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Abstract 

 

 

 Ideals in a polynomial ring of several variables 

 [       ] are studied. The operations on such ideals are 

computed. This includes radicals, intersections, sums, products 

and quotients. The method used is by Groebner basis together 

with Maple programme. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Introduction 

  

The operations on the ideals in  [       ] including radicals, 

intersections, sums, products and quotients are computed. The method 

used is by Groebner basis together with the software Maple13 for the 

explicit computations of these operations. Some applications of Groebner 

bases are given. These are ideal membership, equality of two ideals and 

elimination theory for solutions of non-linear systems of polynomials 

equations.  

 The thesis contains four Chapters. Chapter zero deals with rings 

and ideals as necessary background. Chapter one studies polynomials of 

several indeterminates. Chapter two studies Groebner basis it's 

computations and applications. Operations on ideals are introduced in 

Chapter three. And Appendix about Maple Programme  is put at the 

end together with a list of used 

 

 

 

 

 

 



 

 

  

Chapter zero                                                           

Rings and Ideals 

   This chapter contains the basic definitions and properties of rings  

integral domains and fields. It also contains the basic properties of ideals 

together with the operations of ideals. 

Definition  

   A ring   is anon empty set with two binary operations addition (+) and 

multiplication (   such that: 

i. (   +) is an abelian group. 

ii.                               . 

iii.                         

                                                    

iv. If                                                         

v. If      Such that                          is called             

a ring with unity. 

Definition  

   A ring   with unity is called a division ring if every nonzero element 

of   is a unit ( has a multiplicative inverse ). 

Definition  



   A commutative ring   with unity is called integral domain if       

                                     [                ]. 

 

Definition  

   A field is anon- trivial commutative ring with unity such that every 

nonzero element has multiplicative inverse. 

Definition 

   Let   be a ring and I a sub ring of    I is called: 

i.  a left ideal if                            

ii.  a right ideal if                            

iii.  an ideal ( two sided ideal ) if                              

Note that left and right ideals are the same if   is commutative. 

Definition  

   Let   be a ring and   an ideal in  . The left cost     {       } 

    {       }   the set of all left cosets of  I in  . Addition and 

multiplication are defined on     as follows: 

                         

                       

The two operations are well-defined.  

Definition  

    A function         between two ring is called homomorphism   if 

for all       we have: 



i.                  

ii.                

The homomorphism is called epimorphism if it is onto. 

It is called monomorphism if it is 1-1. 

The homomorphism is called isomorphism if it is one-to-one and onto. 

      Means that   and    are isomorphic. 

Definition  

  Let          be a ring homomorphism . The kernel of    is defined by 

Ker   = {           }     

Ker   =   ({ ́}). Ker   is an ideal of . 

Theorem(0.1) ( 1
st
 isomorphism theorem) 

   Let          be an onto ring homorphism then            

Types of Ideals 

 Principal Ideal  

   Let   be a commutative ring with unity and    . A principal ideal 

generated by a is defined       

〈 〉   {      }      

Prime Ideal  

   Let   be a commutative ring and   an ideal with      .   is called       

a prime ideal if       implies     or      where       . 

 



Theorem (0.2) 

      is a prime ideal iff     is an integral domain. 

Maximal Ideal  

   Let   be a ring and   an ideal of   with      .   is called                

a maximal ideal of   if there is no ideal . Such that        

i.e the only ideals containing   are   and . 

Theorem (0.3) 

   Let   be a commutative ring with unity. Then   is maximal iff     is 

afield. 

Definition 

   An integral domain in which every ideal is principal ideal is called       a 

principal ideal domain (PID). 

Definition  

   An integral domain D is Euclidean domain if for each non-zero 

element     there exists a non-negative integer      such that  

i. If   and   are non-zero element of   then  

                  

ii. If        with      then there exists elements        

such that        with     or          . 

 

Theorem (0.4) 



   Every Euclidean domain is principal ideal domain. 

