University of Benghazi
Faculty of Science
Department of Mathematics

Operations on Ideals with Maple

A dissertation submitted to the Department of Mathematics in
partial Fulfillment of the requirements for the degree of Master

of science in Mathematics

By
Sumaia Mohammed Al mogawab

Supervisor

Prof. Kahtan H. Alzubaidy

Benghazi-Libya
2015



Contents

A TACT. . 1

INErOdUCTION. ...t e 2

Chapter Zero : Ringsand Ideals....................oooiiiiiin, 3

RINGS. .ttt 3

Typesofideals. ..o 5

Operations on 1deals. ..o, 7

Chapter One: Polynomials..............cooiiii i 14
Polynomial in one indeterminate.................cooiiiiiiiiiiiien .o 14
Multivariate Polynomials...............cooiii i, 21
Chapter Two: Groebner Bases...........ccooeviiiiiiiiiiiiiiiiin, 25
Monomial Ordering........c.ooeiniiiiii e 25
General Division Algorithm. ... 28
GrOBDNEI BASES. ... ettt et 29
Construction of Groebner BasisS. ..........ccovviiiiiiiiiiiiiiieieeene, 31
APPHICALIONS. ... 35
Chapter Three: Operationsonideals....................ooeiiiinnn 40
Radical Ideals......... ..o 40
Intersections of Ideals............ooooiiiiiii 45
Sums of Ideals. ... ..o, 49
Products of Ideals ..o 50
Quotrentsof Ideals. ..o 51
Appendix : Maple Program............coooiiiiiiii 55

RO O BN CES ..ot e e 58



Abstract

Ideals in a polynomial ring of several variables
F[x4, ..., x,] are studied. The operations on such ideals are
computed. This includes radicals, intersections, sums, products
and quotients. The method used is by Groebner basis together

with Maple programme.



Introduction

The operations on the ideals in F[xq,...,x,] including radicals,
intersections, sums, products and quotients are computed. The method
used is by Groebner basis together with the software Maplel3 for the
explicit computations of these operations. Some applications of Groebner
bases are given. These are ideal membership, equality of two ideals and
elimination theory for solutions of non-linear systems of polynomials

equations.

The thesis contains four Chapters. Chapter zero deals with rings
and ideals as necessary background. Chapter one studies polynomials of
several indeterminates. Chapter two studies Groebner basis it's
computations and applications. Operations on ideals are introduced in
Chapter three. And Appendix about Maple Programme is put at the

end together with a list of used



Chapter zero

Rings and ldeals

This chapter contains the basic definitions and properties of rings,
integral domains and fields. It also contains the basic properties of ideals

together with the operations of ideals.
Definition

A ring R is anon empty set with two binary operations addition (+) and

multiplication (-) such that:

I. (R, +) is an abelian group.
ii. a(bc) = (ab)c foralla,b,c €R.
iii. a(b+c)= ab + ac and

(b+ c)a =ba+ caforalla,b,c ER.

iv. If ab = ba VY a,b € R,then R is colled a commutative ring.
v. If31e€eRSuchthata-1=a=1.a Va€ R,then R is called

a ring with unity.
Definition

A ring R with unity is called a division ring if every nonzero element

of R is a unit ( has a multiplicative inverse ).

Definition



A commutative ring R with unity is called integral domain if ab =0

implies that a = 0or b = 0 wherea,b € R[ora # 0,b # 0 = ab # 0].

Definition

A field is anon- trivial commutative ring with unity such that every

nonzero element has multiplicative inverse.
Definition
Let R bearing and I a sub ring of R, | is called:

i. aleftidealif ra€l ,VreR ,Va€el
ii. arightidealif arel ,vreR ,Va€el

ii. anideal (twosided ideal )ifra€l ,ar€l,YvreR ,a€l
Note that left and right ideals are the same if R is commutative.
Definition

LetR bearingand I anideal in R. The leftcostr+ I ={r+a:a €}

R/I = {r + I:r € R}, the set of all left cosets of I in R. Addition and

multiplication are defined on R/I as follows:
(n+D+ M+ D) =1r+r,+1
(n+Dr+1)=nrnr,+1

The two operations are well-defined.
Definition

A function f: R = R’ between two ring is called homomorphism , if

for all x,y € R we have:



L fx+y)=f)+f)
i flxy) = fIf ()

The homomorphism is called epimorphism if it is onto.
It is called monomorphism if itis 1-1.
The homomorphism is called isomorphism if it is one-to-one and onto.

R = R’ Means that R and R’ are isomorphic.
Definition
Let f : R — R’ be aring homomorphism . The kernel of f is defined by
Kerf={x€eR:f(x)=0}CSR
Ker f =f~1({0}). Ker f is an ideal ofR.
Theorem(0.1) ( 1* isomorphism theorem)

Let f : R — R’ be an onto ring homorphism then R /4., s = R'.

Types of Ideals

Principal Ideal

Let R be a commutative ring with unity and a € R. A principal ideal

generated by a is defined
(a) = {ra:r € R} = Ra
Prime ldeal

Let R be a commutative ring and N an ideal with N = R . N is called

aprimeideal ifab € N impliesa € Norb € N wherea,b €R.



Theorem (0.2)
N is a prime ideal iff R/N is an integral domain.
Maximal Ideal

Let R be a ring and M an ideal of R withM #=R . M is called

a maximal ideal of R if there is no ideall. Such that M c I c R.
I.e the only ideals containing M are M andR.

Theorem (0.3)

Let R be a commutative ring with unity. Then M is maximal iff R/M is
afield.

Definition

An integral domain in which every ideal is principal ideal is called a

principal ideal domain (PID).
Definition

An integral domain D is Euclidean domain if for each non-zero

element a € D there exists a non-negative integer d(a) such that
I. If a and b are non-zero element of D then
d(a) < d(ab).

. If a,b € D, with b # 0 ,then there exists elements q,r € D
such that a = bg + r withr = 0 or d(r) < d(b).

Theorem (0.4)



Every Euclidean domain is principal ideal domain.
Definition

A unique factorization domain (UFD) is integral domain D satisfying

the following properties:
I. Every non-zero element a in D can be expressed as
a = up, ... b, , Where u is unit and the p; are irreducible.

. If a has another factorization, say a = uqy ... q,,, Where u is
unit and the q; are irreducible, then n = m and after reordering

If necessary p; and q; are associates for each i.
Theorem (0.5)
Every principal ideal domain is unique factorization domain.
Theorem (0.6)
Any ED is UFD.

Operations on ideals

Let R be commutative ring with unity. Let I and J be two ideals in R.

1) Radical ideal
The radical of I is defined by VI ={reR :r" el for somenez"}
V1 is an ideal containing I .

The radical I is called ideal if I = +/I. /{0} is called the nil radical of R.

Proposition



V1 is an ideal in R.
Proof
Firstofall 0 € VI since 0 = 0! € VI
Suppose x,y € VI ,then x™ € I for somen > 1,
and y™ € [ forsomem > 1.Let, N = m + n,then
(x —YIN=YF_(—D*(k)NxN-*y* foreach k,0 <k < N
Eitherk>m or N—-k=n+(m—-k) > n.
Thus y* € Ior xN=% € I forevery K
Since I is an ideal , it follows that (x — y)¥ € I.Thusx —y €I

Suppose that x € /I and r € R, then x™ € I for somen > 1,

and then (rx)" = r™x™ € I there fore rx € 1I.
Hence VI is an ideal of R.

