
A Web-capable Persistent Programming
 Environment

C. J. Harrison and O. M. Sallabi
Department of Computation

UMIST
 Manchester, M60 1QD, U.K.

Chris.Harrison@co.umist.ac.uk , Omar.sallabi@stud.umist.ac.uk

ABSTRACT

This paper describes a persistent programming
environment designed specifically for use in a
teaching role. The environment supports an
interpreted idealised object-oriented programming
language and includes pre-built classes that directly
support the teaching of fundamental and general
concepts that underpin the object-oriented
paradigm. Users interact with the environment via a
structure-editor in order to ensure that only
syntactically correct programs are written, and
semantic checking is provided incrementally. In
order that the environment is web-capable, it
provides users with the ability to invoke external
applications, e.g. a web-browser, and it also includes
an in-built FTP class. The basis for the
environment’s implementation lies in its
manipulation of the underlying abstract syntax
representation of an application. Such
representations may be split and merged and are
held in a persistent store. Applications within the
environment can then be unparsed into the idealised
programming language supported by the
environment, and also into the commonly used
languages C++ and Java.

Keywords: Persistent programming environment,
object-oriented, web-capable.

1. INTRODUCTION

Recent studies[1], [2] indicate that a wide variety of
programming languages and language paradigms have
been used to teach initial programming skills. Where
"off-the-self" programming languages have proved
unsuitable for use in a teaching role, it is evident that
other languages and language implementations have
been developed specifically for use in such a role. Early
purpose-built "teaching languages" are exemplified by
the Pascal language[3], and especially its UCSD
implementation[4], by developments of the Pascal
language, e.g. the Turing Language[5], the original
(1972) SmallTalk language[6], and also by more recent
languages, e.g. the F-language[7], and the object-
oriented language Blue[8] and its implementation [9].

However, fundamental limitations of such systems can
be identified, for example, earlier systems like UCSD
Pascal were essentially “stand-alone” language
implementations, i.e. a compiler and run-time support,
and were developed before the advent of the Web. More
recent systems like F, and Blue are essentially vehicles
that support a single “teaching” language rather than
enabling users to compare and contrast implementations
generated automatically from the “teaching” language
representation. Finally, even the most sophisticated
systems for teaching programming that are currently
available exploit conventional techniques for
manipulation and storage which preclude the kind of
support we believe it is vital to provide, i.e. immediate
feedback to users on semantic errors.

This paper describes an idealised object-oriented
programming language called IOPL (Initial Object-
oriented Programming Language) which has a
combination of Pascal-[4] and SmallTalk-[14] like
syntax. In addition, we describe key features of the
IOPL environment which build on experience gained in
the development of earlier persistent systems, in
particular, a persistent programming system[10] used for
several years to support undergraduate teaching.

The IOPL environment manipulates the abstract syntax
representation of an application, and all objects
computed by an application are also similarly stored in a
form that enables them to be reloaded after the
execution of the application which created those objects
has ceased. The IOPL environment provides pre-built
classes that implement the simple types Integer,
Boolean and String, and the type constructors Array and
Record, together with other types for developing
interactive applications, e.g. a “window” type and a
“button” type.

In order that the IOPL environment is "web-capable" it
provides users with the ability to invoke external
applications, e.g. a web-browser, and most importantly,
it also includes an in-built FTP class that implements an
FTP client. Stored representations of user-defined
classes and objects may be split and merged and their
persistent representation may be FTP'd between users

mailto:Chris.Harrison@co.umist.ac.uk
mailto:omar.sallabi@stud.umist.ac.uk

via shared servers. Such applications can then be
unparsed into the idealised programming language
supported by the environment, and also into two other
commonly used languages, i.e. C++[15] and Java[16].
This support for un-parsing into alternative languages
enables users to compare and contrast applications
developed in the idealised language with automatically
generated implementations in C++ and Java.

2. THE INITIAL OBJECT-ORIENTED
PROGRAMMING LANGUAGE (IOPL)

IOPL adheres to several fundamental principles that
ensure it is suitable for use in a teaching role. These
principles are enumerated below.

∆ The language should exhibit “pure” features drawn

from a given language paradigm.

∆ The language should have an easy to read and

consistent syntax.

∆ The language should only include constructs that have

semantic value.

