = —1, 1. In principle, we could allow the dispersion to
change with T but analytic progress does not seem possible in this case. We alsouse v, |, v, 5, Q11,£2,, €2},
and Q,, to denote the partition of v, and € induced by the partition of X. There is no explicit form for the
expectations in (3), (4) and (5), but if we approximate the logit link with the probit, that is use expit(u) ~
®(cu) where @(-) is the standard normal distribution function and ¢ = 16\/5 /(157x) [15, p.119], then the
first two require the evaluation of integrals of the form / O Tu+ K)¢p,(u; , Q)du, while the last requires
f u; O T+ K)p,(u; 0, Q)du, where ¢,(-; w, ) denotes the density of a p-dimensional normal variable.
Analytic forms are available for such integrals and perhaps are most easily found from expressions for
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the density and expectation of the extended skew-normal (ESN) distribution [12]: these are reproduced in
the Appendix, and further information can be found in the recent monograph by Azzalini and Capitanio
[16]. Applying these results to the probit approximations to (3), (4) and (5) gives the following

. B +QQp

by —— (6)
1+ 208,
1
W e i 281 {2+ V) = QR g + o) @)
1+ 208,
af & S — [Uf + %ﬁzT {(V1,2 —V_i2) — Q2191_11(‘/1,1 - V—1,1)}] ) ®

\/1+c2BIQp,

where Q = Q,, — Q, 191_119 12 18 the dispersion of X, conditional on X,. Outline details of the derivation
can be found in the Appendix. To repeat, the only approximation required for the results in (6), (7) and
(8) is that of a logistic by a probit, which is well known to be highly accurate.

When T is the treatment indicator and X are baseline covariates from a randomized trial, then the
assumption made earlier, namely var(X | 7 = 1) = var(X | T = —1), is automatically satisfied and,
additionally, v; = v_,, so (8) implies that the LF value of the treatment effect « is

® a

AR — =

1+ c21Qp,

; say. ()]

| R

Apart from the degenerate cases when f, = 0 or when the variation in X, is wholly explained by that in
X, thatis Q = 0, (9) shows that the omission of relevant covariates means that the treatment estimator
is biassed towards no effect.

3. Relation with other work

3.1. No fitted covariates other than the treatment indicator

Gail and colleagues [2] considered the bias of treatment estimates for the case when there are no fitted
covariates, that is the fitted equation is simply

Pr(Y =1|T) = expit(u + aT),

as opposed to (2), and where the omitted covariates are not restricted to being normally distributed. Find-
ing p* and o* amounts to solving Equations (3) and (4) with X, omitted. In [2], Taylor series expansions
for small ﬁzT X, were used to obtain the approximate solution

af —ar —%ﬂzTszﬂz(expit(,u + a) — expit(u — a)). (10)

In [9, 10], a different approach was applied to the case when the true model has two scalar covariates,
only one of which is included in the fitted model. As in [2], no assumption of normality was made. These
authors also used a Taylor series expansion but now applied to the fitted, rather than the omitted covariate.
Using the notation in the present paper, and taking 7T to be the fitted covariate, the approach in [10]
noted that

o = 4 ot (s7) = ogi (12, )| = @) aw

where 77 = E(expit(u + ka + £)), with the expectation taken with respect to the distribution of & =
ﬂzT X,. Strictly, it is the distribution of & conditional on T’ = k, but as T is a randomization indicator, this
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coincides with the unconditional distribution of &£. Expanding H(-) about a = 0 [10] gives, in the case of
logistic regression,

n; — Elexpit(u + &2

* k2
Ty —

o ~aH'(0)=a (12)

As in (9), this is closer to O than « because E[expit(u + £)?] > (E[expit(u + £)])> = ﬂgz. Exact analytic
evaluation of H'(0) is not possible, but further use of the approximation expit(«) ~ ®(cu) and results due
to D. B. Owen reproduced in [16, p.236] allow (12) to be written as

. 2T(h,a)  T(h,a)

*ECSmo—h T ) 13

where h=c (u+ plv,) /4/1+ 2pIQy P a =1/4/1+2c2pI Q) p, and v, is the mean of X,. T(h, a)
is Owen’s T function [17], which is defined in the Appendix, where some pertinent properties are also
described. From these, we can deduce the following: (i) a* in (13) is always closer to O than a; (ii) as
| & | increases, a* approaches a and (iii) the largest attenuation of a occurs when 4 = 0.

