

University of Benghazi
Faculty of Science
Department of Mathematics

Operations on Ideals with Maple

A dissertation submitted to the Department of Mathematics in partial Fulfillment of the requirements for the degree of Master of science in Mathematics

By

Sumaia Mohammed Al mogawab

Supervisor
Prof. Kahtan H. Alzubaidy

Benghazi-Libya

Contents

Abstract 1
Introduction 2
Chapter Zero : Rings and Ideals 3
Rings 3
Types of ideals 5
Operations on ideals 7
Chapter One: Polynomials 14
Polynomial in one indeterminate 14
Multivariate Polynomials 21
Chapter Two: Groebner Bases 25
Monomial Ordering 25
General Division Algorithm 28
Groebner Bases 29
Construction of Groebner Basis 31
Applications 35
Chapter Three: Operations on ideals 40
Radical Ideals 40
Intersections of Ideals 45
Sums of Ideals 49
Products of Ideals 50
Quotrents of Ideals 51
Appendix : Maple Program 55
References 58

Abstract

Ideals in a polynomial ring of several variables $F\left[x_{1}, \ldots, x_{n}\right]$ are studied. The operations on such ideals are computed. This includes radicals, intersections, sums, products and quotients. The method used is by Groebner basis together with Maple programme.

Introduction

The operations on the ideals in $F\left[x_{1}, \ldots, x_{n}\right]$ including radicals, intersections, sums, products and quotients are computed. The method used is by Groebner basis together with the software Maple13 for the explicit computations of these operations. Some applications of Groebner bases are given. These are ideal membership, equality of two ideals and elimination theory for solutions of non-linear systems of polynomials equations.

The thesis contains four Chapters. Chapter zero deals with rings and ideals as necessary background. Chapter one studies polynomials of several indeterminates. Chapter two studies Groebner basis it's computations and applications. Operations on ideals are introduced in Chapter three. And Appendix about Maple Programme is put at the end together with a list of used

Chapter zero

Rings and Ideals

This chapter contains the basic definitions and properties of rings, integral domains and fields. It also contains the basic properties of ideals together with the operations of ideals.

Definition

A ring R is anon empty set with two binary operations addition (+) and multiplication (\cdot) such that:
i. $(R,+)$ is an abelian group.
ii. $\quad a(b c)=(a b) c$ for all $a, b, c \in R$.
iii. $a(b+c)=a b+a c$ and

$$
(b+c) a=b a+c a \text { for all } a, b, c \in R .
$$

iv. If $a b=b a \forall a, b \in R$, then R is colled a commutative ring.
v. If $\exists 1 \in R$ Such that $a \cdot 1=a=1$. $a \quad \forall a \in R$, then R is called a ring with unity.

Definition

A ring R with unity is called a division ring if every nonzero element of R is a unit (has a multiplicative inverse).

Definition

A commutative ring R with unity is called integral domain if $a b=0$ implies that $a=0$ or $b=0$ where $a, b \in R[$ or $a \neq 0, b \neq 0 \Longrightarrow a b \neq 0]$.

Definition

A field is anon- trivial commutative ring with unity such that every nonzero element has multiplicative inverse.

Definition

Let R be a ring and I a sub ring of R, I is called:
i. a left ideal if $r a \in I, \forall r \in R \quad, \forall a \in I$
ii. a right ideal if $a r \in I \quad, \forall r \in R \quad, \forall a \in I$
iii. an ideal (two sided ideal) if $r a \in I$, $a r \in I, \forall r \in R, a \in I$

Note that left and right ideals are the same if R is commutative.

Definition

Let R be a ring and I an ideal in R. The left cost $r+I=\{r+a: a \in I\}$
$R / I=\{r+I: r \in R\}$, the set of all left cosets of I in R. Addition and multiplication are defined on R / I as follows:
$\left(r_{1}+I\right)+\left(r_{2}+I\right)=r_{1}+r_{2}+I$
$\left(r_{1}+I\right)\left(r_{2}+I\right)=r_{1} r_{2}+I$

The two operations are well-defined.

Definition

A function $f: R \rightarrow R^{\prime}$ between two ring is called homomorphism, if for all $x, y \in R$ we have:
i. $\quad f(x+y)=f(x)+f(y)$
ii. $\quad f(x y)=f(x) f(y)$

The homomorphism is called epimorphism if it is onto.
It is called monomorphism if it is 1-1.
The homomorphism is called isomorphism if it is one-to-one and onto.
$R \cong R^{\prime}$ Means that R and R^{\prime} are isomorphic.

Definition

Let $f: R \rightarrow R^{\prime}$ be a ring homomorphism. The kernel of f is defined by
$\operatorname{Ker} f=\left\{x \in R: f(x)=0^{\prime}\right\} \subseteq R$
$\operatorname{Ker} f=f^{-1}(\{0\}) . \operatorname{Ker} f$ is an ideal of R.

Theorem(0.1) ($1^{\text {st }}$ isomorphism theorem)

Let $f: R \rightarrow R^{\prime}$ be an onto ring homorphism then $R /{ }_{\text {kerf }} \cong R^{\prime}$.

Types of Ideals

Principal Ideal

Let R be a commutative ring with unity and $a \in R$. A principal ideal generated by a is defined

$$
\langle a\rangle=\{r a: r \in R\} \equiv R a
$$

Prime Ideal

Let R be a commutative ring and N an ideal with $N \neq R . N$ is called a prime ideal if $a b \in N$ implies $a \in N$ or $b \in N$ where $a, b \in R$.

Theorem (0.2)

N is a prime ideal iff R / N is an integral domain.

Maximal Ideal

Let R be a ring and M an ideal of R with $M \neq R . M$ is called a maximal ideal of R if there is no ideal I. Such that $M \subset I \subset R$.
i.e the only ideals containing M are $M \operatorname{and} R$.

Theorem (0.3)

Let R be a commutative ring with unity. Then M is maximal iff R / M is afield.

Definition

An integral domain in which every ideal is principal ideal is called a principal ideal domain (PID).

Definition

An integral domain D is Euclidean domain if for each non-zero element $a \in D$ there exists a non-negative integer $d(a)$ such that
i. If a and b are non-zero element of D then

$$
d(a) \leq d(a b)
$$

ii. If $a, b \in D$, with $b \neq 0$,then there exists elements $q, r \in D$ such that $a=b q+r$ with $r=0$ or $d(r)<d(b)$.

Every Euclidean domain is principal ideal domain.

Definition

A unique factorization domain (UFD) is integral domain D satisfying the following properties:
i. Every non-zero element a in D can be expressed as $a=u p_{1} \ldots p_{n}$, Where u is unit and the p_{i} are irreducible.
ii. If a has another factorization, say $a=u q_{1} \ldots q_{m}$, where u is unit and the q_{i} are irreducible, then $n=m$ and after reordering if necessary p_{i} and q_{i} are associates for each i.

Theorem (0.5)

Every principal ideal domain is unique factorization domain.

Theorem (0.6)

Any ED is UFD.

Operations on ideals

Let R be commutative ring with unity. Let I and J be two ideals in R.

I) Radical ideal

The radical of I is defined by $\sqrt{I}=\left\{r \in R: r^{n} \in I\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$
\sqrt{I} is an ideal containing I.
The radical I is called ideal if $I=\sqrt{I} . \sqrt{\{0\}}$ is called the nil radical of R.

Proposition

\sqrt{I} is an ideal in R.

Proof

First of all $0 \in \sqrt{I}$ since $0=0^{1} \in \sqrt{I}$
Suppose $x, y \in \sqrt{I}$, then $x^{n} \in I$ for some $n \geq 1$,
and $y^{m} \in I$ for some $m \geq 1$. Let, $N=m+n$, then
$(x-y)^{N}=\sum_{k=0}^{N}(-1)^{k}(k)^{N} x^{N-k} y^{k}$ for each $k, 0 \leq k \leq N$
Either $k \geq m$ or $N-k=n+(m-k) \geq n$.
Thus $y^{k} \in I$ or $x^{N-k} \in I$ for every K
Since I is an ideal, it follows that $(x-y)^{N} \in I$.Thus $x-y \in \sqrt{I}$
Suppose that $x \in \sqrt{I}$ and $r \in R$, then $x^{n} \in I$ for some $n \geq 1$, and then $(r x)^{n}=r^{n} x^{n} \in I$ there fore $r x \in \sqrt{I}$.

Hence \sqrt{I} is an ideal of R.

Examples

1- Every prime ideal is radical ideal.
2- $\sqrt{m \mathbb{Z}}=\operatorname{radical}(m) \mathbb{Z}$.
Radical $(m)=$ the product of the prime divisors of m.
e.g.: $\sqrt{5 \mathbb{Z}}=5 \mathbb{Z}, \sqrt{8 \mathbb{Z}}=2 \mathbb{Z}, \sqrt{12 \mathbb{Z}}=6 \mathbb{Z}, \sqrt{4 \mathbb{Z}}=2 \mathbb{Z}$.

Proportions

i. If $I \subset J$ for,$n \in \mathbb{Z}^{+}$then $\sqrt{I} \subseteq \sqrt{J}$.
ii. $\quad \sqrt{I}=\sqrt{\sqrt{I}}$.
iii. $\quad \sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$.
iv. $\quad I$ is radical iff R / I is radical.
(i.e R / I has no non-zero nilpotent element).

II) Intersections of ideals

$$
I \cap J=\{a \in R: a \in I, a \in J\} .
$$

Proposition

$I \cap J$ is an ideal of R.

Proof

The set $I \cap J$ is nonempty since $0 \in I$ and $0 \in J$ so $0 \in I \cap J$.
Let $a, b \in I \cap J$, then $a, b \in I$ and $a, b \in J$
Since I and J are ideals, we have
$a-b \in I$ and $a-b \in J$, so $a-b \in I \cap J$.
Let $r \in R, a \in I$ then $r a \in I$ since I is an ideal of R.
Also $a \in J$ so $r a \in J$ since J is an ideal of R hence $r a \in I \cap J$.
Thus $I \cap J$ is an ideal of R.

Example

In \mathbb{Z} we have $\langle m\rangle \cap\langle n\rangle=\langle r\rangle$, where r is the lcm of m and n.

III) Union

$I \cup J$ is not ideal in general but $\langle I \cup J\rangle$ is the ideal generated by the set $I \cup J$.

Example

In \mathbb{Z} we have $\langle\langle m \mathbb{Z}\rangle \cup\langle n \mathbb{Z}\rangle\rangle=\langle m \mathbb{Z} \cup n \mathbb{Z}\rangle$.

IV) sums of ideals

The sum of I and J denoted by $I+J$ is the set

$$
I+J=\{a+b, a \in I \text { and } b \in J\} .
$$

Proposition

$I+J$ is an ideal of R.

Proof

We have that $I+J$ is nonempty since
$0=0+0 \in I+J$ let $x, y, \in I+J$, by defined $x=a+b$ and $y=c+d$ for some $a, c \in I$ and $b, d \in J$.

Then $x-y=(a+b)-(c+d)=(a-c)+(b-d) \in I+J$
since I and J are ideals.

Suppose $r \in R \quad x=a+b \in I+J$.
$r a \in I$ and $r b \in J$ since I and J are ideals.

Hence $r x=r a+r b \in I+J$

Thus $I+J$ is an ideal of R.

Example

In \mathbb{Z} we have $\langle m\rangle+\langle n\rangle=\langle(m, n)\rangle$.

