Development of Graphical User Interface by
Applying Philosophy of Use Case Maps

Ebitisam K. ELBERKAWI *, Mohamed M. ELAMMARI **

* Academy of Graduate Studies, Benghazi, Libya
Bit2gar@gmail.com

**Faculty of Information Technology, Garyounis University, Benghazi, Libya
Elammari @garyounis.edu

Abstract: Graphical User Interface (GUI) development is as important as other aspects and phases of programming, as GUI
elements are typically the only means by which the user interacts with the program. Thus, even if the functionality of the
application is perfectly executed, if its GUI is difficult to use, this can result in an implementation failure. In such cases, the
user will switch to another application, which is easier and more flexible, even if its internal functionality is inferior.
Therefore, the GUI must primarily be user-friendly, and must be built on strong foundations and pillars. This paper introduces
an approach for designing GUI based on a model that offers visual description of high-level system logic—Use Case Maps

(UCMs), which is utilized in three phases.

Keywords: Graphical User Interface, Use Case Maps.

1. Introduction

There is no doubt that the role played by the Graphical
User Interface (GUI) in making systems more
successful is very important. In practice, it is not
uncommon for strong performance systems to fail at
their implementation stage due to the shortcomings in
their GUI. The GUI is the interface between the user
and the system and thus plays the key role in the
application acceptance. In short, athough GUIs
typically include less complex elements to develop,
they are critical to the success of the system. Moreover,
given that their acceptance relies on user preference,
they are often the hardest part of the system to develop.
Thus, GUI designers and programmers must achieve a
high degree of cooperation in the design of GUI.
Analysis and design phases are integral part of project
life cycle and they must incorporate GUI from the
inception. In addition, user input is essential aspect of
GUI construction and design. This paper presents an
approach to GUI design that is based on the primary
phases of system development and supports the role of
the user. Such approach increases the chance of
cooperation between the GUI designer and programmer
as well as ensures that the final product meets user
requirements.

In this paper, we focus on the design of GUI through
Use Case Maps (UCMs) as one of high-level models.
The approach proposed in this paper is composed of
three phases, starting from UCMs and ending in GUI:
the first phase (Responsibility Analysis) produces a
Responsibility Diagram (RD); second phase (GUI
Design) produces GUI Design Tables (GUI_DT),

which contain al details of designing the GUI; and
last phase (GUI Development) produces the GUI. The
rest of the paper is organized as follows. Section 2
gives a summary of some pertinent literature, where
key findings and comparisons of these works are
discussed. Section 3 describes the three phases of our
GUI design approach in more detail. Its
implementation was further elaborated on through a
case study in Section 4. Finally, Section 5 presents
discussion, followed by the key conclusions and
recommendation for future works.

2. Literature Review

Most of the extant studies related to our work focus on
achieving GUI design using Unified Modeling
Language (UML), as was done in works [4,5,7]. There
is also some evidence [4,7] of a GUI design through
Use Cases. Thus, it isworth to briefly elaborate on the
role of Use Cases and system details they present,
which is a the level of the system functions from
viewpoint of externa actors. On the other hand, work
by Almendros-Jim’enez and Iribarne [7], focus has
been made on the relation <include> without knowing
therole of the relation <extends>, as each of these two
relations has an important role in Use Case Model.
Moreover, Pinheiro and Paton [5] focus on Ul
modeling by means of UML. Within this work, we
have seen strong and weak aspects in the UML and
have identified their respective roles in Ul modeling.

Same authors in [6] primarily focused on the aspects
of GUI that are not covered by UML. Hence, they
introduced additional notation when designing
Interactive Applications. Thus all previous attempts to

design a GUI have both advantages and disadvantages
and, in general, most depend on Use Cases. Thus, the
aim of this work is to design a general approach
through which GUI is developed, using UCMs as a
high-level model .

The main advantage for selecting UCM for the design
of GUI is based on its many advantages, including
high-level design view, combining structure and
behavior in one view in a graphical, and easy to
understand way, in addition to its compact form, which
provides wealth of information [1, 2].