∆ The language should have a well-defined and

minimally complex execution model.

∆ The language should be compact and avoid redundant

constructs.

∆ The language should have an associated development

environment designed for users whose level of skill
changes significantly over time.

The following subsections give a brief overview of
IOPL. Section 3 describes how the IOPL environment
provides support for developing applications, in
particular how such representations are stored and how
they can be transferred between users. Section 4
describes how users interact with the environment.

2.1 SYNTAX AND INFORMAL SEMANTICS

IOPL is a “pure” object-oriented language, i.e. all the
object-oriented concepts are presented in the language in
a clean and consistent way. Most importantly, it
supports strong typing, single inheritance, generic
classes, persistence, and it is made available via a
powerful interactive development environment.

Classes and methods
All applications in IOPL is implemented as classes. An
IOPL class describes the implementation of a set of
objects that represent the same kind of component.
There are four kinds of class in IOPL, i.e. system
classes, enumerations, user-defined and generic classes.

A class structure in IOPL contains two parts:-

•= A data definition component that defines the class

instance variables.
•= A data manipulation component that defines the

methods within a class. A method describes how an
object will perform one of its operations.

The following simple example illustrates a user-defined
class person which has two instance variables, person-
name and person-age, and two methods, initialize and
print() .

CLASS person SUBCLASS OF Object

Instance variables:
 person_Name : string
 person_age : Integer

METHOD initialize (n: String , g: Integer) RETURN Void
BEGIN
 person_name = n;
 person_age = g;
END.

METHOD print() RETURN Void
BEGIN
 PRINT “ Person Name : “ , person_name;
 PRINT “ Person Age : “ , person_age;
END.

An EBNF definition of the general structure of a class, a
method, a declaration, a type and an expression in IOPL
is shown below in Figure (1):

(Class) C::= Class ClassId Subclass Of ClassId
 Instance variables D1..Dk

 M1…..Mn

(Method) M::= Method MethodId (D1..Dk) Return T
 Begin
 E1.. En
 End.

(Declaration) D::= Id : T

(Type) T::= Self | Void | ClassId

(Expression) E::= Id := E | E.MethodId(E1..En)
 | if E then E else E | New (classId)
 | case E of E : E | for E to E do E|
 | Self | Id | nil | print E |

Figure 1: General Structure of IOPL Syntax

2.2 INHERITANCE

Inheritance enables an instance of a child class (or
subclass) to access both data and behavior (or methods)
associated with a parent class (or super class) [18].

IOPL defines a simple, straightforward inheritance
mechanism, i.e. single inheritance is supported.
Syntactically, naming the parent class in the class header
specifies inheritance. Consider, for example, the classes
employee and person defined below:-

Class Employee Subclass Of Person
Instance Variables :

 Salary : Integer;
Method initialize(s:Integer,n:string,a:Integer) Return void
Begin

 Super. initialize(n,a);
 Salary := s;

End;
Method cal_salary(s:integer) Return Integer
Var

 Net_pay : Integer;
 Tax : Integer;

Begin
 Tax := salary *15/100;
 Net_pay :=Salary – Tax;
 Return Net_pay;

End;
Method print() Return Void
Begin

Super.print();
Print “ Salary : “, Salary

End;

In this example, the class Employee inherits from
Person. The effect of this relationship is that all instance
variables and methods are inherited by the subclass.
Note the use of the keyword Super to indicate the parent
class.

2.3 GENERICS

Generics provide a way of parameterizing a class or a
method. In IOPL, generics are denoted by the type <T>,
i.e. in IOPL, generics comprise a variable defined as a
type parameter. This parameter can then be used within
the class definition just as if it were a type. Consider, for
example, a stack declared in the following fashion:-

Class Stack<T> subclass of Object
Instance variables:
 Stack : Array<T>;
 Top : Integer;
Method initialize (size:integer) Return Void;
Begin
 Stack.create(size);
 Top := 0;
End;

Method push(val:T) Return Void
Begin
 Stack.at_put(top,val);
 Top:=Top+1;
End;

Method pop() Return T
Var
 Result : T;
Begin
 Result := stack.at(top);
 Top:= Top-1;
 Return Result ;
End;

In this example, T is being used as a type parameter. To
create an instance of the class stack, the user must
provide a type value for the parameter T. For example:-

 st := new STACK <Integer>

will construct a new stack object st of type integer. The
stack size can be defined by sending the message
st.create(size) to the new stack object st.