While (9) gives a bias in a that does not change with the mean of the covariates, this is not the case
with (13). This is most accessibly shown by plotting, for a series of values of §~!, T(h,a)/T(h, 1) against
P = expit ( u+ ﬁ2T v,z), which is a typical response probability: for most randomized trials, P will be
between 0.1 and 0.9. The figure shows that the bias correction using (9) is slightly conservative relative
to (13) for most values of P.

3.2. Covariates fitted in addition to the treatment indicator

The approach taken in [10], unlike that in [2], can be adapted to the case when the fitted model includes
covariates X, in addition to the treatment indicator. For any given X, (11) still applies, but with the
expectation E [expit ( U+ ka+ ﬁlTXl + f)] now taken with respect to the distribution of X, given X.

Consequently, the bias factor T'(h,a)/T(h, 1) still applies but with a = 1/4/1 + 2¢2 ﬁzT Qp, and

. clu+BIX + 7 (va+ 95 Q) (X, —v’l))]‘ "

\/ 1+ 2108,

This is of limited use because of the dependence on X, but replacing X; by its mean v, so h =

c(u+pTv)/4/1+ 2 ﬂzT f).ﬁz, provides a workable alternative that can be compared with (9) when multiple
covariates are fitted.

3.3. Probit regression

It is widely acknowledged that in practice logistic and probit regressions can seldom be distinguished in
terms of their fit to the data. As the present analyses have exploited the similarity of expit (1) and ®(u), it
is natural to consider the use of probit regression as an alternative to logistic regression, that is to replace
(1) and (2) with Pr(Y = 1| T,X,,X,) = ® (u + aT + X, + 1 X,) and so on. The LF values for the
maximum likelihood estimators from a probit regression are essentially those in (6), (7) and (8), but with
denominator 4/1 + ﬂZT Qp, in place of 4/1 + cZﬂZT Qp,, although the justification of this result is slightly
different (see the Appendix for details). Consequently,

at=— % (15)

V1+8,08,

is an exact expression for the asymptotic bias in the treatment effect that arises when some covariates are
omitted from a probit regression with a treatment indicator and normal covariates.
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Probit regression was also considered in [2] and [10]. The probit version of (10) is a* = a(] — % ﬁzT Q5 ﬁz) .

The bias term given in [10] for H’(0) for the probit case is E(¢[D~!(x)])/ ¢>(CI>‘1[E(7r0)]), where ¢(-)
is the standard normal density. If the true model includes both X, and X,, then when X, is omitted, the
probit analogue of (11) applies and the bias factor can be evaluated at 7, = z; = ® ( "+ ,BIT X, +¢ )
with X fixed at an arbitrary value and expectations taken over the distribution of X, conditional on X;.
The denominator of H'(0) is ¢p(h/c), with h as in (14), and the numerator is E [qb ( u+ ﬂlT X, + 5)] This

last expectation has an analytic solution leading to

$(h/c)
_E@o7(xm)]) _ Virar® 1

HOTEm)D — /) e

This coincides with the result from [2] for small g, and is the same correction factor as obtained from
the use of the skew-normal distribution. The derivation in [10] assumes that « is small and our derivation
of the previous expression has assumed that the covariates have a multivariate normal distribution. In all
cases, the bias correction for probit regression, unlike logistic regression, depends only on the conditional
variance of the omitted variables and their associated regression coefficients, and not on any measure
of location.

H'(0)

4. Extensions of the model

The analysis presented thus far applies to a model where, apart from a binary treatment indicator, the
covariates are assumed to be continuous. It is often the case that in clinical trials some baseline variables
are categorical. While such variables may have more than two categories, they would usually be included
in a linear predictor through dummy variables, so there is no loss in assuming that categorical covariates
are binary. The values of the binary treatment indicator are assigned by randomization, so are independent
of the values of the other covariates, a feature that would not be shared by a general binary covariate.

If the model in (1) were extended to include a single nontreatment binary covariate, B € {—1, 1}, as in

Pr(Y =1|T,B,X,.X,) = expit (u+aT +yB+ /X, + 1 X,), (16)

then the foregoing analysis of the effect of omitting X, from the fitted model can be adapted to this case.
In this model, as in Section 2, T is a binary indicator of the randomized treatment, so is independent of
B and X. Consequently, the parameters defining the distributions of B and X are unaffected by the value
of T, and we take Pr(B = b) = 0, and E(X | B = b) = v;,,b = —1, 1, but continue to assume that the
variance is unaffected by the value of B, thatis var(X | B = b) = Q.

