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Abstract 
 

       In  this  thesis , we  shall  discuss  the  concepts  of  
Banach  algebras . 
  

We  give  some  results  in  the  area  of  Banach  algebras . 
 
Also , we  discuss  the  concepts  of     

- Character  mappings  on  Banach  algebras  . 

- Involution  mappings  on  Banach  algebras  . 

- B*-algebras  . 
  

We  give  some  results  concerning  the  previous  concepts . 
 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter  One 

Introduction 

        In this chapter, we give some standard definitions and results which we shall  

need  later  in  this  thesis . 

Notation  

Let    be  the  set  of  all  real  numbers . 

Let    be  the  set  of  all  complex  numbers . 

Definition 1.1    

     Let X  be  a non-empty  set , and  let  K  be  the  field  of  scalars ( K   or  

 ) . Let   x X  and   K  . Then   x  is  called  a scalar  multiplication .   

Definition 1.2    

     Let X  be  a non-empty  set , and  K  be  the  field  of  scalars ( K or   )  

whose  elements  are  called  vectors  and  in  which  two  operations  called  

addition  and  scalar  multiplication  are  defined . Then  X  is  called  a linear  

space  ( or  a vector space)  over  K  for  all  , ,x y z X   and  , K    

which  satisfies  the  following  conditions : 

             ( i )   .x y y x    

             ( ii )  ( ) ( ).x y z x y z      

             ( iii )   There  exists   0   in  X   such  that   0 .x x   

             ( iv )  There  exists  x X   such  that  ( ) 0.  x x  

             ( v )  ( ) .    x y x y  

              (vi ) ( ) .x x x       

             ( vii )  ( ) ( ) .   x x  

             ( viii )  1 . .x x  

Let  X  be  a linear  space  over   K . Then  the  subtraction  is  defined  by   

                           ( ) ( , ).x y x y x y X      

Definition 1.3 

    Let  X  be  a linear  space  over K  and  let   
1 2, , ... , nx x x  be  non-zero   



elements  in   X .  Then  
1 2, , ... , nx x x   are  called  linearly  independent  if 

1 2, , ... , n K    such  that   1 1 2 2 ... 0 ,n nx x x       then 

1 2 ... 0 .n        

Definition 1.4    

   Let  X  be  a linear  space  over K . Let  .A X Then  A  is  called  a linear 

subspace  of   X   if   ( , , , ) .x y A x y A K         

Remark 

   Let  A  be  a linear  subspace  of   a linear  space  X . Since  0 A , so  A   is  

non-empty .  

Definition 1.5 

    An  algebra   is  a linear  space  A  over  K such  that  for  each  ordered  pair  of  

elements   , x y A   a unique  product  x y A   is  defined  with  the  properties  

             ( i )  ( ) ( ).x y z x y z  

             ( ii )   ( ) ,x y + z = x y + x z  

                      ( ) .x + y z = x z + y z  

             ( iii )   ( ) ( ) ( ),α x y = α x y = x α y  

for all  , ,x y z A , K  . 

If   K =  or , then  A  is  said  to  be  a real  or  complex  algebra  respectively .  

Definition 1.6 

     Let   X  be  a linear  space  over   K , and   .E X Let   ,f g   be  mappings  

of   E   into   X . Let   K  . The  natural   definition   ,f g f  are  given  

by 

                                

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ).

f g x f x g x x E

f x f x 

   



 

This  is  called  the  pointwise  definition  of  addition  and  scalar  multiplication. 

When   X  is  an  algebra , the  pointwise   product  is  given  by  

  

                           ( ) ( ) ( ) ( ) ( ).f g x f x g x x E   

     



Definition  1.7 

       Let  A  be  an  algebra .  We  say  that  A   is  commutative  if   

                                               ( , )x y = y x x y A . 

Otherwise , A   is  called  non-commutative .  

Definition 1.8 

   An  element   e   of   an  algebra  A   is  called  an unit  element  or  identity            

element   if  and  only  if    e   0   and   

                                  ( ).e x = x e = x x A  

A unit  element   e  of   A  is  unique . 

We  say  that   A   is  an  algebra  with  unit   if  it  has  an unit  element .  

Definition 1.9 

      Let  A  be  an algebra  with  unit  e . An  element  x A  is  said  to  be  

invertible  if  it  has  an  inverse  element  in  A  , that  is  if   A  contains  an  

element  ,  written  1x   ,  such  that   

                                     1x   x
1= x x = e . 

Then   1x   is  unique  when  it  exists . 

Notation 

   Let   1A    denote   the  set  of  all  invertible  elements  of   an algebra  A . 

Theorem 1.1 [ 10 ] 

    Let   A  and   B  be  complex  algebras  with  the  same  unit . If   A B ,then  

1 1A B   .        

Theorem 1.2 [ 10 ] 

    Let   A   be  an  algebra  with  unit   e . Then 

             ( i )  ( )ne e n   

             ( ii )  1 .e e   

That  is  ,  e    is  an invertible  element  in   A  . 

 Lemma 1.3 [ 10 ] 

      Each  non-zero  element  of     is  invertible . 

 



Theorem 1.4 [ 10 ] 

   Let  A   be  an  algebra  with  unit   e  . Let   x  be  a non-zero  element  in   A . 

 Then   x  is  invertible  in   A   if  and  only  if    1x     is  invertible   and   

1 1( ) .x x                                                          

Theorem 1.5 [ 10 ] 

     Let  A   be  an  algebra  with  unit   e  . Let  ,x y be  invertible  elements  of   

A  . Then   x y  is  invertible  and          

                                                1 1 1( )x y y x   .  

Lemma 1.6 [ 10 ] 

     Let  A   be  an  algebra  with  unit   e  . Let  x be  an invertible  element  in  A . 

Then  ( 0 )x    is  invertible .                

Definition 1.10 

    A  subset  I  of  a commutative  complex  algebra   A   is  said  to  be  an  ideal    

if  

       ( i )  I   is  a subspace  of   A . 

      ( ii )  x y I  whenever   x A   and   .y I  

If   I A , then  I   is  called   a proper  ideal .  

Maximal  ideals  are  proper  ideals  which  are  not  contained  in  any  larger  

proper  ideals . 

Definition 1.11 

    A non-empty  subset   E   of  an  algebra   A   is  called  subalgebra  of   A   if 

                                   , ( , ).x y y x E x y E   

Definition 1.12 

    Let   X and   Y  be  non-empty  sets . The  cartesian  product  of   X  and  Y  is  

defined  by 

                                { ( , ) : , }.X Y x y x X y Y      

Note  that   X Y Y X    unless   .X Y  

Definition 1.13 

   Let  X  be  a non-empty  set . Let   d  be   a real  function  defined  on  the   



cartesian  product  X X  into     such  that  for  each  , ,x y z X           

           ( i )  ( , )d x y  0                  

           ( ii )  ( , )d x y  = 0   x y          

           ( iii )  ( , )d x y   =   ( , )d y x          

           ( iv )  ( , )d x y   ( ) ( )d x , z + d z , y . 

Then   d   is  called  a metric  on  X  and   ( , )X d   is  called  a metric  space . 

Example 1.1 

    Let   .X  Define  d  by 

                            ( , ) ,d x y x y x y X        

Then   d   is  a metric  on   X . This  metric  space  is  called  the  usual  metric  

space  .   

Definition 1.14 

      Let  ( , )X d   and  ( , )Y d  be  metric  spaces . A function  :f X Y  is  

called   continuous  at   0x   in   X   if   for  each   0    there  exists  0    such  

that     

                     0( ( ) , ( ) )d f x f x       for  all    0( , )d x x     .  

The  function   f  is  called  continuous  on  X   if   it  is  continuous  at  each  point  

of   X .  

Theorem 1.7 [ 15 ] 

    Let  ( , )X d   be  a metric  space  .Then  a distance   function  d   from  X X  

into     is  continuous .  

Definition 1.15 

     Let  ( , )X d  be a metric space  and  x X . Let  r  0  .  The   set   

                                ( , ) { ( , ) }B x r = y X : d x y < r . 

is  called  the  open  ball   with  center   x  and  radius  r  . 

Definition 1.16 

        Let  ( , )X d  be  a metric space .  A  subset  A  of  X  is  said  to  be  open  in  

X  if   for  each  x A ,  there  is  0r    such  that  B ( x , r ) A . 

 



Definition 1.17 

    Let  ( , )X d  be a metric space .  A subset  A  of  X  is  said  to  be  closed  in   

 X  if   its  complement   X A   is  open   in   X .    

Definition 1.18 

        Let  X  be a linear  space over K . Let    . :   be  a function  such   

that   

            ( i )    0x  for  all  x . 

            ( ii )    0 0x x   for  all   x . 

            ( iii )     x x   for  all    , x . 

            ( iv )   x y x y   for all .x , y X  

Then .  is  called  a norm  on X   and  ( , . )X   is  called  a  normed  space . 

We  assume  that   1.1   

Remark 

    Let  ( , . )X  be  a normed  space . Let  , .x y X Then   

                   ( i )  .x y y x    

                   ( ii )   .x x    

Theorem 1.8 [ 15 ] 

    Let   ( , . )X  be  a normed  space . Let  , .x y X  Then 

                       .x y x y  ∣ ∣             

Lemma 1.9 [ 15 ] 

   Every  normed  space ( , . )X   is  a metric  space  with   the  distance   

                               ( , ) ( , )d x y x y x y X   .      

Remark 

       In  general ,  the  converse  of   Lemma 1.9  is  not  true . 

For  example : 

Let  X  . 

Let   1d   be  a metric  on   X .



 

Define   
2d   by   

                    1
2

1

( , )
( , ) ( , ) .

1 ( , )

d x y
d x y x y X

d x y
 


  

Then   
2d  is  a metric  on   X  but   

2d  is  not  a norm  on   X  because 

                          2 2( , ) ( , )d x y d x y   .        

Lemma 1.10 [ 15 ] 

    Let   ( , . )X  be  a normed  space . Then  a norm  function  is  continuous . 

Definition 1.19 

   Let  ,X Y be  linear  spaces  over  K . A function   :f X Y  is  called  linear  

if  

              ( i )  ( ) ( ) ( )f x y f x f y   for  all  , .x y X  

              ( ii )  ( ) ( )f x f x     for  all  , ,K x X    

or  ,  f  is  linear  if       

            ( ) ( ) ( ) ( , , , )f x y f x f y x y X K           . 

Lemma 1.11 [ 15 ] 

    Let ,X Y be  linear  spaces  over  K . Let    :f X Y  be  a linear  function . 

Then   ( 0 ) 0.f     

Remark 

       In  general ,  the  converse  of   Lemma 1.11  is  not  true . 

For  example : 

     Define   f   by  

                             2( )f x x  . 

Then  ( 0 ) 0f    but   f   is  not  linear  .  

Definition 1.20 

        Let ( , . )X  be  a normed  space . A function  f  on  X  is  called  bounded  

if   there  exists  a positive  integer  M  such  that   

                              ( )f x M for  all   x X . 

If    f  is  a linear  map ,  then 

                              ( )f x f x   for  all   x X ,   



 

or 

                              ( )f x M x   for  all   x X .                      

Definition 1.21 

   A  linear  functional  on  a linear  space   X  over   K  is  a linear  function  from  

X   into   K . 

Definition 1.22 

    Let    , .X   be  a normed  space . A linear  functional   :f X K   is  

called  bounded  if  there  exists  a positive  integer  M  such  that   

                                     ( ) ( ).f x M x x X | |  

Theorem 1.12 [ 16 ] 

   Let    , .X   be  a normed  space . A linear  functional  on  X  is  continuous 

if  and  only  if   it  is  bounded .    

Theorem 1.13 [ 16 ] 

   Let  f  be  a bounded  linear  functional  (  or  continuous  linear  functional  )  on  

a normed  space   X . If   
0x X  such  that  

0( ) 0f x  , then   
0 0.x   

Definition 1.23 

   Let   ,A B  be  complex  algebras  over  K . A mapping  f   of  A  into  B   is  

called  homomorphism  if   f    is  linear  and   

                              ( ) ( ) ( ) ( , ).f x y f x f y x y A   

Definition 1.24 

     Let  ,A B  be  complex  algebras   over  K . A  one-one  homomorphism  

mapping  from   A  onto  B   is  called   isomorphism . 

Definition 1.25 

    A  function   f  is  said  to  be  analytic  on  the  domain   D   of      if  it  has  

derivative  at  each  point  of D . Then   f  is  called  an entire  function  if  it  is    

analytic  at  each  point  of    . 

Theorem 1.14  ( Leibnitz  s  Rule ) [ 14 ]  

         
( ) ( )

0

( )
( )

n j n j

j

n n
f g f g

j





 
 
 
 

          ( 1 , 2 , ...) ,n   



 

where   f  and   g   are  n-times  continuously  differentiable  functions . 

Theorem 1.15  ( Liouville ) [ 14 ] 

    If   f  is  bounded  and  entire  function  on  the  complex  plane , then   f  is  

constant . 

Definition 1.26 

     Let  A  be  a subset  of   . An  element   x    is  called  an  upper  bound  of   

A   if   a x  for  all   a A . 

If   A  has  an  upper  bound , then  A   is  called   bounded  above  set  . 

Definition 1.27 

     Let  A  be  a subset  of   . An  element   y    is  called  a lower  bound  of  

A   if   y a  for  all   a A . 

If   A  has  a lower  bound , then  A   is  called   bounded  below  set  . 

Definition 1.28 

    Let  A  be  a subset  of   .Then   A  is  called  bounded   if  it  is  both  bounded  

above  and  bounded  below . 

Definition 1.29 

      Let  A  be  a subset  of   . A real  number   u   is  called  a supremum  of   A  

       ( The  least  upper  bound  of   A )   if 

       ( i )  u   is  an  upper  bound  of   A . 

       ( ii )  If   v  be  any  upper  bound  of   A . Then   u v .                

It  is  denoted  by  sup ( )A . 

Theorem 1.16 [ 2 ] 

    Let  A  be  a non-empty  bounded   above  subset  of    . Then   A   has  a 

supremum  and  it  is  unique .       

Definition 1.30 

    Let  A  be  a subset  of   . A real  number   w   is  called  an  infimum  of   A  

       ( The  greatest  lower  bound  of   A )   if 

       ( i )  w   is  an  lower  bound  of   A . 

       ( ii )  If   t  be  any  lower  bound  of   A . Then   t w . 

It  is  denoted  by  inf ( )A .  



 

Theorem 1.17 [ 2 ] 

    Let   A  be   a non-empty  bounded  below  subset  of    . Then  A  has  an 

infimum  and  it  is  unique .      

Theorem 1.18 [ 2 ] 

    Let  A  be  a non-empty  bounded  subset  of    . Then  A  has  a supremum  

and  an infimum .   

Theorem 1.19 [ 8 ] 

   Let  A   be  a bounded  set  of  real  numbers  and  let  0 .  Then   inf ( )a A  

if  and  only  if  there  exists  at  least   x A   such  that   .x a    

Theorem 1.20 [ 8 ] 

   Let   A  be  a bounded  set  and   B A . Then   B  is  also  bounded . 

Notation  

   Let  [ , ]C a b   be  the  space  of  all  complex- valued  continuous  functions  on   

[ , ]a b  .      