Definition 

  A unique factorization domain (UFD) is integral domain   satisfying 

the following properties: 

i. Every non-zero element   in    can be expressed as  

                            Where    is unit and the    are irreducible. 

ii. If   has another factorization  say             where   is 

unit and the     are irreducible  then     and after reordering 

if necessary            are associates for each    

Theorem (0.5)  

   Every principal ideal domain is unique factorization domain. 

Theorem (0.6) 

   Any ED is UFD.  

Operations on ideals  

   Let   be commutative ring with unity. Let   and   be two ideals in     

I) Radical ideal  

 The radical of   is defined by  √  {                           ℤ
 
}  

√  is an ideal containing   . 

The radical   is called ideal if   √     √{ } is called the nil radical of  . 

Proposition  



   √  is an ideal in     

Proof  

   First of all    √  since      √  

Suppose       √               for some      

                          Let,             

      =∑                 
    for each         

Either                         

Thus                   for every K  

Since   is an ideal   it follows that                      √  

Suppose that   √  and      then                    

                         there fore    √ . 

Hence √  is an ideal of    

Examples  

1- Every prime ideal is radical ideal. 

2- √ ℤ = radical    ℤ . 

Radical    = the product of the prime divisors of  . 

e.g.: √ ℤ   ℤ    √ ℤ   ℤ    √  ℤ   ℤ √ ℤ   ℤ   

  

Proportions  

i.                     ℤ
 
       √  √   



ii. √  √√    

iii. √    √√  √    

iv. I is radical iff      is radical. 

(i.e      has no non-zero nilpotent element). 

II) Intersections of ideals  

    {           }  

Proposition  

       is an ideal of    

Proof  

  The set        is nonempty since      and        so 0   I    . 

Let                                            

Since          are ideals  we have  

                                   

Let                       since   is an ideal of  . 

Also     so                  n ideal of   hence        . 

Thus     is an ideal of  . 

Example 

 In ℤ we have 〈 〉  〈 〉  〈 〉 where   is the     of   and  . 

III) Union 

         is not ideal in general but 〈     〉 is the ideal generated by the set 

     . 



Example 

   In ℤ we have〈〈 ℤ〉  〈 ℤ〉〉  〈 ℤ   ℤ〉. 

IV) sums of ideals 

   The sum of         denoted by        is the set  

             {                      }   

Proposition  

                            

Proof  

   We have that        is nonempty since  

0 = 0 + 0                               by defined         and 

      for some            and          . 

Then                                              

          and   are ideals.  

                                   

        and                                      

Hence                       

Thus        is an ideal of    . 

Example 

   In ℤ we have〈 〉  〈 〉  〈     〉. 

 (IV) products of ideals  



   Define the product of two ideals by  

     { ∑                               
   } . 

Proposition  

       is an ideal of      

Proof  

   Consider tow arbitrary element of      say  

                                   

Where                           and                          . 

Ideals are closed under differences and contain 0 .So ideal are closed 

under additive inverse (-).  

That is   if       then –           . 

Thus                            and                          so 

the difference of two elements in     is again in     because it is a finite 

sum of products of the form                       . 

                               

                                           

 

For any         we have                    since   is an ideal  

                Since   is an ideal and  

                                                

                                                



So     is an ideal because it is closed under difference and also closed 

under left and right multiplication by arbitrary element of  . 

Example   

   In ℤ we have 〈 〉〈 〉   〈  〉   

(VI) Quotient of ideals  

   Quotient of        is defined by 

         = {               for each      }  

Proposition  

        is an ideal of     

Proof  

   Let               Then          for all                I for all       

So we have               since   is an ideal  then             

Thus                 

Let          and  ̅       

So          implies     I for all    . 

But  ̅       since   is an ideal  then     ̅       ,    ̅         

Thus      is an ideal of    

 

 

 



Chapter one                                              

Polynomials 

   In this chapter we outline the definitions and basic properties of 

polynomials in single and several indeterminates. 

Polynomial in one Indeterminate 

   Let   be commutative ring with unity and   is an indeterminate (x is a 

symbol not in     

A polynomial in   over   is an expression  

    
       

               Where                are called 

the coefficients of the polynomial and     an integer. 

If      then the polynomial is said to be of degree n  

    
  is called the leading term and     is called the leading coefficient. 