Under these assumptions, it follows that f} is as in (6) and

* a

@ N —
\/ 1+ c2pI0p,

4 + %ﬂzT (["1,2 - V—l,Z] - Q7 ["1,1 B V—U])

\/1 +2prOp,

U+ %ﬂzT (V12 +voi2) = Q7 (vig+viry))
M ~ )

\/1+c2BIGB,

where v, |, v, , is the partition of v, corresponding to the partition of X into X; and X,. The above results
are exact for probit regression, provided that the factor ¢? is omitted from the denominator.

The previous argument can be extended to several arbitrary binary covariates, B, ..., By, but only at
the expense of rather restrictive assumptions about the form of E(X | By, ..., Bg). However, for the case
when the binary covariates are independent of the normal covariates, the arguments developed in this
article can be applied if some of the normal covariates are omitted. This would arise if there were K — 1
dummy variables describing random allocation to K > 2 treatments, or if, for example binary variables
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T, and T, described the main effects in a randomized trial with a 2 X 2 factorial treatment structure. In
these cases, the omission of some normal covariates leads to the log odds ratios for the treatments being
attenuated as in (9).

5. Some numerical results

5.1. Assessment of the accuracy of the approximations

The simulation results in Table I assess the accuracy of the forms of a* for the logistic regression given
in Equations (9), (10) and (13), with the last adapted as in (14) as necessary. The simulated value is found
by fitting the reduced model to a sample of size 2 x 10 simulated from the full model: all calculations
were performed in R, version 3.10 [18]. Three cases are presented: in the first, the true model has two
normal covariates, neither of which is fitted, while in the second model, only one of these covariates is
omitted. The third model has five covariates, three of which are omitted. In all cases, the normal covariates
have mean 0, and unit variance and correlations are 0.5. In the first half of Table I, all g, = 0.5, and
in the remainder, all g, = 2. The consequence of varying the size of the treatment effect is assessed by
considering @« = 0.5 and @ = 1.5. It is important that the simulations correspond to realistic models, with
outcome probabilities taking values that are appropriate for a clinical trial. From (1), we find that

Pr(Y:1|T=il)z<1><c(”i“—"'ﬁT")>’

so if y is chosen so that y + f7v = 0, then the outcome probabilities will be around 0.5.

Table I. Values of a* computed using simulation (sample
of size 2 x 10°) and the three approximations given in
Equations (9), (10) and (13), for various values of the regres-
sion parameters. The normal covariates have mean 0, unit
variance and pairwise correlation of 1. The number of fit-
ted normal covariates is p, and the number omitted is g:
throughout y = 0.

p=0,g=2 p=1,qg=1 p=2,4q=3

a=05p,=05
Numerical 0.433 0.482 0.308
Skew normal 0.446 0.485 0.330
Gail’s method 0.408 - -
Neuhaus et al. 0.434 0.481 0.309
a=15p=05
Numerical 1.307 1.447 1.328
Skew normal 1.337 1.454 1.337
Gail’s method 1.262 - -
Neuhaus et al. 1.302 1.442 1.302
a=05p=2
Numerical 0.206 0.347 0.227
Skew normal 0.220 0.350 0.220
Gail’s method —0.970 - -
Neuhaus et al. 0.202 0.330 0.202
a=15p,=2

Numerical 0.619 1.045 0.677
Skew normal 0.661 1.051 0.661
Gail’s method -2.311 - -
Neuhaus et al. 0.605 0.990 0.605

e ___________________________________________________________________________________________|
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Table I shows that when a = 0.5 and g, = 0.5, all methods perform reasonably when no normal covari-
ates are fitted, with that from (13) doing best. When some normal covariates are fitted, Gail’s method
is not applicable, but the proposed extension to (13) does well. The method based on the skew-normal
approximation is conservative, as would be predicted from Figure 1 for response probabilities around
0.5. When the f, are larger, Gail’s method fails, as would be anticipated from its derivation. The method
due to Neuhaus and colleagues performs better than the skew-normal factor when no normal covariates
are fitted, but the skew normal does better when the fitted model contains some normal covariates. The
method leading to (13) assumes that « is small, and the last two columns of Table I show that for & = 1.5,
the skew-normal approximation is again better when normal covariates are fitted and performs better
relative to the method of Neuhaus et al. than it did for the smaller value of a.