Theorem 1.21 [ 8 ] 

     If   [ , ]f C a b , and  if   sup ( )
a x b

M f x
 

    , then  there  is  

0a x b  , such  that   0( ) .f x M    

Theorem 1.22 [ 8 ] 

    Let   X  be  a bounded  set  of     and  let   :f X    be  a bounded  

function . Then 

     ( i )  sup ( ( ) ) sup ( ( ) ) ( 0 )
x X x X

f x f x  
 

  .  

     ( ii )   sup ( ( ) ) inf ( ( ) ) ( 0 ).
x Xx X

f x f x  


                                                               

Definition 1.31 

   Let   X  be  a non-empty  set  and  let   T  be   a collection  of  subsets  of   X   

such  that  

              ( i )  , .X T   

              ( ii )  If   1 2, ,O O T then   1 2O O T . 

              ( iii )  If   for  each   ,I O T   , then  
I

TO


 . 



 

Then  T   is  called  a topology  on  X  and  ( , )X T   is  called   a topological  

space . The  members  of  T  are  called  open  sets . 

Definition 1.32 

     Let ( , )X T  be  a topological  space  and  A X . A point  x A   is  an  

interior  point  of   A   if  there  exists  an  open  set   O  such  that   x O A  . 

The  set  of  all  interior  points  of   A   is  denoted  by   int ( A  ) .  

Definition 1.33 

     Let ( , )X T   be  a topological  space  and   x X . Let   A  be  a subset  of   

X . Then   x  is  called  a boundary  point  of   A   if  for  every  open  set   O   

containing   x , then   O A     and   ( \ )O X A    . 

The  set  of  all  boundary  points  of   A   is  denoted  by   ( )A .  

Theorem 1.23 [ 17 ] 

    Let ( , )X T   be  a topological  space . Then   A   is  open  if  and  only  if   

( ) .X A     

Definition 1.34 

     Let  ( , )X T   be  a topological  space  and   x X . Let   A X . Then   x  

is  called  a closure  point  of   A  if  for  every  open  set   O    containing   x , then 

                                            O A   . 

The  set  of  all  closure  points  of   A  is  denoted  by   A .  

Theorem 1.24 [ 17 ] 

     Let   ( , )X T  be  a topological  space  and   A X . Then   

         ( i )  A A   

         ( ii )  A  is  closed  if  and  only  if   A A  

         ( iii )  A  is  the  smallest  closed  set  containing   A . 

Definition 1.35 

    Let   X  and   Y  be  topological  spaces  and   let   f  be  a function  from   X  

into   Y . Then   f  is  called   homeomorphism  if 

     ( i )  f   is  one-one  and  onto . 

     ( ii )  f  and   1f    are  continuous .  



 

Definition 1.36 

     Let  ( , )X T  be  a topological  space . A collection  { }
I

u
 

 of  open  sets  

is  called  an  open  cover  of   X   if    
I

X u


 . 

A collection  { }
i i

u
  of  a topological  space  ( , )X T   is  called  an  open  

subcover  of   { }
I

u
  

  if 

                            { } { } ,
i i

u u
  

  and   .
i i

X u


  

Definition 1.37 

      A topological  space ( , )X T   is  said  to  be  compact  if  each  open  cover  

of  X   has  a finite  open  subcover . 

Theorem 1.25 [ 17 ] 

     A closed  subset   A  of   a compact  space  X  is   compact .      

Theorem 1.26 ( Heine - Borel  ) [ 17 ] 

    A  subset  A  of     is  compact  if  and  only  if    A  is  closed  and  bounded . 

Definition 1.38 

  A topological  space ( , )X T  is  called   Hausdorff    if  every  distinct  points   

,x y X , there  exist  open  sets   U   and    V  such  that   ,x U y V   and  

.U V    

Definition 1.39 

   A sequence ( )na  in  a metric  space  ( , )X d  is  called  convergent  to  a point  

a   in   X   if   for  each  0  ,  there   exists  a positive  integer  N   such  that 

                                            ( , )nd a a          ( )n N .  

In  a normed  space   ( , . ) ,X  

                                           ( )na a n N   . 

Theorem 1.27 [ 15 ] 

      Let   ( , . )X  be  a normed  space . If   ( )nx x n   in   X , then    

                                              nx x   in    . 



 

Definition 1.40 

 The  sequence  ( )na  is  said  to  tend  to  infinity  if  given   A  (  however  large) , 

there  exists  N  such  that   

                                            na A    for  all    n N . 

We  use  the  arrow  notation  and  we  write   na   .                                                  

Definition 1.41 

    Let   ( , )X d  and   ( , )Y d  be  two  metric  spaces . Let   ( )nx  be  a sequence  

in   ( , )X d  . A function  f :   ( , )X d  ( , )Y d   is  called  continuous  at   

0x   in   X  if   0nx x   in   X  , then   0( ) ( ).nf x f x  

Definition 1.42 

   A sequence ( )na  in  a metric  space  ( , )X d  is  called  cauchy  in   X   if   for  

each  0  ,  there   exists  a positive  integer  N   such  that 

                                    ( , )n md a a          ( , )n m N .  

In  a normed  space   ( , . ) ,X  

                                  ( , )n ma a n m N   . 

Theorem 1.28 [ 2 ] 

      Every  convergent  sequence  is  a Cauchy  sequence .    

Remark 

     In  general , the  converse  of   Theorem 1.28  is  not  true . 

For  example : 

           Let   { 0 }X  ﹨  . 

           Let   
1

( ) .na n
n

   

Then ( )na  is  a Cauchy  sequence  in   X , but  ( )na  does  not  converge  in   X . 

Definition 1.43 

   Let ( , . )X  be  a normed  space . A sequence  ( )na  on  X  is  called  bounded 

if   there  exists  a positive  integer  M  such  that   

                                                n Ma     ( )n . 



 

Lemma 1.29 [ 2 ] 

    Let ( , . )X  be  a normed  space . If  0 ( )na n   in   X   and   ( )nb  

is  a bounded  sequence , then ( ) 0n na b   in   X .                                            

Theorem 1.30 [ 2 ] 

    Every  convergent  sequence  is  bounded .   

Remark 

     In  general , the  converse  of   Theorem 1.30   is  not  true . 

For  example : 

   Let   ( 1 ) ( )n

na n    . 

Then   ( )na   is  a bounded  sequence  but  not  convergent . 

Theorem 1.31 [ 2 ] 

    Every  Cauchy  sequence  is  bounded .     

Remark 

     In  general , the  converse  of   Theorem 1.31  is  not  true . 

For  example : 

   Let   ( 1 ) ( )n

na n    . 

Then   ( )na   is  a bounded  sequence  but  not  Cauchy . 

Definition 1.44 

      A metric space  ( )X , d   is  called  complete  if  every  Cauchy  sequence  in  

( )X , d  is convergent  in  ( )X , d . 

Definition 1.45 

    A complete  normed  space  ( , . )X   is  called  a Banach   space . 

We  state  some  examples  concerning  Banach  spaces . 

Examples 1.2 [ 4 , 9 ] 

     ( i ) Let     be  the  algebra  of  real  numbers .We  define    as    ,  

           (   is  the  set  of  all  complex  numbers ) , with  operations  given  by 

                          ( , ) ( , ) ( , ).a b c d a c b d     

                          ( , ) ( , )a b a b    

                          ( , ) ( , ) ( , )a b c d a c b d a d b c    



 

            The  norm  on     is  given  by   

                                ( )x x x l l .   

            Also , the  norm  on     is  given  by 

                                ( )x x x l l .  

            Then     and      are  Banach  spaces .                                                                                              

     ( ii ) Let   n nM   denote  the  set  of  all   n n  matrices  ( )i jA a  with   

            complex  entries   
i ja . 

            The  addition  on   n nM    is  given  by 

                                ( ) , ( )i j i jA a B b   

                                ( )i j i jA B a b     

            The  scalar  multiplication  is  given  by 

                                  ( ) ( ).i j i jA a a        

            The  usual  matrix  multiplication  is  given  by 

                                       
1

( ) .
n

i k k j
i j

k

A B a b


   

            The  norm  on  n nM   is  defined  by   

                                  
1

max : 1i j

n

j

A a i n


  
     

  
  . 

            Then  n nM    is  a Banach  space .                   

    ( iii ) Let  [ , ]C a b  be  the  space  of  all  complex- valued  continuous    

            functions  on  [ , ]a b  . 

            With  the  pointwise  addition , scalar  multiplication  and  pointwise   

            product  and  with  the  norm  is  given  by    

                                  sup ( ( ) ) , ( [ , ] ) ,
x X

f f x f C a b


      

               is  a Banach  space . 

     ( iv )  Let  [ , ]nC a b  be  the  space  of  all  complex-valued  functions  on         

              [ , ]a b  which  are  n-times  continuously  differentiable .    

              With  the  pointwise  addition , scalar  multiplication  and  pointwise   

               product  and  with  the  norm  is   given  by                         



 

                          
0

( )1
( [ , ] ) ,

!

n

k

n
k

f f f C a b
k 

   

              where   sup | ( ) |
a x b

f f x
 

 ,    

              is  a Banach  space .      

     ( v )  Let   0X  . Let  ( , )B X X   be  the  space  of  all  bounded  linear    

              mappings  from  a  normed   space  ( , . )X   into   itself .  

              With  the  pointwise  addition , scalar  multiplication  and  the     

              multiplication  of   
1 2, ( , )T T B X X  as  a composition  of  operator :          

                               1 2 1 2( ) ( ) ( ( ) ) , ( ),T T x T T x x X     

              and  the  norm  is  given  by  

 sup ( ) : 1 , ( ( , ) ),T T x x T B X X    

            is  a  Banach  space  .  

   ( vi ) Let    :z z      .  

           Then   is  called  a unit  disc  in   . 

                                   int  ( ) : .z z       

            Let   ( )A  denote  the  family  of  all  continuous  functions  on     and  

            analytic  functions  on  int ( ) .Then  ( )A   is  called  the  disc  algebra . 

           With  the  pointwise  addition , scalar  multiplication  and  pointwise  product   

            and  the  norm  is  given  by               

                                  sup ( ( ) ) ,
z

f f z


      (  ( )f A ) , 

            is  a Banach  space .           

   ( vii ) Let   1 ( )L   denote  the  space  of   integrable  complex  valued  functions      

            on   . That  is   

                  1 ( ) : : ( )L f f f x d x





  
     
  

 | |  . 

            With  the  pointwise  addition , scalar  multiplication   and  with  the  norm       

            is  given  by 



 

                                 ( ) ( ) ,f f x d x x





  | |  

            is  a Banach  space  with   

                             ( ) ( ) ( ) ( )f g t f x g t x d x





    

            as  the  product . 

 ( viii ) 1 ( ) { ( : ) : },n n
n

a a n a


  

        

            where     is  the  set  of  all  integers . With  the  pointwise  addition ,     

             scalar  multiplication , the  product  of  1   is  given  by                                                   

                           ( ) ( ) ,
k

n n k ka b a b n


 




      

            and  with  The  norm  on   1   is  given  by   

                                    
n

na a


 

   , 

            is  a Banach  space .                                   

   ( ix ) Let   A  be  a normed  space  over   K . Let   A #  be  the  set  of  all  ordered   

            pairs  ( , )x   , where   x A  and      .                                                                               

            The  addition , scalar  multiplication  and  the  product  defined  for  all     

            ,x y A  and   
1 2, K     by 

                                    
1 2 1 2( , ) ( , ) ( , ),x y x y         

                                    
2 1 2 1 2( , ) ( , )x x      

                                   
1 2 1 2 1 2( , ) ( , ) ( , )x y x y y x        . 

            Let   .x A Then   ( , 0 )x x  and   

                                      ( , ) ( , 0 ) ( 0 , 1 ) ( ).x x      

            The  norm  on   A #   is  defined  by   

                           ( , ) , ,x x x A     | | ( )  

            where   x   is  a norm  on   A . 

            The  identity  element  of    A #   is   (0,1)e   , 



 

            and  

                                ( 0 , 1 ) 0  | 1 | = 1.                                                           

            If   A  is  a Banach  space , then   A #   is  a Banach  space .                    

Definition 1.46 

   Let   E   be  a linear  space  over   .K  Let   :B E E K    such  that 

        ( i )  ( , ) 0 ( )B x x x E  . 

        ( ii )  ( , ) 0 0B x x x   . 

        ( iii )  ( , ) ( , ) ( , )B x y z B x z B y z       

                                                        ( , , , , )x y z E K    . 

        ( iv )  ( , ) ( , ) ( , ) .B x y B y x x y E   

Then   B   is  called  an  inner  product  on   .E  

Definition 1.47 

    A Hilbert  space  H  is  a Banach  space  in  which  the  norm  is  defined  by  

inner  product 

                            ( , ) ( ) ,x B x x x H   

and  we  write   ( , ) ,B x y x y    .  

Definition 1.48 

   Let   T   be  a bounded  linear  mapping  on   H . The  unique  bounded  linear 

mapping   T


 on   H   that  satisfies 

                            , , ( , ),T x y x T y x y H       

is  called  the  Hilbert  space  adjoint  of   T . 

Notation 

     Let   ( )BL H   denote  the  set  of  all  bounded  linear  mappings  on   H . 

Theorem 1.32 [ 4 ] 

    Let   , ( )T S BL H . Then 

          ( i )  ( )T S T S      

          ( ii ) ( ) ( ).T T      

          ( iii )  ( )T S S T    



 

          ( iv )  ( )T T   . 

          ( v )  *I I ,  I   is  the  identity  mapping . 

Theorem 1.33 [ 4 ] 

    Let   ( )T BL H .Then   

                                 
2

.T T T T T    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter  Two 

Banach  algebras 

2.1  Banach algebras 

     Banach  algebras  were  introduced  in  1940  by  the  Russian  mathematical   

I . M . Gelfand .    

Definition 2.1.1  

     A normed  algebra A   is  an algebra  which  is  a normed  space ( , .A  )  and  

in  which   

                          x y x y   ( , ).x y A  

We  shall  state  and  prove  some  results  concerning  normed  algebras .  

Lemma 2.1.1 

     Let  A  be  a normed  algebra  with  unit  e  . Then  1 .e   

Proof  

    Let  x A  with   0x  . Then      

                                 .x e e x x   

So                                                              

                                      .x e x  

We obtain  

                                      .x e x e  

Therefore 

                                     ,x x e  

and  so 

                                  1 .e   

Similarly , if   e x x , then   1.e   

Remark 

   We  shall  make  the  additional  assumption  that    1.e      

 

  



 

Lemma 2.1.2 

      Let  A  be  a normed  algebra   . Let   ,x A .n   Then  

                                             .
n n

x x  

Proof 

     We  use  mathematical  induction  

Let  1n . Then 

                                          x x  ( ).x A                                                                                                                                          

Now, suppose  it  is  true  for  n k     

                             
k k

x x       ( ).x A  

Now ,  we  shall  prove  that  it  is  true  for   1n k  . 

We  have 

                             1k kx x x     ( ).x A  

 

                                               
k

x x  

  

                                            
k

x x  

 

                                                 
1k

x


 . 

 

Thus                  
1 1k k

x x
 

   . 

