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Abstract

In this thesis, we shall discuss the concepts of
Banach algebras .

We give some results in the area of Banach algebras.

Also , we discuss the concepts of
- Character mappings on Banach algebras .

- Involution mappings on Banach algebras .

- B*-algebras .

We give some results concerning the previous concepts .



Chapter One

Introduction

In this chapter, we give some standard definitions and results which we shall

need later in this thesis .
Notation

Let R be the set of all real numbers.
Let C be the set of all complex numbers.

Definition 1.1

Let X be anon-empty set,and let K be the field of scalars( K= R or
C).Let xeX and aeK.Then ax is called ascalar multiplication .
Definition 1.2

Let X be anon-empty set,and K be the field of scalars( K=R or C)

whose elements are called vectors and in which two operations called
addition and scalar multiplication are defined . Then X is called a linear

space (or a vector space) over K for all x,y,z e X and «a,f € K
which satisfies the following conditions :
(1) X+y=y+ Xx.
() (x+y)+z =x+(y+2).
(1ii) There exists 0 in X such that x + 0 = x.
(iv) There exists —x e X such that x + (—x ) = 0.
(V) a(x+y)=ax+ay.
i) (a+B)Xx=ax + BX.
(vii) a (Bx)=(ap)x.
(viii) 1.x = x.
Let X be alinear space over K .Then the subtraction is defined by
X—y=xXx+(-y) (x,yeX).
Definition 1.3

Let X be alinear space over K and let x,,x,,.., X, be non-zero



elements in X . Then x,,x,,..,Xx, are called linearly independent if

n

a,,a,,..,a, €K such that o, x, + a, X, + ... + a, X, = 0, then
a,=a,.=a,=0.
Definition 1.4

Let X be alinear space over K .Let A < X .Then A is called a linear
subspace of X if ax +pB8yeA (xX,yeA,a,eK).
Remark

Let A be alinear subspace of alinear space X .Since 0 A,s0 A is
non-empty .

Definition 1.5

An algebra is alinear space A over K such that for each ordered pair of
elements x,yeA aunique product x y e A is defined with the properties

(1) (xy)z=x(yz).
() x(y+z)=xy+xz,
(x+y)z=xz+yz.
(iii) a(xy)=(ax)y=x(ay),
forall x,y,ze A, aekK.

If K=R or C,then A is said to be areal or complex algebra respectively .
Definition 1.6

Let X be alinear space over K ,and E < X .Let f , g be mappings
of E into X .Let o« eK.The natural definition f +g,af are given
by

(fF+9)(x)=Ff(x)+g(x) (xeE),

(af )(x)=af(x).
This is called the pointwise definition of addition and scalar multiplication.

When X is an algebra, the pointwise product is given by

(fg)(x)=~1(x)g(x) (xeE).



Definition 1.7
Let A be an algebra. We say that A is commutative if
Xy=yx (x,y eA).
Otherwise , A is called non-commutative .
Definition 1.8

An element e of an algebra A is called anunit element or identity
element if and only if e = 0 and
ex =xe=xX (x €eA).

A unit element e of A is unique.
We say that A is an algebra with unit if it has an unit element.
Definition 1.9

Let A be analgebra with unit e.An element x € A is said to be
invertible if it has an inverse element in A ,that is if A contains an
element , written x ', such that

X 'x=xx'=e.

Then x ~*'is unique when it exists .

Notation
Let A" denote the set of all invertible elements of analgebra A .
Theorem 1.1 [ 10 ]
Let A and B be complex algebras with the same unit.If A < B ,then
A'cB ',
Theorem 1.2[10]
Let A be an algebra with unit e . Then
(i)e"=e (neN)
(ii) et =ce.
That is , e is aninvertible element in A .

Lemma 1.3[ 10 ]

Each non-zero element of C is invertible .



Theorem 1.4[10 ]
Let A be an algebra with unit e .Let x be anon-zero element in A.
Then x is invertible in A if and only if x ' is invertible and
(x H't=x.
Theorem 1.5[10 ]
Let A be an algebra with unit e . Let x,y be invertible elements of

A .Then xy is invertible and

-1 -1

(xy)' =y x
Lemma 1.6 10]
Let A be an algebra with unit e .Let x be an invertible element in A.

Then a x (a=0) is invertible .

Definition 1.10

A subset | of acommutative complex algebra A is said to be an ideal
if

(i) I is asubspace of A.

(ii) xyel whenever xeA and y el.
If 1 =A,then | is called aproper ideal.
Maximal ideals are proper ideals which are not contained in any larger
proper ideals .
Definition 1.11

A non-empty subset E of an algebra A is called subalgebra of A if

Xy,yxeE (x,yeE).

Definition 1.12

Let X and Y be non-empty sets. The cartesian product of X and Y is
defined by

X xY ={(x,y): xeX,yeY }L

Note that X xY =Y x X unless X =Y.

Definition 1.13

Let X be anon-empty set.Let d be areal function defined on the



cartesian product X x X into R such that for each x,y,z € X
(i) d(x,y)=0

(H)dxx,y)=0 < x=y

(iii) d(x,y) = d(y,x)
(iv) d(x,y)<d(x,z)+d(z,y).
Then d is called ametric on X and (X ,d) is called ametric space.
Example 1.1
Let X =R .Define d by
d(x,y)=Ix—-y [ (x,yeX).
Then d is ametric on X . This metric space is called the usual metric

space .
Definition 1.14
Let (X ,d) and (Y ,hd) be metric spaces. A function f : X —Y s
called continuous at x, in X if for each & >0 there exists >0 such
that
d(f(x),f(x,))<e foral d(x,x,)<5§6
The function f is called continuous on X if it is continuous at each point
of X.
Theorem 1.7[15]
Let (X,d) be ametric space .Then adistance function d from X x X
into R is continuous .
Definition 1.15
Let (X ,d) beametricspace and x € X .Let r >0 . The set
B(x,r)={yeX :d(x,y)<r}.
is called the open ball with center x and radius r .
Definition 1.16
Let (X, d) be ametric space. A subset A of X is said to be open in

X if for each x € A, there is r >0 such that B(x,r) c A.



Definition 1.17
Let (X, d) beametric space. Asubset A of X is said to be closed in

X if its complement X — A is open in X .

Definition 1.18

Let X be alinear space over K . Let ||.|| : X — K be a function such

that
(i) || x || =0 for all x e X.

(i) || x||=0< x=0 for all xeX.
(i) lax]| =|la|]|lx]| foral aeK, xeX.
(V) llx+yll < x|+l y] forallx,y eX.
Then || .|| is called anorm on X and (X , ||.||) is called a normed space.

We assume that || 1 =1.

Remark
Let (X ,].]|) be anormed space.Let x,y € X .Then

() IIx=yll=Illy-xI.
(i) fIx1=1-x1.
Theorem 1.8 [15]
Let (X , ||.]]) be anormed space.Let x ,y € X . Then
FIx =1y [IIsfx=yl.
Lemmal9[15]
Every normed space (X , ||.||) is ametric space with the distance

d(x,y)=lx=yl (x,yeX).
Remark

In general , the converse of Lemma 1.9 is not true.
For example :
Let X = R.