2.4 THE IOPL TYPE SYSTEM

Type systems ensure readability, reliability and
efficiency of software. For object-oriented languages,
typing is an especially challenging problem because of
inheritance, assignment and late binding.

In IOPL environment, the structure editor provides
incremental type checking during the construction of a
class definition. This form of type checking enables
code generation and optimization to be undertaken
during class construction.

In this section we will focus in the usage of the IOPL
type system, in particular, how type checking is
performed.

2.4.1 TYPE ANNOTATIONS

A class is “typed” when it contains type annotations. In
IOPL, types are either system classes, e.g. Integer,
String, Boolean and Window, or user-defined classes
e.g. point, circle, etc, or enumeration classes, e.g. colors,
days, etc.

Types can be attached in three places in classes:

�� At instance variables.
�� At formal arguments.
�� At method results.

When developing a class, the structure editor provides a
menu of permissible types that can be assigned to each
one of the above annotations. This technique, i.e. a
menu of permissible types and incremental type
checking, ensures that no syntax errors occur during
construction or subsequent execution. More generally,
this technique ensures that users interact in a
semantically meaningful manner at all times.

2.4.2 ASSIGNMENT

The assignment of an expression is similarly performed
via the structure editor to ensure type correctness. For
example the expression:

 Variable := Expression

requires the user to chose a variable such that the
expression is of a valid type, i.e. the expression must be
either:-

�� A variable - the structure editor provides a list of

variables of the same type.
�� A constant - the structured editor provides a mask to

write the constant (there are three masks for
primitive types Integer, String, Boolean).

�� An arithmetic expression - only a combination of
integer variables, integer constants and arithmetic
operands are allowed).

�� Nil - assign universal type nil if the variable doesn’t
reference any other object.

�� New - assign to the variable to a newly created
object.

�� Message - assign to the variable the returned object
from a message.

2.4.3 MESSAGES

Objects receive messages to invoke one of their class
methods or to invoke an inherited method from their
super-class. To avoid the common error that in a typical
system usually results in a “Message Not Understood”
response, the IOPL environment provides a list of all
valid methods an object can receive when executing.
Similarly, the system deals with arguments in the same
way, i.e. in this case the message should be error free in
terms of the message selector and arguments. In the
example below, a new object of type employee is
assigned to the variable emp of type employee.

emp := new (Employee)

The object emp can then accept the following messages
(given the definition in section 2.2) as shown in
Figure(2).

Figure 2 - Ensuring Valid Messages.

Each message appears with its arguments, each
argument represented by “masked” box and the system
accepts only data of the same type as shown in the
example below.

emp.initialize(1500,”John”,33)
emp.cal_salary(emp.salary);
emp.print();

Another benefit gained from the enforcement of a
rigorous typing system is code optimization, i.e. the
IOPL interpreter executes the intermediate code directly
without any need to perform type checking during
execution.

3. SUPPORT FOR PERSISTENCE AND

INTERCOMMUNICATION

Persistence has been defined as supporting data values
for their full life-times however brief or long those
lifetimes may be. Persistence requires that data values
are treated uniformally for all aspects of system services
independently of their longevity, size or type[17].

The IOPL persistent store builds on experience gained
from the design of persistent stores for a number of
different applications, in particular the Modular
Persistent Store[11], the Abstract Data Store[13] and the
POOL persistent store [12].

3.1 PERSISTENT STORE ARCHITECTURE

The store structure is composed of three parts as shown
in Figure (3). Firstly, the store header contains the store
description (i.e. store identifier, current size of store,
block size, and starting block numbers of other store
sections). Secondly, the Persistent Object Table
maintains a list of all object names and their object
identifiers (OID’s) in the store. Finally, the Data section
holds the values of an object. Each object occupies a
number of contiguous bytes, which hold the object’s
information and data. There are two kinds of objects
held in the store, i.e. simple objects such as Integer,
Boolean, and string, and structured objects such records
and arrays.

Figur
persis

Objects in memoryObjects in persistent
store

Store Header
initialize(salary, name, age).
cal_salary(salary).
print();

emp

 ject Tab
Ob le

e 3 - Representation of objects in the memory and
tent store.