Moreover, an important and useful linkage between
UCM and many kinds of diagrams for one of the most
known modeling languages, namely UML, can be
established. UCM acts as an intermediary between Use
case diagrams (UCDs), which describe the system
without any details (Black-Box), and other behavioral
diagrams, which describe more details that make
understanding the system very difficult (Glass-Box).
Moreover, UCM provides a link between behavioral
diagrams and structural diagram. In this respect, UCM
can be perceived as Gray-Box [3], as it bridges the gap
between requirements and design. Based on
aforementioned features and support for the
competence of UCM, it has been sdlected to be the
basis from which the GUI will be developed.

UCMs are precise structural entities that contain
enough information in highly condensed form to enable
a person to visuaize system behavior. UCMs (as shown
in Figure 1) provide a high-level view of causa
sequences in the system as a whole, in the form of
paths, which are known as scenarios. In general, UCMs
may have many paths (for simplicity, the figure only
shows one). Although the causality expressed by the
paths is understood by humans, this may not
necessarily be the case for individual system
components.

.‘ rl L 13
Cl 2 C3
Figure 1. Example of aUCM.

A filled circle indicates a start-point of a path—the
point where stimuli occur, causing activity to start
progressing along the path. Similarly, a bar indicates an
end-point—the point where the effect of stimuli are
felt. Thus, paths trace causal sequences between start-
and end-points. The causal sequences connect
responsibilities, indicated by named points along paths
(eg., rl, r2 and r3). Paths are superimposed on
rectangular boxes representing operational components
of the system (e.g., C1, C2 and C3), to indicate where
components participate in the causal sequences.
Individual paths may cross many components and
components may have many paths crossing them.

The basic assumption is that gimulus-response
behavior can be represented in a simple way with paths.

This is a very common characteristic of the types of
systems with which we are concerned and results in a
path-centric system view, rather than a conventiona
component-centric view.

3. The Approach

The approach proposed in this paper comprises three
phases. In the first phase, rules are applied to UCMs,
where the RD will be generated. The second phase
involves applying rules to RD, where we will have
contents of GUI_DT intheir different kinds. In the last
phase, contents of the GUI_DT are converted into
their corresponding GUI elements, resulting in a
complete GUI with all of its elements. Thus, the
elements of GUI covered in our work are Form,
Button, Textbox, Label, and List. Figure 2 and Table 1
clarify the approach phases and their relationship, as
well as the professonal in charge for the
implementation of each phase.

Gt
Designer

Responsibility Analysis Phase

GU.' Apply rules to Responsibility Diagram
Desii ¥ TS THN—— T —] — _
o Mo e TN

.

[AR Convert GUI Design Tables Fl? J

into a complete GUI =]

Figure 2: The Appproach Phases.

Table 1: The A pproach Phases.

Phase Name Availability of Description Result
Responsibility UCM Apply rulesto RD
Analysis UCM
Of the system
GUI Design RD Apply rulesto RD GUI_DT
GUI Development GUI_DT Convert tables GUI
into design of GUI

3.1 First Phase: Responsibility Analysis
3.1.1Rules

A number of rules have been proposed, depending on
the importance of input, processing, output, and
interaction with the user for each responsibility of the
UCM. In this context, the responsibility refers to tasks,

actions or functions to be performed. This distribution
of responsihilities was the basis of construction of most
rules presented below, with the aim to achieve the
desired results through application.

Rule 1

A component in UCM is aform, where this component
contains at least one responsibility that requires GUI
elements.

Rule 2
Sequence of forms is based on the sequence of
componentsin UCM.

Rule 3
A responsibility will be considered if it requires GUI
elementsfor:
e Obtaining required input for implementing its
work
e Executing its work
e Showing the output resulting from implementing
itswork
e Interacting with the user to show him a message

Rule 4
A responsibility that needs GUI elements for its input
must have:

o (X) text boxes

o (X)labels

e (2)buttons (‘Ok’ and ‘Cancel’ button)
where X is a number dependent on the number of data
inputs.

Rule5
A responsibility that requires GUI
executing its work must have:

¢ (1) button (Execute Button)

elements for

Rule 6
A responsibility that requires GUI elements to display
its output must have:

e (Y)lists

e (Y)labels
where Y is a number dependent on the number of
resulting outputs.

Rule 7

A responsibility that needs GUI eements for
interaction with the user is a separate form containing a
message with a button the function of which isto close
the display form.