If   = 1 the polynomial is called a monic polynomial. 

A polynomial of degree 0 is called a constant polynomial 

                

A zero polynomial                          . 

Notation  

 [ ]   {   
       

                     }  

The set  [ ] is called the ring of polynomials over   in the indeterminate 

x with coefficients in     

Operations on  [ ]  



   Let          
       

             and  

                         
              [ ]  

(I) Equality of  [ ] 

                                                                   

(II) Addition of   [ ]  

                                    
              

      

                 

Where s is the maximum of m and n                

and               

            [ ] and deg                                     

(III) Multiplication of  [ ] 

                     
           

                    

Where                               

For            

            [ ] and deg (                          . 

Theorem (1.1) 

   If   is a commutative ring with unity  then so is  [ ]  

 

Theorem (1.2) 

    If   is an integral domain  then so is  [ ]   



ℤ[  ] is integral domain. 

Corollary (1.1) 

   If   is a field  then  [ ]is an integral domain.  

  ℚ[ ]  ℝ[ ]    [ ]  ℤ
 
 [ ] are integral domains.  

               [ ] 

Definition  

   Let   be afield and              [ ]               divides       

denoted by     |     if          [ ] such that                 . 

Properties  

1.     |      

2. If     |     and     |       then               

3. If     |     and     |       then     |       

4. If     |       then deg                

5. If     |       then       |             

Theorem (1.3) (division algorithm)  

Let              [ ] with          then   unique polynomials 

    and      such that: 

                     Where                         .  

     is called the quotient and      is the remainder.  

Theorem (1.4) (Remainder)  

   Let F be a field        and          [ ] .  



Then      is the remainder in the division of      by    . 

Definition  

      is called a root or zero of          [ ] if         .  

Theorem (1.5) (Factor)  

   Let   be afield         and          [ ] . 

Then   is a zero of       if and only if     is a factor of       

Theorem (1.6) 

   A polynomial of degree   over afield   has at most   roots in .  

Definition  

  Let                [ ]  Amonic       [ ] is greatest common 

divisor of      and       if  

i.     |          |       

ii. If  ́   |       ́   |             ́   |     .  

We write    (           )       . 

    and      are relatively prime   if     (          )    . 

Theorem (1.7) 

   For               [ ]     (           ) exists and is unique. 

Theorem (1.8)  

       (          )                     For some                [ ]   

Definition  



  Let                [ ]          [ ]  is a least common multiple of 

     and      if : 

i.     |     and     |       

ii.  If     | ̀    and     | ̀      then     | ̀    we write  

    (          )       . 

Theorem (1.9)  

      (          )      (           )            For any 

                [ ]    

Definition  

   A non-constant polynomial in  [ ]is irreducible if it can not be 

factored in  [ ]      a product of two polynomials of lowers degrees. 

Otherwise it is called reducible. 

Theorem (1.10) 

   Let                       [ ] and      irreducible if     |            

then either     |     or     |    .  

 

 

Theorem (1.11)  

   Any non-constant polynomial in  [ ] can be factored in  [ ] into a 

product of irreducible polynomials. 

The product is unique up to the order and units. 

Corollary (1.2)  



    [ ] is     (unique factorization domain). 

Theorem (1.12) 

    [ ] is       for any field  . 

Remark 

   ℤ[ ] is not     . 

Theorem (1.13) 

   If    is a field  then  [ ] is a Euclidean domain with  (    )   deg     .  

Theorem (1.14) 

   Let       [ ]. Then      is irreducible iff 〈    〉 is a maximal ideal 

in  [ ]. 

Operations on ideal in  [ ]  

1. If     |        〈    〉  〈    〉  

2. 〈    〉  〈    〉  〈      (          )〉   

3.  〈    〉  〈    〉  〈          〉 

                                     〈    (           )〉              

4.  〈    〉〈    〉  〈         〉   

      〈 〉   [ ]                

6.  If               then 〈    〉   〈    〉   

Theorem (1.15)  

   Let         [ ] of degree   then  

i.   [ ] 〈    〉⁄  is ring.  



ii.  [ ] 〈    〉  {     
                〈    〉       }⁄   

              {     
                             }      

Theorem (1.16)   (Chinese remainder theorem)  

   Let      be a non-constant polynomial in  [ ] with its factorization 

into distinct irreducible  

     (     )
  

 (     )
  

.  

