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ABSTRACT 

A comparative study between the results of the available experimental and analytical solutions with 

those obtained from the developed numerical model of eccentric wells operating in circular island 

unconfined aquifer under steady state flow conditions was carried out. The results of all the previous 
solution methods were expressed graphically by drawing the discharge-drawdown relationship for 

such wells. The objective was to define the drawdown range where these solutions approximate each 

other and to test the
 
validity of the analytical solution. In contrast to the experimental model which 

showed that the analytical solution is only valid for small drawdowns, the present study indicated that 

the numerical and analytical approaches are virtually identical for all values of drawdowns provided 

that Darcy’s law is applicable. On the basis of this comparative analysis, any of the analytical or the 

numerical solutions could be used in order to adequately describe the drawdown for a well placed 

eccentrically in a circular island unconfined aquifer under steady state conditions, although the 

numerical approach may have some implementation advantages over the analytical approach. 

Keywords: drawdown, eccentric well, unconfined circular aquifer, numerical model 

1 INTRODUCTION 

Several researchers have studied well operating systems in circular island aquifers under steady 

state flow conditions using theoretical and experimental methods. Dupuit (1863) studied the 

hydraulics of flow to a well and derived an expression by neglecting the effect of the seepage face (the 

vertical surface of the aquifer which is exposed between the water level in the well and the location at 

which the phreatic surface intersects the well opening) and ignoring the flow in the unsaturated zone 

above the phreatic surface. In 1948 Babbitt and Caldwell constructed a circular island laboratory 

model in order to test the validity of Dupuit (1863) and Muskat (1937) equations for well interference 

in circular unconfined aquifers under steady state flow conditions. They concluded that these 

theoretical equations are valid for a small group of wells. Hantush and Jacob (1960) presented a 

theoretical study under steady state flow conditions for a discharging well located eccentrically in a 

circular confined aquifer along whose outer cylindrical boundary either the drawdown or the flux is 

zero. De Wiest (1963) obtained an analytical solution for the flow to an eccentric well in a leaky 
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circular aquifer with lateral replenishment, both for steady and unsteady cases. De Wiest gave graphs 

to show the influence of vertical leakage and lateral replenishment on the relationship between 

drawdown at the well and eccentricity. Later on, Verruijt (1982) presented a theoretical equation for 

the wells eccentrically located in unconfined circular aquifer under steady state flow conditions. 

Recently, Birpinar and Gazioglu (2002) performed an experimental study for wells located 

eccentrically in an unconfined aquifer in order to test the validity of the equation presented by 

Verruijt. Their study showed that Verruijt analytical equation is only valid for small drawdowns. 

Phoolendra & Kristopher (2013) stated that despite the many advanced solution methods available, 

there still exists a need for realism to accurately simulate real-world aquifer tests. 

In the present paper a steady state two-dimensional numerical model, using the finite difference 

method, was prepared with the wells eccentrically located in a circular island unconfined aquifer. A 

comparison of the results of the present numerical model with each of the analytical solution by 

Verruijt (1982) and the experimental results of Birpinar and Gazioglu (2002) was considered. The 

objective was to define the drawdown ranges where these solutions approximate each other and to test 

the validity of Verruijt (1982) equation. The bases for comparison of these models are the predicted 

drawdown and the discharge-drawdown relationship at the well in operation under different discharge 

rates. Understanding of such relationships is of practical interest in operating unconfined radial flow 

systems. The conditions assumed in this study are: the aquifer is homogeneous, the wells fully 

penetrate the aquifer and are unlined, Darcy's law is valid for the flow in the aquifer, only one well is 

pumped at a time and the well is pumped at a constant rate until equilibrium conditions.  