Let d, be ametric on X |



Define d, by

__di(x,y) .
dZ(X'y)_lerl(x,y) (x,yeX).

Then d, is ametric on X but d, is not anorm on X because
d,(ax,ay)#ad,(x,y) .
Lemma 1.10[15]
Let (X ,|.]|) be anormed space . Then anorm function is continuous .
Definition 1.19
Let X ,Y be linear spaces over K .Afunction f:X —Y is called linear
if
(i) f(x+y)=Ff(x)+f(y) foral x,y eX.
(i) f (ax)=af(x) foral aeK,x eX,
or , f is linear if
flax+py)=af (x)+pf(y) (x,yeX ,a, fecK).
Lemma1.11[15]
Let X ,Y be linear spaces over K .Let f :X — Y be alinear function .
Then f (0)=0.
Remark

In general , the converse of Lemma 1.11 is not true.
For example :
Define f by

f(x)=x?.
Then f (0)=0 but f is not linear .
Definition 1.20
Let ( X ,].]l) be anormed space . A function f on X is called bounded
if there exists a positive integer M such that
Nl f(x)l|<M foral xeX.
If f is alinear map, then
ECx)N<Ifinxi foral xeX,



or
| f(x)l|<M|x]| foral xeX.
Definition 1.21

A linear functional on alinear space X over K is alinear function from
X into K.

Definition 1.22
Let (X ,[l.Il) be anormed space.A linear functional f : X — K is
called bounded if there exists a positive integer M such that
| £ (x)[<MIx]| (x eX).
Theorem 1.12 [ 16 ]
Let (X ,||.||) be anormed space . A linear functional on X is continuous

if and only if it is bounded .
Theorem 1.13[ 16 ]

Let f be abounded linear functional ( or continuous linear functional ) on

anormed space X .If x,e X such that f (x,)=0,then x,=0.

Definition 1.23

Let A, B be complex algebras over K . A mapping f of A into B is
called homomorphism if f is linear and

f(xy)=f(x)f(y) (x,yeA).

Definition 1.24

Let A, B be complex algebras over K .A one-one homomorphism
mapping from A onto B is called isomorphism .
Definition 1.25

A function f is said to be analytic on the domain D of C if it has
derivative at each point of D . Then f is called an entire function if it is

analytic at each point of C .
Theorem 1.14 ( Leibnitz's Rule) [ 14 ]

n n i no—i
(fg)("): Z{J] f(J)g( i) (n=1.2,.).
=0



where f and g are n-times continuously differentiable functions .

Theorem 1.15 ( Liouville) [ 14 ]

If f is bounded and entire function on the complex plane, then f is

constant .
Definition 1.26
Let A be asubset of R . An element x R is called an upper bound of
A if a<x forall aeA.
If A has an upper bound,then A is called bounded above set .
Definition 1.27
Let A be asubset of R .An element y eR is called alower bound of
A if y<aforal acA.
If A has alower bound,then A is called bounded below set .
Definition 1.28
Let A be asubset of R .Then A is called bounded if it is both bounded
above and bounded below .
Definition 1.29
Let A be asubset of R . Areal number u is called asupremum of A
(The least upper bound of A) if
(i) u is an upper bound of A.

(i) If v be any upper bound of A.Then u <v.
It is denoted by sup (A).

Theorem 1.16 [ 2]
Let A be anon-empty bounded above subset of R .Then A has a
supremum and it is unique .
Definition 1.30
Let A be asubset of R . Areal number w is called an infimum of A
(The greatest lower bound of A) if
(1) w is an lower bound of A.
(i) If t be any lower bound of A.Then t <w.

It is denoted by inf (A).



Theorem 1.17[ 2]

Let A be anon-empty bounded below subset of R .Then A has an

infimum and it is unique .
Theorem 1.18[ 2]

Let A be anon-empty bounded subset of R .Then A has a supremum

and an infimum .
Theorem 1.19[ 8]

Let A be abounded set of real numbers and let &£ >0.Then a=inf(A)
if and only if there exists at least x € A such that X< a + ¢.
Theorem 1.20 [ 8]

Let A be abounded set and B — A.Then B is also bounded .
Notation

Let C [a,b ] be the space of all complex-valued continuous functions on
[a,b].
Theorem 1.21[ 8]

If feCl[a,b],and if M:supa1 b|f(x)|,thenthere is

<x <
as<X,<b,such that | f (x,)|=M.
Theorem 1.22 [ 8]

Let X be abounded set of R and let f : X — R be abounded

function . Then

(i) sup (af (x))=a sup (f (x)) (a>0).
X € X X € X
(i) sup;((af(x))zaxigfx(f(x)) (a<0).

Definition 1.31
Let X Dbe anon-empty set and let T be acollection of subsets of X
such that
(i) X,DeT.
(ii) If 0,,0, €T ,then O,N O, eT.

(iii) If for each ael,0, €T ,then U O_eT.

ael



Then T is called atopology on X and ( X,T) is called atopological
space . The members of T are called open sets .
Definition 1.32

Let (X ,T ) be atopological space and Ac X . Apoint x €A is an
interior point of A if there exists an open set O such that xeOcA.
The set of all interior points of A is denoted by int( A ).
Definition 1.33

Let (X ,T ) be atopological space and x € X . Let A be asubset of

X . Then x is called aboundary point of A if for every open set O
containing x ,then O NA =< and O N (X \A)=J .

The set of all boundary points of A is denoted by o (A).
Theorem 1.23[ 17 ]

Let (X ,T ) be atopological space.Then A is open if and only if
(X )NA=0.
Definition 1.34

Let (X ,T ) be atopological space and x e X .Let A < X .Then x
is called aclosure point of A if for every open set O containing x ,then

ONnA=J.
The set of all closure points of A is denoted by A .
Theorem 1.24 [ 17 ]
Let (X ,T ) be atopological space and A < X . Then
(i) AcA
(ii) A is closed if and only if A=A
(iii) A is the smallest closed set containing A .

Definition 1.35

Let X and Y be topological spaces and let f be afunction from X
into Y . Then f is called homeomorphism if

(i) f is one-one and onto.

(ii) f and f ~' are continuous .



Definition 1.36

Let (X ,T ) be atopological space . A collection {Ua}me of open sets

is called an open cover of X if X = UI u,.
ac

A collection {Uai}i of a topological space (X ,T) is called an open
subcover of {Ua}wEI if

{Uai}i c{u,} ,and X = U u, -

Definition 1.37
A topological space (X ,T) is said to be compact if each open cover
of X has afinite open subcover .
Theorem 1.25[ 17 ]
Aclosed subset A of acompact space X is compact.
Theorem 1.26 ( Heine - Borel )[ 17 ]
A subset A of R is compact if and only if A is closed and bounded .
Definition 1.38
A topological space (X ,T ) is called Hausdorff if every distinct points
X,y €X ,there exist open sets U and V such that x eU , y eV and
unv =9g.
Definition 1.39
A sequence (a,) in ametric space (X ,d) is called convergent to a point
a in X if for each £ >0, there exists apositive integer N such that
d(a,,a)<e (n>N).
In anormed space (X ,|.I),
la, —all<e (n>N).
Theorem 1.27 [ 15]
Let (X ,][|.]|) be anormed space.If x,— x (n —>®o) in X ,then

I Xg l=> 1l x || in R



Definition 1.40

The sequence (a, ) is said to tend to infinity if given A ( however large),

there exists N such that

a, >A foral n>N.
We use the arrow notation and we write a, — o .