Data
Section

3.2 STORE OPERATIONS

There is four store operations: -
•= MOVE TO STORE - All created objects are stored in

a heap, therefore, to keep the objects persistent we
need to move the heap contents to the persistent
store by creating a new store or overwriting an
existing store.

•= RESTORE FROM STORE - This operation opens a
store with a given name and loads all entries from
the store to the system heap.

•= DIVIDE STORE - This operation divides the
persistent store into two stores. This requires
choosing the required objects in the first store by
marking them, and the rest of the objects and then
transferred to the second store. The system then
compacts all objects in the first store. Figures (4a)
& (4b) below show the effect of the divide
operation.

Store1 O1 O2 O3 O4 O5 O6

Figure 4(a) – The store before division

Store1 O1 O3 O5

Store2 O2 O4 O6

Figure 4(b) - The resulting stores 1,2 after division.

•= MERGE STORE - This operation merges two stores

in one single store and involves choosing the
required stores for concatenation. All objects in the
second store are appended to the end of first store.
Referencing will subsequently be made to all
objects in the new store.

3.3 THE FTP CLASS

The FTP class is a pre-built class that enables the
transfer of values between users via an FTP client. Users
send a message to the method connect with the
parameters host name, user name and password to make
a connection, and this connection enables the export &
import of other classes or persistent stores.

The user can send the following messages to the
FTP client:-

•= Create new directory
•= Change directory
•= Delete directory
•= Select files
•= Delete files
•= Export & Import selected files

3.4 THE UN-PARSER CLASS

In the IOPL environment, classes are stored in the
persistent store as objects of type class. An internal
representation of a class object contains the class name
and its super class, instance variables are stored in an
instance variable vector, methods are stored in a
methods vector (which contains method name, method
type, method temporary variables), and code is stored in
a code vector. The code vector holds all the commands
and expressions as a tree structure in which each node
contains the operation code and the parameters needed
to perform execution. Figure(5) below shows the
general structure of a class in the IOPL implementation.

Figure 5 - General structure of an IOPL Class

The un-parser class has three main methods, which
generate the class’s code in IOPL, C++ and Java
respectively. For example, suppose we have a class with
a method called print () and this method is used to print
the string “Hello world”. This class can be “switched”
between the three un-parsing methods to show its
realisation in three different languages. The resulting
implementations are shown in Figure (6) below:

Figure 6 - Three implementations of a single class.

The non-IOPL implementations generated by the un-
parser class can be executed by compiling the unparsed
representation using an external compiler, i.e. by
sending the message compile-to () to the un-parsed code.

Class test subclass of Object
Method print() Return void
Begin
 Print “hello world”
End.

#include “iostream.h”
class test{
public:
 void print(); }
void test::print() {
 cout <<”Hello world” }

Public class test{
Public void print() {
 System.out.println(“hello world”);
}

 IOPL

C++

JAVA

Class name

Super Class

Inst Variables

Methods

 Variable 1
 Variable 2
 ,, ,, ,, ,,
 Variable n

 Method 1
 Method 2
 ,, ,, ,, ,,
 Method n

4 USER INTERACTION

The main aim of the IOPL environment is to encourage
users to think exclusively in terms of objects and classes
and to provide an environment that embodies this
important separation of related concerns.

Figure (7) illustrates the desktop window presented to
users when they log on to the system. Before entry to
the system, users enter their user name and password
(which are allocated by the tutor or system
administrator), and each user has a workspace that
maintains their classes via the persistent store.

The system’s main window has three components: a
pop-up menu and toolbar at the top, class information
(at the left) shows the class tree and the active class
instance variables and methods, and the active object
and the heap contents (at the right). These main desktop
components as they appear to a user are shown in
Figure(7).

Figure 7 - The Desktop

4.1 CREATING A NEW CLASS

Classes are constructed via an interactive structure
editor that ensures syntactic correctness, and the editor
also ensures that users choose a variable or a method of
a valid type when defining a class. The structure editor
provides templates in order that users can “fill-in”
incomplete entries during software construction. The
system maintains the abstract syntax tree representation
of a users program in the persistent store and executes it
directly without the need to recompiling each time a
change is made.