2 GOVERNING EQUATION & BOUNDARY CONDITIONS 

Equation (1) represents the two dimensional partial differential equation for incompressible steady 

groundwater flow in a homogeneous unconfined aquifer, which can be obtained after simplification 

and arrangement as Poisson's equation. This equation was formulated by introducing Dupuit's 

assumption that heads, h , do not vary in the vertical direction (i.e., 0/ =∂∂ zh ) resulting in 

horizontal flow (Wang and Anderson, 1982). 
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Where 
2hv = , ),( yxR is the volume of water recharged per unit time per unit aquifer area  and 

yxQyxR ∆∆= /),( , where Q  is the recharge rate from the well and k  is the permeability 

coefficient. In order to obtain the numerical solution of equation (1), which governs the water flow in 

the present study, one must express it altogether with the boundary conditions in terms of its finite 

difference approximation. For this purpose, the total flow domain is discretized by superimposing a 

mesh-centered grid network with irregular spacing between the nodes located at the intersections of 

the grid lines, see Fig. 1. The finite difference form of Poisson's equation at any node (i,j) is given by 

equation (2).  
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There will be one equation of the form of equation (2) for each node in the flow domain. The finite 

difference method approximates Poisson's equation by N  linear algebraic equations involving N  

unknown values of head. The  boundary condition of the problem considered in the present study is a 

Dirichlet condition. That is, the head is known (h  = constant = 42.8 cm) for all the nodal points on the 

outer circular boundary of the flow region and remains unaffected for distances greater than the radius 

of the aquifer. The solution of these equations is first obtained in terms of v  and the heads (h ) at all 

nodal points are then obtained by taking the square root of v . Previous researches by Boulton (1951), 

Hantush (1964), and others proved by mathematical procedures that the discharge obtained by 

introducing the Dupuit assumption represents a correct solution eventhough the water table obtained 

by the same procedure, known as Dupuit parabola, significantly deviates from the real water table, 

especially where the streamlines are strongly curved. They suggested that the deviation from the 
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Dupuit discharge is within 1 to 2%. On the other hand, Shamsi and Narasimhan (1991) suggested that 

the Dupuit model underestimates the discharge because the flux through the seepage face is ignored 

and the deviation may range up to 10 to 12%. Siddiraju (2013) concluded that the specific 

capacity of open wells increases as the diameter of the well increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 MODEL OF THE STUDY 

Birpinar and Gazioglu (2002) have given an experimental study for the circular island unconfined 

aquifer model under steady state flow conditions. They constructed a sand model in the laboratory 

where the island is contained in a square box (Fig. 1). The thickness of the circular aquifer model was 

50 cm. The boundary condition head in the sand model was kept constant at about 8 cm below the 

sand surface. In brief, the constant values for the applied circular aquifer model were taken as: H = 

42.8 cm (referred to the base of the aquifer), k  = 0.468 cm/sec, wr  =1.75 cm and r  = 96 cm, where 

H  is the height of initial water table, k  is the permeability of the unconfined aquifer, wr  is the well 

radius, and r  is the radius of the aquifer (radial distance from the center of the aquifer to its external 
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Fig. 1 Finite difference grid superimposed over Birpinar and Gazioglu  

           circular island physical model 
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circular boundary). In order to have a direct, logical and easy comparison between the results of the 

available experimental and analytical solutions with the present numerical solution, the considered 

flow is discretized with mesh-centered nodes whose spacing are irregular and selected in such a way 

that the wells are exactly placed at the same positions within the aquifer as that proposed and used by 

Birpinar and Gazioglu (2002). In other words, the performances of the three models are compared for 

the same soil properties, problem dimensions and flow geometry. Using the image well theory, 

Verruijt (1982) developed an analytical equation for a sink (+Q ) placed eccentrically at px =  , 

0=y  as shown in Fig. 2, where p  is the well eccentricity. The problem is solved by inserting a 

source (-Q ) at prx /2
= , 0=y , where both sink and source are operating in an infinite circular 

unconfined aquifer. With application of appropriate boundary condition, Verruijt obtained that 

)ln(
22

22

pr

rr

k

Q
Hh w

w
−

=−
π

                                     (3) 

When the eccentricity p = 0, equation (3) will reduce to Dupuit's expression derived by integrating 

Darcy's law for steady flow around a well in a homogeneous and isotropic unconfined aquifer. In the 

mesh centered grid used in this study, the axis of the well at (i,j) is assumed to be centered within the 

infinitesimal area yx∆∆ , see Fig. 3. Withdrawal from the aquifer is prescribed at the well in 

operation, however, ),( yxR  is set equal to zero outside the infinitesimal area containing the well. 