Examples

1- Every prime ideal is radical ideal.
2- \/mz = radical (m)z .

Radical (m)= the product of the prime divisors of m.

e.g.:\/ﬁ=52 ,@zZZ A\ 12Z = 61, M=2z.

Proportions

i. Iflcj for,nez then vIc.J].



i VI = I

i, JI+] = /\/7+ﬁ.

Iv. | is radical iff R/I is radical.
(i.e R/I has no non-zero nilpotent element).
1) Intersections of ideals
INJ={a€R:a€l,a€]}

Proposition
InJisan ideal of R.
Proof

Thesetl N J isnonemptysince0 € Iand0e J so0€elnj.
Let a,beln]j, then a,be I and a,b €]

Since I and ] are ideals ,we have

a—b€el and a—b €] ,soa—b €lnN].

Letr € R ,a €] thenra € Isincel is an ideal of R.
Also a € ] sora € ] since ] is an ideal of R hencera eI n J.
Thus I nJisan ideal of R.

Example

In z we have (m) N (n) = (r),where r is the [cm of m and n.
[11) Union

I U Jisnotideal in general but (I U J ) is the ideal generated by the set
1u]J.



Example

In z we have({mz) U (nz)) = (mz v nz).

V) sums of ideals
The sum of I and J denoted by I + ] is the set
I +]J={a+b,aelandbe]}.
Proposition
I + Jisanideal of R.
Proof
We have that I + ] is nonempty since

0=0+0€l + Jletx,y,e I + ], bydefined x =a+ b and
y=c+dforsomea,c € Iand b,d € J.

Then x — y=(a+b)—(c+d)=(a—-c)+(b—-d)el+]
since I and J are ideals.

Suppose r€ R x=a+b el +].

ra € landr b € Jsincel and ] are ideals .
Hencerx=ra+rb €1 + ]

Thus I + Jisanideal of R .

Example

Inz we have(m) + (n) = ((m, n)).

(1V) products of ideals



Define the product of two ideals by
1] ={)Y“,a;b;:a; € Iandb; € J,n EN}.
Proposition
I ] is anideal of R.
Proof
Consider tow arbitrary element of I J say
a,bi+...+ay, by, ,c1di+...+c,d, €I1]
Where a4, ... ,a,,,¢4,... ,C;p, € ITand by, ...,b,, dy,...,d,, E].

Ideals are closed under differences and contain 0 .So ideal are closed

under additive inverse (-).

Thatis,ifa el then-a=0—a €1.

Thusa,,..,a,,—¢,..,—Cc, €land by, ...,b,,d;,..,d,, €] SO
the difference of two elements in I J is again in I J because it is a finite

sum of products of the formab (a € I,b € ]) .

a1b1+. . + ambm - (Cl d1+ . +C7’ld7’l)
= a1b1+. ot ambm + (_Cl)d1+. ‘e +(_Cn)dn € I]

Foranyr € R,wehavera,,..,ra, €Isincel isan ideal
byr,...,b,r €] Since ] is an ideal and
r (a;by + ...+ a,b,) =@a)by+...+(ra,)b,, €1]

(a;by + ...+ apb)r=a,(byr)+ ..+ a,, (b,r) € 1]



So I] is an ideal because it is closed under difference and also closed

under left and right multiplication by arbitrary element of R.
Example
Inz we have (im}{n) = (mn).
(V1) Quotient of ideals
Quotient of I by | is defined by
I:J={r e R:rb €] foreachb € J}.
Proposition
I : Jisan ideal of R.
Proof
Letr,,r, €1: JThen b € Iforallbe] , r,b €lforallb €]
Sowe have 1 b —nr,b €1sincel isanideal, then (r; —r,)b €1
Thus (r; — 1) €1: ]
Letr €l: Jandr €R
Sor €1: Jimpliesr b €l forall €.
But7b €] since/isanideal, then r(rb) €l,rrel: |

Thus I : ] isan ideal of R.



Chapter one

Polynomials

In this chapter we outline the definitions and basic properties of

polynomials in single and several indeterminates.

Polynomial in one Indeterminate

Let R be commutative ring with unity and x is an indeterminate (x is a

symbol not in R).
A polynomial in x over R is an expression

a,x™ + a,_1x" 1+ -+ a;x + ag ,Where a,, a,_4, ...a;, a, are called

the coefficients of the polynomial and n > 0 an integer.
Ifa,, # 0, then the polynomial is said to be of degree n,
a,x™ is called the leading term and a,, is called the leading coefficient.
If a,,= 1 the polynomial is called a monic polynomial.
A polynomial of degree 0 is called a constant polynomial
a=a+0x+--+0x"
A zero polynomial 0 = 0 +0x + ... + 0x™ .
Notation
R[x] = {apx™ + ap_x" 1+ -+ a;x+ ap:a; € R,n > 0}

The set R[x] is called the ring of polynomials over R in the indeterminate

X with coefficients in R.

Operations on R[x]



Let f(x) = a,x™ + a,_x" 1+ -+ a;x + agand
g(x) = bpyx™ + b,,_1x™ 1 + -+ byx + by € R[x].
(1) Equality of R[x]
fx)=gx)iff m=n and ay, =b,, a; = by, ...,a,, = b,,.
(11) Addition of R[x]

fl) + g () = (ag+b)xs + (ag_q + bg_)x5 14+ +
(a; + by))x + ay + by,

Where s is the maximumof mandn,a; =0 fori >n

and b; =0 fori >m.
f(x) +g(x) € R[x] and deg (f (x) + g(x)) < Max (deg f(x), deg g(x)).
(111) Multiplication of R[x]

F)g(X) = cpanX™™ + Cpyn_1Xx™ " 1+t x + ¢

Where ¢, = ayby + ay_1by + -+ + a;by_1 + apby
For k=0,..m+n.
f(x)g(x) € R[x] and deg (f(x)g(x)) = deg f(x) + deg g(x).
Theorem (1.1)

If R is a commutative ring with unity, then so is R[x].

Theorem (1.2)

If R is an integral domain, then so is R[x].



z| x] is integral domain.
Corollary (1.1)
If F is a field, then F[x]is an integral domain.

Q[x],R[x], c [x] )z, [x] are integral domains.
Divisibly in F [x]
Definition

Let F be afield and f(x),g(x) € Flx],g(x) # 0,g(x) divides f(x),
denoted by g(x)|f(x) if 3 h(x) € F[x]suchthat f(x) = h(x) g(x) .

Properties

fOOIf Cx).

If f(x)1g(x) and g(x)|f (x) , then f(x) = c g(x).
If £ (x)1g(x) and g(x)|h(x) , then f(x)[h(x).

If g(x)|f(x),then deg g(x) < deg f(x).

If g(x)|f(x),thenc g(x)|f(x) ,c # 0.