Define the product of two ideals by

$$
I J=\left\{\sum_{i=1}^{n} a_{i} b_{i}: a_{i} \in I \text { and } b_{i} \in J, n \in N\right\} .
$$

Proposition

$I J$ is an ideal of R.

Proof

Consider tow arbitrary element of $I J$ say
$a_{1} b_{1}+\ldots+a_{m} b_{m}, c_{1} d_{1}+\ldots+c_{n} d_{n} \in I J$
Where $a_{1}, \ldots, a_{m}, c_{1}, \ldots, c_{m} \in I$ and $b_{1}, \ldots, b_{n}, d_{1}, \ldots, d_{n} \in J$.
Ideals are closed under differences and contain 0 .So ideal are closed under additive inverse (-).

That is, if $a \in I$ then $-a=0-a \in I$.
Thus $a_{1}, \ldots, a_{m},-c_{1}, \ldots,-c_{m} \in I$ and $b_{1}, \ldots, b_{n}, d_{1}, \ldots, d_{n} \in J$ so the difference of two elements in $I J$ is again in $I J$ because it is a finite sum of products of the form $a b(a \in I, b \in J)$.

$$
\begin{aligned}
& a_{1} b_{1}+\ldots+a_{m} b_{m}-\left(c_{1} d_{1}+\ldots+c_{n} d_{n}\right) \\
& \quad=a_{1} b_{1}+\ldots+a_{m} b_{m}+\left(-c_{1}\right) d_{1}+\ldots+\left(-c_{n}\right) d_{n} \in I J
\end{aligned}
$$

For any $r \in R$, we have $r a_{1}, \ldots, r a_{m} \in I$ since I is an ideal $b_{1} r, \ldots, b_{m} r \in J$ Since J is an ideal and

$$
\begin{aligned}
& r\left(a_{1} b_{1}+\ldots+a_{m} b_{m}\right)=\left(r a_{1}\right) b_{1}+\ldots+\left(r a_{m}\right) b_{m} \in I J \\
& \quad\left(a_{1} b_{1}+\ldots+a_{m} b_{m}\right) r=a_{1}\left(b_{1} r\right)+\ldots+a_{m}\left(b_{m} r\right) \in I J
\end{aligned}
$$

So $I J$ is an ideal because it is closed under difference and also closed under left and right multiplication by arbitrary element of R.

Example

In \mathbb{Z} we have $\langle m\rangle\langle n\rangle=\langle m n\rangle$.

(VI) Quotient of ideals

Quotient of I by J is defined by
$I: J=\{r \in R: r b \in I$ for each $b \in J\}$.

Proposition

$I: J$ is an ideal of R.

Proof

Let $r_{1}, r_{2} \in I: J$ Then $r_{1} b \in I$ for all $b \in J, r_{2} b \in \mathrm{I}$ for all $b \in J$
So we have $r_{1} b-r_{2} b \in I$ since I is an ideal, then $\left(r_{1}-r_{2}\right) b \in I$

Thus $\left(r_{1}-r_{2}\right) \in I: J$

Let $r \in I: J$ and $\bar{r} \in R$

So $r \in I: J$ implies $r b \in \mathrm{I}$ for all $\in J$.

But $\bar{r} b \in J$ since J is an ideal, then $r(\bar{r} b) \in I, r \bar{r} \in I: J$

Thus $I: J$ is an ideal of R.

Chapter one

Polynomials

In this chapter we outline the definitions and basic properties of polynomials in single and several indeterminates.

Polynomial in one Indeterminate

Let R be commutative ring with unity and x is an indeterminate $(x$ is a symbol not in R).

A polynomial in x over R is an expression
$a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, Where $a_{n}, a_{n-1}, \ldots a_{1}, a_{0}$ are called the coefficients of the polynomial and $n>0$ an integer.

If $a_{n} \neq 0$, then the polynomial is said to be of degree n,
$a_{n} x^{n}$ is called the leading term and a_{n} is called the leading coefficient.

If $a_{n}=1$ the polynomial is called a monic polynomial.

A polynomial of degree 0 is called a constant polynomial
$a=a+0 x+\cdots+0 x^{n}$
A zero polynomial $0=0+0 x+\ldots+0 x^{n}$.

Notation

$$
R[x]=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}: a_{i} \in R, n>0\right\}
$$

The set $R[x]$ is called the ring of polynomials over R in the indeterminate x with coefficients in R.

Operations on $R[x]$

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ and

$$
\mathrm{g}(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0} \in R[x] .
$$

(I) Equality of $R[x]$

$$
f(x)=\mathrm{g}(x) \text { iff } m=n \text { and } a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{n}=b_{n} .
$$

(II) Addition of $R[x]$

$$
\begin{aligned}
& f(x)+\mathrm{g}(x)=\left(a_{s}+b_{s}\right) x^{s}+\left(a_{s-1}+b_{s-1}\right) x^{s-1}+\cdots+ \\
& \left(a_{1}+b_{1}\right) x+a_{0}+b_{0},
\end{aligned}
$$

Where s is the maximum of m and $n, a_{i}=0$ for $i>n$
and $b_{i}=0$ for $i>m$.

$$
f(x)+\mathrm{g}(x) \in R[x] \text { and } \operatorname{deg}(f(x)+\mathrm{g}(x)) \leq \operatorname{Max}(\operatorname{deg} f(x), \operatorname{deg} \mathrm{g}(x)) .
$$

(III) Multiplication of $\boldsymbol{R}[x]$

$$
f(x) g(x)=c_{m+n} x^{m+n}+c_{m+n-1} x^{m+n-1}+\cdots+c_{1} x+c_{0},
$$

Where $c_{k}=a_{k} b_{0}+a_{k-1} b_{1}+\cdots+a_{1} b_{k-1}+a_{0} b_{k}$
For $k=0, \ldots m+n$.

$$
f(x) g(x) \in R[x] \text { and } \operatorname{deg}(f(x) g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x) .
$$

Theorem (1.1)

If R is a commutative ring with unity, then so is $R[x]$.

Theorem (1.2)

If R is an integral domain, then so is $R[x]$.
$\mathbb{Z}[x]$ is integral domain.

Corollary (1.1)

If F is a field, then $F[x]$ is an integral domain.
$\mathbb{Q}[x], \mathbb{R}[x], c[x], \mathbb{Z}_{p}[x]$ are integral domains.

Divisibly in F [x]

Definition

Let F be afield and $f(x), \mathrm{g}(x) \in F[x], \mathrm{g}(x) \neq 0, \mathrm{~g}(x)$ divides $f(x)$, denoted by $\mathrm{g}(x) \mid f(x)$ if $\exists h(x) \in F[x]$ such that $f(x)=h(x) \mathrm{g}(x)$.

Properties

1. $f(x) \mid f(x)$.
2. If $f(x) \mid \mathrm{g}(x)$ and $\mathrm{g}(x) \mid f(x)$, then $f(x)=c \mathrm{~g}(x)$.
3. If $f(x) \mid g(x)$ and $g(x) \mid h(x)$, then $f(x) \mid h(x)$.
4. If $\mathrm{g}(x) \mid f(x)$, then $\operatorname{deg} \mathrm{g}(x) \leq \operatorname{deg} f(x)$.
5. If $\mathrm{g}(x) \mid f(x)$, then $c \mathrm{~g}(x) \mid f(x), c \neq 0$.

Theorem (1.3) (division algorithm)

Let $f(x), \mathrm{g}(x) \in F[x]$ with, $\mathrm{g}(x) \neq 0$, then \exists unique polynomials $q(x)$ and $r(x)$ such that:
$f(x)=q(x) \mathrm{g}(x)+r(x)$, Where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.
$q(x)$ is called the quotient and $r(x)$ is the remainder.

Theorem (1.4) (Remainder)

Let F be a field , $a \in F$ and $f(x) \in F[x]$.

Then $f(a)$ is the remainder in the division of $f(x)$ by $x-a$.

Definition

$\alpha \in F$ is called a root or zero of $f(x) \in F[x]$ if $f(\alpha)=0$.

Theorem (1.5) (Factor)

Let F be afield , $a \in F$ and $f(x) \in F[x]$.
Then a is a zero of $f(x)$ if and only if $x-a$ is a factor of $f(x)$.

Theorem (1.6)

A polynomial of degree n over afield F has at most n roots in .

Definition

Let $f(x), \mathrm{g}(x) \in F[x]$. Amonic $d(x) \in F[x]$ is greatest common divisor of $f(x)$ and $g(x)$, if
i. $\quad d(x)|f(x), d(x)| g(x)$.
ii. If $\dot{d}(x)|f(x), d(x)| g(x)$, then $d(x) \mid d(x)$.

We write $\operatorname{gcd}(f(x), g(x))=d(x)$.
$f(x)$ and $g(x)$ are relatively prime, if $\operatorname{gcd}(f(x), g(x))=1$.

Theorem (1.7)

For $f(x), g(x) \in F[x], \operatorname{gcd}(f(x), g(x))$ exists and is unique.

Theorem (1.8)

$$
\operatorname{gcd}(f(x), g(x))=u(x) f(x)+v(x) g(x) \text { For some } u(x), v(x) \in F[x]
$$

Definition

Let $f(x), \mathrm{g}(x) \in F[x], l(x) \in F[x]$ is a least common multiple of $f(x)$ and $g(x)$ if :
i. $\quad f(x) \mid l(x)$ and $g(x) \mid l(x)$.
ii. If $f(x) \mid \grave{l}(x)$ and $\mathrm{g}(x) \mid \grave{l}(x)$, then $l(x) \mid \grave{l}(x)$ we write $\operatorname{lcm}(f(x), \mathrm{g}(x))=l(x)$.

Theorem (1.9)

$$
\begin{aligned}
& \operatorname{gcd}(f(x), \mathrm{g}(x)) \cdot \operatorname{lcm}(f(x), \mathrm{g}(x))=f(x) \mathrm{g}(x) \text { For any } \\
& f(x), \mathrm{g}(x) \in F[x]
\end{aligned}
$$

Definition

A non-constant polynomial in $F[x]$ is irreducible if it can not be factored in $F[x]$ into a product of two polynomials of lowers degrees. Otherwise it is called reducible.

Theorem (1.10)

Let $f(x), \mathrm{g}(x), p(x), \in F[x]$ and $p(x)$ irreducible if $p(x) \mid f(x) \mathrm{g}(x)$, then either $p(x) \mid f(x)$ or $p(x) \mid g(x)$.

Theorem (1.11)

Any non-constant polynomial in $F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials.

The product is unique up to the order and units.
Corollary (1.2)
$F[x]$ is $U F D$ (unique factorization domain).

Theorem (1.12)

$F[x]$ is a PID for any field F.

Remark

$\mathbb{Z}[x]$ is not PID.

Theorem (1.13)

If F is a field, then $F[x]$ is a Euclidean domain with $d(f(x))=\operatorname{deg} f(x)$.

Theorem (1.14)

Let $p(x) \in F[x]$. Then $p(x)$ is irreducible iff $\langle p(x)\rangle$ is a maximal ideal in $F[x]$.