Then  [ ] 〈    〉  ̃⁄  [ ] 〈     〉
     [ ] 〈     

  〉⁄⁄  . 

Theorem (1.17)   (kroncker) 

   Let      be irreducible over   of degree   then  

i.        [ ] 〈    〉⁄  is a field.  

ii.       [ ] 〈    〉  {     
                 〈    〉      }⁄     

              {     
                             }     

iii. {  〈    〉      } is a subfield of  [ ] 〈    〉⁄     

iv. {  〈    〉      }  ̃    

v.     〈    〉 is a root of      in  [ ] 〈    〉 ⁄   

Remarks  

1. Let      be anon constant polynomial in  [ ]. Then there exists a 

field extension   of F such that E continues  a root of      

2. Let       be an on constant polynomial in  [ ] of degree   then 

there a field extension E of F such that      be factored a product 

of   linear factors     E contains all the roots of     . 

 

 



Multivariate polynomials 

   Let   be a commutative ring with unity and               algebraically 

independent indeterminates over    

A monomial is   
      

  
 
       

  
 
  where                {        } . 

The degree of the monomial is              . 

The total degree of the monomial is                . 

A term is           
        

  
 
where            is the coefficient. 

A polynomial in               over R is a finite sum of terms  

                 ∑         
      

  
 
       

  
 
 . 

The degree of                 is the maximum total degree of its 

monomials. 

Examples  

1-                            
            

  

    
      

        
      

  

is a polynomial of degree 3 in     over R.     

2-                                  is a polynomial of 

degree 5 in       overℤ. 

Notation  

    [             ] is the set of all polynomials in               over    

Equality and addition of polynomial in  [             ] are defined 

coefficient wise. 

Addition in R[         ] is defined as usual. 



Multiplication in  [             ] is defined by using distributive law 

and the rule of exponents. 

    
      

  
 
      

    (  
      

  

 
     

  

 
)  (  

        
     

 
      

     

 
)    

Proposition   

    [         ] is a commutative ring with unity. 

 Another definition of   [         ] 

 [             ]   [           ][  ]      . 

Note that  [             ] is a commutative ring with unity by induction 

on. 

Example 

                           ℤ [   ]   

                              ℤ[ ][ ]  ℤ[   ]   

                                  ℤ [ ][ ]  ℤ[   ] . 

Proposition  

   The two definitions of   [             ] are equivalent.  

Proposition 

    [             ]  ̃  [                      ]   for any permutation 

  of degree   . 

Remarks    

i.    [ ]   [         ]     [             ] , a chain 

of sub rings. 



ii.  If     then [         ]   [         ]. 

iii.  Let I be an ideal of    then  

1-  [         ] is an ideal of  [         ]   

2-  [         ]  [         ]⁄  ̃    ⁄  [         ]   

Proposition  

   If D is an integral domain  then so is D [             ]   

Corollary (1.3) 

  If   is a field then  [         ] is an integral domain. 

Remarks     

i.  [ ] is ED and hence PID and UFD.   

ii.  [         ] is not PID and hence not ED.  

 

 

Example  

   Consider   ℚ[   ]  

〈   〉  ℚ[   ]  Since 〈   〉 contains no constants 

〈   〉 Can not be generated by any          ℚ [   ]  

 ℚ[   ] is not PID. 

Proposition  

   If   is UFD  then so is  [        ]. 

 



Proposition  

   ℤ[         ] is UFD.  

Corollary (1.4) 

  [         ] is UFD for any field     

Remarks  

i. There is no division algorithm in  [       ]. 

ii.     exists and unique in   [             ] . 

iii.                 for sum        [         ] is not valid in 

 [         ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter two                                                        

Groebner Bases 

In this chapter we introduce the general division algorithm and Groebner 

basis for an ideal in  [       ]    Calculations are done by using Maple 

program. 