A A

Theorem (1.3) (division algorithm)

Let f(x),g(x)e F[x] with,g(x) # 0, then 3 unique polynomials
q(x)and r(x) such that:

f(x) =q(x)glx) +r(x), Wherer(x) = 0 ordegr(x) < degg(x).
q(x) is called the quotient and r(x) is the remainder.
Theorem (1.4) (Remainder)

LetFbeafield,a € Fand f(x) € F [x].



Then f(a) is the remainder in the division of f(x) by x — a.
Definition

a € Fiscalledarootorzeroof f(x) € F[x]if f(a)=0.
Theorem (1.5) (Factor)

Let F be afield ,a € Fand f(x) € F[x].

Then a is a zero of f(x) if and only if x — a is a factor of f(x).
Theorem (1.6)

A polynomial of degree n over afield F has at most n roots in .
Definition

Let f(x),g(x) € F[x]. Amonic d(x) € F[x]is greatest common
divisor of f(x) and g(x), if

o d)|f(x),d(x)|g(x).
i. IFdQ)|f(x),d(x)|g(x),then d(x)|d(x) .

We write ged( f(x) ,g(x)) = d(x) .
f(x)and g(x) are relatively prime, if gcd (£(x),g(x)) =1.
Theorem (1.7)
For f(x),g(x) € Flx],ged( f(x),g(x)) exists and is unique.
Theorem (1.8)
ged (f(x),8(0) = u(x)f (x) + v(x)g(x) For some u(x),v(x) € F [x].

Definition



Let f(x),g(x) € F[x],l(x) € F[x] is a least common multiple of
f(x)and g(x) if:

o f(0)ll(x) and g(x)[1(x).
i, If F(0)|I(x) and g(x)|I(x) , then I(x) |1 (x) we write

lem (f(x),g(x)) = 1(x) .
Theorem (1.9)
ged(f(x),g(x)) .lem ( f(x),g(x)) = f(x) g(x) For any
f(x),g(x) € F[x].
Definition

A non-constant polynomial in F[x]is irreducible if it can not be
factored in F[x] into a product of two polynomials of lowers degrees.

Otherwise it is called reducible.
Theorem (1.10)

Let f(x),g(x),p(x),€ F [x]and p(x) irreducible if p(x)|f(x) g(x),
then either p(x)|f (x) or p(x)|g(x).

Theorem (1.11)

Any non-constant polynomial in F[x] can be factored in F[x] into a

product of irreducible polynomials.

The product is unique up to the order and units.

Corollary (1.2)



F[x] is UFD (unique factorization domain).
Theorem (1.12)
F[x] is a PID for any field F.
Remark
Z[x] is not PID .
Theorem (1.13)
If Fisafield, then F[x] is a Euclidean domain with d(f(x)) = deg f(x).
Theorem (1.14)

Let p(x) € F[x]. Then p(x) is irreducible iff (p(x)) is a maximal ideal
in Flx].

Operations on ideal in F[x]

=

If f(0)|g(x) then(g(x)) € (f (x)).
Af)) N (g(x) = (L.c.m (f(x), 8(x)))-
(f)) +(g(x)) = (f(x), g(x))

= (ged (f(x) g (x))).
4. {f()Ng(x)) = {f(x) g(x)).

w N

5. {(c) = F[x],c = constant.
6. If f(x) = cg(x) then (f(x)) = (g(x)).
Theorem (1.15)

Let f(x) € F[x] of degree n then

I.  F[x]/{f(x))isring.



ii. F[x]/{f(x)) = {ap_1x™ +...+ ax; + a, + {(f(x)):a; € F}
= {a,_1x""+...+ax; + a,:a; € F,f(x) =0}

Theorem (1.16) (Chinese remainder theorem)

Let g(x) be a non-constant polynomial in F[x] with its factorization

into distinct irreducible

g() = (L00)™ . ()™
Then F[x]/(g(x)) = F[x]/{f )™ X ... X F[x]/{f (e )™ ) .
Theorem (1.17) (kroncker)

Let p(x) be irreducible over F of degree n then

i, F[x]/(p(x)) is a field.
Flx]/(p(x)) ={a,_1x" +...+ a;x +a, + {(p(x)):a; € F}

={a,_1x""+...+a;x +a,:aq; € F,p(x) =0}
iii.  {a+(p(x)):a € F}isasubfield of F[x]/(p(x)).
iv. f{a+((pkX)):a € F}=F.
V. x + (p(x))isaroot of p(x) in F[x]/(p(x)).

Remarks

1. Let f(x) be anon constant polynomial in F[x]. Then there exists a
field extension E of F such that E continues a root of f(x)

2. Let f(x) be an on constant polynomial in F[x] of degree n then
there a field extension E of F such that f(x) be factored a product

of n linear factors i. e E contains all the roots of f(x).



Multivariate polynomials

Let R be a commutative ring with unity and x, , x, , ... , x,, algebraically

independent indeterminates over R.

A monomial is x;* x52 .. x;";wheree;,€,,...,6, € {0,1,2...}.
The degree of the monomial is (&4, €5, ..., €5,) .

The total degree of the monomialis €, + €, + ...+ €, .

Atermisa., . x;' .. x"where a. . € Ris the coefficient.

A polynomial in x; , x5, ... , x;,, over R is a finite sum of terms

FOr g, Xn) =2 ae, ey Xy X5 o X"

The degree of f(xy,x,,.., x,) IS the maximum total degree of its
monomials.

Examples

1- f(x,y) = ago + G10X + ag1y + azox? + ay Xy + agy* +
az0x> +a1x%y + ayxy% + agzy?
is a polynomial of degree 3 in x, y over R.

2- f(x,vy,z) =2x*y? z+ 3x*yz—4xyz+ 7 is a polynomial of

degree 5in x, y, z overz.
Notation
R[xy,x,, ..., x,] is the set of all polynomials in x; , x,, ... , x,, over R,

Equality and addition of polynomial in R[x;,x,,..,x,] are defined

coefficient wise.

Addition in R[x, , ... , x,,] is defined as usual.



Multiplication in R[x;,x,, ... ,x,] is defined by using distributive law

and the rule of exponents.
€ € € o) o) 6 €1+S1 _€3+6 €nto
(et %% e x,") (x11 X570 . xn") = (x11 Ya,2 L xy” ").

Proposition

R[x;, ... ,x,] is a commutative ring with unity.
Another definition of R[x,, ..., x,]
Rlxy,%y, .., Xyl = R[xq, .., xn_1][x,] , n=2.

Note that R[x; , X, , ... , x,,;] IS @ commutative ring with unity by induction

on.
Example
f=2x3y+x%y? —5xy?+2x+3y+1 € z[x,y].
f=@*=5x)y2+ 2x3+3)y + 2x + 1) € z[x][y] = z[x, y].
f=Q@yx*+ (*)x*+ (=5y* +2)x+ By + 1) € z[yllx] = z[y,x] .
Proposition

The two definitions of R[x,,x,, ... ,x,] are equivalent.
Proposition

Rlxy, %z, ., %) S R[Xp01), X52) » o » Xomy] , fOr any  permutation

o of degree n .
Remarks

I. R <R[x] <R[x1,., %] <+ <R[xy,x3,...,%x,] , @ chain

of sub rings.



ii. If S < RthenS[xy, ... ,x,] < R[xq,...,%,].
ii. Let | be an ideal of R, then
1- I[xq, ... ,x,] isanideal of R[x,, ..., x,].
2- Rlxqy, ..., x,1/1[xy, ..., x,] =ER/D[xy, ..., %]

Proposition

If D is an integral domain ,thensois D [x;,x,, ... , x,].
Corollary (1.3)

If F is a field then F[x, , ... , x,] is an integral domain.
Remarks

I.  F[x]is ED and hence PID and UFD.

ii. F[x;,... ,x,] isnot PID and hence not ED.