Operations on ideal in $F[x]$

1. If $f(x) \mid g(x)$ then $\langle g(x)\rangle \subseteq\langle f(x)\rangle$.
2. $\langle f(x)\rangle \cap\langle\mathrm{g}(x)\rangle=\langle$ L.c. $m(f(x), \mathrm{g}(x))\rangle$.
3. $\langle f(x)\rangle+\langle\mathrm{g}(x)\rangle=\langle f(x), g(x)\rangle$

$$
=\langle\operatorname{gcd}(f(x), \operatorname{g}(x))\rangle
$$

4. $\langle f(x)\rangle\langle\mathrm{g}(x)\rangle=\langle f(x) \mathrm{g}(x)\rangle$.
5. $\langle c\rangle=F[x], c=$ constant.
6. If $f(x)=c \mathrm{~g}(x)$, then $\langle f(x)\rangle=\langle\mathrm{g}(x)\rangle$.

Theorem (1.15)

Let $f(x) \in F[x]$ of degree n then
i. $\quad F[x] /\langle f(x)\rangle$ is ring.
ii. $\quad F[x] /\langle f(x)\rangle=\left\{a_{n-1} x^{n-1}+\ldots+a x_{1}+a_{o}+\langle f(x)\rangle: a_{i} \in F\right\}$

$$
\equiv\left\{a_{n-1} x^{n-1}+\ldots+a x_{1}+a_{o}: a_{i} \in F, f(x)=0\right\} .
$$

Theorem (1.16) (Chinese remainder theorem)

Let $\mathrm{g}(x)$ be a non-constant polynomial in $F[x]$ with its factorization into distinct irreducible $\mathrm{g}(x)=\left(f_{1}(x)\right)^{n_{1}} \ldots\left(f_{k}(x)\right)^{n_{k}}$. Then $F[x] /\langle\mathrm{g}(x)\rangle \cong F[x] /\left\langle f_{1}(x)\right\rangle^{n} \times \ldots \times F[x] /\left\langle f\left(x_{k}\right)^{n k}\right\rangle$.

Theorem (1.17) (kroncker)

Let $p(x)$ be irreducible over F of degree n then
i. $\quad F[x] /\langle p(x)\rangle$ is a field.
ii. $\quad F[x] /\langle p(x)\rangle=\left\{a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{o}+\langle p(x)\rangle: a_{i} \in F\right\}$

$$
\equiv\left\{a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{o}: a_{i} \in F, p(x)=0\right\} .
$$

iii. $\quad\{a+\langle p(x)\rangle: a \in F\}$ is a subfield of $F[x] /\langle p(x)\rangle$.
iv. $\{a+\langle p(x)\rangle: a \in F\} \cong F$.
v. $\quad x+\langle p(x)\rangle$ is a root of $p(x)$ in $F[x] /\langle p(x)\rangle$.

Remarks

1. Let $f(x)$ be anon constant polynomial in $F[x]$. Then there exists a field extension E of F such that E continues a root of $f(x)$
2. Let $f(x)$ be an on constant polynomial in $F[x]$ of degree n then there a field extension E of F such that $f(x)$ be factored a product of n linear factors i. $e E$ contains all the roots of $f(x)$.

Multivariate polynomials

Let R be a commutative ring with unity and $x_{1}, x_{2}, \ldots, x_{n}$ algebraically independent indeterminates over R.

A monomial is $x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \ldots x_{n}^{\epsilon_{n}}$; where $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n} \in\{0,1,2 \ldots\}$.
The degree of the monomial is $\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right)$.
The total degree of the monomial is $\epsilon_{1}+\epsilon_{2}+\ldots+\epsilon_{n}$.
A term is $a_{\epsilon_{1} \ldots \epsilon_{n}} x_{1}^{\epsilon_{1}} \ldots x_{n}^{\epsilon_{n}}$ where $a_{\epsilon_{1} \ldots \epsilon_{n}} \in R$ is the coefficient.
A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ over R is a finite sum of terms
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum a_{\epsilon_{1} \ldots \epsilon_{n}} x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \quad \ldots x_{n}^{\epsilon_{n}}$.
The degree of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the maximum total degree of its monomials.

Examples

1- $f(x, y)=a_{00}+a_{10} x+a_{01} y+a_{20} x^{2}+a_{11} x y+a_{02} y^{2}+$ $a_{30} x^{3}+a_{21} x^{2} y+a_{12} x y^{2}+a_{03} y^{3}$ is a polynomial of degree 3 in x, y over R.

2- $f(x, y, z)=2 x^{2} y^{2} z+3 x^{2} y z-4 x y z+7$ is a polynomial of degree 5 in x, y, z overz.

Notation

$R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is the set of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ over R.
Equality and addition of polynomial in $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ are defined coefficient wise.

Addition in $R\left[x_{1}, \ldots, x_{n}\right]$ is defined as usual.

Multiplication in $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is defined by using distributive law and the rule of exponents.

$$
\left(\begin{array}{lllll}
x_{1}^{\epsilon_{1}} & x_{2}^{\epsilon_{2}} & \ldots & x_{n}^{\epsilon_{n}}
\end{array}\right)\left(\begin{array}{llll}
x_{1}^{\delta_{1}} & x_{2}^{\delta_{2}} & \ldots & x_{n}^{\delta_{n}}
\end{array}\right)=\left(\begin{array}{llll}
x_{1}^{\epsilon_{1}+s_{1}} & x_{2}^{\epsilon_{2}+\delta_{2}} & \ldots & x_{n}^{\epsilon_{n}+\delta_{n}}
\end{array}\right) .
$$

Proposition

$R\left[x_{1}, \ldots, x_{n}\right]$ is a commutative ring with unity.
Another definition of $R\left[x_{1}, \ldots, x_{n}\right]$
$R\left[x_{1}, x_{2}, \ldots, x_{n}\right]=R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right], n \geq 2$.

Note that $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a commutative ring with unity by induction on.

Example

$$
\begin{aligned}
& f=2 x^{3} y+x^{2} y^{2}-5 x y^{2}+2 x+3 y+1 \in \mathbb{Z}[x, y] \\
& f=\left(x^{2}-5 x\right) y^{2}+\left(2 x^{3}+3\right) y+(2 x+1) \in \mathbb{Z}[x][y]=\mathbb{Z}[x, y] \\
& f=(2 y) x^{3}+\left(y^{2}\right) x^{2}+\left(-5 y^{2}+2\right) x+(3 y+1) \in \mathbb{Z}[y][x]=\mathbb{Z}[y, x]
\end{aligned}
$$

Proposition

The two definitions of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ are equivalent.

Proposition

$R\left[x_{1}, x_{2}, \ldots, x_{n}\right] \cong \mathrm{R}\left[x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right]$, for any permutation σ of degree n.

Remarks

i. $\quad R \leq R[x] \leq R\left[x_{1}, \ldots, x_{n}\right] \leq \cdots \leq R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, a chain of sub rings.
ii. If $S \leq R$, then $S\left[x_{1}, \ldots, x_{n}\right] \leq R\left[x_{1}, \ldots, x_{n}\right]$.
iii. Let I be an ideal of R, then

1- $I\left[x_{1}, \ldots, x_{n}\right]$ is an ideal of $R\left[x_{1}, \ldots, x_{n}\right]$.
2- $R\left[x_{1}, \ldots, x_{n}\right] / I\left[x_{1}, \ldots, x_{n}\right] \cong(R / I)\left[x_{1}, \ldots, x_{n}\right]$.

Proposition

If D is an integral domain ,then so is $\mathrm{D}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Corollary (1.3)

If F is a field then $F\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain.

Remarks

i. $\quad F[x]$ is ED and hence PID and UFD.
ii. $F\left[x_{1}, \ldots, x_{n}\right]$ is not PID and hence not ED.

Example

Consider $\mathbb{Q}[x, y]$
$\langle x, y\rangle \neq \mathbb{Q}[x, y]$, Since $\langle x, y\rangle$ contains no constants
$\langle x, y\rangle$ Can not be generated by any $f(x, y) \in \mathbb{Q}[x, y]$
$\therefore \mathbb{Q}[x, y]$ is not PID.

Proposition

If R is UFD, then so is $R\left[x_{1}, \ldots, x_{n}\right]$.

Proposition

$\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is UFD.

Corollary (1.4)

$F\left[x_{1}, \ldots, x_{n}\right]$ is UFD for any field F.

Remarks

i. There is no division algorithm in $F\left[x_{1}, \ldots, x_{n}\right]$.
ii. gcd exists and unique in $F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
iii. $\quad \operatorname{gcd}(f, \mathrm{~g})=u f+v g$ for sum $u, v \in F\left[x_{1}, \ldots, x_{n}\right]$ is not valid in $F\left[x_{1}, \ldots, x_{n}\right]$.

Chapter two

Groebner Bases

In this chapter we introduce the general division algorithm and Groebner basis for an ideal in $F\left[x_{1}, \ldots, x_{n}\right]$. Calculations are done by using Maple program.

Monomial Ordering

Consider $F\left[x_{1}, \ldots, x_{n}\right]$. Fix an order $x_{1}>x_{2}>\cdots>x_{n}$ on the indeterminates $x_{1}, x_{2}, \ldots, x_{n}$. There are $n!$ orders on $x_{1}, x_{2}, \ldots, x_{n}$. A monomial $x_{1}{ }^{\epsilon_{1}} x_{2}{ }^{\epsilon_{2}} \ldots x_{n}{ }^{\epsilon_{n}}$ can be written briefly as x^{ϵ} where $\epsilon=$ $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$. Thus $x^{\epsilon}=x_{1}{ }^{\epsilon_{1}}, x_{2}{ }^{\epsilon_{2}}, \ldots, x_{n}{ }^{\epsilon_{n}}$. Denotes

$$
|\epsilon|=\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n} .
$$

A monomial ordering is an order $>$ such that:
i. $\quad>$ is total order,
ii. $\quad>$ is a well order,
iii. if $x^{\alpha}>x^{\beta}$, then $x^{\alpha} x^{\gamma}>x^{\beta} x^{\gamma}$.

The following monomial orders are usually used:

1. Lexicographic order (Lex)

$x^{\alpha}>_{\text {Lex }} x^{\beta}$ if the left most nonzero entry of $\alpha-\beta$ is positive.

2. Graded Lexicographic order (grlex)

$$
\text { If }|\alpha|=\sum_{i=1}^{n} \alpha_{i}>|\beta|=\sum_{i=1}^{n} \beta_{i} \text {, then } x^{\alpha}>_{\text {grLex }} x^{\beta} .
$$

If $|\alpha|=|\beta|$, use $>_{\text {Lex }}$.

3. Graded Reverse Lexicographic Order (grevlex)

If $|\alpha|=\sum_{i=1}^{n} \alpha_{i}>|\beta|=\sum_{i=1}^{n} \beta_{i}$, then $x^{\alpha}>_{\text {grevlex }} x^{\beta}$.
If $|\alpha|=|\beta| \quad x^{\alpha}>_{\text {grevlex }} x^{\beta}$ when the right most nonzero entry of $\alpha-\beta$ is negative.

Example

$$
\text { Let } x>y>z
$$

Lex: $x^{3} y^{2} z>x y^{5}>y^{3} z^{4}$
grlex: $y^{3} z^{4}>x^{3} y^{2} z>x y^{5}$
grevlex: $y^{3} z^{4}>x y^{5}>x^{3} y^{2} z$

Notations

Let $f \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. With a given order on monomials:
i. $\quad \operatorname{Multideg}(f)=\max \left(\epsilon: x^{\epsilon}\right.$ is a monomial of $\left.f\right)$ the multidegree of f.
ii. $\quad L C(f)=a_{\text {multideg }(f)}$,the leading coefficient of.
iii. $L M(f)=x^{\epsilon}$, where $\epsilon=$ multideg (f), the leading monomial.
iv. $\quad L T(f)=L C(F) L M(f)$, the leading term of f.