Hence                   .
n n

x x  

Lemma 2.1.3 

   Let   A  be   a normed   algebra . Let   x A  and   ,n m  . Then   

                                   .
n m n m

x x
 

  

Proof 

     Let   x A  . Then 

                                   
n m n m

x x x


  



 

                                                       
n m

x x  

                                                      
n m

x x     (  Lemma 2.1.2  ) 

                                                       .
n m

x


  

Theorem 2.1.4 

   Let  A  be  a normed   algebra . If   nx x ,  ny y  ( )n    in   A  , 

then   n nx y x y .                                                      

Proof 

      Let   nx x  and   ny y   in   A  . Then 

                n n n n n nx y x y x y x y x y x y      

 

                                                ( ) ( )n n nx y y y x x     

     

                                                  ( ) ( )n n nx y y y x x     

 

                                                   n n nx y y y x x      

 

                                                  0 ( ) .n                                                        

Hence   n nx y x y .   

Theorem 2.1.5 

   Let  ( )nx and  ( )ny  be  bounded  sequences  in   a normed  algebra   A . 

Then  ( )n nx y is  a bounded  sequence  in  A . 

Proof 

   Let   ( )nx be  a bounded  sequence  in   A . Then  there  exists  a positive  

integer   1M   such  that 

                                              1nx M    for  all   .n  

Let   ( )ny be  a bounded  sequence  in   A . Then  there  exists  a positive  integer   

2M   such  that 



 

                                              
2ny M    for  all   .n  

We  have 

                                               n n n nx y x y  

                                                                    1 2 .M M  

Choose   
1 2 0 .M M M   

It  follows  that 

                                n nx y M    for  all   n  . 

Hence  ( )n nx y  is  a bounded  sequence  . 

Theorem 2.1.6  

     Let   A   be  a normed  algebra . If  ( )nx   and   ( )ny  are  Cauchy  sequences  

in   A , then   ( )n nx y   is   a Cauchy  sequence  in   A . 

Proof 

     Since ( )nx   is  a Cauchy  sequence  in  A  , so  ( )nx   is  a bounded  sequence  

(  Theorem 1.31 ) . Then  there  exists  a positive  integer  M  such  that   

                                         ( ).nx M n    

For  each  0  , there  exists  a positive  integer  N  such  that   

                                   ( , ).
2

n mx x n m N
M


    

Also , since  ( )ny   is  a Cauchy  sequence  , so ( )ny   is  a bounded  sequence . 

Then there  exists  a positive  integer  M  such  that   

                                         ( ).ny M n    

Similarly ,  for  each  0  , there  exists  a positive  integer  N  such  that   

                                   ( , ) .
2

n my y n m N
M


    

We  have  

              n n m m n n m n m n m mx y x y x y x y x y x y      

 

                                                  ( ) ( )n n m m n my x x x y y     

 



 

                                                  ( ) ( )n n m m n my x x x y y     

                                                   n n m m n my x x x y y     

                                                    
2 2

M M
M M

 
   

                                                     
2 2

 
   

                  .  

Hence ( )n nx y   is  a Cauchy  sequence  in  .A      

Definition 2.1.2 

     Let   ( , . )A   be  a normed  algebra . If   A  is  complete  with  relative  to     

this  norm (  i . e , A  is  a Banach  space  ) , then   A  is  called  a Banach  algebra .      

We  give  some  examples  concerning  Banach  algebras . 

Examples 2.1 

( i ) The  space     is  a Banach  space  with  the  norm              

                      ( ).x x x        

      Let   ,x y  . Then 

                            

.

x y x y

x y

x y

  

    



 

      Hence    is  a normed  algebra . Then    with  the  usual  addition  and     

      scalar  multiplication  and  pointwise  product  is  a commutative  Banach   

      algebra . 

      Also ,    with  the  usual  structure  and  the  norm   

                                        ( ),x x x     

      is  a commutative  Banach  algebra .                                                                                                             

( ii ) The  norm  on   n nM   is  given  by 

          
1

max : 1 ( ) .{ }i j

n

n n
j

A a i n A M 


       

      Then   n nM    is  a Banach  space . 



 

      Let   ( ) , ( ) .i j i jA a B b   Let  , .n nA B M  Then 

                            .A B A B  

      Hence   n nM    is  a Banach  algebra  .  As  is  well-known  matrix                      

      multiplication  is  not  commutative .                                                          

(iii)The  norm  on    ,C a b   is  given  by 

                    sup ( ) , .( ) ( )
a x b

f f x f C a b
 

     

      Then   ,C a b   is  a Banach  space . 

      Let  , , .f g C a b   Then                                                                                                                

                                  sup ( ) ( ) .( )
a x b

f g f x g x
 

    

      By   Theorem 1.21  , there  exsists   
0x   in   [ , ]a b   such  that 

                                 

0 0( )

.

f g f x g x

f g

     



   

      Hence    ,C a b   is  a commutative  Banach  algebra  . 

(iv) The  norm  on  [ , ]nC a b  is  given  by 

                         
0

( )1
( [ , ] ).

!

n

k

n
k

f f f C a b
k 

   

      Then   [ , ]nC a b   is  a Banach  space . 

      Let   , [ , ]nf g C a b  . Then 

            
0

( )1
( )

!

n

k

k
f g f g

k 
   

 

          
( ) ( )

0 0

1

!

n k
j k j

k j

k
f g

jk



 


 
 
 

    

 

             
( ) ( )

0 0

1

! ( ) !

n k
j k j

k j

f g
j k j



 


    

 



 

                           
0 0

( ) ( )1 1

! ( ) !

n k

k j

j k j
f g

j k j 



 
   

 

      
0 0

( ) ( )1 1

! !

n

l j

n
j l

f g
j l   

   

 

                          .f g  

      Thus    .f g f g  

      Hence   [ , ]nC a b   is  a commutative  Banach  algebra  .   

(v) The  norm  on    ( , )B X X   is  given  by                                   

                        sup ( ) : 1 ( ( , ) ).T T x x T B X X    

      Then   ( , )B X X   is  a  Banach  space . 

      Let   1 2, ( , ).T T B X X  Then                                    

                                  

1 2 1 2

1 2

1 2

( ) ( ) ( ( ) )

( )

.

T T x T T x

T T x

T T x







 

      Thus   

                                  
1 2 1 2 .T T T T  

      Hence   ( , )B X X   is  a Banach  algebra . 

 

 (vi) Let  ( )A  be  the  disc  algebra  with  the  norm 

                        sup ( ( ) ) ( ( ) ).
z

f f z f A


     

      Then    ( )A   is  a Banach  space .  

      Let   , ( ).f g A Then    

                                              .f g f g                             

      Hence   ( )A   is  a commutative   Banach  algebra .   

 

                                         



 

(vii) The  norm  on  1 ( )L   is   

                  1( ) , ( )( ).f f x d x x f L





      

      Then   1 ( )L   is  a Banach  space  and  the  product  is  given  by                    

                          ( ) ( ) ( ) ( ) .f g t f x g t x d x





     

      Let   1, ( ).f g L Then 

                                   ( ) ( )f g f x g t x d t d x

 

 

        

                                                    ( ) ( )( )f x g t x d t d x

 

 

        

                                                    ( )f x g d x





    

                                                    .f g  

      Hence   1 ( )L   is a commutative  Banach  algebra  . 

(viii) The  norm  on  1  is  given  by   

                                       1( ) .
n

na a a




     

      Then   1  is  a Banach  space  and  the  product  is  given  by   

                          ( ) ( ).
k

n n k ka b a b n


 




    

      Let  1, .a b    Then 

                     n n k k
n n k

a b a b
  

           

                     | | | |n k k
n k

a b
 

    

                            ( | | ) ( | | )k n k
k n

b a 
 

     

                                                          .b a  



 

      Hence  1   is  a normed  algebra .Thus  1   is  a Banach  algebra . 

                                  ( * )
k

n n k ka b a b


              

                           .k n k
k

b a 


   

      Set   .u n k  Then   

                                    ( * )n n u u
n u

a b b a
 

  . 

      Hence  1  is  commutative . 

(ix) Let   A  be  a normed  space  over   K . Let   A #  be  the  set  of  all  ordered     

      pairs  ( , )x   , where   x A  and      .  

      The  norm  on   A #  is  given  by                

                                            ( , )x x       

      Then  A #  is  a Banach  space .  

      Let A  be  a normed  algebra . Let 1 1 2 2( , ) , ( , ) .x x A   #
Then                                                                              

1 1 2 2 1 2 1 2 2 1 1 2

1 2 1 2 2 1 1 2

1 2 1 2 2 1 1 2

1 2 1 2 2 1 1 2

1 1 2 2

1 1 2 2

( , ) ( , ) ( , )

( ) ( )

( , ) ( , ) .

x x x x x x

x x x x

x x x x

x x x x

x x

x x

     

   

   

   

 

 

  

     

     

       

  



l l l l

l l l l

           

      Thus   A #  is  a normed  algebra . 

      Hence   A #   is  a Banach  algebra  with  unit   (0,1).e   

      If   A   is  commutative , then   A #  is  commutative . 

 

 



 

Definition 2.1.3 

   Let   X  be  a compact  Hausdorff  space . Let   A  be  a subset  of   ( )C X . Then   

A  is  called  separates  the  points  of   X , if  for  each   ,x y X with   x y , 

there  exists   f A  such  that   ( ) ( ).f x f y  

Definition 2.1.4 

  Let   A  be  a subset  of  ( )C X . Then   A  is  called  self-adjoint  if   f A , then   

.f A   

Theorem 2.1.7  (  Stone-Weierstrass ) [ 16 ] 

   Let   X  be  a compact  Hausdorff  space . Let   A  be  a subalgebra   of   ( )C X   

and  separating  the  points  of   .X  If   A  is  self-adjoint , then       

                                                     ( ).A C X          

Remark  

   There  are  some  Banach  algebras  which  are  not  closed . 

For  example : 

     Let   
1

[ 0 , 1 ]A C  . 

Then  A  is  a Banach  algebra  (  Example 2.1 ( iv ) ) . 

By  Stone-Weierstrass  theorem , we  obtain   

1
[ 0 , 1 ] [ 0 , 1 ] .C C  

It  follows  that   
1

[ 0 , 1 ]C  is  not  closed . 

Theorem 2.1.8 [ 9 ] 

    Let   A   be  a complex  Banach  algebra  with  unit . Then  every  closed                 

subalgebra  of   A   is  itself  a Banach  algebra . 

Theorem 2.1.9 

   Let  A  be  a complex  Banach  algebra  and  suppose  x  in  A   is   such  that 

1 .x   Then  there  exists  y A  such  that   x y = x + y  . 

Proof 

    Since   1x     and    
n n

x x  ,  the  series  2 3 ...x x x     is 

absolutely  convergent .  Since  A  is  a Banach  space  ,  so  the  series  converges. 



 

Let  the  sum  of  the  series  be  y   .  Then 

                                                
2 3 4 ...x y x x x      

                                                       .x y    

Theorem 2.1.10 [ 14 ] 

     Let   A  be  a commutative  Banach  algebra  with  unit . Then  every  maximal  

ideal  of   A   is  closed .  

Theorem 2.1.11 [ 14 ] 

     Let  A  be  a complex  Banach  algebra  with  unit . Let   I  be  an  ideal  of   A . 

Then  the  closure  of   I   is  an  ideal . 

 

2.2  Invertible  elements  of  Banach  algebras 

Theorem 2.2.1 [ 9 ] 

    Let  A  be a complex  Banach  algebra  with  unit  e  .  If  x A  satisfies 

1x    ,  then   e x   is  invertible  ,  and    

                                            
1

1
( )

n

n
e x e x




    .                                                  

Theorem 2.2.2 [ 9 ] 

      Let  A  be  a complex  Banach   algebra  with  unit  e  .  If   x A   and  

1x   ,  then   e x   is   invertible  , 
0

1
( ) ( 1)

n n

n
e x x




   ,  and 

                           
2

1( )
1

x
e x e x

x

   


. 

Theorem 2.2.3 [ 9 ] 

     Let   A  be  a complex  Banach  algebra  with  unit   e . If   1x e   , then   

x  is  invertible  and  

                                   1

1

( ) n

n

x e e x




   .     

Theorem 2.2.4  

     Let  A  be  a complex  Banach  algebra  with  unit  e  . Then   1A     is  an   open  

subset  of   A .  



 

Proof 

  Let   
1

0x A  . Let   
0( , )B x    be  an  open  ball  with  center  

0x   and  radius 

  . 

Set   
1

0

1
0 .

x



          

We  will  show  that   
1

0( , ) .B x A   Let   
0( , ) .x B x  Then 

                                 
0 1

0

1
x x

x 
  . 

Let   
1

0y x x  and   .z e y  Then 

                                  z z   

                                           y e   

                                           
1 1

0 0 0x x x x    

                               

1

0 0

1

0 0

1

0 1

0

( )

1

1 .

x x x

x x x

x
x









 

 





   

Thus   1 .z    So  e z  is  invertible  in   A   ( Theorem 2.2.1 ) , and  hence 

1 .e z y A       

Now , we  have   
1

0 , .x y A  So  
1

0x y A   (  Theorem 1.5  ) . 

Therefore 

                      

1

0 0 0

1 .

x y x x x

e x

x A









 

            

Hence  1A  is  open . 

Corollary 2.2.5  

   Let   A   be  a complex  Banach  algebra  with  unit  e .Then  the  set  of  all  non-

invertible  elements  is  closed .  

 



 

Proof 

    Since   1A   is  open  ( Theorem 2.2.4 ) , and  the  set  of  all  non-invertible  

elements  is  complement  of    1A  ,  so  it  is  closed  .  

Theorem 2.2.6 [ 14 ] 

   Let   A   be  a complex  Banach  algebra  with  unit   e . Let   1x A    and    

y A   such  that 

                                 
1

1
x y

x 
  . 

  Then   1y A   and   
1 2

1 1

11

x x y
x y

x x y


 




 

 
.                                

Proof 

  Let   1x A    and   y A . Then         

                               

1 1 1

1

1

( )

1 .

e x y x x x y

x x y

x x y

  





  

 

 



 

So   1x y   is  invertible  ( Theorem 2.2.3 )  and  has  an  inverse  in   A   say   .z  

Then 

                                                 1 ( 1 ).x y z e   

Multiplying  ( 1 )  on  the  left  by   x ,  we  have   

                               1x x y z x e  and  so   .y z x  

We  obtain                                      

                                      1 1 .y z x x x e    

Hence   1 .y z x e   

Again  multiplying  ( 1 )  on  the  right  by   1x   ,  we  have   

1 1 1( )x y z x e x    and  so   1 1 1( ) .x y z x x    

It  follows  that  1 1
,z x

y

   and  we  can  obtain 

                                      1 1
z x y y

y

   



 

                                                        .e  

Thus 1z x   is  the  inverse  of   y and   ( Theorem 2.2.3 ) , gives  us                                   

                               1

0

( ) n

n

z e x y




   

                               1 1

0

( ) .n

n

x x x y 




   

                               1

0

( ) .( ) n

n

x x y




   

We  have 

1 1 1 1

1 ( )

x y x z x

x e z

   



  

 

 

 

                           1e z x    

 

                          

1 1

1 1

1 2

1

1

1

.
1

( )

n n

n

n

n

x x x y

x x x y

x x y

x x y

 

 













 

 




 



  

Theorem 2.2.7 

    Let   A   be  a complex  Banach  algebra  with  unit   e . Let   1x A    and   

a A   such  that   1 11

2
a x   .  Then   1 .x a A     

Proof 

    Let   1x A   ,  a A  and   1 11

2
a x    .   

 

   



 

Then 

                                  1 1

2
x a   .    