Rule 8

If a responsibility requires a sub-input based on
essential input (Multi-input), then, an independent form
is generated to receive additional input using the same
input rules as defined in Rule 4.

Rule 9

If a responsibility requires a sub-output based on
essential output (Multi-output), then, an independent
form is generated to show additional output using the
same output rules as described in Rule 6.

Rule 10

The main form of the system is generated based on
forms obtained from above-mentioned rules, i.e. using
(Bottom_Up) approach.

Rule 11
For each main form, there is an ‘Exit’ button and a
‘Return’ button for each sub-form.

Rule 12

Applications of specific graphical user interface [13],
such as ATM system, require no main form and no
‘Exit’ and ‘Return’ buttons. This type of systems has
relay forms with no need to return to the main form to
select a specific form. Accordingly, a‘Welcome' form
is displayed in the beginning of user interaction, which
isfollowed by the remaining forms.

Rule 13

Cases that require more than one scenario represented
by dsatic stub notation using (Or) relation are
trandated into a number of buttons equal to the
number of scenarios, where each button may cause
moving to the form of the chosen scenario.

3.2 Second Phase: GUI Design

3.2.1 Responsibility Diagram (RD)

RD is a diagram the notation of which has been built
and especialy designed to show what may result from
the process of applying rules to UCMs. Table 2
explains RD notation.

Table 2: RD Notation.

@ R (I)/’RemonsbllltyneedsGUI

elementsin input
N’ Responsibility needs GUI
(P) dementsin process

Responsibility needs GUI

elementsin output
(0) P

E Separation of Components 0 Interaction with User

/fR’espons' bility needs input

(1 many times (o)many times

Responsibility needs output

o
%ﬁponsi bility needs already \ Responsibility needs already
(1 available GUI elements available GUI elements

| Iin inout (O) inoutout

/ \ Output from first A Stub number (S#) and
responsibility used by another / n \ name(N)

P **. Responsibility

dependent on another

3.3 Third Phase: GUI Development

3.3.1 GUI Design Tables (GUI_DT)

As aresult of the previous phase, i.e. applying rules to
RD diagram, al necessary information about required
GUI is obtained and is sorted into tables caled
GUI_DT. These tables are classified into four types,
each providing information on the aspect of the GUI
design required. Table 3 provides a list of these four
tables and the corresponding explanation of their
general design. The four tables presented are:

3. General Design of Prerequisites Tables

Number
A number of tables equals to GUI Elements Tables.
Number of Prerequisite tables = Number of GUI elements tables

Explanation
In these tables, the prerequisites that must be met for each

responsibility that requires GUI elementsis clarified, in terms
of whether the prerequisite is relative to another
responsibility and its location, as well as the component and
the type of thisrelation.

The meaning of symbols and figures

1. Components State Table
2. GUI Elements Tables
3. Prerequisites Tables

4. Interactions Tables

Table 3: General Design of GUI_DT.

1. General Design of Component State Table

Number:
Onetable for each system.

Explanation:

In thistable, there isanillustration for each component of the

system UCM, required to design a GUI, in terms of whether

this component has or does not have the following:

e GUI elements in accordance with the contents of this
component of responsibilities that require them.

o Interaction with the user by showing him/her a message
based on the responsibilities that require interaction.

The meaning of symbols and figures
Symbols

X Indicates possession.

- Indicates no possession.

Figures
None

2. General Design of GUI Elements Tables

Number

A number of tables exceeding or equal to the number of
components that have GUI elements described by
Components State Table.

Explanation
In thistable, thereis an illustration of each responsibility that

requires GUI elements, in terms of input, output and process,
and the type and number of these elements. Note that the
table containing the responsibility of the type that requires
multi-input or output will have a one or more sub-tables,
depending on the requirements of this responsibility.

Note: Using these tables, the necessary clarification of static
stub can be determined, once it exists in UCM of the studied
system.

The meaning of symbols and figures

Symbaols

None

Figures

Figures of this type of tables determine the number of each
element of the GUI and there is atotal number of all totalsin
the last row of the tables.

Symbols

T Relative to responsibility in previous component

<> Relative to responsibility in the same component

Figures
None

4. General Design of Interactions Tables

Number

A number of tables equals to the number of components that
interact with the user and are thus described by Component
State Table.