The results in Table I apply to outcome probabilities around 0.5, as the covariates have zero mean and
u = 0 throughout. Table II investigates the situation as outcome probabilities become larger, with y = 2
and u = 4 also being considered. When data are generated by (1) and a logistic model is fitted, then the
left-hand columns of Table II show that a* increases and the bias decreases as u increases. This feature is
well captured by the method of Neuhaus et al. and, for small f,, by Gail’s method, but is ignored by the
approximation (9), which clearly does not depend on y. If the data are generated not from (1) but from
the probit version, as described in Section 3.3, and a probit regression is fitted, then matters are quite
different and the simulated values of a* are unaffected by changes in u. The lack of dependence of (15)
on y is now appropriate, and the results in the right-hand part of Table II confirm that the skew-normal
and Neuhaus methods are exact. This difference between logistic and probit regressions does not appear
to be widely appreciated.

5.2. Assessment of the effect of departures from normality

Some simulations were carried out to assess the effect of nonnormality on the performance of the expres-
sions for a* in (9) and (13). Two types of departure were considered. The effect of a symmetric nonnormal
distribution was assessed by generating X from a central multivariate ¢-distribution with four degrees of
freedom, while the effect of skewness was assessed using the log-normal distribution. In the latter case,
X was derived from a bivariate normal variable W with zero mean. To assess the effect of skewness in the
fitted or omitted variable or both, three types of model were considered, with (X;, X,) taken as, respec-
tively, (exp(W,)’, W,), (W,,exp(W,)") and (exp(W,)’, exp(W,)"), where as usual X, is the fitted covariate
and X, is omitted and ’ denotes centring to zero mean. The parameters of the ¢ and log-normal distribu-
tions were chosen to give X;, X, unit variance and correlation close to %, which implies that the skewness

1.0

0.8
|

Correction Factor
0.7

0.5
I

0.4

0.0 0.2 0.4 0.6 0.8 1.0
=]

Figure 1. Correction factor T(h, a)/T(h, 1) plotted against P = expit ( U+ ﬁzT v’2), for four alternative values of
the correction factor §~!, namely 0.7 (solid line), 0.8 (dashed line), 0.9 (long dashed line) and 0.95 (dot-dash line).
The horizontal lines are at the values of ™.
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Table II. Values of a* computed using simulation (sample of size 2 x 10°) and
the approximations, for both logistic and probit regression, for different locations
of the linear predictor. The normal covariates have mean 0, unit variance and pair-
wise correlation of % The number of fitted normal covariates is p, and the number

omitted is g.

Logistic regression Probit regression
u=0 u=2 pu=4 pu=0 u=2 u=4
p=0,¢g=2; a=05, f,=05
Numerical 0.433 0.455 0.488 0.378 0.377 0.372
Skew normal 0.446 0.446 0.446 0.378 0.378 0.378
Gail’s method 0.408 0.460 0.493 0.313 0.313 0.313

Neuhaus et al. 0.434 0.452 0.482 0.378 0.378 0.378

p=0,qg=2; a=05, g, =2

Numerical 0.207 0.213 0.231 0.139 0.138 0.140
Skew normal 0.220 0.220 0.220 0.139 0.139 0.139
Gail’s method —0.971 -0.139 0.390 -2.50 -2.50 -2.50

Neuhaus et al. 0.202 0.208 0.227 0.139 0.139 0.139

p=2,49g=3; a=05, =05

Numerical 0.437 0.445 0.458 0.378 0.378 0.379
Skew normal 0.446 0.446 0.446 0.378 0.378 0.378
Neuhaus et al. 0.434 0.452 0.482 0.378 0.378 0.378

Table III. Values of a* computed using simulation (sample of size 2 X 10°) and the two approxima-
tions given in Equations (9) and (13), for various values of the regression parameters. The covariates
have a multivariate 7 distribution with four df or are a mixture of normal and log-normal variables. In
each case, one covariate is fitted and one omitted, in addition to the treatment indicator: throughout
u = 0. The approximations below the line apply to all the cases above it.

a=05 =05 a=15 §=05 a=05 =2 a=15 §=2

X bivariate ¢, four df 0.484 1.456 0.376 1.129
X = (exp(W)), W,) 0.479 1.441 0.352 1.061
X = (W,,exp(W,)) 0.488 1.460 0.403 1.194
X = (exp(W)), exp(W,)) 0.481 1.452 0.375 1.131
Skew-Normal 0.485 1.454 0.350 1.051
Neuhaus et al. 0.481 1.442 0.330 0.990

df, degrees of freedom.

of the log-normal variables is 2.84. In all simulations y = 0, with g, = 0.5or2 and @ = 0.5 or 1.5, and
one scalar covariate is fitted and one omitted. The correction factors §~' and T(h,a)/T(h, 1) both depend
solely on the mean and dispersion of the X;’s, so these will be the same for all of the models.