Hence   1 1e x a A     (  Theorem  2.2.2 ) ,  and  so  writing 

                                1( ).x a x e x a    

Now ,  we  have  1x A    and   1 1e x a A   . Thus   1 1( )x e x a A   . 

Hence   1x a A   . 

Theorem 2.2.8  

  Let   A   be   a complex  Banach  algebra  with  unit   e . Let   1x A    such   

that   1 1
,x h A



     and   .h    Then   1x h A     and           

                    
2

1 1 1 1

2
( ) .

( )
x h x x h x



  

     


  

Proof 

    Let   1x A   ,  h A . Then 

                                             1 1 .x h




   

Hence   1 1e x h A    ( Theorem 2.2.2 ) . 

Since  1( ),x h x e x h    so  we  have   1x h A    .  

Then 

                                1 1 1( ) ( ( ) )x h x e x h      

 

                                                    1 1 1( ) .e x h x     

Now , we  have  

         1 1 1 1 1 1 1 1( ) [ ( ) ]x h x x h x e x h e x h x              . 

Therefore 

 1 1 1 1 1 1 1 1( ) ( )( )x h x x h x e x h e x h x               

 

                                                             1 1 1 1( )e x h e x h x        . 



 

It  follows  from  ( Theorem 2.2.2 )  with   1x h   in   place  of   :x  

 

        1 1 1 1( )x h x x h x        
1 2

1

11

x h
x

x h








 

 

                                                                        

2

2

1

1













  

 

                                                                        =  

2

2
( )



  

 .      

Theorem 2.2.9 

   Let   A   be  a complex  Banach  algebra  with  unit  e . Let   x A   and        

such  that   x    . Then   1x e A    . 

Proof 

    Let      x     Then   1.
x




 
                           

So  we  obtain   1 .
x


                             

Then   1e x    is  invertible  (  Theorem  2.2.1 ) . Since   

1( )e x x e      , so  x e  is  invertible . 

 Hence  1x e A    . 

Theorem 2.2.10 

      Let   A   be  a commutative  Banach  algebra  with  unit . Let   a A . Then  the  

inversion  mapping   1a a   is  continuous  in   A  . 

 Proof 

    Suppose  
1

n
x A  and    

n
x a   in   A . We  will  show  that   1 1

nx a    

 as  n    .  Let   a A   such  that 



 

                                  
1

1

2
nx a

a 
   . 

Then 

                            1 1 1 1( )n n nx a x a x a       

                          

1 1

1

( 1 )

1
.

2

n n

n

x a x a

x

 



 



  

Since 

                   
1 1 1 1 ,n nx a x a     

 

So 

                    1 1 11
.

2
n nx a x     

It  follows  that    

                                  1 12 .nx a   

By  (1) , we  can  get 

                    1 1 1 2

2 0 ( ).n nx a a a x n         

Thus   1 1 .nx a    

Theorem 2.2.11  

     Let  A   be  a commutative  complex  Banach  algebra  with  unit . Let   a A . 

Then  the  inversion  mapping   1a a   is  a homeomorphism  of   1A   to  itself . 

Proof 

  Clearly  the  mapping   1a a   is  onto . Let   
1 2,a a A  with   

1 1

1 2a a  . 

Then  

                          
1 1 1 1

1 2( ) ( )a a    , 

and  so   
1 2a a .  Thus   1a a   is  one-one . 

We  have   1a a  is  continuous  (  Theorem 2.2.10 ) , and  the  inverse  map  

from   A  onto   A   is  continuous  too . 

Hence   1a a  is  homeomorphism . 



 

Theorem 2.2.12 

     Let  A   be  a commutative  Banach  algebra  with  unit  e  . Let  ( )na   be   

a sequence  in  1A    such  that   na a   in   A   as  .n   If  there  exists   

 a positive  integer  M  such  that   1

na M    for  all   ,n  then  1a A    

and   

                                              1 1

na a    as   .n   

Proof 

   Let   0M    and  let   na a   as  .n  Then ( )na  is  a Cauchy  sequence . 

Then  for  each   0   there  exists  a positive  integer   N  such  that   

                                          
2n ma a

M


      for  all   , .n m   

Therefore 

                                           

1 1 1 1

1 1

( )n m n n m m

n n m m

a a a a a a

a a a a

   

 

  

 

  

                                                               

2

2

.

M
M









  

Hence  1( )na    is  Cauchy  sequence  in   .A Since  A  is  a Banach  algebra , so   

1

na    converges  to  an  element  in   A , say   x . Then   

                                                          1lim ( )
n

nx a 


 . 

So 

                                                          1lim ( ) ( )
n

n nx a a a


  

                                                                 .e   

Hence   a   is  invertible  in   A  and   1x a   .                            

Thus   1a A    and   1 1

na a     as   .n   

 

 



 

Theorem 2.2.13 

     Let   A   be  a complex  Banach  algebra  with  unit . Let  x  be  a boundary  

point  of   A . Let   1

nx A   such  that   ( )nx x n   in  A . Then     

                                             1 ( ).nx n    

Proof 

   If   the  conclusion  is  false , then  there  exists   M     such  that   

                             1

nx M    for  all   .n  

Let  x  be  a boundary  point  of   A  and  let   ( ).nx x n   Then  for  

each   0,  there  exists   0N    such  that   

                               ( ).nx x n N     

Choose   
1

M
   . Then   

                                
1

.nx x
M

   

                                1 1 ( )n n ne x x x x x     

                                                          1

n nx x x   

                                                         
1

.M
M

  

                                                          1  

Thus   1 1.ne x x   So   1 1

nx x A   . Then 

                              1 1( ) .n nx x x x A      

We  have   1x A    and    ( ).x A  

It  follows  that   1 ( ) .A A      

This  is  contradicts  to   1A    is  open  (  Theorem 2.2.4 ) .  

Hence   1 ( ).nx n  
 

 

 

 

 



 

Theorem 2.2.14  

   Let  A  be  a complex  Banach  algebra  with  unit  1e   . Let   1( )na A   and 

( )na a n   in   A . Then  there  exists  a sequence ( )nb A with 

1nb      and   0 ( )nb a n  . 

Proof 

   Set 

       
1

1

n

n

n

a
b

a




  .  

Then   1nb   and  so  ( )nb is  a bounded  sequence .   

 Also ,  
1

1
0 .n n

n

b a
a

   

We  have 

               ( ) 0 .n nb a a   

Adding  ,  we  obtain 

              0 ( ) .nb a n    

Definition 2.2.1 

     Let   A  be  a complex  Banach  algebra  with  unit . We  define  the  exponential  

function   exp : A A   by   

                               
0

1
exp ( ) n

n

x x
n





 
!

      ( ) ,x A  

and   exp(0 ) 1.    

Theorem 2.2.15 

   Let   A  be  a commutative  Banach  algebra  with  unit   1e   . Let   ,x y A  . 

 Then   

                  ( i )  exp ( ) exp ( ) exp ( )x y x y  . 

                  ( ii )  1exp ( )x A    and 

                                           1( exp ( ) ) exp ( ).x x    

 



 

Proof 

   Let   , .x y A  Then 

   ( i )  
0

( )
exp ( )

n

n

x y
x y

n






  

!
 

                                   
0 0

1 n
n j j

n j

n
x y

jn




 

 
  

  
   

                                   
0 0

1

( )

j
n

n j

n j

x y
j n j




 


  

   

                                   
0 0

1 jn

j n

x y
j n

 

 


 

   

                                    =  exp ( ) exp ( )x y  . 

   ( ii )  Take   y x    in   ( i ) . Then   

                                    

exp ( 0 ) exp ( ) exp ( )

1 exp ( ) exp ( ).

x x

x x

 

 

  

           Thus    1( exp ( ) ) exp ( ).x x    

Theorem 2.2.16 [ 3 ] 

    Let  A  be  a complex  Banach  algebra  with  unit   1e   . Let   x A  such  

that   1 1x   . Then  there  exists   y A   such  that   exp ( ) .y x  

Definition 2.2.2 

     Let   A  be  a complex  Banach  algebra  with  unit .We  define 

                             exp ( ) { exp ( ) : }.A x x A   

It  is  clear  that   1exp ( )A A  . 

Theorem 2.2.17 

   Let  A  be  a commutative  Banach  algebra  with  unit  1e    . Then  exp ( )A  

is  open  in  1A   . 

Proof 

   Let   exp ( ).x A Then 

                                  exp ( ) ( ).x h h A   



 

Let   y A   with   
1

1
x y

x 
   . 

Then 

               1 11 x y x x y     

                                        1

1

1
x

x




   

                                         1 .    

By  Theorem  2.2.16   ,  there  exists   z A   such  that   1 exp ( ).x y z   

We  have 

                                       exp ( ) exp ( )y h z  

                                        exp ( ) exp ( ).h z A     

Hence   exp ( )A   is  open  in   1A   .  

 

2.3  Spectrum  and  Spectral  radius  of  Banach  algebras 

Definition 2.3.1 

    Let  A  be  a complex  Banach  algebra  with  unit  e .The  spectrum  of  an 

element   x A , denoted  by   ( )A x , is  defined  by 

                          1( ) : }.A x x e A         

The  complement  of  ( )A x   in    is  called  the  resolvent  set  of   x .  It  is  

denoted  by   ( )A x  .  That  is   

                                      ( ) ( )\A Ax x  . 

Remark 

   Let   A  be  a Banach  algebra  with  unit . It  is  clear  that   x  is  invertible  in   

A  if  and  only  if   0 ( ) .A x  

Example 2.3.1             

   Let   2 2A M    with  complex  entries . 

Then   2 2A M   is  a complex  Banach  algebra  with  unit   
1 0

0 1
I

 
  
 

.    



 

Let   2 2

0

0

i
x M

i


 
  

 
 .  

By  an  elementary  theorem  of  matrix  algebra  it  is  known  that   x I  has  

no  inverse  if  and  only  if   det ( ) 0 .x I   

Then 

           
0 1 0

( ) : det 0
0 0 1

{ ( ) }A

i
x

i
  

   
      

   
 

                       
0 0

: det 0
0 0

{ ( ) }i

i






   
      

   
 

                        : det 0{ }i

i






 
   

  
 

                        2 2: 0{ }i      

 

                        { 1 , 1}   . 

Lemma 2.3.1 

    Let   A  be  a complex  Banach  algebra  with  unit  .e Then   

                                      ( 0 ) { 0 }.A   

Proof         

            1( 0 ) { : 0 }A e A        

                        1{ : }e A         

                        1{ : }A       

                        { 0 } .                         

Theorem 2.3.2 

      Let   A  be  a complex  Banach  algebra  with  unit  e . Let  x A . Then  

( )A x   is  non-empty . 

Proof 

    Suppose  for  a contradiction  that   x A   has  an  empty  spectrum  . 

 

 



 

Define   

                                1( ) ( )u x e     (     ) . 

Then   u   is   well-defined  and  a continuous  mapping  of     into   A . 

Let   
0   . Then   

                       

1 1

0 0( ) ( ) ( ) ( )u u x e x e        
  

                                                
0 0( ) ( ) ( ( ) ( ) )u u x e x e        

 

                                                

0 0

0 0

( ) ( ) ( )

( ) ( ) ( ) .

e u u

u u

   

   

 

 

 

It  follows  that 

                        
0

0

0

( ) ( )
( ) ( ) .

u u
u u

 
 

 





 

So 

                       
0

0

0

2

0

( ) ( )
lim ( ( ) ) ( 1 )

u u
u

 

 


 





  

Let   f  be  a continuous  linear  functional  on   A . We  define  a function   h    by 

                                    ( ) ( ( ) ) ( ).h f u     

Since  f   and   u   are   continuous , so  is  h . 

Applying   f  to  ( 1 ) , we  thus  obtain   

                                    
0 2

0

00

( ) ( )
lim ( ( ) ).

h h
f u

 

 


 





  

Then   h   is  an  entire  function  from    into    . 

 Since 

                    1 1 1( ) ( )u e x         , 

and   

                   1 1( )e x   1e e    as        

we  obtain 



 

                     

( ) ( ( ) )

( )

h f u

f u

 



 



 =

   

 

                                  
11 1

( )f e x
 



 
 

 

 

                                  0     as      . ( 2 )        

This  shows  that   h  would  be  bounded  on   .  

By  Liouville's  theorem  , h   is  constant  which  is  zero  by  ( 2 ) . Then   

( ) ( ( )) 0.h f u    It  follows  that   ( ) 0.u    So 

                        

1( ) ( )

( ) ( )

0

0,

e x e x e

x e u

 

 

  

 





  

and  contradicts  to   1.e   

Hence   ( ) .A x     

Remark 

    If   A  be  a real  Banach  algebra  with  unit , then  it  is  possible  that   there  

exists  x A  such  that  ( ) .x         

Example 2.3.2  

     Let   2 2xA M  be  a real  Banach  algebra  with  unit  
1 0

.
0 1

I
 

  
 

 

Let  2 2

0 1

1 0
xx M

 
  
 

. Then 

           
0 1 1 0

( ) : det 0
1 0 0 1

( )A x  
     

       
     

  

 

          
1

: det 0
1






    
    

   
  



 

           2: 1 0 
 

    
 

 

 

                          .   

Lemma 2.3.3 [ 16 ] 

  Let   A   be  a complex  Banach  algebra  with  unit . Let   .x A  The  resolvent  

set  ( )A x   of   x   is  open  in    . 

Theorem 2.3.4  

    Let A  be  a Banach  algebra  with  unit  e . Let  x A . Then  ( )A x  is  a 

compact  subset  of  . 

Proof 

   By  the  Heine-Borel  Theorem  ( Theorem 1.26 )  it  is  enough  to  show  that   

( )A x  is  bounded  and  closed . Let   ( ).A x  Then   1x e A   . 

By  Theorem 2.2.9    x  l l . So 

                                ( ) : .A x x        

Thus  ( )A x  is  bounded . 

Since  ( )A x  is  open  in   ( Lemma 2.3.3 )   so  ( )A x  is  closed .    

Theorem 2.3.5  

  Let   A   be  a complex  Banach  algebra  with  unit  1e   . Let  ,x A n   

and     .  If  ( ) ,A x   then   ( )A

n nx  .   

Proof 

   Let   x A   and  let    . Assume   ( )n nx   .  

We  have 

            1 2 1( ) ( ) ( ... ) ( 1 )n n n n nx e x e x x e              

If  multiply  both  sides  of   ( 1 )  by   1( )n n
x e   , then  ( )x e   is  

invertible  in   A .  So  ( ).x   

This  completes  the  proof .   

                                     



 

Theorem 2.3.6 [ 16 ] 

     Let   A   be  a complex  Banach  algebra  with  unit   e  . Let  B  be  a closed  

subalgebra  of   A  containing   e  . If   x B  , then   

                                      ( ) ( ) ,A Bx x   

and 

                                      ( ( ) ) ( ( ) ).AB x x                                    

Theorem 2.3.7 [ 12 ] 

      Let   A   be  a closed  subalgebra  of   a complex  Banach  algebra  B  . Let   

x A . If    ( )A x   has  empty  interior  , then  

                                    ( ) ( )A Bx x  . 

Theorem 2.3.8 [ 3 ] 

   Let   A  be  a commutative  complex  Banach   algebra  with  unit . Let  x A . 

Then 

                                    ( exp ( ) ) exp ( ( ) ).A Ax x   

Remark 

   In  fact , there  are  some  non-zero  elements  of  complex  Banach  algebras  

which  are  not  invertible . For  examples : 

   ( i ) Let   
2 2A M   with  complex  entries . Then  

2 2M 
 is  a complex  Banach 

         algebra   with  unit   
1 0

0 1
I

 
  
 

. 