Definition 1.41

Let (X ,d)and (Y ,d) be two metric spaces.Let (x,) be asequence
in (X,d).Afunction f: (X,d)— (Y ,hd) is called continuous at
X, in X if x,—>x,in X ,then f (x,)—>f (X,).
Definition 1.42

A sequence (a,) in ametric space (X ,d) is called cauchy in X if for

each & >0, there exists a positive integer N such that

d(a,,a,)<e¢ (n,m>N).
In anormed space (X ,|[.]]),
la, —a, ll<e (n,m>N).

Theorem 1.28 [ 2]
Every convergent sequence is a Cauchy sequence .
Remark
In general , the converse of Theorem 1.28 is not true .
For example :
Let X =R\{0}.

Let a :i (neN).
n

Then (a,) is a Cauchy sequence in X ,but (a,) does not converge in X .

Definition 1.43

Let (X ,||.]|) be anormed space. A sequence (a,) on X is called bounded
if there exists a positive integer M such that

la, <M  (neN).



Lemma1.29[2]

Let ( X ,|.||) be anormed space.If a, >0 (n —»>w)in X and (b, )
is a bounded sequence, then (a, b,)—0 in X .

Theorem 1.30 [ 2]
Every convergent sequence is bounded .
Remark
In general , the converse of Theorem 1.30 is not true.

For example :
Let a, =(-1)" (neN).
Then (a,) is abounded sequence but not convergent .

Theorem 1.31[ 2]
Every Cauchy sequence is bounded .
Remark

In general , the converse of Theorem 1.31 is not true .

For example :
Let a, =(-1)" (neN).
Then (a,) is abounded sequence but not Cauchy .

Definition 1.44
A metric space (X ,d) is called complete if every Cauchy sequence in
(X ,d) isconvergent in (X ,d).
Definition 1.45
A complete normed space (X ,||.||) is called aBanach space.
We state some examples concerning Banach spaces .
Examples 1.2[4,9]
(1) Let R be the algebra of real numbers .We define C as R xR,
( C is the set of all complex numbers), with operations given by
(a,b)+(c,d)=(a+c,b+d).
a(a,b)=(aa,ab)
(a,b) (c,d)=(ac—-bd ,ad +bc)



The norm on R is given by
xl=Ix1l (x e R).
Also , the norm on C is given by
xl=1Ix1 (xeC).
Then R and C are Banach spaces.
(ii)Let M, denote the set of all n xn matrices A =(a,;; ) with

complex entries a, ;.

The addition on M . is given by
A:(aij ) , B :(bij )
A+B=(a;; +b;;)

The scalar multiplication is given by

aA=a(a;;)=(aa;;).

The usual matrix multiplication is given by

(AB) =2 a;by;.
ok=1

The norm on M, is defined by

n
n

IAll=max { > Ja;;|:1<i<n ;.
=1

Then M ., is aBanach space.

(iii) Let C [a,b ] be the space of all complex- valued continuous
functions on [a,b].

With the pointwise addition, scalar multiplication and pointwise

product and with the norm is given by

| f ":XS“§(| f (x)I), (f eCla,b]),

is a Banach space .
(iv) Let C"[a,b ] be the space of all complex-valued functions on
[a,b ] which are n-times continuously differentiable .

With the pointwise addition, scalar multiplication and pointwise
product and with the norm is given by



HE=> i (fec'ab]),

K=o k!

where || f ||oo=supaSXSb | f (x)],

is a Banach space .
(v) Let X ={0}.Let B(X, X ) be the space of all bounded linear
mappings from a normed space (X ,|[.||) into itself.
With the pointwise addition, scalar multiplication and the
multiplication of T, ,T, e B (X, X ) as acomposition of operator :
(TyT) (x ) =T (T, (x)) ., (x eX),
and the norm is given by
IT H=sup {ITCX)N:lIx <1}, (T eB(X,X)),
is a Banach space .
(vi)Let D={zeC:|z|<I1}.
Then D is called aunit disc in C .
int(D)={zeC:|z|<1}.
Let A (D) denote the family of all continuous functions on D and
analytic functions on int( D ).Then A (D) is called the disc algebra .

With the pointwise addition, scalar multiplication and pointwise product

and the norm is given by

= sup (1 (z)D), (F cA(D)),
is a Banach space .
(vii)Let L*(R) denote the space of integrable complex valued functions
on R.That is

Ll(R)={f "R—>C :| f ||=T| f (x)|dx<oo}.

With the pointwise addition, scalar multiplication and with the norm

is given by



=1 (x)ldx (x eR),

Is a Banach space with

[ee]

(fxg)(t)=] f(x)g(t-x)dx

— 00

as the product.

(viii) (1 (Z)={a=(a,:neZ): i la, | <o},

n=-o

where 7 is the set of all integers. With the pointwise addition,

scalar multiplication , the product of (! is given by

(axb)y= Y a, , b, (neZ),

k =—o

and with The norm on (! is given by

lall= > la, |,

is a Banach space .
(ix)Let A be anormed space over K .Let A* be the set of all ordered

pairs (x,A),where xeA and 1eC.
The addition , scalar multiplication and the product defined for all
x,yeAand A,,14,eK by

(x, A)+(y , A,)=(x+y , A4, +4,),

A, (X, A4,)=(A,x , A, 4,)

(x, 4)(y, A,)=(Xy +A4, Yy +A,x, 4, 4,).
Let x e A.Then x —>(x,0) and

(X, A)=(x,0)+4(0,1) (AeC).
The norm on A” is defined by

T(x,a)ll=xll+]lal (xeA,aeC),

where || x || is anorm on A.

The identity element of A" is e =(0,1) ,



and
(0, 1) II=0+]1]=1.
If A is aBanach space,then A" is aBanach space.
Definition 1.46
Let E be alinear space over K .Let B : E x E — K such that
(1) B(x,x)>0 (xeE).
(i) B(x,x)=0 < x=0.
(iii) B(ax+py,z)=aB(x,z)+pB(y,z)
(X,y,zeE , a,peK).
(iv) B(x,y)=B(y,x) (x,y eE).
Then B is called an inner product on E.
Definition 1.47

A Hilbert space H is aBanach space in which the norm is defined by

inner product
Ix =B (x,x) (xeH),
and we write B (x,y)=<x,y >.
Definition 1.48
Let T be abounded linear mapping on H . The unique bounded linear
mapping T “on H that satisfies
<TX ,y>=<x,T"y > (x,y eH),
is called the Hilbert space adjoint of T .
Notation
Let BL(H ) denote the set of all bounded linear mappings on H .
Theorem 1.32 [ 4]
Let T,S eBL (H ).Then
(i) (T+S)Y =T+ S°
(ii) (aT ) =

a T (aeC).
(iii) (TS) =S8"T"



(iv) (T") =T .
(v) 17 =1, 1 is the identity mapping .
Theorem 1.33[4 ]
Let T eBL (H ).Then

* * 2
NT T =T T IU=0ITI .



Chapter Two

Banach algebras

2.1 Banach algebras

Banach algebras were introduced in 1940 by the Russian mathematical
.M. Gelfand .
Definition 2.1.1

A normed algebra A is analgebra which is anormed space ( A4,]|.]| ) and
in which

Ixyl<ixilyl (x,yeA).

We shall state and prove some results concerning normed algebras .
Lemma 2.1.1

Let A be anormed algebra with unit e . Then ||e || >1.

Proof
Let xe A with x 0. Then

Xe=ex=X.
So

[[xell =[xl
We obtain

[Ixell<(Ix|lel.
Therefore

I I =<1xIell,
and so

le]l =1.
Similarly ,if e x=x,then |e | >1
Remark

We shall make the additional assumption that ||e ||= 1.