Monomial Ordering  

Consider    [       ]    Fix an order            on the 

indeterminates             . There are    orders on          .              

A monomial    
    

     
   can be written briefly as    where   

           Thus      
     

       
    Denotes 

  | |              

A monomial ordering is an order   such that: 

i.   is total order   

ii.   is a well order   

iii.  if                         

The following monomial orders are usually used: 

1. Lexicographic order (Lex) 

                 if the left most nonzero entry of     is positive. 

2. Graded Lexicographic order (grlex) 

     If | |  ∑   
 
    | |  ∑    

 
      then               .  

If | |  | |   use           



3. Graded Reverse Lexicographic Order (grevlex) 

   If  | | = ∑   
 
     | |  ∑   

 
    then              .               

If | |   | |               when the right most nonzero entry of  

      is negative. 

Example 

   Let       

Lex:                 

grlex:                 

grevlex:                

Notations 

   Let    [          ]  With a given order on monomials: 

i. Multideg ( ) =max (                         the multidegree 

of . 

ii.                      the leading coefficient of. 

iii.            where                                     

iv.                                         . 

Example  

>  

>  

>  

>   

 

>  

 



>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

 

  



General Division Algorithm  

    Unlike   [ ] the integral domain  [          ] has no division 

algorithm  since  [          ]  is not ED. 

Instead we have general division algorithm which states as follows  

Suppose that there is a monomial order on  [          ]   

If   g1 g2     gm   [          ]  then there are             

 [          ] such that: 

     g1 +   g2+   +  gm +   where no term of   is divisible by any 

of LT (g1)  LT (g2)   …   LT (gm). 

Example  

   Fix        as a lex order F [   ] and  

Let               g1       g2         

Divide   by g1 and then by g2 

                                                                        

                                                                                                     

                                                                                   

                                                                                              

                                                                  

         g1+1g2                          

Now  divide   by g2 and then by g1. 

                                                                         



                                                                                           

                                                                                                  

                                                                                       

                           

                                 

         g2+ g1                        

Note that          are not unique in the two cases above. 

Grobner Bases 

   Let   be an ideal of  [       ]  

Theorem (2.1) (Hilbert Basis) [1] [4] 

   Every ideal in  [       ] has finite generating set   

      〈        〉              [       ]   

  is a monomial ideal if     〈        〉  

i.e   〈                             〉  

Theorem (2.2) (Dickson)[1] [4] 

    Every monomial is finitely generated (by monomials) 

i.e      〈          〉for some             

 

Notations  

         {          { }}. 



〈     〉  〈          { }〉 is a monomial ideal. 

Let   〈g1   gt 〉    gi  [       ]  

〈                〉   〈     〉. 

The equality does not hold in general.  

Definition (Groebner Basis) 

  {g1    gt } is a Groebner Basis of I if 〈    g1        gt  〉   〈     〉 

Properties  

i. Any ideal   of  [       ] has a Groebner basis. 

ii. Let {       } be a Groebner basis for an ideal   of 

 [       ] and    [       ]  Then     g1   

  gt   where             [       ] and   is unique ((the 

remainder)). 

iii.      iff       

Notations  

i. Let   {           } be basis of an ideal   of   [           ] 

and      [          ]                           

             ̅    the remainder. 

 

 

ii. S – polynomial  

          For     g     [           ]   



            (f   g)   
  

        
    

  

        
      

Where                               . 

Example  

>  
>  

>  
>  
>  

>  

 

>  

 

>  

 

 

Theorem (2.3) (Buchberger) [1] 

   A basis   {           } of an ideal is Groebner iff  ̅  (       )    

for i    . 

Construction of Groebner Basis 

Algorithm (2.1) (Buchberger) 

   Let     {       }   [       ]   

Step 1: Compute  ̅       
    for all    . 

Step 2: Add non-zero result of step 1 to B until step 1 terminates                 

(gives only zero). 

Lemma (2.1)  

   Let   be a Groebner basis for an ideal   of  [           ] . 



If       such that            〈        {   } 〉   then   {   } is also a 

Groebner basis for . 