         Let   2 2

0

0

i
x M

i


 
  

 
  . Then   x  is  a non-zero  element  of   

2 2M 
   

         but   x  is  not  invertible . 

 

  ( ii )  Let   [ 0 , 1]A C  . 

         Then  [ 0 , 1 ]C   is  a complex  Banach  algebra  with  unit   1.e   

         Define   f  by 



 

                   

1

2

1

2

1

2

0 , 0

( )

, 1

x

f x

x x

 
  

 
  
   
  

 . 

         Then   f  is  a non-zero  element  of  [ 0 , 1 ]C  but  f  is  not  invertible .   

Proposition 2.3.9 [ 1 ] 

    Let   A  be  a complex  Banach  algebra  with  unit   e  in  which  each  non-zero  

element  in   A  is  invertible . Let   x A . Then  there  exists   a unique     

such  that   .x e  

Proof 

    Let   x A . Then   ( )A x    ( Theorem 2.3.2 ) . Hence  there  exists  

( )A x   such  that   x e   is  not  invertible . So   0.x e   Thus   

.x e  

For  uniqueness , let   x e , ( , )x e       . Let  0.         

Then  0e   , and  so   0e    which  is  a contradiction . 

Corollary 2.3.10 

    Let   A  be  a complex  Banach  algebra  with  unit  e  in  which  each  non-zero  

element  in   A   is  invertible . Then   A  is  commutative . 

Proof 

    Let   ,x y A . Then  there  exists  unique  ,    ( )   such  that 

                                     ,x e y e     ( Proposition 2.3.9 ) . 

Then 

                    ( ) ( )x y e e   

                    ( ) e   

                    
( )

( ).

e

y x

 


 

Hence   A  is  commutative . 

Theorem 2.3.11 ( Gelfand - Mazur ) [ 10 ] 

     Let   A  be  a complex  Banach  algebra  with  unit  e   in  which  each  non-zero  

element  in  A   is  invertible . Then  A   is   isomorphic  to   . 



 

Theorem 2.3.12 ( Spectral  mapping  theorem  ) [ 10 ] 

     Let   A  be  a complex  Banach  algebra  with  unit  , and   x A . Let  P  be  a 

polynomial  function  with  complex  coefficients  in   A  . Then     

                                     ( ( ) ) ( ( ) )
A A

P x P x  . 

Lemma 2.3.13 

    Let   A  be  a commutative   Banach  algebra  with  unit . Let  x A  and  P  be  

a polynomial  function  such  that   ( ) 0.p x  Then  ( ( ) ) { 0 }.
A

P x   

Proof 

     Let   x A . By  spectral  mapping  theorem ,  

                               ( ( ) ) ( ( ) )A AP x P x   

                                 ( 0 )A  

                                 { 0 }        ( Lemma 2.3.1 )  .                                                                    

Definition 2.3.2 

      Let A  be  a complex  Banach  algebra  with  unit  e . Let  x A .The  spectral  

radius  of   x , denoted  by   ( )A xr  , is  defined  by   

                              ( ) sup ( )
AA x xr         . 

Remarks  

   ( i )  0 ( )A xr     for  all   x . 

   ( ii )  If   ( ) 0A xr   , then  0 ( )
A

x . 

Example 2.3.3 

   Let  
2 2A M   with  complex  entries . 

Let   2 2

0

0

i
x M

i


 
  

 
. 

Then   ( ) { 1 , 1 }.
A

x      

So   ( ) sup { 1 , }A xr   | | | |  

                      1 .    

 



 

Lemma 2.3.14  

  Let   A  be  a complex  Banach  algebra  with  unit   e . Let   x A . Then 

                                                 ( )A x xr   . 

Proof 

    If   | | x   , then   
1

1x


  . 

So   
1

e x


  is  invertible  (  Theorem 2.2.1 )  . 

Since 

            
1

( )e x x e  


    ,  

so   x e  is  invertible  in   A . Thus   ( )A x  . 

So   ( )A x   implies   | | x   . 

Taking  supremum  over   ( )A x  , we  obtain 

                                   
( )

sup ( | | )
xA

x
 




  . 

Hence   ( )A x xr   .     

Lemma 2.3.15 

   Let   A  be  a complex  Banach  algebra  with  unit   e . Let  , .x A n  Then 

                                     ( ) ( )A A

n n
x xr r . 

Proof  

   Let   x A . Then 

                              ( ) sup { | | : ( ) }AA x xr     . 

Therefore 

                              ( ) sup { | | : ( ) }AA

n n
x xr     . 

The  spectral  mapping  theorem  gives  us : 

                            ( ( ) ) ( ( ) )
A A

P x P x   

                                                    { ( ) : ( ) }AP x    . 

Let   ( )
n

P x x . Then 

                                      ( ) { : ( ) }A A

n n
x x     . 

 



 

It  follows  that 

                                     
n

( ) sup { | | : ( ) }AA

n
x xr        

                                                      ( )A

n
xr .  

Theorem 2.3.16 ( Spectral  Radius  Formula ) [ 10 ] 

     Let   A  be  a complex  Banach  algebra  with  unit  e . Let   x A . Then   

                        

1

( ) lim ( 1 , 2 , 3 ,...).A

nn

n
x x nr


       

                                      

1

1
inf ( )

nn

n
x


  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter  Three 

Character  mappings  on  Banach  algebras 

3.1 Character  mappings 

Definition 3.1.1 

    Let   A   be  a complex  Banach  algebra  with  unit . A non-zero  linear    

functional      from   A  onto    is  called  character  if 

                               ( ) ( ) ( ) ( , ).x y x y x y A       

That  is ,    is  a multiplicative  linear  functional  on   A .    

Remark 

  A character  mapping     on  a complex  Banach  algebra   A   is  a scalar  

homomorphism  of   A  onto   . 

Remark 

    Let   A   be  a complex  Banach  algebra  with  unit . Let       be  a character  

mapping  from  A   onto    .  By  linearity  of     , we  have   

        ( ) ( ) ( ) ( , , , ) .x y x y x y A              

We  can  see  that 

       ( i )   ( 0 ) 0  . 

       ( ii )  ( ) ( )x x     (  by  putting   0  )  . 

       ( iii )  Put   1     in  ( ii ) . Then 

                         ( ) ( ) .x x     

                 Thus      is  an  odd  function . 

       ( iv ) Let   1 , 1     . Then 

                      ( ) ( ) ( ) .x y x y      

       ( v )  Let   ix A  and   .i   Then   

                1 1 2 2

1

( ) ( ... )i i n n

n

i

x x x x     


     

                                        
1 1 2 2( ) ( ) ... ( )n nx x x          



 

                                        
1 1 2 2( ) ( ) ... ( )n nx x x          

                                         
1

( ) .i i

n

i

x 


   

We  give  some  examples  of  character  mappings  on  some  Banach  algebras . 

Examples 3.1 

( i ) Define      on      by 

                                 ( ) ( ).z z z    

      Clearly      is  a linear  map  . 

       Let   1 2, .z z  Then   

               
1 2 1 2

1 2

( )

( ) ( ) .

z z z z

z z



 




 

       Hence     is  a character  mapping  . 

( ii ) For  each  [ 0 , 1 ] ,x  define     on   [ 0 , 1 ]C    by   

                           ( ) ( ) ( [ 0 , 1 ] ) .f f x f C    

       Then      is  a character  mapping .   

( iii ) For  each  [ 0 , 1 ] ,x  define     on   [ 0 , 1 ]C


   by   

                           ( ) ( ) ( [ 0 , 1 ] ) .f f x f C


    

        Then       is  a character  mapping  . 

( iv ) Let  ( )A  be  the  disc  algebra . Define      on  ( )A   by 

                              ( ) ( 0 ) ( ( ) ) .f f f A    

        Then      is  a character  mapping  .  

( v ) Let  1a   and  let     be  a complex  number . 

       Define      on 1   by      

                              ( ) n
n

n

a a 


  

   . 

       Then      is  a character   mapping  . 

( vi ) Let  A  be  a complex  Banach  algebra  with  unit  and      be  a character   

         mapping  on   A . Define      on   A #   by  



 

     ( ( , ) ) ( ) ( , ) .x x x A         

      Let  1 2( , ) , ( , )x y A   #
  and  , .    Then   

1 2 1 2( , ) ( , ) ( , ) ( , )( ) ( )x y x y                

                                                               1 2( , )x y            

                                                               
1 2( )x y              

                                                               
1 2( ) ( )x y            

                                                               
1 2( ( ) ) ( ( ) )x y                                              

                                      1 2( , ) ( , ).x y        

Then     is  linear  . 

Also , we  have 

1 2 1 2 1 2( , ) ( , ) ,( ) ( )x y x y y x             

 

                                           
1 2 1 2( )x y y x          

                                                         

                                  1 2 1 2( ) ( ) ( )x y y x          

 

                                        
1 2 1 2( ) ( ) ( ) ( )x y y x            

 

                                           
1 2( ) ) ( ( )( )x y       

 

                                           1 2( , ) ( , ) .( ) ( )x y     

Hence      is  a character  mapping  . 

Remark 

 There  are  some  different  Banach  algebras  with  the  same  character  mappings. 

We  give  some  results  concerning  character  mappings . 

 

 

 



 

Proposition 3.1.1 

 Let     be  a  character  mapping  on  a complex  Banach  algebra  A  with  unit   

e . Then   ( ) 1e  . In  particular , if   1e  , then   ( 1 ) 1 .   

Proof 

    For  some   , ( ) 0 ,x A x   so  we  have 

                  ( ) ( ) ( ) ( ) .x x e x e      

Hence   ( ) 1.e   

Lemma 3.1.2 

    Let     be  a  character  mapping  on  a complex  Banach  algebra  with  unit   

e . Then   ( ) ( ) .      

Proof 

Let       .  Then 

                         ( ) ( . )e      

                                     ( )e   

                                     . 1    (  Proposition  3.1.1 ) 

                                      . 

Lemma 3.1.3 [ 3 ] 

  Let  A  be  a complex  Banach  algebra  with  unit  . Let  x A   and     be  a 

character  mapping  on  A .  Then   

                                        ( ) ( ) .( )x x    

Proposition 3.1.4 

   Let     be  a  character  mapping  on  a complex  Banach  algebra   A  with  unit   

.e  If   x  is  an  invertible  element  of   A , then   ( ) 0x  . 

Proof 

    On  contrary ,  suppose  ( ) 0x  . 

Let  x  be  invertible  element  of   A . 

Then  there  exists   y A   such  that   

                                    .x y y x e   

Therefore 



 

                                    ( ) ( )x y e     

                                    ( ) ( ) 1x y    (  Proposition  3.1.1 )   

                                                           0 1 ,  which  is  impossible  . 

Theorem 3.1.5 ( Gleason , Kahane , Zelazko ) [ 3 ]  

  If     is  a linear  functional  on  a complex  Banach  algebra  A  with  unit  e  

such  that  ( ) 1e   ,  and   ( ) 0x   for  every  invertible  x A  , then   

                             ( ) ( ) ( ) ( , ).x y x y x y A      

That  is ,   is  a character  mapping . 

The  next  theorem , give  us  the  existence  of  character  mappings  on  complex  

Banach  algebras .                                  

Theorem 3.1.6 [ 3 ] 

     Let   A  be  a complex  commutative  Banach  algebra  with  unit . Then  there  

exists  at  least  one   character  mapping  on  A . 

Remark 

     Theorem 3.1.6   is  not  true  in  the  case  of  a real  commutative  Banach  

algebra  with  unit . 

Lemma 3.1.7 

Let       be  a character  mapping  on  a complex  Banach  algebra  A   with  unit . 

Let   , .x A n   Then 

                                    ( ) ( ( ) ) .n nx x    

Proof 

    We  use  mathematical  induction  . 

Let   1 .n   Then   1 1( ) ( )x x  is  true  . 

Now, suppose  it  is  true  for  n k     

                             ( ) ( ( ) ) .
k k

x x         

Now ,  we  shall  prove  that  it  is  true  for   1n k  . 

We  have 

                             
1

( ) ( )
k k

x x x 
      

                                                ( ) ( )
k

x x     



 

                                                 ( ( ) ) ( )
k

x x   

                              
1

( ( ) ) .
k

x 
                                                                                                           

Thus    
1 1

( ) ( ( ) ) .
k k

x x  
                   

Hence   ( ) ( ( ) ) .
n n

x x                   

Corollary 3.1.8 

  Let      be  a character  mapping  on  a complex  Banach  algebra  with  unit . Let 

,x A n   . If   ( )x x  ,  then   ( ) .n nx x   

Proof 

    Let   x A . Then   

                 ( ) ( ( ) )n nx x          (  Lemma  3.1.7 )  

                                =  nx . 

Theorem 3.1.9 [ 3 ] 

    Let   A   be  a complex   Banach  algebra  with  unit   .e  Let      be  a linear  

functional  on   .A  Then       is  a character  mapping  if  and  only  if  ( ) 1e  ,   

and 2 2( ) ( )x x      (  x A )  . 

Theorem 3.1.10  

  Let      be  a character  mapping  on  complex  Banach  algebra  A   with  unit . 

Let   x be  an  invertible  element  in   A  such  that   2 .x x  Then  ( ) 1 .x   

Proof 

   Let   .x A  Then  

                                 2( ) ( )x x   

                                               2( )x       (  Lemma 3.1.7 )  . 

 

So 

                                2( ) ( ) 0 ,x x      

and  we  get 

                                ( ) 1 ( ) 0 .( )x x        



 

Since   ( ) 0x    (  Proposition  3.1.4 ) ,  so   1 ( ) 0 .x   

Hence   ( ) 1 .x   

Theorem 3.1.11 

    Let   A   be  a complex  Banach  algebra  with  unit   e  . Let       be  a character  

mapping  on   A  .  Let   ,x y  be  invertible  elements  in  A  . Then 

                       ( i )   1 1( ) ( ( ) )x x    . 

                       ( ii )   1 1 1( ( ) ) ( ) ( ) .x y y x      

Proof 

( i )  Let   x  be  an  invertible  element  in   A  .  Then  there  exists   1x A    

such  that   1 1 .x x x x e    

So    1( ) ( ) 1 .x x e     

Hence  1( ) ( ) 1 .x x     

Thus   1 1( ) ( ( ) )x x    . 

 ( ii )    Let   ,x y A  . Then   

                             1 1 1( ( ) ) ( )x y y x     

                                                       =  1 1( ) ( )y x    

                                                       =  1 1( ) ( )y x        (  By  ( i )  ) .  

Theorem 3.1.12 

    Let   h   be  a homomorphism  mapping  from  a complex  Banach  algebra  A  

with  unit  onto  a complex  Banach  algebra  B  with  unit . If      is  a character  

mapping  on   B , then  h  is  a character  mapping  on  A .  

Proof 

    The  linearity  of   h   follows  by  the  linearity  of   h   and     . 

 Let   ,x y A  . Then 

                            ( ) ( ) ( ( ) )h x y h x y   

                                                         =  ( ( ) ( ) )h x h y  

                                                         ( ( ) ) ( ( ) )h x h y   

                                                         =  ( ) ( ) ( ) ( ) .h x h y   



 

This  completes  the  proof . 