Example

Consider Q[x,y]
(x,y) # Q[x,y], Since (x, y) contains no constants
(x,y) Can not be generated by any f(x,y) € @ [x,y]
~ Q[x,y] is not PID.
Proposition

If R is UFD, then so is R[xy, ..., X,].



Proposition
Z[x1 , ... ,Xn] 1S UFD.
Corollary (1.4)
Flxq, ... ,x,] is UFD for any field F.

Remarks

. There is no division algorithm in F[x4, ..., x;,].

ii. gcd exists and unique in F [xy , X5, . , Xn]

ii. ged (f,g) = uf +vgforsumu,v € Flx,, ...

Flxy, ..., x,].

,X,,] 15 not valid in



Chapter two

Groebner Bases

In this chapter we introduce the general division algorithm and Groebner
basis for an ideal in F[x4, ..., x,]. Calculations are done by using Maple

program.

Monomial Ordering

Consider F [xq,...,x,]. Fix an order x; > x, > --- > x,, on the
indeterminates  xq,x,,...,x, . There are n! orders onxg,x,, ..., X,.
A monomial x;1x,%2 ...x, " can be written briefly as x¢ where € =

(€1, ..,€,). Thus x€ = x, 1, x,%2, ..., x,“». Denotes
el =€, + €, + -+ €,
A monomial ordering is an order > such that:

i > s total order,
. > is a well order,

Il. if x* > xP  then x%xY > xPx?.
The following monomial orders are usually used:
1. Lexicographic order (Lex)
x% >, xP if the left most nonzero entry of & — B is positive.
2. Graded Lexicographic order (grlex)
If la| =YL a; > Bl =X, B, then x>y, xP

If || = [B], use > -



3. Graded Reverse Lexicographic Order (grevlex)
If |a| = ?:10»’1‘ > |,3| = ?:1 ﬁi'then x® >grevlex xﬁ

If la| = [Bl X% >greviex x® when the right most nonzero entry of

a — B is negative.
Example
Letx >y >z
Lex: x3y2%z > xy® > y3z*
griex: y3z* > x3y?z > xy°
greviex: y3z* > xy5 > x3y?z
Notations
Let f € F[xq, x5, ..., x5 ]. With a given order on monomials:

. Multideg (f) =max (e: x€ is a monomial of f )the multidegree

off.
Ii. LC(f) = amurtideg(r) -the leading coefficient of.

Ii. LM(f) = x¢, where e = multideg(f), the leading monomial.
2 LT(f) = LC(F)LM (f), the leading term of f .

Example

> # Ordering the terms using the lex order,
the grlex order,and the grevilex order.

> restart,
>
> with(Groebner) :

> fi= 4'x-y2-z +4-7 5% + 7-x2'22;

f::4xy22+422—5x3+7x222



sort( f, order = plex(x, y, z) );
3 2 2 2 2
-S5x +T7x zZ+4xy z+4z
sort( f, order = grlex (x, y, z));
2 2 2 3 2
Tx z+4xy z—5x +4z
sort( f, order = tdeg(x, y, z) );
2 2 2 3 2
4xy " z+T7xzZ2—5x +4z

degree(f, {x,y,z});
4

LeadingCoefficient ( f, plex(x, y,z));

LeadingCoefficient ( f, grlex(x, v, z));
7

LeadingCoefficient ( f, tdeg(x, y, z));
4

LeadingMonomial ( f, plex(x, v, z) );

3
X

LeadingMonomial ( f, grlex(x, y, z));
2.2
x“z

LeadingMonomial ( f, tdeg(x, y, z) );

Xy z
LeadingTerm ( f, plex(x, y,z));

-5, x3
LeadingTerm ( f, grlex(x, y,z));

7, x2 22

LeadingTerm ( f, tdeg(x, v, z) );
4, x y2 z



General Division Algorithm

Unlike F[x] the integral domain F[x;, x5, ..., x,] has no division

algorithm, since F[x, x5, ..., x,] is not ED.
Instead we have general division algorithm which states as follows
Suppose that there is a monomial order on F[xq, x5, ..., X,,] .

Iff, 01,92 ...,0n € F[xy,x,,...,x,], then there are qq,q5,...,qm, €
Fxq4,X5, ..., X,] such that:

f = q101% 202+ ... +q@»0m +7 ,Where no term of r is divisible by any
of LT (92) LT (92), ..., LT (Gn).

Example
Fixx > y asalexorder F [x,y] and
Let f =x2y+xy? +y5,01=xy— 1,0, =y%—1.

Divide f by g; and then by g,

xy —1 x2y + xy? + y? & y2—1] x+y*+y
x%y  —x yi+y+x
x+y xy?+x  +y? 1 y2—1
xy? -y x+y+1
x+y+y?
s f = (x+y)ntlg+(x+y+1). ~r=x+y+1.

Now, divide f by g, and then by g.

y2—1 x%y + xy? +y? & xy—1 x*y+x+1




xy? +y? + x%y x%y —x

xy? —x X 2x +1

x+1 y2+x%y+x

y*—1

xly+x+1
S f = (e +Detxgi+(2x+1) . ~r=2x+1.
Note that g4, g,, r are not unique in the two cases above.

Grobner Bases

Let I be an ideal of F[xq, ..., x,].
Theorem (2.1) (Hilbert Basis) [1] [4]
Every ideal in F[x,, ..., x,] has finite generating set,

I ={(fi, 0, fm) ., fi €Fl[xq, ...x,]
I isamonomial ideal if I = (x%: a € N"),
i.e I = (monomials (possibly infinite)).
Theorem (2.2) (Dickson)[1] [4]

Every monomial is finitely generated (by monomials)

el = (x%, .., x%)for some a4, ..., a; € N,

Notations

LT() = {LT(f):f € I — {0}}.



(LT(D)) =(LT(f): f € I —{0}) is a monomial ideal.
Let ] =(01, ..,0t), &€ F[xq, ..., x,].

The equality does not hold in general.
Definition (Groebner Basis)

{04, ..., 0t } is a Groebner Basis of I if (LT (91 ), ..., LT (g¢)) = (LT (1))
Properties

I. Any ideal I of F[xy, ..., x,,] has a Groebner basis.

ii. Let {g,,..,g;} be a Groebner basis for an ideal I of
Flxy,...,x,] and f € Fl[xy,..,x,]. Then f =q01+ -+
q:9¢+r where qq, ..., q;, 7 € F[x4, ..., x,] and r is unique ((the
remainder)).

iii. feliffr=0.