Example

$>$ \# Ordering the terms using the lex order, the grlex order, and the grevlex order.
$>$ restart;
$>$
> with(Groebner) :
$>f:=4 \cdot x \cdot y^{2} \cdot z+4 \cdot z^{2}-5 \cdot x^{3}+7 \cdot x^{2} \cdot z^{2} ;$

$$
f:=4 x y^{2} z+4 z^{2}-5 x^{3}+7 x^{2} z^{2}
$$

$>\operatorname{sort}(f, \operatorname{order}=\operatorname{plex}(x, y, z))$;

$$
-5 x^{3}+7 x^{2} z^{2}+4 x y^{2} z+4 z^{2}
$$

$>\operatorname{sort}(f, \operatorname{order}=\operatorname{grlex}(x, y, z))$;

$$
7 x^{2} z^{2}+4 x y^{2} z-5 x^{3}+4 z^{2}
$$

$>\operatorname{sort}(f, \operatorname{order}=\operatorname{tdeg}(x, y, z))$;

$$
4 x y^{2} z+7 x^{2} z^{2}-5 x^{3}+4 z^{2}
$$

$>\operatorname{degree}(f,\{x, y, z\})$;

$$
4
$$

$>$ LeadingCoefficient $(f, \operatorname{plex}(x, y, z))$;

$$
-5
$$

$>$ LeadingCoefficient $(f, \operatorname{grlex}(x, y, z))$; 7
$>$ LeadingCoefficient $(f, \operatorname{tdeg}(x, y, z))$;

$$
4
$$

$>\operatorname{LeadingMonomial}(f, \operatorname{plex}(x, y, z))$;

$$
x^{3}
$$

$>$ LeadingMonomial $(f, \operatorname{grlex}(x, y, z))$;

$$
x^{2} z^{2}
$$

$>\operatorname{LeadingMonomial}(f, \operatorname{tdeg}(x, y, z))$;

$$
x y^{2} z
$$

$>\operatorname{LeadingTerm}(f, \operatorname{plex}(x, y, z))$;

$$
-5, x^{3}
$$

$>\operatorname{LeadingTerm}(f, \operatorname{grlex}(x, y, z))$;

$$
7, x^{2} z^{2}
$$

$>\operatorname{LeadingTerm}(f, \operatorname{tdeg}(x, y, z))$;

$$
4, x y^{2} z
$$

General Division Algorithm

Unlike $F[x]$ the integral domain $F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has no division algorithm, since $F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is not ED.

Instead we have general division algorithm which states as follows
Suppose that there is a monomial order on $F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
If $f, \mathrm{~g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{m} \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, then there are $q_{1}, q_{2}, \ldots, q_{m}, \in$ $F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that:
$f=q_{1} \mathrm{~g}_{1}+q_{2} \mathrm{~g}_{2}+\ldots+q_{m} \mathrm{~g}_{\mathrm{m}}+r$, where no term of r is divisible by any of LT $\left(\mathrm{g}_{1}\right)$,LT $\left(\mathrm{g}_{2}\right), \ldots, \operatorname{LT}\left(\mathrm{g}_{m}\right)$.

Example

Fix $x>y$ as a lex order $F[x, y]$ and
Let $f=x^{2} y+x y^{2}+y^{2}, \mathrm{~g}_{1}=x y-1, \mathrm{~g}_{2}=y^{2}-1$.
Divide f by g_{1} and then by g_{2}

$x y-1$	$\begin{gathered} x^{2} y+x y^{2}+y^{2} \\ x^{2} y \quad-x \\ \hline \end{gathered}$	\& $\quad y^{2}-1$	$\begin{aligned} & x+y^{2}+y \\ & y^{2}+y+x \end{aligned}$
$x+y$	$x y^{2}+x+y^{2}$	1	$y^{2}-1$
	$x y^{2}-y$		$x+y+1$
	$x+y+y^{2}$		

Now, divide f by g_{2} and then by g_{1}.

$y^{2}-1$	$x^{2} y+x y^{2}+y^{2}$	\& $\quad x y-1$	$x y-1$	$x^{2} y+x+1$

$\frac{x y^{2}+y^{2}+x^{2} y}{x+1}$	$\frac{x y^{2}-x}{y^{2}+x^{2} y+x}$	
$\frac{y^{2}-1}{x^{2} y+x+1}$	x	$2 x+1$
$\therefore f=(x+1) g_{2}+x g_{1}+(2 x+1)$.	$\therefore r=2 x+1$.	

Note that q_{1}, q_{2}, r are not unique in the two cases above.

Grobner Bases

Let I be an ideal of $F\left[x_{1}, \ldots, x_{n}\right]$.

Theorem (2.1) (Hilbert Basis) [1] [4]

Every ideal in $F\left[x_{1}, \ldots, x_{n}\right]$ has finite generating set,

$$
I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \quad, \quad f_{i} \in F\left[x_{1}, \ldots, x_{n}\right]
$$

I is a monomial ideal if $I=\left\langle x^{\alpha}: \alpha \in \mathbb{N}^{n}\right\rangle$.
i.e $I=\langle$ monomials $($ possibly infinite $)\rangle$.

Theorem (2.2) (Dickson)[1] [4]

Every monomial is finitely generated (by monomials)
i.e $I=\left\langle x^{\alpha_{1}}, \ldots, x^{\alpha_{k}}\right\rangle$ for some $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}^{n}$.

Notations

$$
L T(I)=\{L T(f): f \in I-\{0\}\}
$$

$\langle L T(I)\rangle=\langle L T(f): f \in I-\{0\}\rangle$ is a monomial ideal.
Let $I=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{t}}\right\rangle, \mathrm{g}_{\mathrm{i}} \in F\left[x_{1}, \ldots, x_{n}\right]$.
$\left\langle L T\left(\mathrm{~g}_{1}\right), \ldots, L T\left(\mathrm{~g}_{t}\right)\right\rangle \subseteq\langle L T(I)\rangle$.
The equality does not hold in general.

Definition (Groebner Basis)

$\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{t}}\right\}$ is a Groebner Basis of I if $\left\langle L T\left(\mathrm{~g}_{1}\right), \ldots, L T\left(\mathrm{~g}_{\mathrm{t}}\right)\right\rangle=\langle L T(I)\rangle$

Properties

i. Any ideal I of $F\left[x_{1}, \ldots, x_{n}\right]$ has a Groebner basis.
ii. Let $\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{t}\right\}$ be a Groebner basis for an ideal I of $F\left[x_{1}, \ldots, x_{n}\right]$ and $f \in F\left[x_{1}, \ldots, x_{n}\right]$. Then $f=q_{1} g_{1}+\cdots+$ $q_{t} \mathrm{~g}_{\mathrm{t}}+r$ where $q_{1}, \ldots, q_{t}, r \in F\left[x_{1}, \ldots, x_{n}\right]$ and r is unique ((the remainder)).
iii. $\quad f \in I$ iff $r=0$.

Notations

i. Let $B=\left\{f_{1}, \ldots, f_{m}\right\}$ be basis of an ideal I of $F\left[x_{1}, \ldots, x_{n}\right]$ and $f \in F\left[x_{1}, \ldots, x_{n}\right], \quad f=q_{1} f_{1}+\ldots+q_{m} f_{m}+r$ $r=\bar{f}^{B}$, the remainder.
ii. $\quad \mathbf{S}$ - polynomial

$$
\text { For } f, \mathrm{~g} \in F\left[x_{1}, \ldots, x_{n}\right] \text {, }
$$

$$
S(f, \mathrm{~g})=\frac{x^{\gamma}}{L T(f)} f-\frac{x^{\gamma}}{L T(\mathrm{~g})} \mathrm{g},
$$

Where $x^{\gamma}=\operatorname{lcm}(L M(f), L M(\mathrm{~g}))$.

Example

```
> # To compute SPolynomial.
>estart;
>
> with(Groebner):
>
>f:= x 3 y - - x 2 y 3}+x
```

$$
f:=x^{3} y^{2}-x^{2} y^{3}+x
$$

$>g:=3 x^{4} y+y^{2}$;

$$
g:=3 x^{4} y+y^{2}
$$

$>\operatorname{SPolynomial}(f, \operatorname{g}, \operatorname{grlex}(x, y))$;

$$
-3 x^{3} y^{3}+3 x^{2}-y^{3}
$$

Theorem (2.3) (Buchberger) [1]

A basis $G=\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{t}\right\}$ of an ideal is Groebner iff $\bar{S}^{G}\left(\mathrm{~g}_{i}, \mathrm{~g}_{j}\right)=0$ for $i<j$.

Construction of Groebner Basis

Algorithm (2.1) (Buchberger)

Let $B=\left\{f_{1}, \ldots, f_{m}\right\} \subseteq F\left[x_{1}, \ldots, x_{n}\right]$.
Step 1: Compute $\bar{S}\left(f_{i}, f_{j}\right)^{B}$ for all $i<j$.
Step 2: Add non-zero result of step 1 to B until step 1 terminates (gives only zero).

Lemma (2.1)

Let G be a Groebner basis for an ideal I of $\left[x_{1}, \ldots, x_{n}\right]$.

If $g \in G$ such that $L T(g) \in\langle L T(G-\{g\})\rangle$, then $G-\{g\}$ is also a Groebner basis for I.

Minimal Groebner Basis

Definition

A Groebner basis G for an ideal I in $F\left[x_{1}, \ldots, x_{n}\right]$ is called minimal if
i.

$$
L C(\mathrm{~g})=1 \text { For any } \mathrm{g} \in \mathrm{G}
$$

ii. $\quad L T(\mathrm{~g}) \notin\langle L T(\mathrm{G}-\{\mathrm{g}\})\rangle$ For any $\mathrm{g} \in \mathrm{G}$.

A minimal Groebner basis can be obtained from the Groebner basis by applying the previous lemma (2.1) to remove any g with
$L T(\mathrm{~g}) \in\langle L T(\mathrm{G}-\{\mathrm{g}\})\rangle$ and by adjusting constants to make leading coefficient 1. Note that minimal Groebner basis is not unique.

Reduced Groebner Basis

Definition

A Groebner basis G for an ideal I in $F\left[x_{1}, \ldots, x_{n}\right]$ is called reduced if
i.
$L C(\mathrm{~g})=1$ for any $\mathrm{g} \in \mathrm{G}$.
ii. \quad No monomial of g is in $\langle L T(G-\{g\})\rangle$.

Theorem (2.4) [1]

Any ideal in $F\left[x_{1}, \ldots, x_{n}\right]$ has a unique reduced Groebner basis for a given monomial ordering.

Construction of the reduced Groebner basis :

Let $\mathrm{G}=\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{t}\right\}$ be a Groebner basis for an ideal.
Replace each g_{i} by it remainder on division by
$\mathrm{g}_{1}, \ldots, \mathrm{~g}_{i-1}, \ldots, \mathrm{~g}_{i+1}, \ldots, \mathrm{~g}_{t}$. Neglect zero remainders.
Adjust the leading coefficient for those left to be 1.