Minimal Groebner Basis  

Definition  

 A Groebner basis G for an ideal   in   [           ] is called minimal if 

i.            For any       . 

ii.           〈        {   } 〉 For any     . 

  A minimal Groebner basis can be obtained from the Groebner basis by 

applying the previous lemma (2.1) to remove any   with 

           〈        {   } 〉 and by adjusting constants to make leading 

coefficient 1. Note that minimal Groebner basis is not unique.  

Reduced Groebner Basis  

Definition  

   A Groebner basis G for an ideal   in   [         ] is called reduced if  

i.            for any        

ii.  No monomial of   is in 〈        {   } 〉 . 

 

 

Theorem (2.4) [1] 

   Any ideal in   [         ]  has a unique reduced Groebner basis for a 

given monomial ordering.  



Construction of the reduced Groebner basis :  

    Let    {         }  be a Groebner basis for an ideal. 

Replace each    by it remainder on division by 

                            . Neglect zero remainders. 

Adjust the leading coefficient for those left to be 1. 

Example 

>   

>  
>  
>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 



>  
>  

>  

 

>  

 

 

 

 

 

 

 

 

 

Applications  

Ideal Membership  

   If       is a polynomial and    is an ideal  then we can determine if      

 by finding a Groebner basis G for    such that      if and only if  

remainder (  ) = 0.  



Example                                         

 
>  
>  
>  
>  

>  

 

>  

 

>  

 

>  

  

>  
>  

>  
>  

>  

 

>  

 

>  

 

>  

 

>  

 

 

Equality of two ideals  

Theorem (2.5) [1] 

   Let   〈       〉 and   〈       〉 be two ideals in   [         ]   

Then     iff the reduced Groebner Bases of   and   are the same. 

Example                                        

>  

>  
>  



>  

 

>  

 

>  

>  

 

>  

 

>  

          

 

Elimination theory  

   Elimination theory gives away to solve system of polynomial equation 

by eliminating some of variables from some equations   and then back – 

solving. 

Theorem (2.6)  

   The system has a solution  if the reduced Groebner basis  { }   

Example  

   We will solve the system of equations  

{

            

        

        

 

   Then we can consider the ideal  

   〈                                〉 



   A Groebner basis for   with respect to Lex order is giving by the four 

polynomials  

              

               

                

                   

                        

   This system of equations has 5 solutions  

(1   0   0)   (0   1   0)   (0   0   1)   

     √     √     √   (   √     √     √ ) 

   In solving this system of equations  the process can be divided into 

parts. First we eliminate variables  called the Elimination step  and then 

we extend our solutions by back – solving   called the Extension step. 

   

 We study the Elimination step. 

   Note that observing that    is only in terms of z can also be stated as 

         [   ]  

   Generalizing this leads to a definition. 

Definition  

    Let   〈                 〉       [                 ]  . The L.th elimination 

ideal      is the ideal of   [               ] defined by  



       [               ] . 

Theorem (2.7) (The Elimination Theorem) 

   Let I be an ideal and G a Groebner basis with respect to     order 

                            Then for any                 the set 

       [               ] 

   Is a Groebner basis of the L.th elimination ideal    . 

Example  

   〈                                〉 

   A Groebner basis is given 

             

             

              

                 

   It follows from elimination theorem that  

        [      ] 

     〈                                    〉  

        [   ]     〈             〉 

Example 

>  
>  
>  



>  

 

>  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter three                                            

Operations on Ideals 

   Operations on ideals in  [          ] are studied conceptually and 

computationally. This operations includes radical   intersections  sums    

products and quotients.                                                                                                               

Radical ideals  

Definition  

     Let      [          ] be an ideal. The radical of      dented √     is 

the set {           for some integer     }   

Theorem (3.1) (radical membership)  

   Let   be an arbitrary field and let     〈          〉     [           ] 

be an ideal. 

Then     √  if an only if the constant polynomial 1 belongs to the ideal  

                 ̃  〈                〉     [              ]   

Proof 

Suppose     ̃ . Then we can write as: 

   ∑                  
 
                                      

For some         [              ]  . 