To create a new class, users select the New Class
operation from the menu. A dialog then appears which
enables users to enter a class name, a super-class, a class
type, and the instance variables for the new class.
Figure(8) shows the create class dialog.

Figure 8 - The Create Class Dialog

4.2 CREATING A NEW METHOD
A method is made up of a message pattern and a
sequence of expressions. The method structure contains:
•= METHOD HEADER -The method header contains the

method name, arguments and the return type.

•= METHOD VARIABLES - A methods local variables
(or a method’s temporary variables) comprise a set
of variables names and types used during execution
of the method.

•= METHOD BODY -The body of a method is a
sequence of instructions. Users can add an
instruction by selecting the proper expression
template, completing the blanks and then selecting
the Add operation. The added instruction will be
appended to the instruction part.

Figure (9) illustrates a method’s header, variables and
the addition of a method body.

Figure 9 – The Create Method Dialog

The language provides a set of statements that can be
used to implement a class. These statements are also
made available via templates. For example, if the user
chooses the If-Then statement, the appropriate template
is displayed to the user, as shown in Figure (10) below.

Figure 10 - If-then template

4.3 OBJECT CREATION

Once a class is defined, objects of that class may be
created. This operation is similar to interactively
sending a “new” message to a class in a Smalltalk
environment, i.e. an instance is interactively created and
made available to users. Users must provide an object
name, and the resulting named object will appear in the
active object box in the bottom right of the user
interface as shown in Figure (11) below:

Figure 11 - Object creation dialogue

4.4 SENDING A MESSAGE

Once an object in the object box, selecting it will invoke
a pop-up menu that lists all messages which can respond
to the active object as shown in Figure(12) below:

Figure 12 - Sending a message

4.5 ENTERING PARAMETERS

Selecting one of the object’s methods makes the system
request any parameters for that message, otherwise the
method is executed directly. For example, to send the
message initialize to the object emp1 the dialogue in
Figure(13) appears and the user must enter the Salary,
Name and Age in the proper boxes.

 Figure 1

If one of
then a dou
menu of o
select their

4.6 THE R

The runtim
object duri
example, t
initialize i
initialize se
class perso

Figure 14 -

4.7 INSPE

Object insp
of an obje
instance va
Users can
option from
over the ob
the screen.

Figure 15 -

The object
count and t
If the value
an <object
then inspe
recursively

initialize (Salary:integer Name:string Age:integer)

l d

Owner
Ref. Con
Name :
Age :
Salary

Runtime
Message
Message
Message

 initialize (integer,string,integer) void
 print() void
 cal_salary(integer) integer

Emp1
Cance
3 - Entering parameters

the parameters requests
ble click on the paramete
bjects of that type from
 choice.

UN-TIME VIEWER

e viewer shows all messa
ng run-time as shown in
he message initialize in
n the employee class,
nds another message ini

n.

 The Run-time viewer.

CTING AN OBJECT

ection allows users to ex
ct and determine the cu
riables as shown in Figur
inspect an object by se
 the object menu or by

ject in the object corner in

 Inspecting an object’s con

 dialog shows the object
he instance variables nam
 of a variable is itself a st
reference> is shown. If th
cted, the inspection op
.

 : Employee
t : 1
 John
 33
: 2400

 Viewer
 Received by => Emplo
 sent to => Person
 returned from => Person
Sen
a structured
r box will d
which the u

ges receive
 Figure (14)
voked the

 then the
tialize to th

amine the s
rrent value

e (15).
lecting the
dragging th
 the bottom

tents

 owner, a r
es and value
ructured obj
is reference
eration is

yee \ initiali
\ initialize
\ initialize
=>
2400
 John
 33
 object,
isplay a
ser may

d by the
. In this
method
method

e super-

tructure
s of its

 Inspect
e mouse
 right of

eference
s.
ect only
 is itself
applied

ze

5. SUMMARY AND CONCLUSIONS

This paper has described an Initial Object-oriented
Programming Language (IOPL) and its environment.
The IOPL language and environment differ from other
teaching languages and language implementations, e.g.
the Turing Language[5], SmallTalk[6], F[7], and
Blue[8], in several important ways. First, the IOPL
language was specifically designed to be suitable for
incremental type checking, and the IOPL environment
supports this form of type checking via an interactive
structure editor that manipulates the underling abstract
syntax representation of an application. Secondly, the
same underlying representation enables the IOPL
environment to efficiently and correctly generate code,
and to provide support for automatically un-parsing the
stored representation into other languages, e.g. C++ and
Java. Finally, the environment is “web-capable”, i.e. it
enables users to invoke external applications such as a
web-browser, and it has an in-built FTP class that
enables users to communicate stored representations via
shared servers.