Lemma 3.1.13 

    Let   1   and   2   be  character  mappings  on  a complex  Banach  algebra   A  

with  unit   1 .e   Then   1   and   2   are  linear  independent  . 

Proof 

   Let   
1 2,c c  be  constants . Suppose 

                       
1 21 2 0 ( 1 ) .c c    

Then    
1 21 2c c    and  so 

             
1 21 2( 1 ) ( 1 )c c   . 

Since    1 2( 1 ) ( 1 ) 1 ,    so   
1 2 .c c   

Equation  ( 1 )  becomes   

            
1 1 2( ) 0 .c     

Since 1 2 0   ,  so  we  obtain   
1 0c   and   hence   

2 0 .c   

Hence   1  and  2  are  linear  independent  . 

Theorem 3.1.14 

    Let   1   and   2   be  character  mappings  on  a complex  Banach  algebra   A  

with  unit   1 .e   If  there  exists  a non-zero  constant   c   such  that  1 2c    , 

then   1 .c     

Proof 

   For  the  technique  of  the  proof  we  have  two  methods : 

Method  ( 1 ) : 

    Let   1 2c   . Then 

                1 2( 1 ) ( 1 ) ,c   and  so   1 .c   

Method  ( 2 ) : 

    Let   .x A  Then 

                 
2 2

1 1( ) ( ) .x x 
 

 

 



 

We  obtain   

                  

2 2

2

2

2 1

1

2

( ) ( )

( ( ) )

( ( ) )

c x x

x

c x

 











 

                                       =  
2 2

2 ( ) .c x  

Therefore   2 2

2( ) ( ) 0 .c c x   

Since   
2

2 ( ) 0x   ,  so   2 0 , ( 1 ) 0 ,c c c c     since   c   is  not  zero , so   

1 .c   

Theorem 3.1.15 [ 5 ] 

   Let      be  character  mapping  on  a complex  Banach  algebra  with  unit  e . 

Then    is  continuous  and   1 .   

Lemma 3.1.16 

   Let      be  character  mapping  on  a complex  Banach  algebra  with  unit  . 

Then    is  1 1 .  

Proof 

    Let   ,x y A   and   ( ) ( ) .x y   Then  ( ) 0x y     and  so  by 

Theorem 1.13  and  Theorem  3.1.15  we  obtain  0x y    and  so  .x y                                        

Theorem 3.1.17 

   Let      be  character  mapping  on  a complex  Banach  algebra  with  unit  . Let  

nx x  and   ny y   in   .A  Then 

     ( i )  ( ) ( )nx x   . 

     ( ii )  ( ) ( )n nx y x y     . 

     ( iii )  ( ) ( ) ( 0 )nx x      . 

     ( iv )  ( ) ( ) .n nx y x y   

Proof 

     The  proof  follows  by  the  continuity  of      ( Theorem 3.1.15 ) . 

 



 

Lemma 3.1.18 

   Let      be  character  mapping  on  a complex  Banach  algebra  A  with  unit  . 

If   ( )nx  is  a Cauchy  sequence  in   A , then   ( )nx  is  Cauchy  in    . 

Proof 

    Let   ( )nx   be  a Cauchy  sequence  in   A  .  Then  for  each   0  there  

exists  a positive  integer   N   such  that   

                            ( , ) .n mx x n m N    

We  have 

        ( ) ( ) ( )n m n mx x x x       

                                                  n mx x   

                                                   n mx x               ( Theorem 3.1.15 ) 

                                                   .  

Hence   ( ) ( ) .n mx x     

Thus   ( ( ) )nx   is  a Cauchy  sequence  in    . 

Proposition 3.1.19 

   Let      be  character  mapping  on  a complex  Banach  algebra  with  unit  . Let   

.x A Then   

( exp ( ) ) 0 .x   

Proof 

   The  proof  follows  by  Proposition 3.1.4  and  Definition 2.2.2  . 

Theorem 3.1.20 [ 13 ] 

Let      be  a linear  functional  on  a commutative  complex  Banach  algebra   A  

with  unit  such  that   ( exp ( ) ) 0x    for  all   .x A  Then     is    

a character  mapping  on   A  .   

Proposition 3.1.21 

   Let      be  character  mapping  on  a complex  Banach  algebra   A   with  unit  . 

Then  there  no  exist   ,x y A   such  that   x x y y   and   ( ) 1 .x    

 

                                                            



 

Proof 

   On  contrary , suppose  there  exist   ,x y A   such  that   x x y y    and   

( ) 1 .x   We  have 

                              

1 ( ) ( ) ( ) ( )

( )

( ) ,

y x x y

x x y

y

   





  

 



 

which  is  impossible  . 

Proposition 3.1.22 

   Let      be  character  mapping  on  a complex  Banach  algebra   with  unit  . 

Let   x A  such  that   ( ) 1 .x   Then 

                             ( ) 2 ( ) ( ) .a a x a a A                                                                 

Proof 

  Let   , .a x A  Then   

                           

( ) ( ) ( )

( ) ( ) ( )

2 ( ) .

a a x a a x

a a x

a

  

  



  

 



 

  

3.2  Kernals  of  Character  mappings 

Definition 3.2.1 

   Let      be  a character  mapping  on  a complex  Banach  algebra  A   with  unit   

e .The  kernal  of      , denoted  by   ker ( )  , is  defined  by 

                                    ker ( ) { : ( ) 0 }.x A x     

Remarks 

    ( 1 ) Note  that   0 ker ( )   since   ( 0 ) 0   . So   ker ( )   is  non-empty . 

    ( 2 ) ker ( )  is  a subspace  of   A . 

 



 

Theorem 3.2.1 

   Let      be  character  mapping  on  a complex  Banach  algebra  A   with  unit  . 

       ( i )  If   ker ( )x   , then   ker ( ) ( ).nx n    

       ( ii )  If   a A   and   ker ( )x   , then   ( ) 0.a x   

       ( iii )  If   a A  , x A  such  that   ( ) 1x   , then   ker ( ).a a x    

Proof   

    ( i )  Let   ker ( ).x  Then   ( ) 0x  , since   ( ) ( )n nx x   , so 

            ( ) 0nx  , and  hence   ker ( )nx  . 

 

   ( ii )  Let   a A  , ker ( )x   . Then 

                                        
( ) ( ) ( )

0 .

a x a x  


   

   ( iii ) Let   a A . Then 

                                  

( ) ( ) ( )

( ) ( ) ( )

0 .

a a x a a x

a a x

  

  

  

 



 

            Hence   ker ( ).a a x    

Lemma 3.2.2 

   Let      be  character  mapping  on  a complex  Banach  algebra  A  with  unit  . 

Let   , \ ker ( ) .a A x A    Then   
( )

ker ( ) .
( )

a
a x

x





                                               

Proof 

    Let   a A   and   \ ker ( )x A  . Then   

                   
( ) ( )

( )
( ) ( )

( )( )a a
a x a x

x x

 
  

 
    

                                                    

( )
( ) ( )

( )

0 .

a
a x

x


 


 

  



 

It  follows  that 

                                       
( )

ker ( ) .
( )

a
a x

x





   

Lemma 3.2.3 

  Let      be  a character  mapping  on  a complex  Banach  algebra  A  with  unit  

e . Let  x A  . Then   

( ) ker ( )x x e   . 

Proof 

   Let  x A . Then 

     ( ( ) ) ( ) ( ( ) )x x e x x e        

 

                                     

( ) ( ) ( )

( ) ( )

0.

x x e

x x

  

 

 

 



 

 So    ( ) ker ( ) .x x e    

Notation 

    Let   A   be  a complex  Banach  algebra  with  unit . Let   
A
  denote  the  set  of  

all  character  mappings  on   A . 

Theorem 3.2.4 [ 13 ] 

   Let   A   be  a commutative  complex  Banach  algebra  with  unit  . Let   M  be  a 

maximal  ideal  of   A . Then  there  exists   
A

    such  that 

                             { : ( ) 0 }.M x A x    

Conversely , for  any   
A

    , then 

                         { : ( ) 0 }x A x   is  a maximal  ideal  of   A . 

Lemma 3.2.5 

   Let   A  be  a complex  Banach  algebra  with  unit   1.e  Then  ( )
A

x    if  

and  only  if    ( )x   for  some   
A

    . 



 

Proof 

   If   ( )
A

x  , then  there  exists   y A   such  that 

                                   ( ) 1 .x e y   

So  it  follows  that 

                                   ( ) ( 1 )( )x e y    , 

and  so   

                                   ( ) ( ) 1 .x e y      

Therefore 

                                   ( ) 0 ,x e     

 

                                   ( ) ( 0)x e    . 

Hence   ( ) .x     

Remark  

 Let   A  be  a complex  Banach  algebra  with  unit   e . Let   x A . Then 

                            r ( ) sup { | | : ( ) } .
A A

x x     

Lemma 3.2.5 ,  gives  us   

                            r ( ) ( | ( ) | ) .sup
A

A

x x





 

  

Lemma 3.2.6 

  Let   A  be  a complex  Banach  algebra  with  unit   e . Let   x A and  
A

    

with   ( ) 0 .x   Then   r ( ) 0 .
A

x 
 

Proof 

   Let  x A . Then 

                         r ( ) ( | ( ) | ) .sup
A

A

x x





  

Let   ( ) 0 .x   Then 

                                  r ( ) 0 .
A

x 
 

 

 



 

Theorem 3.2.7 

  Let   A  be  a complex  Banach  algebra  with  unit   e . Let   ,x y A  and  

   . Then 

                                 ( i )    r ( ) | | r ( ) .
A A

x x   

                                 ( ii )  r ( ) r ( ) r ( ) .
A A A

x y x y    

                                 ( iii ) r ( ) r ( ) r ( ) .
A A A

x y x y  

Proof 

    Let  ,x y A  and      . Then    

( i )               r ( ) ( | ( ) | ) .sup
A

A

x x





  

                 r ( ) ( | ( ) | )sup
A

A

x x


  


  

                                  ( | | | ( ) | )sup

A

x


 


  

                                  | | ( | ( ) | )sup

A

x


 


  

                 | | r ( ).
A

x  

( ii ) r ( ) ( | ( ) | )sup

( | ( ) ( ) | )sup

A

A

A

x y x y

x y







 





  

 

 

                   

( | ( ) | ) ( | ( ) | )sup sup

r ( ) r ( ) .
A A

A A

x y

x y

 

 
 

 

 

 

  ( iii )     r ( ) ( | ( ) | )sup
A

A

x y x y





  

                                 ( | ( ) ( ) | )sup

A

x y


 


  



 

                                 ( | ( ) | | ( ) | )sup

A

x y


 


  

                

( | ( ) | ) ( | ( ) | )sup sup

r ( ) r ( ) .
A A

A A

x y

x y

 

 
 





 

Definition 3.2.2 

     Let   A  be  a commutative  complex  Banach  algebra  with  unit . The  radical  

of   A  is  defined  by  

                           rad  ( ) ker ( ) .
A

A





    

If    rad  ( ) { 0 }A   , then   A  is  called  semi- simple . 

Examples  3.2 [ 3 ] 

( i ) 
1

[ 0 , 1 ]C   is  a semi-simple  Banach  algebra . 

( ii )  The  disc  algebra   ( )A   is  a semi-simple  Banach  algebra . 

( iii )   the  space  of  all  bounded  sequences . 

         Then      is  a semi-simple  Banach  algebra . 

Lemma 3.2.8 

    Let   A  be   commutative  complex  Banach  algebra  with  unit   .e Let   x A . 

Then  x  is  in   the  radical  of   A  if  and  only  if   ( ) 0x   for  all   .
A

  
 

Proof 

    Let   x  rad ( )A  . Then 

                       ker ( ) ,
A

x





  

if  and  only  if   ker ( )x  for  all   
A

   . 

If  and  only  if   ( ) 0x  . 

Corollary 3.2.9 

   Let   A  be  a commutative  complex  Banach  algebra  with  unit  .e Let   x A . 

Then  x  is   in  the  radical  of   A  if  and  only  if   r ( ) 0.
A

x    



 

Proof 

    Let   x  rad  ( )A  if  and  only  if  

              ( ) 0x   for  all   
A

   ( Lemma 3.2.8 ) , 

if  and  only  if    r ( ) 0 .
A

x                     

Theorem 3.2.10 [ 3 ] 

    If    : A B   is   homomorphism  of  a complex  Banach  algebra  A  with  

unit  into  a semi-simple  commutative  complex  Banach  algebra  B  with  unit , 

then      is  continuous . 

 

3.3  The  Gelfand  transforms 

Definition 3.3.1 

    Let   A  be  a complex  Banach  algebra  with  unit . For  each   ,x A we  

define  the  Gelfand  transform   x  of   x  by 

                               ( ) ( ) ( ).
A

x x      

Then   x  is  a continuous  complex - valued  function  from   
A
  into    . 

  We  give  some  results  concerning  Gelfand  transforms . 

Lemma 3.3.1 

   Let   A  be  a complex  Banach  algebra  with  unit . Then  the  Gelfand  

transform   x x  is   homomorphism . 

Proof 

    Let   ,x y A ,     and 
A

   . Then 

                        ( ) ( ) ( )x x     

                          ( )x   

                                               ( )x   . 

and  we  have   



 

                       

( ) ( ) ( )

( ) ( )

( ) ( )

x y x y

x y

x y

 

 

 

  

 

 

  

                                                  ( ) ( )x y   . 

Thus   x   is  linear . 

Also ,   ( ) ( ) ( )x y x y   

 

                                      ( ) ( )x y   

 

               

( ) ( )

( ) ( ).

x y

x y

 







  

Hence   x x   is  homomorphism . 

Lemma 3.3.2 

   Let   A  be  a complex  Banach  algebra  with  unit . Let   .x A Then  the  

Gelfand  transform   x x  is  one-one . 

Proof 

   Let   1 2 1 2( ) ( ) ( , )
A

x x       . Then 

         
1 2( ) ( ) ,x x   and  so   

1 2 .      

Lemma 3.3.3 

   Let   A  be  a complex  Banach  algebra  with  unit . If   x is  invertible  in  A , 

then   ( ) 0x     for  all 
A

   .  

Proof 

    Let   x  be  an  invertible  element  in   A . Then 

               ( ) 0x     for  all 
A

     ( Proposition 3.1.4 ) . 



 

Hence  ( ) 0x    . 

Lemma 3.3.4 

  Let   A  be  a complex  Banach  algebra  with  unit . Let  x A  and  
A

   . 

Then   ( ) ( ) .AA
x x                                           

Proof 

   Let  
A

   . Then  

                             

( ) { ( ) : }

{ ( ) : }

( ).A

A A

A

x x

x

x

 

 



   

  



 

Lemma 3.3.5 [ 6 ] 

   Let   A  be  a complex  Banach  algebra  with  unit . Let  x A  and  
A

   .  

Then  

                                    .

A

x x

A




  

Proof 

    Let   ,x A
A

   . Then 

                ( ) ( )x x x        

It  follows  that 

                         .
AA

x x


  

Theorem 3.3.6 

   Let   A  be  a commutative   complex  Banach  algebra  with  unit . Let  x A . 

Then   

                    ( ) 0A xr    if  and  only  if   0.x   

Proof 

     Let    ( ) 0A xr   . Then   ( ) 0x   . 