Thus ),( yxR  is completely defined throughout the problem domain.  

 

 

 

 

 

 

 

 
 

 

 

 

x∆ 

y∆ i,j i+1,j i-1,j 

i,j-1 

i,j+1 

Fig. 3 Schematic sketch for the infinitesimal  
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Fig. 2 Schematic sketch for Verruijt sink and source 

 in circular aquifer  
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The finite difference computer program used for solving equation (2) is very similar to that used by 

Wang and Anderson (1982) for well drawdown in unconfined aquifer; however, it is slightly modified 

in order to match the properties and geometries of the present study. one of the main concepts in 

numerical modeling is verification of the model results. Some general areas of uncertainty in 

numerical models include: choise of mathematical model, spatial and temporal descretization, and 

uncertainty of boundary and initial conditions and approximation of such conditions. The uncertainty  

(error) of the model is some function of all of these and can be evaluated by comparing the numerical 

results against known analytical solutions. In this paper the developed numerical model is seen to 

approximately reproduce the results of similar solved examples given by Wang and Anderson (1982) 

and Rushton (2003). The finite difference grid is refined close to each well in operation and near the 

aquifer boundaries in order to minimize the mesh discretization error. The solution of the resulted 

linear algebraic equations is obtained by Gauss-Seidel iteration with successive over relaxation. The 

error tolerance (which is the maximum change in head at any node from one iteration to another) was 

set equal to 0.01 cm. If the water surface in any well is drawn down below the base of the aquifer, a 

negative value of v  would have existed at the location of the well. In such cases, the head at the well 

is set equal to the base of the aquifer. 

4 RESULTS 

Six series of numerical experiments are performed in order to analyze the details of the discharge-

drawdown relationship of the simulated wells in such a circular unconfined aquifer. One series is for 

the centric well and five series are for the eccentric wells. In each series, different discharge values are 

inserted in the model at the well in operation and the corresponding drawdowns are computed at that 

well. An example for the drawdown calculation using Verruijt analytical equation altogether with the 

experimental and numerical results is presented in “Table 1” for well number 1. Knowing that p  is 

the well eccentricity and whs −= 8.42 , where s  is the drawdown, then 

)
4596

9675.1
ln(

468.0
8.42

22

22

−
=−

xQ
hw

π
. The calculated analytical drawdowns are shown in Table 1 

for various discharge rates and compared against each of the numerical and experimental results.  
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From “Table 1” it is seen that the percentage differences between the analytical and experimental 

results are considerable and increase as the discharge rate increases. They range from 27.8% to 48.6%. 

On the contrary, a very close agreement is reached between the results of the analytical solution and 

the present numerical model.  

 
Table 1 Drawdown values of well number 1 

 

Q 
(cm3/se) 

Experimental 

drawdown, s1 

(cm) 

Analytical 

drawdown, s2 

(cm) 

Numerical 

 drawdown, s3 

(cm) 

error % 

between 

s1 & s2 

error % 

between 

s2 & s3 

270.0 6.5 9 9 27.8 0 

452.0 11.5 16.8 16.8 31.5 0 

643.0 17.5 29.1 29 39.5 0.3 

716.58 22 42.8 42.8 48.6 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar conclusions (as for well number 1) are obtained for all the other five wells in this model, see 

Fig. 4. From this figure, and compared to the experimental model for the same discharge rate, it is 
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Fig. 4 Discharge-drawdown relationships for numerical, analytical and observed models 
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observed that the analytical and numerical models considerably overestimate the drawdowns for all 

wells except well number 4. “Table 2” presents the range of percentage differences between the 

analytical and each of the experimental and numerical drawdowns for all wells. Compared with the 

analytical results, the maximum percentage difference in drawdown values as obtained from the 

present numerical model is small (approximately 3.7%); however, it is high (approximately 66%) 

when compared to those obtained from the experimental model. Based on such big difference, 