Lemma 2.1.2

Let A be anormed algebra .Let x € A, n eN. Then
hx "< ".

Proof
We use mathematical induction
Let n=1.Then
[ [l < 1%l (x eA).
Now, suppose it is true for n=k

k

x“<yxt (x eA).

Now , we shall prove that it is true for n=k +1.

We have
I x* I =1x"x1 (xeA).
k
<[ xTIX|
k
< P x 1 Ex]
k+1
=[x ",
Thus Ix < x et
Hence Ix" I <x .
Lemma 2.1.3

Let A be anormed algebra.Let x e A and n,m eN. Then
Ix " ™ < x "

Proof
Let x € A .Then

n+m n m”

Il x I=1x" x



n m
< qPx A x

<l x 1"l x 1™ ( Lemma2.1.2)

=[x 1"

Theorem 2.1.4

Let A be anormed algebra.If x, >x, y, >y (n—>x) in A,
then xpy, = XVy.
Proof

Let x, —»x and y, —> y in A .Then

||Xn Yn—X y”:” Xn ¥Yn —Xnp y+xny—xy||

= Xn(Yn=Y)+ Yy (Xqp=X)Il

SUxpCyn=y)II+1y (Xp =x) |l

< IXp Y=Yy Ty 1HE X =X ]

-0 (n > o).

Hence X,yn, =>XYy.
Theorem 2.1.5

Let (x, ) and (yp ) be bounded sequences in anormed algebra A.
Then (x,Yp ) is abounded sequence in A.
Proof

Let (x, ) be abounded sequence in A .Then there exists a positive
integer M, such that

| Xq 1M, forall n.

Let (yp ) be abounded sequence in A .Then there exists a positive integer

M, such that



lyn I[SM, forall n.
We have
I XnYn I <IXp Il ynll
<M, M,.
Choose M =M, M, >0.
It follows that
| Xq ¥n <M forall n.
Hence (X, Yy, ) is abounded sequence .
Theorem 2.1.6
Let A be anormed algebra.If (x,) and (y,) are Cauchy sequences
in A,then (x,vy,) is aCauchy sequence in A.
Proof
Since ( x, ) is aCauchy sequence in A ,so ( x,) is abounded sequence
( Theorem 1.31) . Then there exists a positive integer M such that
[ X, II<M (neN).

For each ¢ > 0, there exists a positive integer N such that

&
Il Xn _)(m||<_§RZ_ (n,m>N).
Also, since (y,) is aCauchy sequence ,so (y,) is abounded sequence .

Then there exists a positive integer M such that
Iy, IsM  (neN).

Similarly , for each & > 0, there exists a positive integer N such that

&
— < — n,m>N ).
NYyn=Ymll M ( )

We have

”Xn Yn = Xm Ym ”:”Xn Yn = Xm ¥Yn+t X ¥Yn X Ynm I

=|| yn(xn_xm)+xm(yn_ym)|l



S”yn(xn_xm)||"'||xm(yn_ym)”

S”yn”llxn_xm ||+||Xm ” ”yn_ym ”

<M 2 _1m E
2 M 2 M
E E

= — 4+ —

2 2

=&.

Hence (x,Yy,) is aCauchy sequence in A.
Definition 2.1.2

Let (A,||.]]) be anormed algebra.If A is complete with relative to
this norm ( i.e, A is aBanach space ),then A is called aBanach algebra.
We give some examples concerning Banach algebras .
Examples 2.1
(1) The space R is aBanach space with the norm

Ixll=l x| (xeR).
Let x,y €R.Then

Ixyll=[xy|
=/ x[]y|
=[x [y I

Hence R is anormed algebra. Then R with the usual addition and
scalar multiplication and pointwise product is a commutative Banach
algebra .
Also, C with the usual structure and the norm

Ix =[x (xeC),
IS a commutative Banach algebra .

(ii) The norm on M, . is given by

n

n
IAl=max{> |a,;| :1<i<n} (AeM,.,).
j=1

Then M, , is aBanach space .

n



Let A=(a;;),B=(b;;).Let A,BeM,, ,.Then
TABI<IIAIIBII.
Hence M., is aBanach algebra . As is well-known matrix
multiplication is not commutative .
(iii)The norm on C[a,b] is given by

| f = supb(|f(x)|) (fecla,b]).

a<x <
Then C[a,b ] is aBanach space.
Letf,geC[a,b]. Then

Ifgll= supb(lf(x) g(x)1).

as<x <

By Theorem 1.21 , there exsists x, in [a,b ] such that

Ifgil=f(x)llgxe)l

<\ fanngll.
Hence C [a, b] IS a commutative Banach algebra .
(iv) The norm on C"[a,b ] is given by
21

Ifl=2

= I (fec'an]).
k=0 : 0

Then C"[a,b ] is aBanach space.

Let f ,geC"[a,b].Then

-y 1 (k)
If gl kZO _||(fg) ||OO

-EENE [N L

, k 1 fO) g -]
Q0




=S (PRERY e ey S

= (RSN | A I |

IA
Il MD
I M:’
— | —

=1 f nngll.

Thus || f gli<If Il gl

Hence C"[a,b ] is acommutative Banach algebra .
(v) The norm on B( X, X ) is given by

IT I=sup {IT(X) Il x <1} (TeB(X, X))
Then B( X, X ) is a Banach space.
Let T,,T,eB(X,X). Then
(T T )X =1 Ty (T, (x )l

SUTLARIT, (xO)I

< AUTANT A1 L

Thus
T, T < Tl IT,

Hence B( X , X ) is aBanach algebra.

(vi) Let A(D) be the disc algebra with the norm
| f |l= su%(|f (z)) (f eA(D)).
Then A (D) is aBanach space .

Let f ,g eA(D).Then
e gl<if gl

Hence A (D) is acommutative Banach algebra .



(vii) The norm on L!(R) is

| f ||:T 1f (x)ldx (xeR ,f el (R)).

Then L!'(R) is aBanach space and the product is given by

0

(f*g)(t)=] f(x)g(t-x)dx.

— o0

Let f ,g el*(R).Then

o0

IIf*QIIZI T|f(x)g(t—x)|dtdx

—00 —00

0

[1EOOI(]lg(t=x)|dt)dx

—0o0

0

[1fo)gndx

—00

=l finnal.

Hence L!(R) isacommutative Banach algebra .

(viii) The norm on (! is given by

lall= 3 la | (aelt).

n=-ow

Then (! is aBanach space and the product is given by

(asb)y= 3 a, , b, (nez).

k =—o0

Let a,b (1. Then

Z|(a*b)n|:Z|z an—k bk|

nez neZ kelZ
<> Dllag_ |l byl
neZ keZ
= (21 b DCY la,_ D
k eZ nez

=[bl lrall



Hence (! is anormed algebra.Thus (! is aBanach algebra .

(a*bh), = Zan_k b,

k eZ

=> b, a, .

k eZ

Set u=n-k.Then

(a*b),= > b, a,.

n-uez

Hence (! is commutative .

(ix) Let A be anormed space over K .Let A" be the set of all ordered

pairs (x,A),where xeAand AeC.

The norm on A* is given by
HCx, A)=Ixl+[4].

Then A" is aBanach space .