From Table III, we see that for smaller f,, the predictions of bias provided by (9) and (13) remain
accurate even when the covariates have nonnormal distributions. For larger values of f,, a* tends to be
closer to « for these nonnormal covariates than for normal covariates. However, it should be noted that in
this context, f, = 2is a large coefficient for a covariate with unit variance and will seldom be encountered
1n practice.

5.3. Examples: the SNAP trial and the Mayo Clinic PBC trial

No direct evaluation of the previous results is possible as they are all expressed in terms of parameters.
However, some practical indication of the size of the asymptotic bias, and how this changes with the
included covariates, can be provided by substituting estimates for the parameters from relevant studies.

The Scottish and Newcastle antiemetic pretreatment for paracetamol poisoning study (SNAP) [19]
trial was designed to assess ways to reduce adverse effects in the treatment of paracetamol poisoning.

e ___________________________________________________________________________________________|
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The trial used a 2 X 2 design, comparing (i) the standard versus a modified N-acetylcysteine regimen and
(i1) pretreatment with an antiemetic (ondansetron) or placebo. The primary outcome was binary, namely
whether or not the patient retched or vomited within 2 h of the initiation of N-acetylcysteine therapy.
In the trial report [20], odds ratios adjusted for stratification variables were reported. The stratification
variables were all binary, assessing the timing and amount of paracetamol ingestion and risk factors
for hepatotoxicity. For illustration of the methods used in this paper, the data have been re-analyzed,
replacing the stratification variables by related continuous covariates. These are the concentration of
paracetamol in the blood at presentation (mg/L) and two measures of liver function, namely gamma
glutamyl transferase (GGT) and alanine aminotransferase, both in IU/L: the liver enzyme concentrations
were logged before analysis.

The dispersion matrix of the three baseline covariates, based on the 217 patients in the trial, was used
as Q and f# was taken to be the estimated regression coefficients from the full logistic regression. The
correlations, standard deviations and estimated regression coefficients are shown in Table IV.

The values of inflation factors, that is the amount by which a exceeds a*, namely g and T'(h, 1)/T(h, a),
are shown in the left-hand part of Table V for a sequence of fitted models. Initially, only the treatment
indicators are fitted, and the paracetamol concentration and liver function enzymes are omitted.

The first row of Table V shows that the treatment effects had all three of these covariates been included,
the so-called full conditional effects, are 13% larger than the marginal effects. The full conditional effects
are about 7% larger than those that would be found from a model that included just log GGT in addition to
the treatment effects. Also, adding paracetamol to the model reduces the discrepancy to around 3%. The
order in which covariates are added matters - the full conditional effects are around 9% larger than those
from a model with just paracetamol. These figures relate to (13), and those from (9) are slightly smaller.

An example in which the difference between marginal and conditional estimates is even more pro-
nounced is the trial comparing penicillamine with placebo for the treatment of primary biliary cirrhosis
(PBC) [21], with the data given in [22]. While the primary endpoint is a survival time, an illustration
of the methods in the current paper is provided by a secondary analysis of end-of-study mortality. This
illustrative analysis considers a full model that includes a treatment indicator and the logarithms of the
baseline concentrations of bilirubin (mg/dL), alkaline phosphatase (IU/L) and urinary copper excretion
(pug/day). It is shown in the right-hand part of Table V that the treatment effect, estimated from a model
with all three covariates, is around 30-35% larger than the marginal estimate. However, once account is
taken of bilirubin, the other two covariates have little additional effect. If either of the covariates other
than bilirubin were fitted first, the change in the inflation factor is far less marked (to 1.216 with copper
and to 1.142 for alkaline phosphatase).

Table IV. The correlations obtained from the dispersion matrix for the three
continuous covariates chosen from the SNAP trial, with standard deviations
on the diagonal and regression coefficients in the second column.

b Paracetamol conc. Log GGT Log ALT
Paracetamol conc. 0.0054 85.34
Log GGT —0.873 —0.093 0.812
Log ALT 0.660 —-0.150 0.448 0.686

SNAP, Scottish and Newcastle antiemetic pretreatment for paracetamol poisoning
study; GGT, gamma glutamyl transferase; ALT, alanine aminotransferase.