Notations

. Let B={fi,..,fm} be basis of an ideal I of F[x;,..,x,]
and f€F[xy, .., xp], f=qifpi+ -+ qmfm+7

r = fB, the remainder.

. S — polynomial

Forf,g€ Flxy,...,%,],



xY xY

LT(f)f_ LT (g)

5.0 = g,
Where x¥ =lem (LM (f),LM (g)) .

Example

# To compute SPolynomial.
restart;

with (Groebner) :

vV VVVVYV

f=x" =5 +x
)”::)63)/2—)c2y3 +x
> g=13xY+)%
__ 4 2
g=3xy+y
> SPolynomial (f, g, grlex(x, y));
—3x3y3 +3x° —y3

Theorem (2.3) (Buchberger) [1]
A basis G = { g, , ..., g } of an ideal is Groebner iff S¢(g;, g;) =0

fori<j.

Construction of Groebner Basis

Algorithm (2.1) (Buchberger)
Let B = {fi, ... fm} € Flxq, ..., Xp] .
Step 1: Compute S(f;, f;)? foralli <.

Step 2: Add non-zero result of step 1 to B until step 1 terminates

(gives only zero).
Lemma (2.1)

Let G be a Groebner basis for an ideal 7 of [ x;,... ,x,].



If g € Gsuchthat LT (g) € (LT (G—{g})), thenG—{g}isalsoa

Groebner basis forl.

Minimal Groebner Basis

Definition

A Groebner basis G foranideal I in F [ x4, ... ,x, ] is called minimal if
I. LC(g)=1Foranyg € G.

ii. LT (g)¢ (LT (G—{g}))ForanygeG.

A minimal Groebner basis can be obtained from the Groebner basis by

applying the previous lemma (2.1) to remove any g with

LT (g) € (LT (G—{g})) and by adjusting constants to make leading

coefficient 1. Note that minimal Groebner basis is not unique.
Reduced Groebner Basis
Definition
A Groebner basis G for anideal I in F [xq, ... ,x,] is called reduced if

I. LC (g)=1foranyge G.

Ii. No monomial of gisin (LT (G—{g})).

Theorem (2.4) [1]

Any ideal in F [x,, ... ,x,] has a unique reduced Groebner basis for a

given monomial ordering.



Construction of the reduced Groebner basis :

LetG = {g,,...,g:} beaGroebner basis for an ideal.

Replace each g; by it remainder on division by

81,y 8ic1y > 8iv1, 8¢ - Neglect zero remainders.

Adjust the leading coefficient for those left to be 1.
Example

> # To Compute Groebner Bases for some ideals,
also to find remainders.

> restart;
with (Groebner) :
> ideal == [3-x +4y—5z+wx+3y+2z
—2w,2x—5y+7z+ 3wl
ideal = [3x+4y—5z+w,x+3y+2z
—2w,2x—=5y+7z+3w]

v

> G = Basis(ideal, plex(x, y, z, w));
G=[68z—21w,68y —49w, 68x 4+ 53 w]|
> ideall = [x-z—yz, I —zz];
ideall = [xz — yz, - 22]
> GI = Basis(ideall, plex(x, y, z));
_].6 5 2 4 4 2 2 3 .3
G].—[y —Z,Xxz—yY,yXxX—z,y x —z,Xx

_ zz]
> G2 = Basis(ideall, grlex(x, y, z));
G2 = [xz —yz, X = zz,yzx2 — z3,y4x - 24,y6
_ 5]
z

> G3 = Basis(ideall , tdeg(x, y, z));
G3 = [y2 — Xz, X — zz]
> fi= 2-x4-y2~z + 3-x3-y~z2 +xyz
f::2x4y22+3x3y22 +xyz

> NormalForm( f, G1, plex(x, y, z));

y3 —|—2y422—|—3yz4
> NormalForm( f, G2, grlex(x, y, z));

W2yt 43yt
> NormalForm(f, G3, tdeg(x, y, z));

3yz4+2x224+xyz



>
>

> ideal? = [x5+y3+zz— 1,x2+y2+z— 1,x6
+y +2 —1];

ideal? = [x5+y3+22— 1,x2+y2+z— l,x6
+y + 2 —1]

> G4 = Basis(ideal2, plex(z, y, x));
Ga=[225 " — 1946 "7 — 1983 6™ — 106 + 122547 + 697 M + 195417 + 226 410 —51*
+139x T 1327 130 1 L2 43150 £100x" 55557 £ 675 47055,
4794799513743465 1* — 28161279400718496 ' — 13641002940967260 1"
b 13303041747347884 x'% + 12841472514397999 x + 1936021990228677 x™*
+2115618449641410 x™° + 2686197967416241 x'® — 308399336177560 +'*
+266417434391307 &' 4 40028515719740 ¢ + 22083510506531 ™
+ 20898699599852 x™! + 307985585745030 y ¥ — 307985585745030 y "
b 1305539383606500 ' + 426289252230518 x° — 12718603398056543 »”
+ 9461645755921935 ¥ + 5609230341 167770 xt', -130427012317955273 &'
+ 96308769549551000 x' + 112430217894147542 x'* — 28978302929820573 ™
— 8147851966720744 x'* + 23240432665880855 x'° —2547153248711687 x'°
b 1957860431279775 x'* — 6558796078633904 x| — 154503618530810 «'°
I 226403721396233 x°° — 02968302338769 7 + 9239567572350000 °
— 9239567572350900 37 57 + 8461551779562300 x — 7477091544441736 «°
— 133100833227195819 2” + 40874650161525720 x° — 3971051857805515 +°
— 9239567572350900 " p + 379556TRERAR 11405 ¥ 4 9239567572350900 y
—-92395675723509000 Jr2 = 92395675?235(!9000}-‘3 + 26T932368916755545 _\'4
+ 92395675723509000 37 x* — 1553067597584776499 x'? — 1058691906621826800 x''
+ 691613184599027638 x'% + 932606563955672291 x'7 + 151389390751950794 x'*
+95707520810719369 x'7 + 185431646079855213 x'® — 24246152848015907 x'*
b 30307871204445410 ' + 2994483268700962 ¢ ° + 1053727522206225 v
+ 1579303619755253 le —32115739051910620 .I? —858543129560584 .1rit
— 5338R0675743739115 5" + 607600416419937750 &7 + 326949813554222075
+92395675723509000 7, " + 7 +2—1]

Applications

Ideal Membership

If f isapolynomial and I is an ideal, then we can determine if f €I
by finding a Groebner basis G for I, such that f € I if and only if

remainder (f ) = 0.