Let A be anormed algebra. Let(x,,4,),(X,,4,) e A* Then

(X, A) (X, A =1 (xy X+ A, X+ A, X, A 4,)
= X X, + A X, + A, X I+ 4,4, ]
SIHEx X I+ 1 Apx #1121+ [ 44 4, ]
SI XX I+ T A HE X I+ A HE X 1+ [ A ] 4, |
=(Ix I+ 0 A D) O x, 1+ 12, 1)

=0 (X0 AD (X 50 25) 11
Thus A" is anormed algebra .
Hence A* is aBanach algebra with unit e = (0,1).

If A is commutative , then A is commutative .



Definition 2.1.3

Let X be acompact Hausdorff space.lLet A be asubset of C (X ). Then
A is called separates the points of X ,if for each x,y e X with x =y,
there exists f < A such that f (x)=f (y).
Definition 2.1.4

Let A be asubset of C (X ). Then A is called self-adjoint if f < A, then

f eA.
Theorem 2.1.7 ( Stone-Weierstrass ) [ 16 ]
Let X be acompact Hausdorff space.Let A be asubalgebra of C (X))
and separating the points of X . If A is self-adjoint, then
A =C(X).
Remark
There are some Banach algebras which are not closed .
For example :
Let A=C'[0,1].
Then A is aBanach algebra ( Example 2.1 (iv)).
By Stone-Weierstrass theorem , we obtain

c'[0,1]=C [0,1].

It follows that Cl[O,l] is not closed .

Theorem 2.1.8[ 9]

Let A be acomplex Banach algebra with unit. Then every closed
subalgebra of A is itself a Banach algebra .

Theorem 2.1.9

Let A be acomplex Banach algebra and suppose x in A is such that
|| X ||<1. Then there exists y € A such that Xy =x+y .
Proof

Since || x ||<1 and || x ™| <|Ix|", the series —x —x?—x3*—... is

absolutely convergent. Since A is a Banach space , so the series converges.



Let the sum of the series be y . Then

Xy=—-x2-x>-x*-.

=X+Y.
Theorem 2.1.10[ 14 ]

Let A be acommutative Banach algebra with unit. Then every maximal

ideal of A is closed .
Theorem 2.1.11[ 14 ]

Let A be acomplex Banach algebra with unit.Let | be an ideal of A.

Then the closure of | is an ideal .

2.2 Invertible elements of Banach algebras

Theorem 2.2.1[9]

Let A beacomplex Banach algebra with unit e . If x €A satisfies

[[x||<1, then e—x is invertible , and

-1 E o
(e=x) "=e+ X x .
n=1

Theorem 2.2.2[ 9]

Let A be acomplex Banach algebra with unit e . If x €A and

e 0]
IX[|<1 ,then e+x is invertible , (e +x )= ¥ (-1)"x", and
n=0

2
x|l

l(e+x)'—e+x|] < —m—.
11— x|

Theorem 2.2.3[ 9]
Let A be acomplex Banach algebra with unit e.If ||[x —e ||<1,then

x is invertible and
x'=e+) (e-x)".
n=1

Theorem 2.2.4
Let A be acomplex Banach algebra with unit e . Then A~' is an open

subset of A.



Proof
Let x,eA*.Let B(x,,&) be an open ball with center x, and radius

& .

Set ¢

= >
IR
We will show that B (x,,&)cA*. Let x eB(x,,s).Then

X =X, Il < ———
BEAN) 1"
IXg

Let y=x,'x and z =e —y.Then
Nz lI=1-zl
=lly —ell
=l1%o"x = X5 X |
=lIxy (X =xg )l
<X X =Xl

1

-1
<[ xe "l -
0

=1.
Thus ||z ||<1. So e —z is invertible in A (Theorem 2.2.1), and hence
e—z=yeAl

Now ,we have Xx,,y e A ".S0 x,y e A~ ( Theorem15 ).

Therefore
X,y =X4 Xgt X
=e X
=x e A"
Hence A ' is open.

Corollary 2.2.5

Let A be acomplex Banach algebra with unit e .Then the set of all non-

invertible elements is closed .



Proof

Since A~' is open (Theorem 2.2.4),and the set of all non-invertible
elements is complement of A ™', so it is closed .
Theorem 2.2.6[ 14 ]

Let A be acomplex Banach algebra with unit e.Let x e A™* and

y € A such that
Ix -y Il £ —7F—

X TP x =y |l
T—xx =yl

Then vy e A" and || x '—y | <

Proof

Let x At and y eA.Then

e =xy lI=lxx"=x"y |
=l x (x =y )l
SUxlx =yl
<1.

So x 'y s invertible ( Theorem 2.2.3) and has an inverse in A say z.

Then
x 'ty z=e (1).
Multiplying (1) on the left by x , we have
XX 'yz=xeandso yz=x.
We obtain
1

Hence y z x ~ =e.

Again multiplying (1) on the right by x ', we have

(x7tyz)x*t=extandso x '(y zx')=x"".
It follows that zx‘lzl,and we can obtain
y
1 1
ZX Ty ==y
y



=€.

Thus z x ' is the inverse of y and (Theorem 2.2.3), gives us

00

2= Y (e-xy)

n=0

n=0
= > (x T (x=-y))".
n=0
We have
I x =y =x" =z x|
=lx*(e-z) |
<lle—z | | x|

o0

-1 1" n
<X X x =yl

n=1
o0

<Y (xrnx -y
n=1

o x i x —y
= xx =yl

Theorem 2.2.7

Let A be acomplex Banach algebra with unit e.Let x e A™* and
aeA such that || a ||§% | x *|°*. Then x +a € A*.

Proof

Let xeA™', acA and ||a||£% Ix .



Then

||x’la||<1.
2

Hence e +x *aeA™' ( Theorem 2.2.2), and so writing

X +a=x (e+xta).
Now, we have x e A" and e+x "aeA . Thus x (e +x 'a) eA™.
Hence x +a e A%

Theorem 2.2.8

Let A be acomplex Banach algebra with unit e.Let x € A" such

that || x * ||:1,heA and ||h ||=8<a.Then x +heA™" and
(94
182
| (x +h)*-xt+x " hx || £ ——F—r.
a*(a—-p)
Proof

Let x eA™', heA.Then
X *h <L <«1.
a

Hence e +x *heA™ (Theorem2.2.2).
Since x +h=x(e+x"'h),sowe have x +heA™.
Then

(x +h)'=(x(e+x'h))™

=(e+xth)*x™.
Now , we have
(x +h) =x"'+x* hx*t=[(e+xth) '—e+x"h]x .
Therefore

N(x+h)*=x"+x " hx =] ((e+x*h)'—e+x"h)x|

<ll(e+x*h)t—e+xthilIx.



It follows from ( Theorem 2.2.2) with x * h in place of x:

-1 2
| (x +h)*=x"+xthx*|| < X hIF

x 1
PR

2

=

1
a

2

IN
]

s
a

ﬂz
a’ (a-pB)

Theorem 2.2.9

Let A be acomplex Banach algebra with unit e.Let xe A and AeC
such that || x ||[<|A| .Then x —1eecA™™.
Proof

Let |Ix ll<|A].Then %< 1

So we obtain ||%|| <1.

Then e — A7'x s invertible ( Theorem 2.2.1) . Since
—A(e—-A"'x)=x —A4e,s0 x —Ae is invertible .
Hence x —leeA™'.
Theorem 2.2.10
Let A be acommutative Banach algebra with unit.Let a e A.Then the

inversion mapping a — a' is continuous in A .