Example

> \# To Compute Groebner Bases for some ideals, also to find remainders.
$>$ restart;
$>$ with(Groebner) :
$>$ ideal $:=[3 \cdot x+4 \cdot y-5 \cdot z+w, x+3 \cdot y+2 \cdot z$ $-2 \cdot w, 2 \cdot x-5 \cdot y+7 \cdot z+3 \cdot w] ;$

$$
\begin{aligned}
\text { ideal } & :=[3 x+4 y-5 z+w, x+3 y+2 z \\
& -2 w, 2 x-5 y+7 z+3 w]
\end{aligned}
$$

$>\quad G:=\operatorname{Basis}($ ideal, plex $(x, y, z, w))$;

$$
G:=[68 z-21 w, 68 y-49 w, 68 x+53 w]
$$

$>$ ideall $:=\left[x \cdot z-y^{2}, x^{3}-z^{2}\right] ;$

$$
\text { ideal1 }:=\left[x z-y^{2}, x^{3}-z^{2}\right]
$$

$>G 1:=\operatorname{Basis}($ ideal1, plex $(x, y, z))$;

$$
\begin{aligned}
G 1: & =\left[y^{6}-z^{5}, x z-y^{2}, y^{4} x-z^{4}, y^{2} x^{2}-z^{3}, x^{3}\right. \\
& \left.-z^{2}\right]
\end{aligned}
$$

$>G 2:=\operatorname{Basis}($ ideal1, grlex $(x, y, z))$;

$$
\begin{aligned}
G 2: & {\left[x z-y^{2}, x^{3}-z^{2}, y^{2} x^{2}-z^{3}, y^{4} x-z^{4}, y^{6}\right.} \\
& \left.-z^{5}\right]
\end{aligned}
$$

$>G 3:=\operatorname{Basis}(i d e a l 1, \operatorname{tdeg}(x, y, z))$;

$$
G 3:=\left[y^{2}-x z, x^{3}-z^{2}\right]
$$

$>f:=2 \cdot x^{4} \cdot y^{2} \cdot z+3 \cdot x^{3} \cdot y \cdot z^{2}+x \cdot y \cdot z ;$

$$
f:=2 x^{4} y^{2} z+3 x^{3} y z^{2}+x y z
$$

$>\operatorname{NormalForm}(f, G 1$, plex $(x, y, z))$;

$$
y^{3}+2 y^{4} z^{2}+3 y z^{4}
$$

$>\operatorname{NormalForm}(f, G 2, \operatorname{grlex}(x, y, z))$;

$$
y^{3}+2 y^{4} z^{2}+3 y z^{4}
$$

$>\operatorname{NormalForm}(f, G 3, \operatorname{tdeg}(x, y, z))$;

$$
3 y z^{4}+2 x^{2} z^{4}+x y z
$$

```
>
>
> ideal2:= [x 5}+\mp@subsup{y}{}{3}+\mp@subsup{z}{}{2}-1,\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}+z-1,\mp@subsup{x}{}{6
    + y }\mp@subsup{}{}{5}+\mp@subsup{z}{}{3}-1]
\[
\begin{aligned}
\text { ideal2 }: & :=\left[x^{5}+y^{3}+z^{2}-1, x^{2}+y^{2}+z-1, x^{6}\right. \\
& \left.+y^{5}+z^{3}-1\right]
\end{aligned}
\]
> G4:= Basis(ideal2, plex (z,y,x));
G4:= [225 5 4 - 1946 x '0}-1983\mp@subsup{x}{}{11}-10\mp@subsup{x}{}{12}+1225\mp@subsup{x}{}{13}+697\mp@subsup{x}{}{14}+195\mp@subsup{x}{}{15}+226\mp@subsup{x}{}{16}-\mp@subsup{x}{}{18
    +139 x 咅-13 午}+3\mp@subsup{x}{}{20}+\mp@subsup{x}{}{22}+2\mp@subsup{x}{}{21}+315\mp@subsup{x}{}{7}+100\mp@subsup{x}{}{8}-555\mp@subsup{x}{}{9}+675\mp@subsup{x}{}{5}+705\mp@subsup{x}{}{6}\mathrm{ ,
    4794799513743465 午-28161279400718496 午 - 13641002940967260 x 11
    +13303041747347884 x '12 +12841472514397999 x '13}+1936021990228677 \mp@subsup{x}{}{14
    +2115618449641410 x ' }\mp@subsup{x}{}{15}+2686197967416241 \mp@subsup{x}{}{16}-308399336177560\mp@subsup{x}{}{18
    +266417434391307 午 +40028515719740 \mp@subsup{x}{}{19}+22083510506531 \mp@subsup{x}{}{20}
    +20898699599882 午 +307985585745030y\mp@subsup{x}{}{5}-307985585745030y\mp@subsup{x}{}{4}
    +1305539383606500 午+426289252230518\mp@subsup{x}{}{8}-12718603398056543\mp@subsup{x}{}{9}
```



```
    +96308769549551000 x (11 +112430217894147542 年-28978302929820573 x 13
    -8147851966720744 x (4)}+23240432665880855 \mp@subsup{x}{}{15}-2547153248711687\mp@subsup{x}{}{16
    +1957860431279775 x 夏-6558796078633904 x 17 - 154503618530810 x 19
    +226403721396233 x 20 -92968302338769 x 21 +9239567572350900 x x y y
    -9239567572350900 y y }\mp@subsup{x}{}{2}+8461551779562300\mp@subsup{x}{}{7}-7477091544441736\mp@subsup{x}{}{8
    -133100833227195819 x 9}+40874650161525720\mp@subsup{x}{}{5}-3971051857805515\mp@subsup{x}{}{6
    -9239567572350900\mp@subsup{x}{}{3}y+37955678888811405\mp@subsup{x}{}{4}+9239567572350900 y\mp@subsup{x}{}{2},
    -92395675723509000 x - -92395675723509000 y y +267932368916755545 x x
    +92395675723509000 y y }\mp@subsup{\mp@code{x}}{}{2}-1553067597584776499 \mp@subsup{x}{}{10}-1058691906621826800 \mp@subsup{x}{}{11
```



```
    +95707520810719369 x 年 +185431646079855213 x 16 -24246152848015907 x 18
    +30397871204445410 x 17 +2994483268700962 x 19 +1053727522296225 x 20
    +1579303619755253 x 21 - 32115739051910620 x 午-858543129560584 x
```



```
    +92395675723509000 y y},\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}+z-1
```


Applications

Ideal Membership

If f is a polynomial and I is an ideal，then we can determine if $f \in I$ by finding a Groebner basis G for I ，such that $f \in I$ if and only if remainder $(f)=0$ ．

Example

```
> # To determine if f}\mathrm{ is in ideal
> restart;
> with(Groebner):
>
ideal := [xz-y,xy+2\mp@subsup{z}{}{2},y-z];
    ideal:= [xz-y,xy+2\mp@subsup{z}{}{2},y-z]
```

$>f:=x^{3} z-2 y^{2} ;$
$f:=x^{3} z-2 y^{2}$
$>\quad G:=$ Basis (ideal, plex $(x, y, z))$;

$$
G:=[1]
$$

$>\operatorname{NormalForm}(f, G, \operatorname{plex}(x, y, z))$;

```
> # Thus fis in ideal
```

$>$
$>$ restart;
$>$ with(Groebner) :
$>$ ideal $:=\left[-x^{3}+y, x^{2} y-z\right]$;
ideal $:=\left[-x^{3}+y, x^{2} y-z\right]$
$>\quad G:=\operatorname{Basis}($ ideal, plex $(x, y, z))$;

$$
\begin{aligned}
G:= & {\left[y^{5}-z^{3},-y^{2}+z x, y^{3} x-z^{2}, x^{2} y-z, x^{3}\right.} \\
& -y]
\end{aligned}
$$

$>f:=x y^{3}-z^{2}+y^{5}-z^{3} ;$

$$
f:=x y^{3}-z^{2}+y^{5}-z^{3}
$$

$>\operatorname{NormalForm}(f, G, \operatorname{plex}(x, y, z))$;

$$
x y^{3}-z^{2}
$$

> \# Thus fis not in ideal

Equality of two ideals

Theorem (2.5) [1]

Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and $J=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{t}\right\rangle$ be two ideals in $F\left[x_{1}, \ldots, x_{n}\right]$.
Then $I=J$ iff the reduced Groebner Bases of I and J are the same.

Example

```
> # Equality of two ideals
> restart;
> with(Groebner):
```

```
\(>\) ideall \(:=[3 x-6 y-2 z, 2 x-4 y+4 w, x\)
    \(-2 y-z-w]\);
        ideall \(:=[3 x-6 y-2 z, 2 x-4 y+4 w, x-2 y\)
    \(-z-w]\)
\(>G 1:=\operatorname{Basis}(\) ideal1, plex \((x, y, z, w))\);
    \(G 1:=[3 w+z, x-2 y+2 w]\)
\(>\)
\(>\) ideal2 \(:=[5 x-10 y-2 z+4 w, 4 x-8 y-3 z\)
    \(-w, 3 x-6 y-z+3 w] ;\)
        ideal2 \(:=[5 x-10 y-2 z+4 w, 4 x-8 y-3 z\)
                        \(-w, 3 x-6 y-z+3 w]\)
\(>G 2:=\operatorname{Basis}(\) ideal2, plex \((x, y, z, w))\);
    \(G 2:=[z+3 w, x-2 y+2 w]\)
\(>\)
    \# Thus ideal=ideal2
```


Elimination theory

Elimination theory gives away to solve system of polynomial equation by eliminating some of variables from some equations, and then back solving.

Theorem (2.6)

The system has a solution, if the reduced Groebner basis $\neq\{1\}$.

Example

We will solve the system of equations

$$
\left\{\begin{array}{l}
x^{2}+y+z=1 \\
x+y^{2}+z=1 \\
x+y+z^{2}=1
\end{array}\right.
$$

Then we can consider the ideal

$$
I=\left\langle x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right\rangle
$$

A Groebner basis for I with respect to Lex order is giving by the four polynomials

$$
\begin{aligned}
& \mathrm{g}_{1}=x+y+z^{2}-1 \\
& \mathrm{~g}_{2}=y^{2}-y-z^{2}+z \\
& \mathrm{~g}_{3}=2 y z^{2}-z^{4}+z^{2} \\
& \mathrm{~g}_{4}=z^{6}-4 z^{4}+4 z^{3}-z^{2} \\
& \\
& =z^{2}(z-1)\left(z^{2}+2 z-1\right)
\end{aligned}
$$

This system of equations has 5 solutions
$(1,0,0),(0,1,0),(0,0,1)$,

$$
(-1+\sqrt{2},-1+\sqrt{2},-1+\sqrt{2}),(-1-\sqrt{2},-1-\sqrt{2},-1-\sqrt{2})
$$

In solving this system of equations, the process can be divided into parts. First we eliminate variables, called the Elimination step , and then we extend our solutions by back - solving , called the Extension step.

We study the Elimination step.

Note that observing that g_{4} is only in terms of z can also be stated as $\mathrm{g}_{4} \in I \cap \mathbb{C}[z]$.

Generalizing this leads to a definition.

Definition

Let $I=\left\langle f_{1}, f_{2},,, f_{n}\right\rangle \subset K\left[x_{1}, x_{2},,, x_{n}\right]$. The L.th elimination ideal I_{L} is the ideal of $K\left[x_{L+1}, \ldots, x_{n}\right]$ defined by
$I_{L}=I \cap K\left[x_{L+1},,,, x_{n}\right]$.

Theorem (2.7) (The Elimination Theorem)

Let I be an ideal and G a Groebner basis with respect to Lex order $x_{1}>x_{2}>\ldots>x_{n}$. Then for any $0 \leq L \leq n$, the set

$$
G_{L}=G \cap K\left[x_{L+1}, \ldots, x_{n}\right]
$$

Is a Groebner basis of the L.th elimination ideal I_{L}.