Example

# To determine if f is in ideal
restart;
with ( Groebner) :

vV VVVYV

ideal = [xz -y, xy + 222,y — z];

ideal := [xz —y,xy+ 2 zz,y — z]

> f:=x3z—2y2;

f=x>z— 2y2
> G = Basis(ideal, plex(x, y, z));
G=][1]
> NormalForm( f, G, plex(x, y, z));
0
> # Thus fis in ideal
>
> restart;
> with(Groebner) :
> ideal = [—x3 +y, xzy — Z];
ideal = [—x3 +, xzy — z]
> G = Basis(ideal, plex(x, y, z));
G = [ys —23, —y2 +zx,y3x —Zz,xzy —z,x3

—y]
> f=x -2+ — 2
fizxy3 - —I-y5 -
> NormalForm( f, G, plex(x, y, z));
xy3 -7

> # Thus fis not in ideal

Equality of two ideals

Theorem (2.5) [1]

LetI =(f, .., fs)and ] = (g4, ..., g:) be two ideals in F [x; , ... , x,].
Then I = J iff the reduced Groebner Bases of I and ] are the same.
Example
> # Equality of two ideals

> restart;
> with(Groebner) :



> deall == [3x— 6y —2z2x—4y+4wx
—2y—z—w];

ideall =[3x—6y—2z2x—4y+4w,x—2y
—z—w]

> GI = Basis(ideall, plex(x, y, z, w));
Gl=[3w+zx—2y+2w]

> ideal2 == [5x— 10y —2z+4w,4x —8y — 3z
—w,3x—6y—z+3w];

ideal2 = [5x— 10y —2z+4w,4x—8y —3z
—w,3x—6y—z+3w]

> G2 = Basis(ideal2, plex(x, y, z, w));
G2=[z+3w,x—2y+2w]

# Thus ideal=ideal2

Elimination theory

Elimination theory gives away to solve system of polynomial equation
by eliminating some of variables from some equations, and then back —

solving.
Theorem (2.6)
The system has a solution, if the reduced Groebner basis # {1}.

Example
We will solve the system of equations
x2+y+z =1
x+y*+z=1
x+y+zt=1

Then we can consider the ideal

I=(x*+y+z—-1,x+y*+z—-1,x+y+z*—1)



A Groebner basis for I with respect to Lex order is giving by the four

polynomials
g1=x +y+z2-1
g =y'-y-z"+z
gy = 2yz% — z* + 22
g, =2z%—4z% + 423 — 22
=z2(z—1)(z*+2z—-1)
This system of equations has 5 solutions
(1, 0,0),(0,1,0),(0,0,1),
(—1+v2,-14+V2,-1++2),(-1-v2,-1-+2,-1-+2)

In solving this system of equations, the process can be divided into
parts. First we eliminate variables, called the Elimination step ,and then

we extend our solutions by back — solving , called the Extension step.

We study the Elimination step.

Note that observing that g, is only in terms of z can also be stated as

g.,€1I N C[z].
Generalizing this leads to a definition.
Definition

Letl = (fi,fo,,, fn) © Klxy,x,,,, x5, ] . The L.th elimination
ideal I isthe ideal of K[ x;,,,,, x, ] defined by



IL =I ﬂK[xL+1,,,, xn ] .
Theorem (2.7) (The Elimination Theorem)

Let | be an ideal and G a Groebner basis with respect to Lex order

Xy > X, >... >x, .Thenforany 0 <L <n, theset
GL=G NK[Xp41,,,, Xp ]
Is a Groebner basis of the L.th elimination ideal I; .
Example
I=(x*+y+z—-1,x+y*+z—1,x+y+2z*—1)
A Groebner basis is given
g, =x +ty+z>—1
g2 =y —y—z'+z
gy = 2yz? —z* + z?
g, =2z°%—4z% + 423 — 2
It follows from elimination theorem that
L=INnCly,z]
=(y2—y—2z%+22yz% —z* + 2z%,2% — 4z* + 423 — 7?)
L=INnC[z] = (z6—4z*+ 423 — z?)
Example

> # To compute Groebnen basis for 1
> restart;
> with(Groebner) :



> ideal = [x2+y+z—1,x—|—y2+z—1,x+y
-I—zz—l];
; —[,2 2
zdeal.—[x +y+z—1Lx+y " +z—1Lx+y
+ZZ—1]
> G = Basis(ideal, plex(x, y, z));
G::[—22—4z4+4z3+z6, -zz+z4+222y,
—zz—y—l-z—l-yz,x—i-y—i-zz—l]



Chapter three

Operations on ldeals

Operations on ideals in F[ x, , ..., x,, ] are studied conceptually and
computationally. This operations includes radical , intersections, sums,

products and quotients.

Radical ideals

Definition

Let! c F[x,,..,x, ] bean ideal. The radical of I , dented V1, is

theset{ f : f™ €I for some integer m > 1 }.
Theorem (3.1) (radical membership)

Let F be an arbitrary fieldand let I = (f;,....,f;) © F[xy, ... ,x, ]

be an ideal.

Then £ € +/I if an only if the constant polynomial 1 belongs to the ideal
I=(fi,.fi,1=Yf) C F[xy, .., %,V ]

Proof

Suppose 1 € [ . Then we can write as:

1= Yisipi(x, X0, ) fi +q (g 20,y ) (L= yf )i =1

Forsomep;,q € F[x1, ... ,x,,V] .

Weset=1/f(xq,..,x, ), then our expression becomes

1= pi (X1, 0, /) fi

Now we multiply both sides by f™ :



fm=Y:_1A4;f;, forsomepolynomials 4; € F [x;,.. ,%,].
Therefore, f™ € Iandso f € V1.

Gong the other way, suppose that f € /I then f™ € I c I, for some m.

At the same time ,1 —yf € I . Then
L=y™f"+(1=y™f™)
=y A -y MA+yf A Ay EL
Hence, f € T impliesthat1 € T.
Algorithm (3.1)

Todetermineif f € (fi,....fs) © Flxq,..,x, ].

1 - We first compute a reduced Groebner basis for:

(fi, v fs, 1=yf) < Flxy,..,x,y].

2- If the result is {1}, then f € /I . Otherwise,f & /1.

Example

> # To determine iff=y-x2 + 1is
in\/ <xy2 + 2y2, A2+ 1>

> restart;
> with (Groebner) :
> fi= [ +235x =28 + 1,1 —zp — ¥z + z);
f= [xy2 -I-2y2,x4—2x2 + 1,1 —zy—xzz—}—z]

> G := Basis(f, plex(x, y,z));



\Y/

# Thusf=y—)c2 + 1is
in\/ <xy2 + 2y2, P P 1>

> # To determine iff=x2 + y2 is not
in\/ <xy2 + 2y2, =2+ 1>

\Y/

restart;
> with(Groebner) :
> fi= [xy2 + 2y2,x4 —2x2 4 1,1 — ¥’z +y22];
f= [xy2 + 2y2,x4 —2x 4 I, 1 —x’z —l—yzz]
> G := Basis(f, plex(x, y, z) );

G = [4+ (—4xy2— 8)z+ (4+xy4
+ 4xy2)22, xy2 + 2y2, —2xy2 — 8+ (4
+xy4+ 4xy2)z+4x2]

> Thusf:x2 +y2 is not
in\/ <xy2+2y,x—2x+ 1>

Theorem (3.2)

Letf € F[xy,..,x,]and I = ( f ) be the principle ideal generated

by f. If f = cf... £ is the factorization of f into a product of

distinct irreducible polynomials, then VI = J(f )= (fi f5 ... f-).