Proof

Suppose x € AT'and x_—a in A.We will show that x *— a™*

as n — oo . Let ae A such that



1
Ix,—all<

_—71.
2la"|
Then
-1 -1 -1 -1
X" —a ll=lIx," (a=x,)a ||
-1 -1
<Ixp i fa=x, [ [fa | (1)
1 -1
SEII Xn ol
Since
-1 -1 -1 -1
Ix,“lI=lla” [l <[x,"—a |,
So
_ _ 1 _
lenlll—llalllﬁallxnlll-

It follows that
I x, <2 a™|.
By (1), we can get
Ix,*—a*<2)a™| lla-x,[l>0 (n->w).
Thus x,"— a™*.

Theorem 2.2.11

Let A be acommutative complex Banach algebra with unit.Let acA.

1

Then the inversion mapping a —a~' is a homeomorphism of A~ to itself.

Proof

1 -1

Clearly the mapping a —a' is onto.Let a, ,a, €A with a, " = a,

Then

(alil )71 = (azil )71 )

1

and so a,=a, . Thus a—>a ~ is one-one.

We have a —a'is continuous ( Theorem 2.2.10), and the inverse map
from A onto A is continuous too .

Hence a —a'is homeomorphism .



Theorem 2.2.12

Let A be acommutative Banach algebra with unit e .Let (a, ) be
asequence in A~* such that a,—~>a in A as n — o . If there exists
a positive integer M such that ||a;'||<M for all neN,then acA™*
and
a‘t—>atas n—oo.
Proof

Let M >0 and let a,—> a as n —>oo.Then (a, ) is a Cauchy sequence .
Then for each &>0 there exists a positive integer N such that

&
lla, —a,ll<— forall n,m>N.
M

Therefore

-1 -1 -1 -1
”an _am |=|| a'n (an_am)am ”

-1 -1
<[hay I ey —an [ ay |l

Hence (a, ') is Cauchy sequence in A.Since A is aBanach algebra, so
a, ' converges to an element in A ,say x.Then

x = lim (a;") .
n— oo

So

x
QD
Il

lim (a,") (a,)

=€.

Hence a is invertible in A and x =a*'.

1

Thus aeA™™* and a,'—>a*' as n—>ow.



Theorem 2.2.13
Let A be acomplex Banach algebra with unit.Let x be aboundary

point of A.Let x, e A 'such that x, ->x (n —o) in A.Then
| Xp 'l >0 (N —>o).
Proof
If the conclusion is false, then there exists M < oo such that
| x,* <M for all n.
Let x be aboundary point of A and let x, »>Xx (n —>ow). Then for
each & > 0,there exists N >0 such that

| X, —x Jl<e (n>N).

Choose ¢ = i . Then
M

1
[| X, —X ”<V'

-1 -1
e = x =1l X, (X =x ) |

Thus |e —x,'x [[<1 So x,'x e A~ .Then
X =X, (X;'x)eA™t
We have x e A" and x €0 (A).
It follows that A" 0 (A)=D.
This is contradicts to A" is open ( Theorem2.2.4).

Hence || x " || > (n —>wo).



Theorem 2.2.14

Let A be acomplex Banach algebra with unit e =1 .Let (a,)c A" and
a, >a (n—-owo)in A.Then there exists asequence (b, )< A with

|b,l|=1 and b,a—>0 (n—>wx).

Proof
Set
a;'
P

Then ||b,|l=1 and so (b, ) is abounded sequence .

1
Also, b, a, :m
We have
b,(a-a,)—0.
Adding , we obtain
b,a—>0 (n—->wx).
Definition 2.2.1

Let A be acomplex Banach algebra with unit. We define the exponential

function exp: A — A by

exp(x )= — x"  (xeA),

=1
n!

n=0
and exp(0) =1
Theorem 2.2.15
Let A be acommutative Banach algebra with unit e =1 .Let x ,y €A .
Then
(1) exp(x+y)=exp(x) exp(y).

(ii) exp(x)eA™ and

(exp(x)) "=exp(-x).



Proof
Let x,y €A . Then

(i) exp(x +y)=3> XYV

:ii y)

Jlnl
= exp(x) exp(y).
(i) Take y =—x in (1).Then
exp (0)=exp(x ) exp(-x)

1 =exp(x)exp(—x).
Thus (exp(x)) ‘=exp(—x).
Theorem 2.2.16 [ 3]

Let A be acomplex Banach algebra with unit e =1 .Let x A such
that || 1—x || <1.Then there exists y € A such that exp(y )=x.
Definition 2.2.2

Let A be acomplex Banach algebra with unit .We define

exp(A)={exp(x):xeA}
It is clear that exp (A)c A™*.
Theorem 2.2.17
Let A be acommutative Banach algebra with unit e =1 . Then exp (A)
is open in A",
Proof
Let x eexp (A ).Then
x =exp(h) (heA).



Let y eA with || x —y ||<%.
IFx I
Then
T1-x"y [I=x7 I x =yl
_ 1
< xHl—=
X
=1.

By Theorem 2.2.16 , there exists z € A such that x 'y =exp (z ).
We have

y=exp(h) exp(z)

=exp(h+z)eexp(A).
Hence exp (A ) is open in A™'.

2.3 Spectrum and Spectral radius of Banach algebras

Definition 2.3.1

Let A be acomplex Banach algebra with unit e .The spectrum of an
element x € A, denoted by o, (x),Iis defined by

on(x)={AeC:ix-degA '}
The complement of o, (x) in C is called the resolvent set of x . It is

denoted by p, (x) . That is

pA(X):(C\O-A(X)'
Remark

Let A be aBanach algebra with unit. It is clear that x is invertible in
A if and only if O¢o, (X).

Example 2.3.1

Let A=M, , with complex entries.

1 0
Then A =M, , is acomplex Banach algebra with unit | :( 0 1}



Let x 0 | M
= c .
i 0 2x2

By an elementary theorem of matrix algebra it is known that x — A | has

no inverse if and only if det(x —A1)=0.
Then

e -Loecrsa ([0 1) 2 (2 0)) -0}
Areea((5 )= (3 7))
Aiecioe [ 1] <0}
ficcoeiroo}

={-1,+1}.
Lemma 2.3.1
Let A be acomplex Banach algebra with unit e.Then
o, (0)={0}.
Proof
o, (0)={1eC:0-2e¢A "}
={1eC:—degA "'}
={A1eC:-1¢A'}
={0}.
Theorem 2.3.2
Let A be acomplex Banach algebra with unit e.Let x €A . Then
o, (X)) Is non-empty .
Proof

Suppose for a contradiction that x e A has an empty spectrum .



Define
u(l)=(x-41e) ™t (1eC).
Then u is well-defined and acontinuous mapping of C into A.

Let A, C .Then

U(A) ~u(e) = (x —Ae) “=(x-4,e) "

—U(A)U(A,) (X —2,8) — (X —Ae))

= (A-2,) e u(A)u(4,)

= (A=2,) U(A)U(4,).

It follows that

u(A)-u(4,)
PRy =u(4) u(4,).
So
u(d)—u(4,) 2
L A CECTD M €D

Let f be acontinuous linear functional on A .We define afunction h by
h(A)=f (U(1)) (AeC).
Since f and u are continuous,so is h.
Applying f to (1), we thus obtain
h(2)=h(4) _

f(u(d,)?).

Then h is an entire function from C into C .
Since

u(A)=—-aAt(e-A"*x)",
and

1

(e-A'x)*'>e't=e as |A]| > oo,

we obtain



h(a) = fu()]

<UHEAu(2)l

1 1 -1
=— || f e ——X

I/IIH 1111 ( 7 )
—>0 as |A| > oo. (2)

This shows that h would be bounded on C.