Therefore, the number of these tables is equal to or less than
the number of components of the system that GUI is
designed for.

Number of interaction tables <= Number of components

Explanation
These tables clarify each responsibility that needs to interact

with the user.

The meaning of symbols and figures

Symbaols

None

Figures
None

4. Case Study

For clarification, three different study cases have been
practically applied. This diversity was useful when
applying all derived rules and verifying their
suitability for different systems that require GUI. For
brevity, however, only one of case study (Online
shopping) is presented here. In this context, online
shopping is defined as an entire shopping process
conducted over the Internet, the popularity of which is
increasing steadily [8]. The implementation of our
work will be on a specific part of the system described
inFigure3[9, 10, 11].

Add to Cart / Remove from cart l
. If Cart is Nonempty,
oy e e
)
Frws Check Out
Search L =1
-0
o

1

Continue Shopping

Figure 3: Online Shopping System.

4.1 Practical Application of First Phase
(Responsibility Analysis)

In this phase, as already explained, a UCM must be
provided for the system for which we need to develop a
GUI by applying rules to UCM to obtain an RD. Figure
4 shows a UCM of Online Shopping System.

Shopping Cart
Remove
From cart

Search __ round) Add:tocart/a-.\ Ched;om (Nonempty]

@
I)[Not Found]) [Empty]

Catalogue

Customer

Figure 4: UCM of online shopping system.

At the end of this phase, and applying the rules to
UCM of Online Shopping System, an RD is obtained,
as shown in Figure 5, using the notation aready
clarified.

Q I ~lIN
O

(1 (O)& (1) (0) (1) (0)
Catalogue art

Figure 5: RD of Online Shopping System.

4.2 Practical Application of Second Phase
(GUI Design)

In this phase, rules are applied to RD as a result of
previous phase, yielding data for GUI_DT. At the end
of this phase, the GUI_DT (shown in Table 4) will
yield four table types, as described above.

Table 4: GUI_DT of online shopping system.

I. Components State Table

Component Name

GUI Elements

Interact with User

Catalogue

X

Shopping Cart

X

I11. GUI Elements Tables

11.1 Component name : Catalogue

Graphical Element
Label Button Text List Description
Responsibility | Type
| 1 2 |e Ok, Cancel 1 - Search
Search
O 1 1 Results
Total 2 1 1 6
11.2 Component name : Shopping Cart
Graphical Element
L abel Button Text List Description
Responsibility Type
= - 1 |» ExecuteButton Add to cart
Add to cart
o 1 1 Shopping cart
Remove from
P - 1 |¢ ExecuteButton Remove from cart
cart
Check Out P - 1 |¢ Execute Button Check Outt

Total 1 3 - 1 5
111. Prerequisites Tables
111.1 Component name : Catalogue
Responsibility Prerequisite Typeof Prerequisite Suggesting
Search - - -
111.2 Component name : Shopping Cart
Responsibility Prerequisite Typeof Prerequisite Suggesting
Relation with another Responsibility
Tvoe of Location | Asaresult of such link to another
A Responsibility | YR€Ol responsibility in another
Availability of name relation component by the output, alink
Add to cart itemsthat can be i must be provided betwieen these
added to cart two forms
(Thus, we propose meriging both
Search Output formsinto one)
N
Relation with another Responsibility
Cart must be —
nonempty Responsibility Tygg of Location
Remove from name relation
cart)
(Items added to
cart)
Addtocat | Output N
Check Out - - N
1V. Interactions Tables
1V.1 Component name : Catalogue
Responsibility Description Of Interact
Search If item is not found as a result of searching
1V.2 Component name : Shopping Cart
Responsibility Description Of Interact

Check Out

The user cannot continue because shopping cart is empty

4.3 Practical Application of Third Phase

(GUI Development)

The above GUI_DT provide al information needed to
design the GUI and its elements. The design shown

below (Figure 6).

I. Main Form

ONLINE SHOPPING SYSTEM

| Catalogue |
| Shopping Cart |

Exit I

II. Catalogue
Catalogue
|
Search ok || cancel |
Results[-

Return l

111. Shopping Cart Form

Shopping Cart

Shopping Cart

Add To Cart I
Riemove From Cart I
Check Out l

Return I

._Interaction Forms

Attention

Item not found

Ok I

Attemtion

Cannot continue ... Cart

is empty

Ok [

According to the suggestion mentioned in Prerequisites
Tables, the two forms will be merged into the following
form. This proposal is put forward by GUI Designer to
the programmer.