Example

$$
I=\left\langle x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right\rangle
$$

A Groebner basis is given

$$
\begin{gathered}
\mathrm{g}_{1}=x+y+z^{2}-1 \\
\mathrm{~g}_{2}=y^{2}-y-z^{2}+z \\
\mathrm{~g}_{3}=2 y z^{2}-z^{4}+z^{2} \\
\mathrm{~g}_{4}=z^{6}-4 z^{4}+4 z^{3}-z^{2}
\end{gathered}
$$

It follows from elimination theorem that

$$
\begin{aligned}
& I_{1}=I \cap \mathbb{C}[y, z] \\
& \quad=\left\langle y^{2}-y-z^{2}+z, 2 y z^{2}-z^{4}+z^{2}, z^{6}-4 z^{4}+4 z^{3}-z^{2}\right\rangle \\
& I_{2}=I \cap \mathbb{C}[z]=\left\langle z^{6}-4 z^{4}+4 z^{3}-z^{2}\right\rangle \\
& \text { Example }
\end{aligned}
$$

```
> # To compute Groebnen basis for I
> restart;
> with(Groebner):
```

$>$ ideal $:=\left[x^{2}+y+z-1, x+y^{2}+z-1, x+y\right.$

$$
\left.+z^{2}-1\right]
$$

$$
\begin{aligned}
\text { ideal } & :=\left[x^{2}+y+z-1, x+y^{2}+z-1, x+y\right. \\
& \left.+z^{2}-1\right]
\end{aligned}
$$

$>G:=\operatorname{Basis}($ ideal, plex $(x, y, z))$;

$$
\begin{aligned}
G:= & {\left[-z^{2}-4 z^{4}+4 z^{3}+z^{6},-z^{2}+z^{4}+2 z^{2} y\right.} \\
& \left.-z^{2}-y+z+y^{2}, x+y+z^{2}-1\right]
\end{aligned}
$$

Chapter three

Operations on Ideals

Operations on ideals in $F\left[x_{1}, \ldots, x_{n}\right]$ are studied conceptually and computationally. This operations includes radical, intersections, sums , products and quotients.

Radical ideals

Definition

Let $I \subset F\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. The radical of I, dented \sqrt{I}, is the set $\left\{f: f^{m} \in I\right.$ for some integer $\left.m \geq 1\right\}$.

Theorem (3.1) (radical membership)

Let F be an arbitrary field and let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset F\left[x_{1}, \ldots, x_{n}\right]$ be an ideal.

Then $f \in \sqrt{I}$ if an only if the constant polynomial 1 belongs to the ideal

$$
\tilde{I} \equiv\left\langle f_{1}, \ldots, f_{s}, 1-y f\right\rangle \subset F\left[x_{1}, \ldots, x_{n}, y\right] .
$$

Proof

Suppose $1 \in \tilde{I}$. Then we can write as:
$1=\sum_{i=1}^{S} p_{i}\left(x_{1}, \ldots, x_{n}, y\right) f_{i}+q\left(x_{1}, \ldots, x_{n}, y\right)(1-y f), i=1$
For some $p_{i}, q \in F\left[x_{1}, \ldots, x_{n}, y\right]$.
We set $=1 / f\left(x_{1}, \ldots, x_{n}\right)$, then our expression becomes
$1=\sum_{i=1}^{s} p_{i}\left(x_{1}, \ldots, x_{n}, 1 / f\right) f_{i}$,
Now we multiply both sides by f^{m} :

$$
f^{m}=\sum_{i=1}^{s} A_{i} f_{i}, \text { for some polynomials } A_{i} \in F\left[x_{1}, \ldots, x_{n}\right] .
$$

Therefore, $f^{m} \in I$ and so $f \in \sqrt{I}$.
Gong the other way, suppose that $f \in \sqrt{I}$ then $f^{m} \in I \subset \tilde{I}$, for some m.
At the same time , $1-y f \in \tilde{I}$. Then

$$
\begin{aligned}
1= & y^{m} f^{m}+\left(1-y^{m} f^{m}\right) \\
& =y^{m} f^{m}+\left(1-y^{m} f^{m}\right)\left(1+y f+\cdots .+y^{m-1} f^{m-1}\right) \in \tilde{I} .
\end{aligned}
$$

Hence, $f \in \sqrt{I}$ implies that $1 \in \tilde{I}$.

Algorithm (3.1)

To determine if $f \in \sqrt{\left\langle f_{1}, \ldots, f_{s}\right\rangle} \subset F\left[x_{1}, \ldots, x_{n}\right]$.
1 - We first compute a reduced Groebner basis for:

$$
\left\langle f_{1}, \ldots, f_{s}, 1-y f\right\rangle \subset F\left[x_{1}, \ldots, x_{n}, y\right] .
$$

2- If the result is $\{1\}$, then $f \in \sqrt{I}$. Otherwise, $f \notin \sqrt{I}$.

Example

$>$ \# To determine if $f=y-x^{2}+1$ is
$\quad \mathbf{i n} \sqrt{\left\langle x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1\right\rangle}$
$>$ restart;
$>$ with(Groebner) :
$>f:=\left[x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1,1-z y-x^{2} z+z\right] ;$

$$
f:=\left[x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1,1-z y-x^{2} z+z\right]
$$

$>G:=\operatorname{Basis}(f, \operatorname{plex}(x, y, z))$;

$$
G:=[1]
$$

\# Thus $f=y-x^{2}+1$ is

$$
\text { in } \sqrt{\left\langle x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1\right\rangle}
$$

$>$
$>$ \# To determine iff $=x^{2}+y^{2}$ is not

$\quad \mathbf{i n} \sqrt{\left\langle x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1\right\rangle}$
$>$
restart;
with(Groebner) :
$>f:=\left[x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1,1-x^{2} z+y^{2} z\right] ;$

$$
f:=\left[x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1,1-x^{2} z+y^{2} z\right]
$$

$>G:=\operatorname{Basis}(f, \operatorname{plex}(x, y, z))$;

$$
\begin{aligned}
G:= & {\left[4+\left(-4 x y^{2}-8\right) z+\left(4+x y^{4}\right.\right.} \\
& \left.+4 x y^{2}\right) z^{2}, x y^{2}+2 y^{2},-2 x y^{2}-8+(4 \\
& \left.\left.+x y^{4}+4 x y^{2}\right) z+4 x^{2}\right]
\end{aligned}
$$

$>$
> Thus $f=x^{2}+y^{2}$ is not

$$
\text { in } \sqrt{\left\langle x y^{2}+2 y, x-2 x+1\right\rangle}
$$

Theorem (3.2)

Let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ and $I=\langle f\rangle$ be the principle ideal generated by f. If $f=c f_{1}^{a 1} \ldots f_{r}^{a r}$ is the factorization of f into a product of distinct irreducible polynomials, then $\sqrt{I}=\sqrt{\langle f\rangle}=\left\langle f_{1} f_{2} \ldots f_{r}\right\rangle$.

Definition

If $f \in F\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial ,we define the reduction of f, denoted $f_{\text {red }}$, to be the polynomial such that $\left\langle f_{\text {red }}\right\rangle=\sqrt{\langle f\rangle}$

A polynomial is said to be reduced (or square - free) if $f=f_{\text {red }}$.

Theorem (3.3)

Let F be a field containing the rational numbers \mathbb{Q} and $I=\langle f\rangle$ be a principle ideal in $F\left[x_{1}, \ldots, x_{n}\right]$.Then $\sqrt{I}=\left\langle f_{\text {red }}\right\rangle$, where

$$
f_{\text {red }}=\frac{f}{G C D\left(f, \frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}} \ldots, \frac{\partial f}{\partial x_{n}}\right)}
$$

Proof

Suppose $\sqrt{I}=\left\langle f_{1} f_{2} \ldots f_{r}\right\rangle$.Thus, it suffices to show that

$$
G C D\left(f, \frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)=f_{1}^{a_{1}-1} f_{2}^{a_{2}-1} \ldots f_{r}^{a_{r}-1} .
$$

We first use the product rule to not that

$$
\frac{\partial f}{\partial x_{j}}=f_{1}^{a_{1}-1} f_{2}^{a_{2}-1} \ldots f_{r}^{a_{r}-1}\left(a_{1} \frac{\partial f}{\partial x_{j}} f_{2} \ldots f_{r}+\ldots+a_{r} f_{1} f_{2} \ldots \frac{\partial f_{r}}{\partial x_{j}}\right) .
$$

This proves that $f_{1}^{a_{1}-1} f_{2}^{a_{2}-1} \ldots f_{r}^{a_{r}-1}$ divides the $G C D$.
If remains to show that for each i, there is some $\frac{\partial f}{\partial x_{j}}$ which is not divisible by $f_{i}^{a_{i}}$. Write $f=f_{i}^{a_{i}} h$, where h_{i} is not divisible by f_{i}.

Since f_{i} is non constant, some variable x_{j} must appear in f_{i}.
The product rule gives us $\frac{\partial f}{\partial x_{j}}=f_{i}^{a_{i}-1}\left(a_{1} \frac{\partial f}{\partial x_{j}} h_{i}+f_{i} \frac{\partial h_{i}}{\partial x_{j}}\right)$.

If this expression is divisible by $f_{i}^{a_{i}}$, then $\frac{\partial f_{i}}{\partial x_{j}} h_{i}$ must be divisible f_{i}.
Since f_{i} is irreducible and does not divide h_{i}, this force f_{i} to divide $\frac{\partial f_{i}}{\partial x_{j}}$.

Example

$>$ \# To compute $<f_{\text {red }}>$
$>$ restart;

$$
\begin{aligned}
>f:= & x^{5}+3 x^{4} y+3 x^{3} y^{2}-2 x^{4} y^{2}+x^{2} y^{3}+6 x^{3} y^{3} \\
& -6 x^{2} y^{4}+x^{3} y^{4}-2 x y^{5}+3 x^{2} y^{5}+3 x y^{6} \\
& +y^{7} ;
\end{aligned}
$$

$$
\begin{aligned}
f:= & x^{5}+3 x^{4} y+3 x^{3} y^{2}-2 x^{4} y^{2}+x^{2} y^{3} \\
& +6 x^{3} y^{3}-6 x^{2} y^{4}+x^{3} y^{4}-2 x y^{5}+3 x^{2} y^{5} \\
& +3 x y^{6}+y^{7}
\end{aligned}
$$

$>a:=\frac{\partial}{\partial x} f ;$

$$
\begin{aligned}
a:= & 5 x^{4}+12 x^{3} y+9 x^{2} y^{2}-8 x^{3} y^{2}+2 x y^{3} \\
& +18 x^{2} y^{3}-12 x y^{4}+3 x^{2} y^{4}+6 x y^{5}
\end{aligned}
$$

$>b:=\frac{\partial}{\partial y} f ;$

$$
\begin{aligned}
b:= & 3 x^{4}+6 x^{3} y-4 x^{4} y+3 x^{2} y^{2}+18 x^{3} y^{2} \\
& -24 x^{2} y^{3}+4 x^{3} y^{3}+15 x^{2} y^{4}+7 y^{6}
\end{aligned}
$$

$>\operatorname{gcd}(a, b) ;$
$>\operatorname{gcd}(\operatorname{gcd}(a, b), f) ;$

$$
\rangle\left\langle f_{\text {red }}\right\rangle:=\frac{f}{(\operatorname{gcd}(\operatorname{gcd}(a, b), f)} ;
$$

$$
\begin{aligned}
\left\langle\left(x^{5}\right.\right. & +3 x^{4} y+3 x^{3} y^{2}-2 x^{4} y^{2}+x^{2} y^{3}+6 x^{3} y^{3} \\
& -6 x^{2} y^{4}+x^{3} y^{4}-2 x y^{5}+3 x^{2} y^{5}+3 x y^{6} \\
& \left.\left.+y^{7}\right)_{\mathrm{rad}}\right\rangle=x^{5}+3 x^{4} y+3 x^{3} y^{2}-2 x^{4} y^{2} \\
& +x^{2} y^{3}+6 x^{3} y^{3}-6 x^{2} y^{4}+x^{3} y^{4}-2 x y^{5} \\
& +3 x^{2} y^{5}+3 x y^{6}+y^{7}
\end{aligned}
$$

Intersections of Ideals

Definition

The intersection $I \cap J$ of two ideals I and J in $F\left[x_{1}, \ldots, x_{n}\right]$ is the set of all polynomials which belong to both I and J.