 

                    ( ) ( ) 0.x x    

Conversely , let   ( ) 0.x    Then 

                      ( ) 0x    and  so   ( ) 0A xr   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter  Four 

Banach  algebras  with  involutions 

4.1  Banach  star  algebras 

Definition 4.1.1    

     Let  A  be  a complex  algebra . A mapping   *x x   of   A   into   A   is  

called  an  involution  on   A   if  it  has  the  following  properties  for  all   

, , :x y A    

              ( i ) * * *( )x y x y     

             ( ii ) * *( )x x    

             ( iii ) * * *( )x y y x   

             ( iv ) * * .x x   

Axioms  ( i )  and  ( ii )  define  a mapping   *x x   as  linear  conjugate . 

Axiom ( iv )  implies  that  the  involution  is  onto mapping . 

Remarks   

   Let   A   be  a complex  algebra  with  involution   *  .  Let   , .x y A  Then    

( i ) * * * *( ) .x x   

( ii )  * * *( ) .x y x y    

( iii )  Let   .i  Then   * * *( )x i y x i y   . 

( iv )  In  general ,  * * .x x x x  

Definition 4.1.2 

     A complex  algebra   A   with  an  involution   *    is  called  a star  algebra  or  

an  algebra   with  involution  . 

Remark 

   Let   A  be  a star  algebra . Then 

                                        * *
0 0.  

 



 

Lemma 4.1.1 

   Let   A   be  a star  algebra  . Then   *0 0.        

Proof 

              * * *0 ( 0 . 0 )  

                   * * *0 . 0  

                   *0 . 0  

           0 .    

Remark 

   Let   A  be  a star  algebra  with  unit   e . Then   
* *

.e e  

Lemma 4.1.2       

     Let   A   be  a star  algebra  with  unit   .e  Then   * .e e        

Proof 

      Let   e   be  the  identity  element  of   A . Then 

                

* *

* * *

* *

.

.

( . )

e e e

e e

e e







 

 

                      * *( )e  

 

                      

**

.

e

e





 

Hence   * .e e  

Remark 

   In  particular , if  1e  , then   *1 1 .  

 

 



 

Examples 4.1 

( 1 )  Let   1 [ 0 , 1 ]f C  . 

       Define   *f   on   1 [ 0 , 1 ]C   by   

                             *f f . 

         Let   1, [ 0 , 1 ] , .f g C    Then 

         ( i ) * * *( ) .f g f g f g f g        

         ( ii ) * *( ) ( ) .f f f f       

         ( iii ) * * *( ) ( ) ( ) .f g f g g f g f g f     

         ( iv )  
** * * * .( ) ( )f f f f f      

         Hence   f f   defines  an  involution  on  1 [ 0 , 1 ]C  . 

         Thus  1 [ 0 , 1 ]C   is  a star  algebra .   

 ( 2 )  We  define  an  involution  on   ( )A D   by   

                            * ( ) ( ) ( ( ) , ).f z f z f A D z     

         In  the  same  way ,  ( )A D  becomes  a star  algebra .   

( 3 )  Let   ( )T B L H   and   * ( )T B L H  Hilbert  space  adjoint  operator  of      

         T .  

         Let   , ( )T S B L H  . Then 

         ( i )  ( )T S T S      . 

         ( ii ) ( ) ( ).T T      

         ( iii )  ( )T S S T    

         ( iv )  ( )T T    

         Hence    *T T  is  an  involution  .  

         Thus   ( )B L H   is  a star  algebra  .  

( 4 )  Let   n nA M   . 

         Define   *A   on   n nM    by 

                                        * tA A . 

         (  The  complex  conjugate  of  transpose  of   A  ) . 



 

         Let   , .n x nA B M  Then 

         ( i )  * * *( ) ( ) .t t t t tA B A B A B A B A B           

         ( ii ) * *( ) ( ) ( ) .t t tA A A A A           

         ( iii ) * * *( ) ( ) .t t t t tA B A B B A B A B A     

         ( iv )  
** * * *( ) .( )tA A A A    

         Hence   *A A   is  an  involution . 

         Thus   n nM    is  a star  algebra  . 

( 5 )  Let  A  be  a commutative  star   algebra  with  unit  e and  an  involution  *  .                  

        Let  x A  ,     ,  and  ( , )x A  . Define 

                                   * *( , )x x e   . 

        Let   
1 2 1 2, , ,x x A      and   1 1 2 2( , ) , ( , ) .x x A    Then 

( i )  1 1 2 2 1 2 1 2

* *( ( , ) ( , ) ) ( ( , ) )x x x x        

                                                      1 2 1 2

*( ) ( )x x e      

                                                      1 2 1 2

* * ( )x x e      

                                                      1 2 1 2

* *x x e e      

                                                      1 1 2 2

* *( ) ( )x e x e      

                                                      1 1 2 2

* *( , ) ( , ) .x x    

( ii )  Let   .   Then 

                      1 1 1 1

* *( ( , ) ) ( , )x x      

                                                    1 1

*( ) ( )x e     

                                                    1 1

* ( )x e                                                                                                

                                                    1 1

*( )x e    

                                                  1 1

*( , )x   . 

( iii ) 1 1 2 2 1 2 1 2 2 1 1 2

* *( ( , ) ( , ) ) ( , )x x x x x x         



 

                                                    1 2 1 2 2 1 1 2

*( ) ( )x x x x e        

                                             1 2 1 2 2 1 1 2

* * *( ) ( ) ( ) ( )x x x x e        

                                             2 1 1 2 2 1 1 2

* * * * ( )x x x x e        

                                             2 2 1 1

* *( ) ( )x e x e     

                                             2 2 1 1

* *( , ) ( , ) .x x   

( iv ) We  have 

        
* * * *( , ) ( ( , ) )x x   

                             * *( )x e   

                             
* * *( )x e   

                             
*x e   

                             x e   

                             =  ( , 0 ) ( 0 , 1 )x   

                             ( , ) .x   

Hence   A    is  a commutative  star  algebra  with  the  given  involution  .   

We  shall  state  and  prove  some  results  concerning  star  algebras . 

Lemma 4.1.3       

     Let   A   be  a star  algebra  and   .x A  Then   *x x    is  one – one  . 

Proof 

   Let   1 2,x x A  and   let   
1 2

* *x x . Then 

                      
1 2

* * 0x x   . 

Therefore 

                   1 2

* *( ) 0x x       ( Lemma 4.1.1 ) . 

It  follows  that 

                  1 2

* * * *
( ) ( 0 )x x   . 

So                      

                          1 2 0.x x     



 

Thus   
1 2 .x x  

Theorem 4.1.4       

   Let   A   be  a star  algebra  with  unit   e . Let   x A . Then   x  is  invertible  

if  and  only  if   *x  is  invertible  and    1
1 **( ) ( )x x 


 .  

 Proof 

    Let   x  be  invertible  element  in   A . Then 

                                    1 1 .x x x x e    

So 

                                 1 * *( )x x e e     ( Lemma 4.1.2 ) . 

Therefore 

                                  1* *( ) .x x e   

It  follows  that   

                                 11* *( ) ( ) .x x 
   

Conversely , let   *x  be  an  invertible  element  in   A . Then 

                                 
1* *( ) .x x e    

Thus   
1 *( )x x e   and   

1 * * *( ) .x x e   

It   follows  that  1 .x x e   

Hence   x  is  invertible  in   .A  

Lemma 4.1.5       

 Let   A   be  a star  algebra  with  unit   e  . If   x  is  invertible  in   A , then   *x x    

is  invertible . 

Proof 

Let   x  be  an  invertible  element  in   A . Then  *x  is  invertible (Theorem 4.1.4).  

Hence   *x x  is  invertible  ( Theorem 1.5 ) . 

Remark 

    In  the  same  way ,  we  can  prove  that  *x x  is  invertible . 

 

 



 

Lemma 4.1.6 

   Let   A  be  a star  algebra  with  unit  e  . Let  x  be  invertible  in   A . Then 

                                 1 1* *( )x x x x 
 . 

Proof 

  Let   .x A Then  

               

1 1 1

1

* * * *

1* *

1*

1

1

( ) ( )

( ( ) )

.

( )x x x x x x

x x x

e x

e x

x

  

 

















                            

Lemma 4.1.7       

   Let   A   be  a commutative  star  algebra  and   , .x y A  Then 

                                * * * * .x y y x   

 Proof 

              * * *( )x y y x  , 

since  A  is  commutative  , so 

                  * * *( )x y x y    

              * * .y x  

Remark 

   Let   A   be  a commutative  star  algebra . Let   , .x y A  Then 

                 * * * * *( ) .x y y x x y   

Lemma 4.1.8       

  Let   n  . Let   A   be  a star  algebra  and   .x A  Then   

                             * *( ) ( ) .
nnx x  

 



 

Proof 

    We  shall  use  mathematical  induction  

      Let  1n . Then 

                          1 1* *( ) ( )x x    ( ).x A                                                                                                                                          

Now, suppose  it  is  true  for  n k     

                             
**( ) ( )

k k
x x        

We  shall  prove  it  is  true  for   1n k  . We  have 

                             

1 **

* *

* *

1*

( ) ( )

( )

( )

( )

k k

k

k

k

x x x

x x

x x

x













                                                                                                                                             

Thus       * *( ) ( ) .n n
x x  

Definition 4.1.3 

    A complex  normed  algebra  A  with  an  involution   *    is  called   a normed  

star  algebra  .                                        

Definition 4.1.4 

  A complete  normed   star  algebra  is  called  a Banach  star  algebra . 

Remark 

   An  involution  on  a Banach  star  algebra  may  or  may  not  be  continuous . 

Theorem 4.1.9 [ 3 ] 

  Let   A  be  a commutative  Banach  star  algebra  and  semisimple . Then  every  

involution  is  continuous . 

Proposition 4.1.10 [ 5 ] 

   Let   A  be  a Banach  star  algebra  with  unit . Then 

                         * *exp ( ) ( exp ( ) ) ( ).x x x A   

Proof 



 

   Let   .x A Then 

                    
0

*
* ( )

( exp ( ) )
n

n

x
x

n








  

                                              
0

*( )n

n

x

n








              ( Lemma 4.1.8 ) . 

                                              *exp ( ) .x  

Corollary 4.1.11 

   Let   A  be  a Banach  star  algebra  with  unit . Let   a A  and   exp ( ) 1x   . 

Then   *exp ( ) 1.x   

Proof 

   * *exp ( ) ( exp ( ) )x x      ( Proposition 4.1.10 ) . 

                     *( 1 )  

                     1 .  

Theorem 4.1.12 

   Let   A  be  a Banach  star  algebra  with  unit  e  . Let  , x A   . Then  

( )A x     if  and  only  if   
*( )A x   . 

Proof 

  Since   x  is  invertible  in   A  if  and  only  if  *x  is  invertible  ( Theorem 4.1.4 ) 

, and 

                           1 1* *( ) ( )x x   . 

Let   ( )A x  . Then 

x e  is  not  invertible  in   A   if  and  only  if *( )x e   is  not  invertible  

in   .A  So 

                           * * *( )x e x e     

                                                *x e    is  not  invertible  in  .A  

Hence   
*( )A x  . 

 

 



 

4.2  Hermitian  and  Normal  elements               

Definition 4.2.1 

     Let   A   be  a star  algebra  . An  element   x A   is  called  hermitian   

(  or  self – adjoint  )  if     

                                                 * .x x  

Examples 4.2.1 

  ( i )  0  is  hermitian  since   *0 0     ( Lemma 4.1.1 ) . 

  ( ii )  e   is  hermitian  since   *e e   ( Lemma 4.1.2 ) . 

  ( iii ) The  identity  operator  I   of   ( )B L H  is  hermitian  since   *I I  

  ( Theorem 1.32 ( v ) ) . 

Remark 

   Let   A  be  a star  algebra  . Let   
1 2, , .. , na a a be  hermitian  elements  in  A . 

Then 

                               1 1 2 2

* * *, , ... , n na a a a a a     . 

Therefore 

                                        
1 1

*
k k

n n
n n

a a
 

   

Lemma 4.2.1 

   Let   ( )T B L H  . Then   *( )T T I   is   hermitian . 

Proof 

             * * * * *( ) ( )T T I T T I     

               

* ** *

* .

T T I

T T I

 

 
                               

Hence  *( )T T I  is  hermitian  .                           

Lemma 4.2.2 

 Let  A  be  a star  algebra  and   .x A Then  x  is  hermitian  if  and  only  if  *x  

is  hermitian . 

 



 

Proof 

   Let   x  be  hermitian  . Then   

                                                   * .x x  

So 

                              * * * * *( ) .x x x x    

Hence   *x   is  hermitian . 

Conversely , let   *x be  hermitian . 

 Then 

                               * * *( ) .x x   

So 

                               
* * * * *( ) .x x x x      

Hence  x   is  hermitian .   

Theorem 4.2.3       

   Let   A   be  a star  algebra  and  let   ,x y A   be  hermitian  . Let  ,   . 

Then  

                                      ( i )   x y  

                                     ( ii )   x  

                                     ( iii )  x y     

are  hermitian .  

Proof 

( i )     Let   ,x y A   be  hermitian . Then 

                                   * *, .x x y y   

Then 

                                   
* * *( )

.

x y x y

x y

  

 
    

Hence   x y   is  hermitian  . 

( ii )     Let   x A  and   .   Then 

       
* *( )

.

x x

x

 






 



 

Hence    x  is  hermitian . 

( iii )   The  proof  follows  by  ( i )  and  ( ii )  .             

Theorem 4.2.4       

    Let   A   be  a commutative  star  algebra .  Let   ,x y be  hermitian  elements  

in   A . Then   x y  is   hermitian . 

Proof 

   Let   ,x y  be  hermitian  in   A . 

 Then 

                                   *x x   and   * .y y  

We  have 

                                     

* * *( )

.

x y y x

y x

x y







 

Lemma 4.2.5 

  Let   A  be  a star  algebra  and   ,x y A . If   x y  is  hermitian  and  a non-

zero  element   x   is  hermitian  , then   y  is  hermitian . 

Proof 

    Let   x y  be  hermitian  and   x  be  a non-zero  hermitian  element  in   A . 

Then  

                                   *( )x y x y  

We  have 

                                  * * *( )x y y x   

                                                 * .y x                               

We  obtain 

                                   *y x x y . 

It  follows  that   * .y y  

Hence   y  is  hermitian . 

 

 



 

Lemma 4.2.6 

Let   n    and  let  A   be  a star  algebra  and  x A . Let  x  be  hermitian  

element . Then   nx   is  hermitian . 

Proof 

   The  proof  follows  By  mathematical  induction . 

Theorem 4.2.7       

    Let   A   be  a star  algebra  and   .x A  Then   *x x   is  hermitian .   

Proof 

    Let   .x A Then 

                      * * * * *( ) ( )x x x x    

                                           *x x   

                                           * .x x   

Remark 

    Let   .x A Then 

                             
* ** * *( )x x x x    

                                                 * .x x   

Hence   *x x is  not  hermitian .  

Theorem 4.2.8       

    Let   A   be  a star  algebra  and   .x A  Then   *x x and   *x x   are  

hermitian .  