Table V. The values of g (cf. (9)) and T(h, 1)/T(h, a) (cf. (13)) for a series of increasing models for
both the SNAP and PBC trials.

SNAP Trial PBC Trial
Included covariates q T(h,1)/T(h,a) Included covariates q T(h,1)/T(h,a)
None 1.104 1.129 None 1.289 1.346
+ Log GGT 1.056 1.070 + Log bilirubin 1.034 1.042
+ Paracetamol 1.028 1.035 + Log alkaline phosphatase  1.012 1.014

SNAP, Scottish and Newcastle antiemetic pretreatment for paracetamol poisoning study.
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6. Discussion

One of the most widely cited instances of the effect of omitting a covariate is Simpson’s paradox [23], in
which the effect of a binary covariate can be reversed when a second binary covariate is taken into account.
This phenomenon was thoroughly investigated and set in more general contexts by Samuels [24]. The
notion of association reversal (AR) was introduced, and the relation between AR and the amalgamation
paradox (AMP) defined by Good and Mittal [25], where conditioning on a second covariate significantly
alters the relationship between the outcome and the first covariate, was discussed. Samuels shows that,
in general, omitting a covariate from a logistic regression can lead to AR. In our application, this would
amount to a and a*, and/or f} and f; having opposite signs. Our analysis, as shown by (6), (7) and (8)
confirms this. It also confirms Samuels’s observation that if the true coefficient of the omitted variable
vanishes, that is §, = 0, then AR cannot occur and the AMP does not apply. For g, # 0, our equations
also confirm, and quantify, the result that if the fitted and omitted covariates are independent, then AR
cannot occur but that the AMP is inevitable. Independence of the fitted and omitted covariates implies
Via = V_jpand Q, = 0, so the signs of @ and a*, and of f; and S}, must coincide. However, both will be
shrunk towards zero because Q does not vanish when Q,, = 0. As Samuels points out, this is in contrast
to the situation for linear regression, where independence of fitted and omitted covariates prevents the
AMP (and hence AR). These properties are related to the non-collapsibility of the odds ratio, as discussed
in [26,27].

A consequence of this observation is that if a covariate, T, is independent of all other covariates in
the model, then in a linear regression, the expectation of the estimator of its coefficient, E(&), will be
unaffected whatever other covariates are included. This is of fundamental importance for estimation of
the treatment effect in a randomized trial, where the act of randomization ensures that the treatment
indicator T is independent of the other baseline covariates. The reasons for taking account of baseline
covariates are summarized in a review of covariate adjustment [28], and the first advantage adduced is
that an adjusted analysis can correct for imbalance between treatment groups in prognostic covariates
that arise despite randomization. Although in a given trial adjusted and unadjusted analyses can produce
different values for @, they ultimately estimate the same quantity because the expectation of & over the
joint distribution of the covariates and response is always a.

As has been widely recognized [11,29-33], this situation does not carry over to randomized trials
with a binary outcome when logistic regression is used to adjust for baseline covariates. In this case the
AMP obtains, and the estimator of the treatment effect, @, has an expectation that depends on which
baseline variables are included and which are excluded from the analysis, so there is no longer a single,
unambiguous treatment effect. The marginal treatment odds ratio ignores baseline covariates, and is
found from fitting a logistic model which includes only 7 and is therefore averaged over all the baseline
covariates that affect the outcome: it is also referred to as the population averaged effect and has the
advantage of being unambiguously defined. However, one of the advantages of including appropriate
baseline covariates adduced by Yu and colleagues [28] is that it provides a conditional treatment estimate
that is clinically more relevant because, by taking account of the different characteristics of patients, it
gives a more pertinent comparison (see [11] and Senn in discussion of [34]). However, when obtained
by logistic regression, it is not uniquely defined, which is something triallists could find unsettling as the
aim of a clinical trial is often thought to be to estimate the treatment effect.

Indeed, the multiplicity of possible treatment effects has implications for nomenclature. The present
paper has used the term asymptotic bias, occasionally shortened to bias, to refer to the differences between
the parameters that purport to measure the treatment effect. Although this terminology is in keeping with
the other contributions to the field, it is rather misleading because it implies that there is a single true
effect, with respect to which the others are biassed. The marginal treatment odds ratio is shrunk towards
zero relative to the conditional ones, as shown by (9), as indeed are any conditional estimates relative to
that based on a superset of the covariates. As such, the term ‘attenuation’, as previously suggested [11],
is probably preferable to bias.