Definition



If f € F[x,,..,x,] 1sapolynomial ,we define the reduction of f,

denoted f;..4 , to be the polynomial such that { fyeq ) = +/{ f )

A polynomial is said to be reduced (or square — free) if f = f,.q -

Theorem (3.3)

Let F be a field containing the rational numbers Q and I = ( f ) be a

principle ideal in F [ x; , ... ,x,, ] .Then VI = ( f,oq ) ,Where

f
Gen(r oL 2L, 2L

'0x1’'0x3""" '0xn

fred =

Proof
Suppose VI = (f; f, ... £} .Thus, it suffices to show that

Gep (f 2L 2L, L) = gL g

"ox, " oxy’ " 0xp r

We first use the product rule to not that

of _ ra;—-1 pa,—-1 ar—1 of ofr
a_x]-_fll 22 f;, (ala—xjfz ...f;«+...+arf1f2 a—x])

This proves that £~ £27" ... £% " divides the GCD.

If remains to show that for each i, there is some % which is not divisible
J

by ;" \Write f = f,"'h ,where h; is not divisible by f; .

Since f; is non constant ,some variable x; must appear in f; .

. 9f _ rai-1 O . - Ohi
The product rule gives us 2%, fi ( s hi + fi ox; )



If this expression is divisible byfl.ai, then % h; must be divisible f; .
]

Since f; is irreducible and does not divide h; , this force f; to divide %.
]

Example

> # To compute <Vfrea™

> restart;
> f==x5+3x4y+3x3yz—2)c4y2+xzy3+6x3y3
- 6xzy4 + x3y4 — 2xy5 +3 x2y5 +3 xy6
7.
T
f::)cs—l—3x4y+3)53)/2—2x4y2+xzy3
+6x3y3—6x2y4+x3y4—2xy5+3x2y5
—I—3xy6+y7
0
> 4= —
a ax <f’
a:=5x4—|-12x3y-i-9xzy2—8x3y2—i-2xy3
+18x2y3—12xy4—|-3x2y4-i-6xy5
>b::i g
oy 7
b::3x4+6)c3y—4x4y+3xzyz—|—18)c3y2
—24x2y3+4x3y3+15x2y4+7y6
> ged(a, b);

> ged(ged(a, b), f);

f :
(ged(ged(a, b), f)’

7 Vred) =



<(xs—f—?)x4y—i—3x3yz—2x4yz—I—xzy3—+—6x3y3
—6x2y4+x3y4—2xy5+3x2y5+3xy6
+y7)md>:=x5—|—3x4y+3x3y2—2x4y2
+x2y3+6x3y3—6x2y4+x3y4—2xy5
+3x2y5+3xy6+y7

Intersections of Ideals

Definition

The intersection I N J of two ideals I and J in F[ x; , ... ,x, ] is the set

of all polynomials which belong to both I and/.
Lemma (3.1)

i. IfIisgenerated asanidealin F[ x,,... ,x, ] by p;(x), ... ,p-(x)
then f (t) I is generated as an ideal in F[ x; , ... ,x,,t ] by

f@®).pr(x), ., f(0).pr(x) .

. Ifg(x,t) e f (t)Iand a is any element of the field, then
g(x,a)el.

Theorem (3.4)

Let/,] beidealsinF [x;,...,x,]. Then
INJ=(tl+(1—-t)J)NF[xy,...,%,].
Proof

Note that (tI + (1 —t)J)isanideal in F [ x;, ... ,x,, t].

To establish the desired equality, we use the usual strategy of proving

containment both directions.



Suppose f € INnj.Since f e I,wehavet.f € tl1, similarly, f € ]
implies(1—t)f e (1—t)].Thus,

f=tf+(1—-t). fe tlI+(1—-t)].Since

L] CF[xy, . %]
Wehavee (t1+(1—-t)J)NF[xy,...,%,].
Thisshowsthat In] < (tI+(1—=t)J)NF[xy,...,%,].

To establish containment in the opposite direction, suppose
fe(tlI+(1—-t)])NF[xg,...,x,].

Then f(x)=g(x,t)+h(x,t), whereg(x,t) €etland
h(x,t) € (1—-t)].

First set = 0 . Since every element of ¢ I is, multiple of t, we have
g(x,0)=0.Thusf(x)=h(x,o0)andhence f (x) € J by

lemma(3.1).
On the other hand, set t = 1 in the relation:

fx)=g(x,t)+h(x,t).Sinceeveryelementof (1—t)]Jis
multipleof 1 —t wehaveh (x,1) = 0

Thus f(x) = g(x, 1) and ,hence f(x) € I by lemma(3.1).
Since f belongsto both I and J,wehave € In]J.
Thus, IN] o (tI+(1—=¢t)J)NF[xy,..,xy].
Algorithm (3.2)

To compute the intersection of two ideals.

IfI=(f,...fr)and] =(gq,..,gs) areidealsin F[x;,..,x,], then:



- (fur s fr) N (81, 8s) =
(tfi, o tfy ,(1=08)gq, ..., —0t)gs) C Flxq, ..., xp, t]
2- Compute a Groebner basis with respect to lexicographic order in

which t is greater than the x; .

3- The elimination of ¢ can be done via the elimination property of

Groebner basis , we have a Groebner basis of
(tI+(1—-t)])NF[xy,...,x,]

ThusInj=(tfy,...tfh,(1—t) g, ..., A —)g)NF[xy, ... ,x,].
Example

> # To compute intersection of ideals

> restart;
> with (Polynomialldeals ) :
> with(Operators);

[+, Simplify, ]

JI = <x2 y>

J2 = <x y2>
> K= (t)JI + (1 — t)J2;
K:Z(xzyz,xzyt, —xy2 +xy2t>
> Eliminationldeal (K, {x, y}) = Intersect (J1, J2);
(%) =627

> # Thus JINJ2=<x7? >.

> restart;

> with(Polynomialldeals ) :



with (Operators );

% Simplify, ]

JI = <x2 - y2>

J2 = <x3 - y3>
K:= (t)JI + (1 —¢t)J2;

K:=<tx2—ty2,x4+x3y—xy3—y4,txy2—y3t
—x3+y3>

Eliminationldeal (K, {x, y}) = Intersect (J1, J2);
4, 3 3 4 4, 3 3 4
Oty —xy’ =) =0t 0y —xy’ =)

# Thus JINJ2=<x" + x3y — )cy3 — y4 >

# However there is a commmand which compute
directely the intersection of two or more idaels.

restart,

with (Polynomialldeals ) :
J1 = {x* = %),

J1 = <x2 — y2>
J2 = =)

J2 = <x3 — y3>
[ :== Intersect (J1, J2);

l::<x4 + x3y — xy3 —y4>
# Thus JINJ2:= <x* + x3y - xy3 - y4 >

restart,
with (Polynomialldeals ) :
I = {x* — y);

JI = <x2 - y>



> J2 = <x3 -y3>;
72 =0 — 57
> 3= (x* =53,
J3 =t =57
> [ = Intersect (J1, J2, J3);
l:=(v4x4 +y3x5 —yx7 — 5 —y7 _y6x +y4x3

+ y3 x4>

> # Thus JINJ2NJ3:= <y4x4 + y3x5 - yx7
— +y7 —y6x +y4x3 +y3x4 >

Sums of ldeals

Definition
If I and ] are ideals of the ring F[ x4, ... , x;, ] then the sum of I and J,
denoted I + J, is the set
I+]={f+g:fel,ge]}
IfI =(f,,...,f,yand] =(gq,...,gs)then I + ] =(fi, ..., [+, 81, =, Es)-

Example

> #To compute sums of ideals
> restart,
> with(Polynomialldeals ) :
> ]l = <x3 — l,y2 — 3>;
11 :=<x3 — l,y2 — 3>
> 2= <x2 —z);
12 = <x2 - Z>

> §:= Add(Il, I2);



S:=<x2—z,x3— 1,y2—3>

Products of Ideals

Definition

If I and J are two ideals in F[ xq, ..., x, | ,then their product, denoted
1.], is defined to be ideal generated by all polynomials f.g where f € I
and g € J . Thusthe product I .J of I and J is the set

I.]={figi+. ..+ fi, . fr€l, g, ..., 8 € J,risapositive
integer}.