We set                  ⁄   then our expression becomes  

    ∑   
 
                  ⁄        

Now we multiply both sides by    :  



    ∑        
 
     for some polynomials        [           ] . 

Therefore         and so     √   

Gong the other way  suppose that   √  then         ̃   for some   . 

At the same time         ̃  . Then  

      1                  

                                               ̃. 

Hence      √  implies that       ̃ . 

Algorithm (3.1)  

   To determine if     √〈          〉      [            ] . 

1 - We first compute a reduced Groebner basis for:  

        〈                〉     [              ] . 

2- If the result is {1}  then     √  . Otherwise      √  . 

Example                                                   
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Theorem (3.2) 

    Let     [           ] and    〈   〉 be the principle ideal generated 

by     If        
      

   is the factorization of   into a product of 

distinct irreducible polynomials  then √   √〈   〉   〈          〉 . 

 

 

Definition    



   If      [           ]  is a polynomial  we define the reduction of    

denoted        to be the polynomial such that 〈      〉  √〈   〉  

A polynomial is said to be reduced (or square – free) if        . 

Theorem (3.3)  

   Let   be a field containing the rational numbers ℚ and   〈   〉 be a 

principle ideal in   [           ] .Then √  〈      〉   where  

                    
 

   (     
  

   
  

  

   
     

  

   
 ) 

  

Proof  

   Suppose √  〈        〉 .Thus  it suffices to show that  

               (    
  

   
  

  

   
     

  

   
 )     

    
   

    
    

    
 . 

We first use the product rule to not that  

    
  

   
   

    
   

    
    

    
     

  

   
                  

   

   
  . 

This proves that   
    

   
    

    
    

 divides the      

If remains to show that for each     there is some 
  

   
 which is not divisible 

by   
   .Write     

     where    is not divisible by    . 

Since    is non constant  some variable    must appear in    .           

The product rule gives us  
  

   
   

    
(   

  

   
     

   

   
 )   



If this expression is divisible by  
    then 

   

   
    must be divisible    . 

Since    is irreducible and does not divide      this force    to divide 
   

   
     

 Example 
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Intersections of Ideals 

Definition  

   The intersection     of two ideals   and   in  [           ] is the set 

of all polynomials which belong to both   and . 

Lemma (3.1) 

   i.   If   is generated as an ideal in  [           ] by                                

then         is generated as an ideal in  [             ] by                     

                              .        

   ii. If                      and   is any element of the field  then 

                 

Theorem (3.4)  

    Let      be ideals inF [           ] . Then 

                       [           ] . 

Proof 

   Note that               is an ideal in F [             ] . 

To establish the desired equality  we use the usual strategy of proving 

containment both directions. 



Suppose         . Since         we have             similarly        

implies                      . Thus  

                                          . Since  

        [           ] 

We have                     [           ] . 

This shows that I                         [           ] . 

To establish  containment in the opposite direction  suppose                   

                     [           ] . 

Then                                 where                 and 

                      . 

First set    . Since every element of     is  multiple of    we have 

             . Thus                    and hence             by 

lemma(3.1). 

On the other hand  set      in the relation: 

                              . Since every element of           is 

multiple of      we have              

Thus             and  hence         by lemma(3.1). 

Since   belongs to both   and      we have        . 

Thus                            [           ] .  

Algorithm (3.2) 

   To compute the intersection of two ideals. 

If   〈         〉      〈         〉  are ideals in   [          ]    then: 



1- 〈        〉    〈         〉   

              〈                                 〉    [         ] 

2- Compute a Groebner basis with respect to lexicographic order in 

which   is greater than the    . 

3- The elimination of   can be done via the elimination property of 

Groebner basis   we have a Groebner basis of 

                   [           ]  

 Thus     〈                                〉   [           ]   

  Example 
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Sums of Ideals  

 Definition  

   If    and   are ideals of the ring  [           ] then the sum of   and    

denoted       is the set 

                  {                  }  

If   〈       〉 and  〈       〉 then     〈               〉  

Example 
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Products of Ideals  

Definition  

   If   and   are two ideals in   [           ]  then their product  denoted 

     is defined to be ideal generated by all polynomials     where       

and       . Thus the product      of   and   is the set  

      {                                               is a positive 

integer}.  