In order to support a range of undergraduate courses
including initial courses in programming skills and later
courses in OO techniques, the environment has been
populated with teaching materials. These materials
include web-based tutorials, sample implementations of
model solutions to exercises, and also model
applications, e.g. a calculator, a software implementation
of a processor.

6. REFERENCES

[1] “A Perspective on Language Wars”, Bowman,
H., Papers for CTI Annual Conference 1994.
http://www.ulst.ac.uk/cticomp/papers/bowman.html

[2] “The Selection of a First Programming Language”,
Essendal, H. T. Papers for CTI Annual Conference
1994.
http://www.ulst.ac.uk/cticomp/papers/esendal.html

[3] Jensen, K. and Wirth, N. "Pascal User Manual and
Report. 2nd Edition", Springer-Verlag, ISBN 0-387-
90144-2, (1975)

[4] UCSD P-System Version IV, SofTech
Microsystems, Inc., San Diego, California, (1982)

[5] “The Turing programming language”, Holt, R. C.,
and Cordy, J. R., CACM 31, 12 (Dec. 1988), Pages
1410 - 1423

[6] “The Early History of Smalltalk”, Kay, A. C., ACM
SIGPLAN Notices Volume 28, No. 3, March 1993
Pages 69-95

[7] ``The F programming language", Reid, J., and
Metcalf, M., Oxford University Press, 1996, ISBN 0-19-
850026-2.

[8] “Blue - A Language for Teaching Object-Oriented
Programming”, Michael Kölling and John Rosenberg
Proceedings of the 27th SIGCSE Technical Symposium
on Computer Science Education, March 1996, pp. 190-
194.

[9] “An Object-Oriented Program Development
Environment for the First Programming Course”,
Michael Kölling and John Rosenberg, Proceedings of
the 27th SIGCSE Technical Symposium on Computer
Science Education, March 1996, pp. 83-87

[10] Harrison, C.J. and Powell, M.S. “An Environment
for Initial Software Engineering Teaching”, Software
Engineering Journal, November 1992

[11] Harrison C.J and Powell, A Modular Persistent
store POS 1990,pp171-184, (1990).

[12] Harrison C.J and N. Majid, POOL: A Persistent
Object-Oriented Language. ACM symposium on
Applied computing, 2000.

[13] M. S. Powell. A Program Development
Environment based on Persistence and Abstract Data
Types. Proceedings of 3rd International Conference on
Persistent Object Systems, Newcastle, Australia
(January 1989).

[14] Adele Goldberg, David Robson. Smalltalk-80 - the
Language and its Implementation. Addison-Wesley,
1983.

[15] R. McGregor. Practical C++. QUE Corporation
1999.

[16] H. Schildt. Java 2: The complete reference.
McGraw-Hill 2001.

[17] M.P. Atkinson, R. Morrison. Orthogonally
Persistent Object Systems. VLDB Journal 4,3. 1995,
pp319-401.

[18] T. Budd. An Introduction to Object-Oriented
Programming, Addison Wesley, 1997.

http://www.ulst.ac.uk/cticomp/papers/bowman.html

	Abstract
	This paper describes a persistent programming environment designed specifically for use in a teaching role. The environment supports an interpreted idealised object-oriented programming language and includes pre-built classes that directly support the te
	
	
	Classes and methods

	Restore from store - This operation opens a store with a given name and loads all entries from the store to the system heap.
	Divide store - This operation divides the persistent store into two stores. This requires choosing the required objects in the first store by marking them, and the rest of the objects and then transferred to the second store. The system then compacts al
	Merge store - This operation merges two stores in one single store and involves choosing the required stores for concatenation. All objects in the second store are appended to the end of first store. Referencing will subsequently be made to all objects i

	4 User Interaction
	4.2 Creating a new method
	Method Header -The method header contains the method name, arguments and the return type.
	6. References