By Liouville's theorem , h is constant which is zero by (2). Then
h(2)=f (u(4))=0. It follows that u(4)=0.So

e ll=l(x-4e)(x —ie) |
=l (x —4e)u (1)
=1 0
=0,

and contradicts to ||e || =1.
Hence o, (x) = Q.

Remark

If A be areal Banach algebra with unit, then it is possible that there

exists x € A such that o (x)=d.

Example 2.3.2
: . 10
Let A=M,, , be areal Banach algebra with unit | = (O lj.

0 -1
Let x = 10 eM,,, . Then

0, (x) = { JeR :det([ ° ‘Olj_g[; ‘;j):o }
{remise [ 5] 0]



{ AeR 1 1%2+1=0 }

= .

Lemma 2.3.3[ 16 ]

Let A be acomplex Banach algebra with unit.Let x < A. The resolvent
set p,(x) of x is openin C.
Theorem 2.3.4

Let A be a Banach algebra with unit e.Let x e A. Then o, (x) is a
compact subset of C .
Proof

By the Heine-Borel Theorem ( Theorem 1.26) it is enough to show that
o, (x) is bounded and closed.Let Aeo,(x). Then x—-1egA™*.
By Theorem2.29 |[x||[=1A1.So

oy(x)c{AeC |l <X}

Thus o, (x) is bounded .
Since p,(x) is open in C (Lemma2.3.3),s0 o,(x) is closed.
Theorem 2.3.5

Let A be acomplex Banach algebra with unit e =1 .Let x e A, neN
and 1eC.If Aeo,(x),then A" eo,(x").
Proof

Let x €A and let A1 eC.Assume A" ¢o (x") .
We have

(x"—A"e)=(x—-2e)(x" T+ Ax" 4.+ A" e) > (1)

If multiply both sides of (1) by (x" —A"e)™* ,then (x —Ae) is
invertible in A. So A¢o(x).

This completes the proof .



Theorem 2.3.6 [ 16 ]
Let A be acomplex Banach algebra with unit e .Let B be aclosed
subalgebra of A containing e .If x B ,then
op(X) < og(X),
and
0 (og(x))co(o,(x)).
Theorem 2.3.7[ 12 ]

Let A be aclosed subalgebra of acomplex Banach algebra B . Let

x e A.If o, (x) has empty interior , then
o,r(X)=05(X).
Theorem 2.3.8[ 3]
Let A be acommutative complex Banach algebra with unit.Let x € A.
Then
o, (exp(x))=exp (o, (X))
Remark
In fact, there are some non-zero elements of complex Banach algebras

which are not invertible . For examples :

(i)Let A =M, , with complex entries. Then M, , is acomplex Banach

10
algebra with unit | = .
01

0 i .
Let x = [ _ 0) € M, , .Then x is anon-zero element of M, ,
—i

but x is not invertible .
(ii) Let A=CJ0,1].

Then C [0,1] is acomplex Banach algebra with unit e =1.

Define f by



2

f(x)=

X — — , —<x <1
2 2

[N
[ERN

Then f is anon-zero element of C [0,1] but f is not invertible .

Proposition 2.3.9[ 1]
Let A be acomplex Banach algebra with unit e in which each non-zero

element in A is invertible. Let x € A.Then there exists aunique 1eC

such that x =Ae.

Proof

Let x e A.Then o, (x) =< (Theorem2.3.2).Hence there exists
Aeo,(x) such that x —Ae is not invertible.So x —Ae =0. Thus
X =Ae.
For uniqueness,let x =1e ,x =ue (ueC,A=#u).Let a=4—u=0.
Then a¢e =0,and so e =0 which is a contradiction .

Corollary 2.3.10

Let A be acomplex Banach algebra with unit e in which each non-zero

element in A is invertible. Then A is commutative .
Proof
Let x,y eA.Then there exists unique 1, xeC (A # u) such that
Xx=Ae , y=ue (Proposition2.3.9).
Then
xy=(4ie)(ue)
=(Au)e
=(ui)e
=(y x).
Hence A is commutative .
Theorem 2.3.11 ( Gelfand - Mazur ) [ 10 ]
Let A Dbe acomplex Banach algebra with unit e in which each non-zero

element in A is invertible. Then A is isomorphic to C .



Theorem 2.3.12 ( Spectral mapping theorem ) [ 10]
Let A be acomplex Banach algebra with unit ,and x e A.Let P be a
polynomial function with complex coefficients in A .Then
o (P(x))=P (0o, (x)).
Lemma 2.3.13
Let A be acommutative Banach algebra with unit.Let x e A and P be
a polynomial function such that p (x ) =0.Then P (aA(x ))={0}.
Proof
Let x € A . By spectral mapping theorem,
P (o, (x))=o0,(P(x))
=0, (0)
={0} (Lemma23.1) .
Definition 2.3.2

Let A be acomplex Banach algebra with unit e.Let x € A.The spectral

radius of x ,denoted by I, (x) ,is defined by
r, (x)= sup{|i| : Ae aA(x)} .
Remarks
(i) 0<r,(x) <o forall x.
(i) If r,(x) =0,then 0e o, (X).
Example 2.3.3

Let A =M, , with complex entries .

0 i
Let x = i e M, ,.

Then aA(x )={-1,+1}
So r, (x)=sup{l-11,I11}%}
=1.



Lemma 2.3.14

Let A be acomplex Banach algebra with unit e.Let x € A.Then
Fa (X) <1 x|
Proof
If | A|=|Ix]|.then |A7" x| <1.
So e — A" x is invertible ( Theorem2.2.1) .

Since

1

—A(e—-1 " x)=x-41e,

so x —Ae is invertible in A.Thus Ag¢o, (X).
So Aeo, (x) implies | A |<|Ix |l .

Taking supremum over Aeo, (x),we obtain

sup  ([A])<lIx 1.
deop (x)

Hence I, (x)< || x | .
Lemma 2.3.15
Let A be acomplex Banach algebra with unit e.Let x € A, n eN. Then
R (x")=T1 (x )",
Proof
Let x € A.Then

Fa (x)=sup{[A|:1e0,(X)}.
Therefore
r, (x")=sup{|A|:1eo,(x")}.
The spectral mapping theorem gives us:
o (P(x))=P(o,(x))
={P(4):2e0, (x)}.
Let P (x)=x" .Then

o, (xM={A":2eo,(x)}.



It follows that

N (x")=sup{|2|":2eo,(x)}

= Iy (X )n -
Theorem 2.3.16 ( Spectral Radius Formula) [ 10 ]

Let A be acomplex Banach algebra with unit e.Let x € A.Then

1

ry (x) = lim | x"1I" (n=1,2,3,..).

1

. n n
=inf (|| x| ).
nx>1



Chapter Three

Character mappings on Banach algebras

3.1 Character mappings

Definition 3.1.1

Let A be acomplex Banach algebra with unit. A non-zero linear

functional ¢ from A onto C is called character if
p(xy)=9¢(x)gd(y) (x,yehA).
That is, ¢ is a multiplicative linear functional on A .
Remark
A character mapping ¢ on acomplex Banach algebra A is ascalar
homomorphism of A onto C .
Remark
Let A Dbe acomplex Banach algebra with unit.Let ¢ be acharacter
mapping from A onto C . By linearity of ¢ ,we have

plax+py)=ap(x)+p4(y) (x,yeA,a,pecC).