While the qualitative effect on the treatment estimator of including more baseline variables in a logistic
regression has been appreciated for some time, the current paper provides a quantitative assessment of
the effect. When planning a trial, either (9) or (13) will provide the triallist with some indication of the
potential effect on the treatment estimate of including various sets of covariates in a logistic regression.
Strictly, the attenuation factors in (9) and (13) assume that the covariates are normally distributed, but as
shown in Section 4 and Section 5.2, the formulae are useful more widely. Table V shows that successively
including log GGT and paracetamol each result in similar changes in the treatment effect and that it may
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be useful to ensure that both are included in an analysis. On the other hand, in the PBC trial, once the
effect of bilirubin has been taken into account, there is little to be gained by including further variables.
In general, if the triallist can a priori identify a set, S, of covariates such that further additions to the set
cause only small changes in g, then if variables in § are always included in the analysis, the range of
conditional treatment estimators that might arise from further modification to the model may not differ
to any material extent.

How baseline covariates should be selected for trials has been the subject of much discussion, for
example [32,35-38], and the general conclusion is that ideally the selection should be made a priori.
While it is conceded that this may not always be practical [29], it would be wise to try to make the
assessment of which covariates to include on the basis of pilot data rather than data from the trial itself.
Given a set of covariates, the investigator can use (9) to assess how the conditional treatment effect
changes with which of these covariates is selected. However, conclusions drawn on this basis can be
undermined by the existence of an unknown covariate, which has an important effect on the outcome and
is not closely related to the known covariates. This would not be a serious issue for trials analyzed using a
linear regression because randomization provides protection against the untoward influence of unknown
covariates. However, this benefit of randomization may be less valuable for binary outcomes analyzed
using a logistic regression.

A further reason for recommending the use of baseline covariates [28,32,39] is to increase the power
of an analysis, because taking account of highly prognostic covariates will markedly reduce the residual
variance. Variables that have had a role in the stratification of the treatment allocation have a special
status because these variables need to be included if a correct estimate of variance is to be obtained
[32,38] [40, pp. 601-2]. The scope of such recommendations is often not precisely specified, although
the arguments behind them are usually rehearsed in terms of a linear regression. However, the reduction
in the standard error of the treatment estimator, which occurs for a linear regression, is known not to
apply to logistic regression [5, 11]. Nevertheless, including prognostic baseline covariates in a logistic
regression does tend to increase the power of the study [41, 42], presumably because the increase in
standard error due to the covariates is slight compared with the inflation of the treatment effect implied by
(9). However, both these articles based their conclusions on simulation studies in which a single covariate
was considered and the increase in power when the covariate was included was most noticeable if it
was highly prognostic, so that the attenuation in (9) was marked. Whether including further covariates
would lead to an increase in power is moot, because the consequent inflation in the treatment effect may
no longer outweigh the increase in standard error. It should also be remarked that the rationale for the
automatic inclusion of stratification variables in a logistic regression is less apparent than it is for a linear
regression and might usefully be investigated further.

In practice, an investigator will often plan a trial on the basis of the power of an unadjusted analysis,
although even here a realistic value for the odds ratio under the alternative may need to be judged in the
light of the preceding discussion. The inclusion of an important baseline covariate, or covariates, may
increase the power of the study, but the size of the effects reported in [41,42] will not make the use of
unadjusted power unreasonably conservative unless some of the covariates are very highly associated
with the outcome. If the triallist has adequate information on the relationship between covariates and
outcome, then more sophisticated methods based on a postulated logistic model can be used [43]: this
methodology requires the evaluation of the information matrix at the alternative hypothesis. The approach
in [43] uses an ingenious conditioning argument so that only one-dimensional numerical integration is
required. It is possible that the approach in the present paper, using a probit approximation and the ESN
distribution, could be used to go further and replace the numerical integration with an accurate analytic
approximation.

The comparison between logistic and probit analyses is interesting. If the parameter estimates from a
logistic regression are f, then the estimates obtained from fitting a probit regression to the same data will
be approximately cf, so the corrections in (9) and (15) are essentially equal. However, if P is not close
to 1 or 0, Figure 1 shows that the asymptotic bias a* can be greater than is implied by (9). However, the
correction in (15) is an exact result, so it may be that the problem of asymptotic bias in the estimates of
the treatment effect is less if probit is preferred to logistic regression. A deeper aspect of the analysis,
which may warrant further study, is the extent to which trials with a binary outcome are best served by
either a logit or probit link. Both links provide protection against estimated probabilities outside [0,1],
and sufficiency arguments favour a logistic link, but both bring the problems of interpretation of the
treatment effect discussed previously. Gail and colleagues [2] pointed out the superior bias properties of
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identity or log links, and perhaps methods of incorporating baseline covariates into analyses of absolute
differences of response probabilities should be given further consideration.