Birpinar and Gazioglu (2002) stated that equation 3 is valid only for small drawdowns. Of importance 

is that when equations (2) and (3) are applied to an unconfined aquifer, it is assumed that the flow is 

horizontal, the equipotential lines are vertical, the horizontal hydraulic gradient equals the slope of the 

water table and Darcy’s law and the conservation of mass generally govern the groundwater flow. 

Darcy's law does have limits on its range of applicability and these limits must be evaluated in any 

application (Todd 1980). Therefore, such differences between the analytical (or numerical) and 

experimental solutions may be attributed to the application of a model based upon Darcy's law to 

media or environment where Darcy's law is inappropriate, or the use of a two-dimensional model 

where significant flow occurs in the third dimension. The applicability, or usefulness, of a model 

depends on how closely the mathematical equations approximate the physical system being modeled. 

For this reason, it is necessary to have a thorough understanding of the physical system and the 

assumptions embedded in the derivation of the mathematical equations. In order to calculate the 

drawdowns by the analytical and numerical methods, the discharge values presented in “Table 2” are 

considered as the maximum permissible discharges at which the piezometric head is equal to zero or 

the drawdown is equal to 42.8 cm (these values are valid for the proposed model dimensions).  

 
Table 2 Drawdown error % and maximum permissible discharges from different models  for each well 

 

Well No. 
Range of error %  

between s1 & s2 

Range of error % 

between s2 & s3 

Maximum permissible 

discharges (cm
3
/s) 

1 27.8 - 48.6 0 - 0.3 716.58 

2 2.9 - 34.6 0 - 3.3 705.80 

3 42.2 - 61.0 0 - 2.8 829.27 

4 5.7 - 12.4 0 - 3.7 672.18 

5 22.6 - 46.2 0 - 0 793.37 

6 45.5 - 66.1 0 - 1.3 767.06 
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Three sets of discharge-drawdown relationships from the experimental, analytical and numerical 

solutions are drawn for all wells as shown in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure shows a considerable agreement between the numerical simulations and the analytical 

calculations. On the other hand, any of the analytical or the numerical models gives completely 

different results than the experimental model. It is also seen from Fig. 5 (showing the results of the 

experimental model of Birpinar and Gazioglu) that well number 5 behaves completely different than 

the other five wells because its relation is expected to be between those of wells number 6 and 3, but it 

doesn't appear so. Birpinar and gazioglu (2002) explained in their paper that they repeated the 

experiments in order to investigate the reasons of such behavior for well number 5 but their results did 

not change. This is not the case with any of the analytical or the numerical results which give similar 

behavior as expected for all wells. The pronounced deviations in the experimental results and the 

different behavior of well number 5 may raise the caution that modeling unconfined flow to a well 

using smaller scale laboratory models may not be appropriate unless sensitivity analysis to changes in 

the well radius, model size and other factors are performed. The previous analysis and observations, 

provided that Darcy’s law is applicable, enhances the credibility of each of the analytical and 
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numerical models over the experimental model in order to accurately describe the discharge-

drawdown relationship for eccentric wells in a circular island unconfined aquifer under steady state 

flow conditions. In order to obtain the drawdowns by the analytical and/or the numerical solutions, the 

discharge rates should not exceed the upper mentioned maximum permissible limits for the 

corresponding well. For example, the maximum permissible discharge to be used in the analytical 

and/or the numerical solutions for well number 1 is found to be 716.58 cm3/sec at which the 

drawdown reaches 42.8 cm; however, the corresponding discharge rate as given by the experimental 

model reaches 1180 cm3/sec for the same drawdown.  