Lemma (3.1)

i. If I is generated as an ideal in $F\left[x_{1}, \ldots, x_{n}\right]$ by $p_{1}(x), \ldots, p_{r}(x)$ then $f(t) I$ is generated as an ideal in $F\left[x_{1}, \ldots, x_{n}, t\right]$ by $f(t) \cdot p_{1}(x), \ldots, f(t) \cdot p_{r}(x)$.
ii. If $g(x, t) \in f(t) I$ and a is any element of the field, then $\mathrm{g}(x, a) \in I$.

Theorem (3.4)

Let I, J be ideals $\operatorname{in} F\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
I \cap J=(t I+(1-t) J) \cap F\left[x_{1}, \ldots, x_{n}\right] .
$$

Proof

Note that $(t I+(1-t) J)$ is an ideal in $F\left[x_{1}, \ldots, x_{n}, t\right]$.
To establish the desired equality, we use the usual strategy of proving containment both directions.

Suppose $f \in I \cap J$. Since $f \in I$, we have t. $f \in t I$, similarly, $f \in J$ implies $(1-t) f \in(1-t) J$. Thus,

$$
\begin{aligned}
& f=t . f+(1-t) . f \in t I+(1-t) J . \text { Since } \\
& I, J \subset F\left[x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

We have $\in(t I+(1-t) J) \cap F\left[x_{1}, \ldots, x_{n}\right]$.
This shows that $I \cap J \subset(t I+(1-t) J) \cap F\left[x_{1}, \ldots, x_{n}\right]$.
To establish containment in the opposite direction, suppose $f \in(t I+(1-t) J) \cap F\left[x_{1}, \ldots, x_{n}\right]$.

Then $f(x)=\mathrm{g}(x, t)+h(x, t)$, where $\mathrm{g}(x, t) \in t I$ and $h(x, t) \in(1-t) J$.

First set $=0$. Since every element of $t I$ is, multiple of t, we have $\mathrm{g}(x, o)=0$. Thus $f(x)=h(x, o)$ and hence $f(x) \in J$ by lemma(3.1).

On the other hand, set $t=1$ in the relation:
$f(x)=\mathrm{g}(x, t)+h(x, t)$. Since every element of $(1-t) J$ is multiple of $1-t$ we have $h(x, 1)=0$

Thus $f(x)=\mathrm{g}(x, 1)$ and , hence $f(x) \in I$ by lemma(3.1).
Since f belongs to both I and J, we have $\in I \cap J$.
Thus, $I \cap J \supset(t I+(1-t) J) \cap F\left[x_{1}, \ldots, x_{n}\right]$.

Algorithm (3.2)

To compute the intersection of two ideals.
If $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{s}}\right\rangle$ are ideals in $F\left[x_{1}, \ldots, x_{n}\right]$, then:
$1-\left\langle f_{1}, \ldots, f_{r}\right\rangle \cap\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{s}\right\rangle=$

$$
\left\langle t f_{1}, \ldots, t f_{r},(1-t) \mathrm{g}_{1}, \ldots,(1-t) \mathrm{g}_{s}\right\rangle \subset F\left[x_{1}, \ldots, x_{n}, t\right]
$$

2- Compute a Groebner basis with respect to lexicographic order in which t is greater than the x_{i}.

3- The elimination of t can be done via the elimination property of
Groebner basis, we have a Groebner basis of

$$
(t I+(1-t) J) \cap F\left[x_{1}, \ldots, x_{n}\right] .
$$

Thus $I \cap J=\left\langle t f_{1}, \ldots, t f_{r},(1-t) \mathrm{g}_{1}, \ldots,(1-t) \mathrm{g}_{s}\right\rangle \cap F\left[x_{1}, \ldots, x_{n}\right]$.

Example

> \# To compute intersection of ideals
$>$ restart;
$>$ with(PolynomialIdeals):
$>$ with(Operators);

$$
[‘ *, `+’, \text { Simplify, ‘^’] }
$$

$>J 1:=\left\langle x^{2} y\right\rangle ;$

$$
J 1:=\left\langle x^{2} y\right\rangle
$$

$>J 2:=\left\langle x y^{2}\right\rangle ;$

$$
J 2:=\left\langle x y^{2}\right\rangle
$$

$>K:=(t) J 1+(1-t) J 2 ;$

$$
K:=\left\langle x^{2} y^{2}, x^{2} y t,-x y^{2}+x y^{2} t\right\rangle
$$

$>\operatorname{EliminationIdeal}(K,\{x, y\})=\operatorname{Intersect}(J 1, J 2)$;

$$
\left\langle x^{2} y^{2}\right\rangle=\left\langle x^{2} y^{2}\right\rangle
$$

> \# Thus $J 1 \cap J 2=\left\langle x^{2} y^{2}\right\rangle$.
$>$
restart;
>
$>$ with(PolynomialIdeals):
$>$ with(Operators);

$$
[` * `, `+, \text { Simplify, ``] }
$$

$>J 1:=\left\langle x^{2}-y^{2}\right\rangle ;$

$$
J 1:=\left\langle x^{2}-y^{2}\right\rangle
$$

$>J 2:=\left\langle x^{3}-y^{3}\right\rangle ;$

$$
J 2:=\left\langle x^{3}-y^{3}\right\rangle
$$

$>K:=(t) J 1+(1-t) J 2 ;$

$$
\begin{aligned}
K:= & \left\langle t x^{2}-t y^{2}, x^{4}+x^{3} y-x y^{3}-y^{4}, t x y^{2}-y^{3} t\right. \\
& \left.-x^{3}+y^{3}\right\rangle
\end{aligned}
$$

$>$
$>$ EliminationIdeal $(K,\{x, y\})=\operatorname{Intersect}(J 1, J 2)$;

$$
\left\langle x^{4}+x^{3} y-x y^{3}-y^{4}\right\rangle=\left\langle x^{4}+x^{3} y-x y^{3}-y^{4}\right\rangle
$$

$>\quad$ \# Thus $J 1 \cap J 2=<x^{4}+x^{3} y-x y^{3}-y^{4}>$
$>$
> However there is a commmand which compute directely the intersection of two or more idaels.
$>$ restart;
$>$ with(PolynomialIdeals) :
$>J 1:=\left\langle x^{2}-y^{2}\right\rangle ;$

$$
J 1:=\left\langle x^{2}-y^{2}\right\rangle
$$

$>J 2:=\left\langle x^{3}-y^{3}\right\rangle ;$

$$
J 2:=\left\langle x^{3}-y^{3}\right\rangle
$$

$>l:=\operatorname{Intersect}(J 1, J 2) ;$

$$
l:=\left\langle x^{4}+x^{3} y-x y^{3}-y^{4}\right\rangle
$$

$>$ \# Thus J1 $\cap J 2:=<x^{4}+x^{3} y-x y^{3}-y^{4}>$
$>$ restart;
$>$ with(PolynomialIdeals) :
$>J 1:=\left\langle x^{2}-y\right\rangle ;$

$$
J 1:=\left\langle x^{2}-y\right\rangle
$$

$>J 2:=\left\langle x^{3}-y^{3}\right\rangle ;$

$$
J 2:=\left\langle x^{3}-y^{3}\right\rangle
$$

$>J 3:=\left\langle x^{4}-y^{3}\right\rangle ;$

$$
J 3:=\left\langle x^{4}-y^{3}\right\rangle
$$

$>l:=\operatorname{Intersect}(J 1, J 2, J 3)$;

$$
\begin{aligned}
l:= & \left\langle y^{4} x^{4}+y^{3} x^{5}-y x^{7}-x^{8}-y^{7}-y^{6} x+y^{4} x^{3}\right. \\
& \left.+y^{3} x^{4}\right\rangle
\end{aligned}
$$

>
$>\quad$ \# Thus $J 1 \cap J 2 \cap J 3:=<y^{4} x^{4}+y^{3} x^{5}-y x^{7}$
$-x^{8}+y^{7}-y^{6} x+y^{4} x^{3}+y^{3} x^{4}>$

Sums of Ideals

Definition

If I and J are ideals of the ring $F\left[x_{1}, \ldots, x_{n}\right]$ then the sum of I and J, denoted $I+J$, is the set

$$
I+J=\{f+\mathrm{g}: f \in I, \mathrm{~g} \in J\}
$$

If $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{s}}\right\rangle$ then $I+J=\left\langle f_{1}, \ldots, f_{r}, \mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{s}}\right\rangle$.

Example

> \#To compute sums of ideals
$>$ restart;
$>$ with(PolynomialIdeals) :
$>I 1:=\left\langle x^{3}-1, y^{2}-3\right\rangle ;$

$$
I 1:=\left\langle x^{3}-1, y^{2}-3\right\rangle
$$

$>I 2:=\left\langle x^{2}-z\right\rangle ;$

$$
I 2:=\left\langle x^{2}-z\right\rangle
$$

$>S:=\operatorname{Add}(I 1, I 2) ;$

$$
S:=\left\langle x^{2}-z, x^{3}-1, y^{2}-3\right\rangle
$$

Products of Ideals

Definition

If I and J are two ideals in $F\left[x_{1}, \ldots, x_{n}\right]$, then their product, denoted $I . J$, is defined to be ideal generated by all polynomials f.g where $f \in I$ and $g \in J$. Thus, the product $I . J$ of I and J is the set
$I . J=\left\{f_{1} \mathrm{~g}_{1}+\ldots+f_{r} \mathrm{~g}_{r}: f_{1}, \ldots, f_{r} \in I, \mathrm{~g}_{1}, \ldots, \mathrm{~g}_{r} \in J, r\right.$ is a positive integer $\}$.

Example

> \#To compute products of ideals
$>$ restart;
$>$ with(PolynomialIdeals) :
$>I 1:=\left\langle x^{3}-1, y^{2}-3\right\rangle$;

$$
I 1:=\left\langle x^{3}-1, y^{2}-3\right\rangle
$$

$>I 2:=\left\langle x^{2}-z\right\rangle ;$

$$
I 2:=\left\langle x^{2}-z\right\rangle
$$

> $P:=\operatorname{Multiply}(I 1, I 2)$;

$$
P:=\left\langle\left(x^{3}-1\right)\left(x^{2}-z\right),\left(y^{2}-3\right)\left(x^{2}-z\right)\right\rangle
$$

Quotient of Ideals

Definition

If I and J are ideals in $F\left[x_{1}, \ldots, x_{n}\right]$ then,
$I: J$ Is the $\operatorname{set}\left\{f \in F\left[x_{1}, \ldots, x_{n}\right]: f g \in I\right.$ for all $\left.g \in J\right\}$.
And is called the ideal quotient for I by J

Proposition

Let I, J and F be ideals in $K\left[x_{1}, \ldots, x_{n}\right]$, then:
i. $\quad I: K\left[x_{1}, \ldots, x_{n}\right]=I$.
ii. $I J \subset K$ if only if $I \subset K: J$.
iii. $J \subset I$ if and only if $I: J=F\left[x_{1}, \ldots, x_{n}\right]$.