Appendix

A.l. The extended skew-normal distribution

The density of an extended multivariate skew-normal (ESN) random variable U € R” [12] is
b o, QO (u—w) +y)

Dy /1 +{TQ0)

where { is a p-dimensional parameter, y is a scalar, ¢p(~; , Q) is the p-dimensional multivariate normal
density with mean @ and dispersion Q and @(-) is the standard normal distribution function. The mean
of the ESN distribution is

Jw)

(A.D)

Qf W)
V1+rac W)
1
where 7 = y(1+¢7Q¢) "2 and ¢(-) = ¢,(+; 0, 1). From [ f(u)du = 1, we see that [ &, (u; 0, QDT (u—
®) +y)du = Oy /4/1 + {TQE), with a similar manipulation giving

EU)=w+

, @)
/ Ui, (u; w, QO (u — @) + y)du = 0;P(W) + ——=p(W).

N

A.2. Least false values for logistic regression

Writing p, = Pr(T = ¢) and applying the approximation expit(u) ~ ®(cu) to (3), (4) and (5) and using
the properties of the ESN distribution, we obtain from (3) and (4) the equations

e (Wl*) +p @ (Wfl) =pP(y) £p_PWw_)),, (A2)

and from (5), we obtain

cQy By

1+ b

c(Q26),

Here, 7 = (p7., 7 )T ,(Qp), denotes the first p elements of Qf and

Q1 By o (v
1

V1 +E67Q B (A.3)

C(Qﬁ)l
¢(W1)] +p_ l‘/—l‘b(vf_l) + \/de)(w_l)]

pilvi®@ (w)) + ¢ (w) [+p_ | v @ (vh)) +

=pi l"l D(yy) +

L cluta) . c(ut, —a*)
v, = v, =
1+ 2T B \J1+E267Q, B}
c(py + ) c(u_y —a)
e Wy =

VIt 2prQp RRVE=yIrsY;

with ¥ = p* + p7v, | and p, = p + p7v,, where v, | is written for the first p elements of v,. From (A.2),
we obtain y =y and y*| = y_,, and using this in (A.3), we obtain

Q87 _ (Qp), _ Q)+ Q0
\/1 +2BTQ VI+STQp V1+pTQp

and these can be solved to give (6), (7) and (8).
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A.3. Owen’s T function

Owen’s T function, which appears in (13), is defined as

dx,

| [aexP [—%hz(l +x2)]
Th,a) = —
(2 a) 2 _/0 142

¥/

and has an important role in the computation of bivariate normal probabilities. It can be evaluated conve-
niently by the function T . Owen in the R package sn [44]. For fixed &, T(h, a) is an increasing function
of its second argument, and as in the present application 0 < a < 1, it follows that the expression for
a* in (13) is always closer to 0 than a. For fixed a, T'(h, a)/T(h, 1) is an even function of / and increases
as the magnitude of /& increases, so the largest attenuation of @ occurs at & = 0. As the magnitude of &
increases, T'(h, a)/T(h, 1) approaches one, so a* approaches a.

A.4. Least false values for probit regression

The LF equations for the maximum likelihood estimators for a probit regression differ from (3) to (5)
because of the presence of a weighting factor = o(T, X,) = w(n*) with n* = u* + o*T + ﬂfTXl, that
is the p + 2 equations are

Elo(n*)Z®(n*)] = E [0n")Z® (4 + oT + B X, + B, X, )] (A4)
where w(n*) = ¢(n*)/[PH*)P(—n*)], and where Z is taken to be, successively, 1, T and X j=1....p.
The presence of @ means that the skew-normal distribution cannot be used to evaluate the expectations

in the way it was used for logistic regression, but it can be applied to evaluate the right-hand expectation
in (A.4) over the distribution of X, conditional on T and X, giving

_ _ T
HA BT (Vi — Q0 Qv ) +aT + (B +Q11Q18,) X,
\/ 1+ 8708,

Consequently, if we choose g}, u* and a* as in (6), (7) and (8) but with denominator /1 + ﬂzr f)ﬂz as
opposed to 4/1 + c2ﬁ2T Qp,, then Equations (A.4) will be satisfied.

E|w(n*)Zd
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