Example

> #To compute products of ideals
> restart,
> with(Polynomialldeals ) :
> 1= (x> —1,y" — 3);
11 :=<x3 — l,y2 — 3>
> 2= (x* —z);

12 = <x - z>

> P := Multiply (11, I2);

P=((* = 1) (¥ =2), (" =3) (¥ = 2))

Quotient of Ideals

Definition

If [ and J are ideals in F[x, ... ,x, ] then,



[:]Istheset{f € F[xy,..,x,]:fg € Iforallg € J}.
And is called the ideal quotient for I by J
Proposition

Let/,/and F beidealsin K[x,,...,x,],then:

. I: K[xy,..,x,]=1.
. IJ c Kifonlyif Il c K:].
iii. J c Ilifandonlyifl :J= F[xy,..,x,].

Proposition
Let! ,I;,],J;,and Kbe ideals in F[ x;,... ,x, [for1 <i <r.Then

- (Ni=1 )] = Nia (L 2 T)

2- 1+ (Xi=1Ji) =Niz (= Ji ).
3-(I1:]):K=1:]K.

4-1: (fi,for e fr) = Niza(L 2 f7)

Theorem (3.5)

Let I be an ideal and g an elementof F [ x;,..,x,].
If{ hy, ..., hy, } is a basis of the ideal I N ( g ),then
{h,/g,.. hy,/g}isabasisof I :(g).

Proof

If a € (g),thena = b gfor some polynomial b thus,
iff € (hy/g,..,h,/g),then

af=bgf € (hy,...h,)=1n(g) cI.Thus,€ I:(g).



Conversely , suppose € I:(g).then fg € I.since fg € (g).
Wehavege I n (g).IfIn(g)=(hy,.., hy),this means
f g = X r;h; for some polynomials r; .

Since each h; € (g),each h;/gis polynomial ,and we conclude that

f=2r(h/g),
Where f € (hy/g , ... ,h,/8).
Algorithm (3.2)

To compute a basis of an ideal quotient.

IfI = (f,,...f.)and ] = { gy, ., g ) = { g )+...+( g, ) then

1- We compute a basis of {(f;, ..., /) N (g;) for each.

2- Finding a Groebner basis of (tf;, ..., tf,, (1 —t ) g; ) with respect
to lex order in which don’t depend ont ( this is our algorithm for
computing ideal intersections ) .

3- Using the division algorithm , we divide each of these element by g;
to get a basis for: (g; ) .

4-Finally we compute a basis for I : J by applying the intersection
algorithm s — 1 times .

5- Computing firsta basisfor I : (g, ,g,)=U: (g )N U :(gy)),
thenabasisfor I : (g;,8,,83) = : (81,80 NU:(g3))
Andsoonuptol:]

Example

To compute ideal quotient
Let] = (x? —y?) ,] = (x3 —y3)
Compute intersection by Maple

K=tl+(1-1t)



= (x" + 2%y —xy® —y*)
By using the division algorithm by g; to get a bases for I: (g;)

x3—y3 x4+x3y—xy3—y4

x x* — xy3
X3y — y*
X3 — 3 x3y — y*
y xy —y*
0

I:(g;) = {x +y)

> #To compute ideal quotient by maple
> restart;
> with (Polynomialldeals ) :
> 11 = (x> —));

1l = <x2 — y2>
> g1 = =)

JI = <x3 — y3>
> Quotient (11, J1);

x+



Appendix

Maple Program

Maple is computer algebra system which makes computations
symbolically and numerically .It also makes graphs .1t includes general

commands and special packages for special subjects.

We introduce below the basic commands for doing computations in

polynomials and Groebner Basis.

The version 13 of Maple is used in our computations.

> # The general commands used are :-

> # 1) gcd - greatest common divisor of
polynomials

# The gcd function computes the greatest common
divisor of two polynomials

> #  The packages used are:-
> 1) with(Groebner);

[ Basis, FGLM, HilbertDimension,
HilbertPolynomial , HilbertSeries, Homogenize,
InitialForm, InterReduce, IsProper,
IsZeroDimensional,, LeadingCoefficient,
LeadingMonomial, LeadingTerm, MatrixOrder,
MaximallndependentSet , MonomialOrder,
MultiplicationMatrix ,
MultivariateCyclicVector , NormalForm,
NormalSet, RationalUnivariateRepresentation ,
Reduce, RememberBasis, SPolynomial, Solve,
SuggestVariableOrder, TestOrder,
ToricldealBasis, TrailingTerm,

UnivariatePolynomial , Walk, WeightedDegree |

> # i ) Basis —compute a Groebner basis



v

=

ii) LeadingCoefficient
- compute the leading coefficient of a
polynomial

iii) LeadingMonomial
- compute the leading monomial of a
polynomial

iv) LeadingTerm
- compute the leading term of a polynomial

v) NormalForm
- compute the remainder of a multivariate
polynomial fdivided
by a list of multivariate polynomial G

vi ) SPolynomial
—compute an spolynomial of f
and g with respect to monomial order T

vii) TestOrder — compar monomials
in a monomial order

2) with(Polynomialldeals ),

#

[ <,>, Add, Contract, Eliminationldeal ,
EquidimensionalDecomposition , Generators,
HilbertDimension, ldealContainment,
Ideallnfo, ldealMembership, Intersect,
IsMaximal, IsPrimary, IsPrime, IsProper,
IsRadical, IsZeroDimensional ,
MaximallndependentSet , Multiply ,
NumberOfSolutions, Operators,
Polynomialldeal, PrimaryDecomposition,
PrimeDecomposition, Quotient, Radical,
RadicalMembership, Saturate, Simplify,
UnivariatePolynomial , Vanishingldeal ,

ZeroDimensionalDecomposition, in, subset |

i) Add -compute the sum of ideals

ii) Eliminationldeal -eliminates variables
from an ideal using a Grobner basis
computation

iii) Intersect
- compute the intersection of two
or more polynomial ideals



# iv) Multiply — compute the product of ideals

#  v) Operators (subpackage)
- binary operators for ideals

#  vi) Quotient
— compute the quotient of two ideals

# wvii) Radical —compute the radical of an ideal
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