6 SUMMARY AND DISCUSSION 

A numerical model was developed in order to analyze the discharge-drawdown relationships of 

eccentric wells operating in circular island unconfined aquifer under steady state flow conditions. The 

model, uses the finite difference approximation with irregular mesh, included the simulation of a series 

of one centric and five eccentric wells in the aquifer. For the same problem dimensions, soil properties 

and flow geometry the results of the present numerical model were compared versus the experimental 

measurements of Birpinar and Gazioglu (2002) and the analytical calculations using Verruijt equation 

(1982). From the results of this study the following remarks are of importance:  

1. The developed numerical discharge-drawdown relationship for each well very closely matched the 

analytical calculations using Verruijt equation.  

2. Compared to the results of the available experimental model of Birpinar and Gazioglu (2002), the 

analytical and numerical solutions considerably overestimate the drawdowns for all eccentric wells 

and slightly underestimate those for the centric well. The maximum percentage difference between the 

experimental and analytical (or numerical) results is found to be 66% and may be attributed to the fact 

that in the flow field the seepage velocity of groundwater is highly variable even if the aquifer 

properties are relatively homogeneous. Thus, in low permeability zones or near stagnation points, the 

velocity may be very small, however, in high permeability zones or near stress points (such as 

pumping wells), the velocity may be high. In other words, if the range of validity of Darcy’s law 

which depends on the flow velocity is not satisfied in the experimental model then the comparison 
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with the analytical (or numerical) models may not be applicable over the entire flow domain and 

considerable differences may be introduced somewhere in the solution.   

3. The experimental model gives completely different discharge-drawdown relationships than any of 

the analytical equation or the developed numerical model. Moreover, one well in the experimental 

model (well 5) behaves completely different than expected because its relation should be between 

those of wells number 6 and 3, but it doesn't appear so. This is not the case with any of the analytical 

or the numerical results which give similar behaviors as expected for all wells.  

4. The pronounced deviations in the experimental results and the different behavior of well number 5 

may suggest that the experimental model requires sensitivity analysis to changes in the well radius and 

model size in addition to the difficulties involved in setting up and carrying out such experiments. On 

the contrary, numerical models provide an efficient approach in order to study the behavior of 

eccentric wells in unconfined circular aquifers.  

5. Different pumping and/or recharge rates from different wells, generalized well patterns and varying 

aquifer characteristics can easily be accounted for by the numerical solution. 

6. When the well is approximately at mid distance between the center of the aquifer and its boundary 

(e.g. well 1 and well 2) the percentage difference between the results of the experimental and the 

analytical (or numerical) models is approximately 20% for small drawdowns (i.e. for drawdowns less 

than 25% of the aquifer thickness). However, for wells placed near the boundary (at a distance of 

approximately three quarter the radius of the aquifer, well 3 and well 6) the percentage difference 

between the results of the experimental and the analytical (or numerical) models reaches 50% for 

small drawdowns. Moreover, the difference in results increases as the drawdowns increase. For well 4, 

the maximum discharge that causes maximum drawdown of 42.8 cm has the same magnitude of 672.2 

m3/s, however, the discharges in the experimental model were clearly larger than those required for the 

analytical (or numerical) models for the same drawdown. The reason of this is due to the extra 

discharge coming from the seepage face which is neglected in the analytical and the numerical models 

since they are based on Dupuit's assumption.  
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7 CONCLUSIONS 

On the basis of this comparative analysis, and provided that Darcy’s law is applicable, any of the 

Verruijt analytical equation or the developed numerical model could efficiently be used in order to 

describe the discharge-drawdown relationship for all values of drawdowns for a well which is placed 

eccentrically in a circular island unconfined aquifer under steady state flow conditions. Moreover, The 

founding in this study may be of practical uses in pump and treat systems designed to prevent the 

contamination from spreading or remove the contaminant mass in unconfined aquifers. This will be 

achieved by controlling the discharge rate that should be selected as the minimum rate sufficient to 

prevent enlargement of the contaminated zone or to be much larger than that required for containment 

so that clean water will flush through the contaminated zone at an expedited rate. 
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