Shopping Cart

Search []

Results\ ‘

hobbi
Shopping Cart ‘ | AddTocar |

| ok | lcancel |

| Remove From Cartl
| Check Out |

Retiirn I

Figure 6: Design of GUI of Online Shopping System.
5. Conclusions and Recommendations

5.1 Conclusions

Given the crucia role of GUI in successful system
design and application, as the only means of interaction
between the system and the user, we have proposed an
approach to develop GUI from UCMSs. This approach
comprises three consecutive phases—Responsibility
Anaysis phase, GUI Design phase, and GUI
Development phase. Each phase is conducted according
to the rules that guide the implementation of this
approach, the first and the second phase in particular.
By obtaining GUI design for the system of the case
study and comparing it with the presented scenario, we
confirmed that it satisfied the needs of this system in
terms of GUI elements gained through UCM—the
basic foundation of our work. This enabled us to design
a GUI through primary phases of analyzing and
designing systems, thus our paper contributes to the
enrichment of this important aspect i.e. the role of
analysis and design of systems in GUI design and
development. Moreover, the approach presented here
provides objective and easy to use tools that stimulate
cooperation between GUI designer and the programmer
and contribute in building GUI application components,
whilst incorporating not only design and programming
views, but also the user requirements.

5.2 Future Studies

We recognize that our work was delimited to a
small range of applications and identify several issues
that may be considered in future studies.

First: In our work, we dedt with most of the basic
notation of UCM. On the other hand, we mentioned
Static stub as an advanced classified notation of UCM.
Therefore, looking at the rest of the advanced notation,
especialy Dynamic stub, to know its role in designing
GUI will be very valuable in studying these issues
further on.

Second: There are many issues related to GUI elements
that could be a subject of future studies, such as Radio

Button and Check Box, to name afew. Their inclusion
into the GUI design would result in marked
improvements that could increase the scope of
applicability of the resulting GUI.

Finally: The approach presented here should be tested
on different systems in order to identify any potential
issue and work towards resolving them.

References

[1] Buhr, R JA and Casselman R S, Use Case Maps for
Object-Oriented Systems, Prentice Hall, 1996.

[2] Amyot, D. and Mussbacher, G., “On the Extension of
UML with Use Case Maps Concepts”
<<UML>>2000, 3rd International Conference on the
Unified Modeling Language, LNCS 1939, 16-31,
York, UK, 2000.

[3] Amyot, D, Use Case Maps and UML for Complex
Software-Driven Systems, Unpublished, Online at
http://www.usecasemaps.org/pub/uml 99.pdf 1999.

[4] Elkoutbi M. and Keller R. K., “User Interface
Prototyping Based on UML Scenarios and High-Level
Petri Nets,” In 21st International Conference on
Application and Theory of Petri Nets (ICATPN '00),
pages 166-186, 2000.

[5] Pinheiro da Silva P. and Paton N.W., “User
Interface Modeling with UML,” Information
Modeling and Knowledge Bases XII, H.
Jaakkola, H. Kangassalo, and E. Kawaguchi, eds.,
I0S Press, pp. 203-217, 2001.

[6] Pinheiro da Silva P., Paton N., “UMLi: The Unified
Modeling Language for Interactive Applications,” In
Proceedings «UML>» 2000, Evans, A., Kent, S. (Eds),
LNCS, Vol. 1939, 117-132, Springer-Verlag, 2000.

[7] Almendros-Jim’enez J. M. and Iribarne L., “Designing
GUI Components for UML Use Cases,” In 12th IEEE
International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS 05),
pages 210-217, IEEE Computer Society Press, 2005.

Web Sites

[8] Hittp://mww.earlyimpact.com/productcart/shopping-
cart-software-101.asp.(07/2010)

[9] Hittp://mww.eshoppingindia.com/info/online-
shopping-guide.html.(07/2010)

[10] Http://mwww.indiaplaza.in/quickstep.aspx.(06/2010)

[11] Http://www.tesco.ie/easySteps.htm. (07/2010)