Proposition

Let I, I_{i}, J, J_{i}, and K be ideals in $F\left[x_{1}, \ldots, x_{n}\right]$ for $1 \leq i \leq r$. Then
1- $\left(\bigcap_{i=1}^{r} I_{i}\right): J=\bigcap_{i=1}^{r}\left(I_{i}: J\right)$.
2- $I:\left(\sum_{i=1}^{r} J_{i}\right)=\bigcap_{i=1}^{r}\left(I: J_{i}\right)$.
3- $(I: J): K=I: J K$.
4- $I:\left\langle f_{1}, f_{2}, \ldots, f_{r}\right\rangle=\bigcap_{i=1}^{r}\left(I: f_{i}\right)$.

Theorem (3.5)

Let I be an ideal and g an element of $F\left[x_{1}, \ldots, x_{n}\right]$.

If $\left\{h_{1}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle\mathrm{~g}\rangle$,then
$\left\{h_{1} / \mathrm{g}, \ldots, h_{p} / \mathrm{g}\right\}$ is a basis of $I:\langle\mathrm{g}\rangle$.

Proof

If $a \in\langle\mathrm{~g}\rangle$, then $a=b \mathrm{~g}$ for some polynomial b thus, if $f \in\left\langle h_{1} / \mathrm{g}, \ldots, h_{p} / \mathrm{g}\right\rangle$, then $a f=b \operatorname{g} f \in\left\langle h_{1}, \ldots, h_{p}\right\rangle=I \cap\langle\mathrm{~g}\rangle \subset I$. Thus $, \in I:\langle\mathrm{g}\rangle$.

Conversely, suppose $\in I:\langle\mathrm{g}\rangle$. then $f \mathrm{~g} \in I$. since $f \mathrm{~g} \in\langle\mathrm{~g}\rangle$.
We have $\mathrm{g} \in I \cap\langle\mathrm{~g}\rangle$. If $I \cap\langle\mathrm{~g}\rangle=\left\langle h_{1}, \ldots, h_{p}\right\rangle$, this means
$f \mathrm{~g}=\sum r_{i} h_{i}$ for some polynomials r_{i}.
Since each $h_{i} \in\langle\mathrm{~g}\rangle$, each h_{i} / g is polynomial , and we conclude that $f=\sum r_{i}\left(h_{i} / \mathrm{g}\right)$,

Where $f \in\left\langle h_{1} / \mathrm{g}, \ldots, h_{p} / \mathrm{g}\right\rangle$.

Algorithm (3.2)

To compute a basis of an ideal quotient.
If $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{s}\right\rangle=\left\langle\mathrm{g}_{1}\right\rangle+\ldots+\left\langle\mathrm{g}_{s}\right\rangle$ then
1- We compute a basis of $\left\langle f_{1}, \ldots, f_{r}\right\rangle \cap\left\langle\mathrm{g}_{\mathrm{i}}\right\rangle$ for each.
2-Finding a Groebner basis of $\left\langle t f_{1}, \ldots, t f_{r},(1-t) \mathrm{g}_{\mathrm{i}}\right\rangle$ with respect to lex order in which don't depend ont (this is our algorithm for computing ideal intersections).

3-Using the division algorithm, we divide each of these element by g_{i} to get a basis for: $\left\langle\mathrm{g}_{i}\right\rangle$.

4- Finally we compute a basis for $I: J$ by applying the intersection algorithm s-1 times .
5-Computing first a basis for $I:\left\langle\mathrm{g}_{1}, \mathrm{~g}_{2}\right\rangle=\left(I:\left\langle\mathrm{g}_{1}\right\rangle\right) \cap\left(I:\left\langle\mathrm{g}_{2}\right\rangle\right)$, then a basis for $I:\left\langle\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}\right\rangle=\left(I:\left\langle\mathrm{g}_{1}, \mathrm{~g}_{2}\right\rangle\right) \cap\left(I:\left\langle\mathrm{g}_{3}\right\rangle\right)$

And so on up to $I: J$

Example

To compute ideal quotient
Let $I=\left\langle x^{2}-y^{2}\right\rangle, J=\left\langle x^{3}-y^{3}\right\rangle$
Compute intersection by Maple
$K=t I+(1-t) J$

$$
=\left\langle x^{4}+x^{3} y-x y^{3}-y^{4}\right\rangle
$$

By using the division algorithm by g_{i} to get a bases for $I:\left\langle\mathrm{g}_{i}\right\rangle$

$$
\begin{array}{c|c}
x^{3}-y^{3} & \begin{array}{c}
x^{4}+x^{3} y-x y^{3}-y^{4} \\
x
\end{array} \frac{x^{4}-x y^{3}}{x^{3} y-y^{4}}
\end{array}
$$

$$
I:\left\langle\mathrm{g}_{i}\right\rangle=\langle x+y\rangle
$$

> \# To compute ideal quotient by maple
$>$ restart;
$>$ with(PolynomialIdeals):
$>I 1:=\left\langle x^{2}-y^{2}\right\rangle ;$

$$
I 1:=\left\langle x^{2}-y^{2}\right\rangle
$$

$>J 1:=\left\langle x^{3}-y^{3}\right\rangle ;$

$$
J 1:=\left\langle x^{3}-y^{3}\right\rangle
$$

> Quotient(II, J1);

$$
\langle x+y\rangle
$$

Appendix

Maple Program

Maple is computer algebra system which makes computations symbolically and numerically .It also makes graphs .It includes general commands and special packages for special subjects.

We introduce below the basic commands for doing computations in polynomials and Groebner Basis.

The version 13 of Maple is used in our computations.

```
> # The general commands used are :-
> # 1) gcd -greatest common divisor of
        polynomials
> # The gcd function computes the greatest common
        divisor of two polynomials
>
> # The packages used are:-
> 1) with(Groebner);
    [Basis, FGLM, HilbertDimension,
    HilbertPolynomial, HilbertSeries, Homogenize,
    InitialForm, InterReduce, IsProper,
    IsZeroDimensional, LeadingCoefficient,
    LeadingMonomial, LeadingTerm, MatrixOrder,
    MaximalIndependentSet, MonomialOrder,
    MultiplicationMatrix,
    MultivariateCyclicVector, NormalForm,
    NormalSet, RationalUnivariateRepresentation,
    Reduce, RememberBasis, SPolynomial, Solve,
    SuggestVariableOrder,TestOrder,
    ToricIdealBasis, TrailingTerm,
    UnivariatePolynomial, Walk, WeightedDegree]
```

> $\#$ i) Basis - compute a Groebner basis

```
> # ii) LeadingCoefficient
    - compute the leading coefficient of a
    polynomial
> # iii) LeadingMonomial
    - compute the leading monomial of a
    polynomial
> # iv) LeadingTerm
    - compute the leading term of a polynomial
> #
v) NormalForm
    - compute the remainder of a multivariate
    polynomial f divided
    by a list of multivariate polynomial G
> # vi SPolynomial
    - compute an spolynomial of f
    and g}\mathrm{ with respect to monomial order T
> # vii) TestOrder - compar monomials
    in a monomial order
>
>
> 2) with(PolynomialIdeals);
    [ <,>, Add, Contract, EliminationIdeal,
                EquidimensionalDecomposition, Generators,
                HilbertDimension, IdealContainment,
                IdealInfo, IdealMembership, Intersect,
                IsMaximal, IsPrimary, IsPrime, IsProper,
                IsRadical, IsZeroDimensional,
                MaximalIndependentSet, Multiply,
                NumberOfSolutions, Operators,
                PolynomialIdeal, PrimaryDecomposition,
                PrimeDecomposition, Quotient, Radical,
                RadicalMembership, Saturate, Simplify,
                UnivariatePolynomial, VanishingIdeal,
                ZeroDimensionalDecomposition, in, subset ]
> i) Add - compute the sum of ideals
> # ii) EliminationIdeal -eliminates variables
        from an ideal using a Grobner basis
        computation
> # iii) Intersect
    - compute the intersection of two
    or more polynomial ideals
```

> \# iv) Multiply - compute the product of ideals
> \# v) Operators (subpackage)

- binary operators for ideals
> \# vi) Quotient
- compute the quotient of two ideals
> \# vii) Radical - compute the radical of an ideal

References

[1] C. David Cox. John Little, Donal O'shea, Ideals, Varieties, And Algorithms. Third edition (2007).
[2] D .Davids. Dummit, Richard M. Foote Abstract Algebra, Third edition (2004)
[3] D. Jhon R. Durbin , Modern Algebra, An introduction (fifth Edition 2005)
[4] E. Vivana Ene, Jurgen Herzog, Groebner Bases in Cmmutative Algebra (2012)
[5] E. Florian Enescu , Polynomial Rings, Groebner Bases
Georgia state university
[6] G. Joseph A.Gallian , Contemporary Abstract Algebra (1990)
[7] G. William J. Gilbert, W. Keith Nicholson, Modern Algebra with applications, (second edition (2003))
[8] G. Shuhong Goo, A new Algorithm for computing Groebner Bases (September 2011)
[9] K. Richard E.Kakima, Neit Sigmon, Ernest Stitzilger, Applications of Abstract Algebra with Maple (1999)
[10] L. Nids Lauritzen, Concrete Abstract Algebra, From Number to Groebner Bases., Gth Printing (2011)
[11] L. Mathin leslies , Math 53GA paper: Groebner Bases. Math Arizona. Edu/N Meslies/ flues/ Groebner Bases. Pdf (1 December 15.2008)
[12] M. Katlyn moran, Groebner Bases and their Applications
Math. Berkeley. Edu/N a borer/ laithyn .. pdf , (july 30 , 2008)
[13] S. Karlheinz Spindler, Abstract Algebra with Applications into Volumes.Volume II Rings and field (1994)
[14] W. Jhon J. Watkins,Topics in commutative ring theory (2007)

ملخص باللغة العربية

العمليات على المثاليات باستخدام المابل

في هذه الأطروحة تم دراسة العمليات على المثاليات لكثيرات الحدود في أكثر من عنصر عن طريق قاعدة Groebner Basis باستخدام برنامج 13 Maple في حساب هذه العمليات وبعض تطبيقات Groebner Basis وهي العضوية المثالية والتناوي للمثاليات ونظرية إزالة الحلول للأنظمة اللاخطية للمعادلات لكثيرات الحدود في أكثر من عنصر.

تحتوي الاطروحة على أربعة فصول كالناللي:
الفصل صفر يصف البنية الجبرية للحلقات والمثاليات حسب الضرورة. الفصل الأول تم در اسة كثيرات الحدود في أكثر من عنصر.

الفصل الثناني تم در اسة قاعدة Groebner Basis للحسابات و التطبيقات. الفصل الثالث تم در اسة العمليات على المثاليات وملحق حول البرنامج (Maple13) وفي نهاية الأطروحة وضعت قائمة بالمصادر المستخدمة.