Proof 

    
** * * *( )x x x x   

          * ,x x  

and  also , we  have   

          
** * * *( )x x x x  

           * .x x  

Remarks 



 

  Let   A   be  a star  algebra  and   .x A  Then   

   ( i )  i x   is  not  hermitian  since 

                  * *( ) .i x i x   

   ( ii )  *( )i x x is  hermitian  since   

            * * * *( ( ) ) ( ) ( )i x x i x x     

             *( ) ( )i x x    

             *( ) .i x x   

Remarks 

    Let   A   be  a star  algebra  and   .x A  Let   
*

.
2

x x
u


   

Then      

                           

* *
*

* **

( )

2

2

x x
u

x x







 

                            

*

2

.

x x

u






 

Hence   u   is  a hermitian  element  in   .A    

Let    
*

.
2

x x
v


  Then  

                         

* *
*

* **

*

( )

2

2

( )

2

.

x x
v

x x

x x

v







 


 

  



 

Hence   v   is  not  hermitian  . 

Let   .i   We  have 

                       
* *

*( ) ( )

2 2
( )i x x i x x  

  

                                                          
*( )

.
2

i x x 
  

Hence    
*( )

2

i x x 
   is  hermitian  . 

Theorem 4.2.9 [ 3 ] 

  Let   A  be  a star  algebra  and   x A . Then   x  has  a unique  representation 

                                   ( , ),x u i v u v A    

where   u  and   v  are  hermitian .  

Proof 

   Let   
*

2

x x
u


 and     

*( )

2

i x x
v

 
 . 

Then   u   and   v  are  hermitian  and  we  obtain  

                                     ( , ) .x u i v u v A    

For  uniqueness , suppose  x u i v   ( u  and  v   are  hermitian , 

( ,u v A    )  .Then 

                                      u i v u i v     

                                       ( )u u i v v    . 

Put  .w v v   Then   i w u u    . By  Theorem 4.2.3  .We  get  w  and  i w  

are  hermitian . We  have 

                             * *( ) .i w i w i w i w      

Hence   0w   and  so   v v   and   .u u   

This  completes  the  proof  . 

 

 

 



 

Definition 4.2.2 

   Let   A   be  a star  algebra . An  element   x A   is  called  normal  if 

                                                 * * .x x x x   

Examples 4.2.2 

( i )  0  is  normal  since 

                                  *0 0 0,  

        and      

                                *0 0 0 .               

( ii ) The  unit  element   e   in  a star  algebra   A   is  normal  since 

                             * ,e e e e e   

        and                   

                            * .e e e e e    

( iii )  Let   2 2A M   . 

         Define   *A  on  2 2M    by 

                                      * tA A  . 

         Let       2 2

1 1
.

3 2
A M

i i


 
  

 
  

         Then   * 1
.

1 3 2

i
A

i

 
  

 
 

         So 

               * 1 1 1

3 2 1 3 2

i
A A

i i i

   
    

    
 

 

                         
2 3 3

,
3 3 14

i

i

 
  

 
 

         and 

               * 1 1 1

1 3 2 3 2

i
A A

i i i

   
    

    
 

 



 

                         
2 3 3

.
3 3 14

i

i

 
  

 
 

         Thus   * * .A A A A  

          Hence  A   is  normal  . 

         Let   2 2

1

0 1

i
B M 

 
  
 

 . 

         Then   * 1 0
.

1
B

i

 
  

 
 

 

 

         So 

              

* 1 1 0

0 1 1

2
,

1

i
B B

i

i

i

   
    

   

 
  

 

 

         and 

              * 1 0 1

1 0 1

i
B B

i

   
    

   
 

             
1

.
2

i

i

 
  

 
 

         Since   * *B B B B  ,  so   B   is  not  normal  . 

Theorem 4.2.10 

   Let   A  be  a star  algebra  with  unit  and   x A . Then   x  is  normal  if  and  

only  if    1x    is  normal . 

Proof 

   Let   x  be  normal  in   A . Then 

                 
1 * 1 * 1 1

( ) ( )x x x x
   

      ( Theorem 4.1.4 ) 

 

                 
* 1

( )x x


  

 



 

                 

* 1

1 * 1

( )

( )

x x

x x



 





 

                                      

                                      
1 1 *

( ) .x x
 

  

Hence   
1

x


  is  normal . 

Conversely , let   1x    be  normal . Then   1 1( )x    is  normal . 

Hence   x  is  normal  .   

 

Lemma 4.2.11 

     Let   A   be  a star  algebra  and   x A . If   x  is  hermitian , then   x  is  

normal .  

Proof 

     Let   x  be  hermitian  in   .A  Then 

                                           *x x x x    

                                                     2x  

and 

                                           *x x x x    

                                                     2x  . 

Remark 

    Note  that , normal  element  in  a star  algebra  A   need  not  be  hermitian . 

For  example : 

   Define   ( )T B L H   by     

                                      2 ,T i I  

where   :I H H  is  the  identity  operator  . Then 

                                       * 2 ,T i I    

and  so   

                                  * * 4 .T T T T I     

Hence   T   is  normal  . 



 

But   * .T T  So   T  is  not  hermitian . 

 

4.3  B*-algebras 

Definition 4.3.1 

   Let   A   be  a Banach  star  algebra  such  that    

                                   
2* ( ).x x x x A   

Then  A   is  called  a *B  algebra . 

 

Examples 4.3 

( i ) Let   X  be  a compact  Hausdorff  space . Let  ( )C X  denote  the  algebra  of         

       all  complex – valued  continuous  functions  on   X .      

       The  norm  on   ( )C X   is  given  by 

                        sup ( ( ) ) ( ( ) ) .
x X

f f x f C X


      

       The  involution  on   ( )C X  is  given  by 

                                 * .f f  

       Let   ( ).f C X  Then 

                                

*

2

2

2

sup ( | ( ) ( ) | )

sup ( | ( ) | )

sup ( | ( ) | )

.

( )

x X

x X

x X

f f f x f x

f x

f x

f















 

       Thus  ( )C X   is  a *B   algebra  . 

( ii )  Let   H  be  a complex  Hilbert  space . Let   ( )T B L H  and  Let   *T  be  

         the  Hilbert  space  adjoint  of   T . 

         Then   *T T   is  an  involution  on   ( )B L H . Then 

                                  
2* .T T T  

         Hence   ( )B L H  is  a *B  algebra . 



 

( iii ) Let    be  the  space  of  all   bounded  sequences . The  norm  on    is   

         given  by   

                         sup { }.na a n      

         Let   , .a b   We  define 

                                      
1( )n n na b a b 

   . 

         Define  involution   *    on     by 

                                 
*

1( )n na a

  . 

         Then     is   a *B  algebra .      

Theorem 4.3.1 [ 19 ] 

   Let   A  be  a *B  algebra . Then  the  involution  on   A  is  unique . 

We  state  and  prove  some  results  concerning  *B  algebras .   

Lemma 4.3.2 

   Let   A  be  a *B  algebra  with  unit  1e   . Then   1 1.  

Proof 

    2 *1 1 . 1 1      (  since  *1 1  ) . 

It  follows  that   1 1.   

Theorem 4.3.3 

   Let   A  be  a *B  algebra  and   .x A  Then  

                                 ( i )   *x x . 

                                ( ii )   * *x x x x  . 

Proof 

( i )     Let   .x A Then 

                
2 *

* .

x x x

x x




 

Hence           * .x x  

It  follows  that 

                    
* **x x x   . 



 

Thus   * .x x  

( ii )   Let   .x A Then 

                         
2*x x x .                ( 1 )   

We  have 

                      *x x x x           (  By ( i )  )  

                                          
2

x  .                   ( 2 ) 

From   ( 1 )  and  ( 2 ) , we  obtain 

                      * * .x x x x  

 

Lemma 4.3.4 

   Let   A  be  a Banach  star  algebra . Let  x A such  that   *x x  and   

* * .x x x x Then   A  is   a *B  algebra . 

Proof 

    Let   .x A Then 

                

* *

2
.

x x x x

x x

x







 

Hence   A   is   a *B  algebra . 

Theorem 4.3.5 [ 11 ] 

   Let   A  be  a *B  algebra . Let  x A  . If   nx x   in  A , then   
* *
nx x .                            

Theorem 4.3.6 

   Let   A  be  a *B  algebra . Let   x  be  hermitian  in   A . Then 

                            ( i )   ( )
A
r x x .  

                            ( ii )  
2*( )Ar x x x . 

                            ( iii )    *( ) ( )A Ar x r x .                              

Proof 

( i )   Let   x  be  hermitian  in   A . Then 



 

                                      * .x x   

So 

                         
2 2* .x x x x   

Since   2 4 8, , , ...x x x  are  all  hermitian , we  obtain 

                           4 2 2x x  

                                       4 .x  

It  follows  that 

                         2 2
n n

x x    (  1 , 2 , 3 , ...)n   . 

We  obtain 

                               
mmx x  for   2 .nm   

 

Therefore 

                            
1

( ) lim ( )A

m m

m
r x x

 
  

                                         
1

lim ( )m

m

m
x

 
  

 

                                         .x  

 ( ii ) Let   x  be  hermitian  in   A . Then   *x x   is  also  hermitian  ( Theorem  

4.2.8 ) .  By  Theorem 4.3.6 , 
* *( )Ar x x x x . 

Since   A  is  a 
*

B - algebra , so 

                       
2* .x x x  

It  follows  that   

                      
2*( ) .Ar x x x  

 ( iii )   Let   x  be  hermitian  in   A . Then   

                               ( )Ar x x       ( Theorem 4.3.6 ) . 

Since  *x   is  hermitian  ( Lemma 4.2.2 ) , so 

                             
* *

( )Ar x x . 

Since   A  is  a 
*

B - algebra , so 



 

                                 
*

x x         ( Theorem 4.3.3 ) . 

Hence  *( ) ( ) .A Ar x r x  

Theorem 4.3.7 

   Let   A  be  a 
*

B - algebra . Let   x  be  hermitian  in   A . Then 

                          ( i )  * 2( ) ( ) .A Ar x x r x  

                          ( ii ) 
2* *( ) ( ) .A Ar x x r x  

Proof 

   ( i )   Let   x  be  hermitian  in   A . Then  

                           
2*( )Ar x x x           ( Theorem 4.3.6 ) . 

Since   ( )
A
r x x   ( Theorem 4.3.6 ) , so 

                                  * 2( ) ( ) .A Ar x x r x                              

    ( ii )   The  proof  follows  by  ( i )  and  Theorem 4.3.6 . 

Definition 4.3.2 

   A  homomorphism  mapping   h    from  a Banach  star  algebra   A   into   

a Banach  star  algebra   B   is  called   a star  homomorphism  if 

                                      * *( ) ( ( ) ) ( ).h x h x x A   

Proposition 4.3.8 

   Let   A   be  a commutative  Banach  star  algebra  with  unit . Let   x  be  in  the  

radical  of   A . Let      be  a star  homomorphism . Then   *( ) 0 .Ar x   

Proof 

   Let   x  rad ( )A  . Then 

                      ( ) 0x     for  all   
A

       (  Lemma 3.2.8 ) . 

                       
* *( ) ( ( ) )supA

A

r x x





      

                                       =  *( ( ( ) ) )sup

A

x



 

   

                                       =  0      (  since   *0 0 (  Lemma 4.1.1 )  ) . 

 



 

Theorem 4.3.9 (  Gelfand - Naimark ) [ 19 ] 

   Let   A  be  a commutative  
*

B - algebra . Let   x x  be  the  Gelfand  

transform . Then   

                                     
*

( ).( ) x x Ax


   

In  particular , x  is  hermitian  if  and  only  if   x  is  a real – valued  function . 

Theorem 4.3.10 

  Let   A   be  a commutative  Banach  star  algebra  and   x A  . Then   x x   

is  a star  homomorphism . 

Proof 

   Let   .x A  Then  by  Theorem 4.2.9 , x  has  a unique  representation 

                                              ,x h i k   

where   ,h k   are  hermitian  elements  in   A  . 

Then  by  Gelfand – Naimark  Theorem  , ,h k   are  real - valued  functions  on   

A
  . Let   ,

A
x A    . Then 

                            
* *( ) ( ) ( )x h i k    

                                          * *( ) ( )h i k    

                                           =  ( ) ( )h i k    

                                           =  ( ) ( )h i k     

                                           =  
* *

( ) ( )h i k    

                                           
*( ( ) ( ) )h i k    

                                           
*( ( ) ) .x      

Theorem 4.3.11 

    Let   A   be  a commutative  *B - algebra  . Let   x x   be  a star  

homomorphism . Then 

                                 
2*( ) ( ) ( ) .A Ar x x r x x A 

 

 



 

Proof 

   Let   .x A  Then   

                                * *( ) ( ( ) ( ) )supA

A

r x x x x






    

                                                    =  
*

( ( ( ) ) ( ) )sup

A

x x


  



   

                                                    =   ( ( ( ) ( ) )sup

A

x x


  

 

   

                                                    =  
2

( ( ( ) )sup

A

x




 

   

                                                    =  
2

( ) .Ar x
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ةـــــالخلاص  

 
النتائج  ر بنــــاخ و نعطى بعضىالزسالة سىف نناقش هفهىم جب هذهفً     

 الوتعلقة فً هجال جبىر بناخ .

 

 وأٌضا سىف نناقش الوفاهٍن اَتٍة :

           

الذوال الضزبٍة على جبىر بناخ .  -                    

 

ر بناخ .الذوال الارتذادٌة على جبى  -                    

                   

                                                       . B*-   جبىر -  
 

نعطى بعض النتائج والعلاقات الوزتبطة بالوفاهٍن السابقة . سىف  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 شكز وتقذٌز

 
 اعجص عن انتمبء انكهًبد المنبسجخ انتي اعبر ين خلالهب عن يدٍ 

 حعسفبنَ ثفضم الله سجحبنو ًتعبلى لمب ًىجني إّبه ين نعى لاتعد ًلا تحصَ فبلحًد لله ًانصلا

 ًانسلاو عهَ زسٌل الله .
 

 أتمدو ثشكـــــــسُ انعظْى ًايـتـنبنِ انكـــبيم إلى يشسفي انفبضم 

خهْفو انبركِ الأســـــــــــتبذ اندكــــــــتٌز عجدا لله  

يبتو انصجٌزح أثنبء تحضير ىرا انجحث .لمسبعدتو انكجيرح ًتٌجْ  

 في الحمْمخ ىٌ نْس يشسف ثبزش ًزائع فحست نكنو أة ييتى ًيتٌاضع.
 

 اكًب أتمدو ثشكسُ انعظْى إلى أعضبء ىْئخ انتدزّس ثمسى انسّبضْبد انرّن  لبيٌ

 ثتدزّسِ ًيسبعدتِ خلال فترح  دزاستي .
  

. واندز اس َ لمسبعدتهب انثًْنخ طٌال فترحكًب أتمدو بخبنص انشكس إلى أثهو انتصبز انبرغث  

 

 ًأخيرا ، أتمدو ثشكسُ انعظْى ًانعًْك إلى أثَ ً أيِ  ًالى  أخٌتِ  ًأخٌاتِ  

 ً اصدلبئَ انرّن لبيٌا ثدعًِ .
    

 

 

 

 

 

 

                     

 

 



 

                                           
                     

يبنغاسجاهعة   

 كلٍة العلىم

 قسن الزٌاضٍات
 

ر بناخىالنظزٌة العاهة لجب  

 

 مقذم للاستيفاءالجزئى لمتطلبات درجة التخصص العالي

 ) الماجستير( في الرياضيات
 

 يمدو ين

 ًجدُ سعد صبلح انصلاثِ

 إشساف

 الأستبذ  اندكتٌز

خهْفو انبركِ عجد الله  

    

لٍبٍا -بنغاسي   
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