Example                                                     
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Quotient of Ideals 

 Definition 

     If   and   are ideals in   [           ] then   



    Is the set {       [           ]         for all       }   

And is called the ideal quotient for   by   

Proposition  

    Let      and   be ideals in    [           ]   then: 

i.           [           ]    . 

ii.         if only if           . 

iii.       if and only if          [           ] . 

Proposition  

   Let                and  be ideals in  [           ]for       . Then  

1-   ⋂    
 
        ⋂          

 
    . 

2-      ∑   
 
      ⋂            

 
    . 

3-                .   

4-    〈            〉   ⋂          
 
    . 

 

Theorem (3.5) 

      Let   be an ideal and   an element of    [           ] . 

If {         } is a basis of the ideal    〈   〉 then  

{    ⁄         ⁄ } is a basis of   〈   〉 . 

Proof  

   If     〈   〉   then        for some polynomial   thus                              

if     〈    ⁄         ⁄  〉   then  

             〈         〉      〈   〉      . Thus      〈   〉 . 



Conversely   suppose      〈   〉 . then         . since       〈   〉 . 

We have        〈   〉 . If   〈   〉  〈         〉   this means  

     ∑      for some polynomials    . 

Since each      〈   〉   each     ⁄  is polynomial   and we conclude that 

  ∑        ⁄     

Where   〈    ⁄          ⁄ 〉. 

Algorithm (3.2)  

     To compute a basis of an ideal quotient. 

If    〈        〉 and   〈         〉  〈    〉     〈     〉 then  

1- We compute a basis of 〈        〉    〈    〉  for each. 

2- Finding a Groebner  basis of 〈                      〉 with respect 

to lex order in which don’t depend on  ( this is our algorithm for 

computing ideal intersections ) . 

3- Using the division algorithm   we divide each of these element by    

to get a basis for  〈    〉 . 

4- Finally  we compute a basis for     by applying the intersection 

algorithm     times . 

5- Computing first a basis for   〈        〉     〈    〉     〈    〉   

then a basis for   〈            〉     〈        〉     〈    〉   

And so on up to     

Example 

   To compute ideal quotient 

Let   〈     〉      〈     〉 
Compute intersection by Maple 

                    



             〈             〉 

By using the division algorithm by    to get a bases for   〈  〉  
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Appendix  

Maple Program 

      Maple is computer algebra system which makes computations 

symbolically and numerically .It also makes graphs .It includes general 

commands and special packages for special subjects. 

    We introduce below the basic commands for doing computations in 

polynomials and Groebner Basis. 

   The version 13 of Maple is used in our computations. 
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 ملخص باللغة العربية

 العمليات على المثاليات باستخدام المابل 

فً هذه الأطزوحح ذى دراسح انعًهٍاخ عهى انًثانٍاخ نكثٍزاخ انحذود فً أكثز ين 

فً  Maple 13تاسرخذاو تزنايج  Groebner Basisعنصز عن طزٌق قاعذج 

وهً انعضىٌح انًثانٍح  Groebner Basisحساب هذه انعًهٍاخ وتعض ذطثٍقاخ 

ٍح نهًعادلاخ نكثٍزاخ وانرساوي نهًثانٍاخ ونظزٌح إسانح انحهىل نلأنظًح انلاخط

 انحذود فً أكثز ين عنصز.

 ذحرىي الاطزوحح عهى أرتعح فصىل كانرانً:

 انفصم صفز ٌصف انثنٍح انجثزٌح نهحهقاخ وانًثانٍاخ حسة انضزورج.

 انفصم الأول ذى دراسح كثٍزاخ انحذود فً أكثز ين عنصز.

 قاخ.نهحساتاخ وانرطثٍ Groebner Basisانفصم انثانً ذى دراسح قاعذج 

 (Maple13انفصم انثانث ذى دراسح انعًهٍاخ عهى انًثانٍاخ ويهحق حىل انثزنايج )

 وفً نهاٌح الأطزوحح وضعد قائًح تانًصادر انًسرخذيح.

 