We can see that

(i) ¢(0)=0.

(i) ¢(ax)=a ¢(x) (byputing g=20).

(iii) Put a@=-1in (ii).Then
p(=x)=—9(x).

Thus ¢ is an odd function .

(iv)Let a=1,=-1.Then
p(x-y)=¢(x)-9(y).

(v) Let x;, eAand A, € C. Then

¢(iii X, )=@ (A, X, + A, X, +..+ A, X,)
i=1

= ¢ (X)) + # (A, X5) + oo+ § (A, X,,)



:ﬁ’l¢(xl)+}‘2¢(xz) +"'+ﬂ’n¢(xn)
= -Zl/li ¢(Xi)-

We give some examples of character mappings on some Banach algebras .
Examples 3.1
(i) Define ¢ on C by
p(z)=2 (z €C).
Clearly ¢ is alinear map .
Let z,,z, eC.Then
$(2,2,) =12,1,
=¢(z2,) ¢(2,).

Hence ¢ is acharacter mapping .

(ii)For each x e [0,1],define ¢ on C[0,1] by
p(f)=Ff(x) (feC[0,1]).

Then ¢ is acharacter mapping .
(iii) For each x < [0,1],define ¢ on C'[0,1] by

p(f)=1(x) (fecC'[0,1]).
Then ¢ is acharacter mapping .

(iv)Let A(D) be the disc algebra. Define ¢ on A(D) by
p(f)=1(0) (f eA(D)).

Then ¢ is acharacter mapping .
(v)Let ac(*and let A be acomplex number .

Define ¢ on (' by

b, (a)= 3 a, A"

n=-o
Then ¢, is acharacter mapping .
(vi)Let A be acomplex Banach algebra with unit and ¢ be a character

mapping on A .Define 4 on A* by



d((x,2))=¢(x)+4 (xeA,1eC).

Let (x,4,),(y,4,)eA” and a, 8 €C . Then

b (a(x,2)+B(y.2))=¢((ax, al)+(BY . f2,))
=g (ax+By,al+BA,)
=¢(ax+py)+al+pB4,

ad(x)+Bo(y)+ali+ A,

= a(g(x )+ )+B(¢(y)+41,)

=a g (X, 2)+ (Y. 4)

Then ¢ is linear .

Also , we have

&((X 1/?*1)()/’12)):45( Xy+/11y+ﬂ“2X 1/112“2 )

=¢(X y+A4, Yy +4, X )+ 4, 4,

=o(xy)+ (A y)+ (A, x)+4 4,

=g (x) d(y)+ A4 0(y)+A,0(X)+A 4,

=(g(x)+4,) (¢(y)+4,)

:5(()(111)) 5((y’ﬂ“2))-

Hence ¢ is acharacter mapping .

Remark

There are some different Banach algebras with the same character mappings.

We give some results concerning character mappings .



Proposition 3.1.1
Let ¢ be a character mapping on acomplex Banach algebra A with unit
e.Then ¢ (e)=1.In particular,if e =1,then ¢ (1)=1.
Proof
For some x eA , ¢ (x)=0, so we have
p(x)=¢(xe)=¢(x) g(e).
Hence ¢ (e ) =1
Lemma 3.1.2
Let ¢ be a character mapping on a complex Banach algebra with unit
e.Then ¢9(1)=24 (L1eC).
Proof
Let 2 eC . Then
p(A)=0(1.e)
=Ag¢(e)
=A.1 ( Proposition 3.1.1)
=A.
Lemma 3.1.3[3]
Let A be acomplex Banach algebra with unit .Let x € A and ¢ be a
character mapping on A . Then
p(p(x))=9¢(x).
Proposition 3.1.4
Let ¢ be a character mapping on acomplex Banach algebra A with unit
e . If x is an invertible element of A,then ¢ (x )=0.
Proof
On contrary, suppose ¢ (x )=0.

Let x be invertible element of A.
Then there exists y € A such that
Xy=yXx=e.

Therefore



p(xy)=¢(e)
¢p(x)¢(y)=1 ( Proposition 3.1.1)
0 =1, which is impossible .
Theorem 3.1.5 ( Gleason , Kahane , Zelazko ) [ 3]
If ¢ is alinear functional on acomplex Banach algebra A with unit e
such that ¢ (e )=1, and ¢ ( x ) =0 for every invertible x € A , then
p(xy)=¢(x)d(y) (x,yehA).
That is, ¢ is acharacter mapping .

The next theorem , give us the existence of character mappings on complex

Banach algebras .
Theorem 3.1.6 [ 3]

Let A be acomplex commutative Banach algebra with unit. Then there

exists at least one character mapping on A.
Remark

Theorem 3.1.6 is not true in the case of areal commutative Banach
algebra with unit .

Lemma 3.1.7
Let ¢ be acharacter mapping on acomplex Banach algebra A with unit.

Let x e A ,neN. Then

g(x")=1(g(x))".
Proof
We use mathematical induction .
Let n=1.Then ¢ (x')=¢(x )" is true .
Now, suppose it is true for n=k
6 (x*)=(4(x))".
Now , we shall prove that it is true for n=k +1.

We have
p(xM)y=g(x*x)
=g (x ) g (x)



=(p(x)) p(x)

= (4 (x)) .
Thus ¢ (x ™) =(g(x)) .
Hence ¢ (x")=(g(x))".
Corollary 3.1.8

Let ¢ be acharacter mapping on acomplex Banach algebra with unit. Let
xeA,neN.If ¢(x)=x,then ¢(x")=x".
Proof

Let x € A .Then

d(x")=(g(x))" ( Lemma 3.1.7)
= x".
Theorem 3.1.9[ 3]

Let A be acomplex Banach algebra with unit e . Let ¢ be alinear
functional on A . Then ¢ is acharacter mapping if and only if ¢ (e ) =1,
and ¢(x?)=¢(x)* (xeA).

Theorem 3.1.10

Let ¢ be acharacter mapping on complex Banach algebra A with unit.
Let x be an invertible element in A such that x®=x. Then ¢ (x )=1.
Proof

Let x € A. Then

$(x)=¢(x")
= ¢ (x)? ( Lemma3.1.7) .

So
$p(x)—¢(x) =0,

and we get

¢(x)(1-¢(x))=0.



Since ¢ (x )=0 ( Proposition 3.14),s0 1-¢(x)=0.
Hence ¢ (x )=1.
Theorem 3.1.11
Let A Dbe acomplex Banach algebra with unit e .Let ¢ be acharacter
mapping on A . Let x,y be invertible elements in A . Then
(i) o(x")= (gp(x) )"
(i) g((xy)")=g(y)" g(x)"
Proof
(i) Let x be an invertible element in A . Then there exists x ' e A

such that x x *=x"'x =e.

So g(xx*t)=¢(e)=1.
Hence ¢ (x ) ¢( x ') =1.
Thus ¢ (x ") =(g(x))".
(i) Let x,y eA .Then
p((xy) )=¢(y "x )
d(y ) e(x )
¢(y ) o(x)" (By(i)).

Theorem 3.1.12

Let h be ahomomorphism mapping from a complex Banach algebra A

with unit onto a complex Banach algebra B with unit. If ¢ is acharacter
mapping on B, then ¢ - h is acharacter mapping on A.
Proof
The linearity of ¢ h follows by the linearity of h and ¢ .
Let x ,y € A .Then
(goh)(xy)=¢(h(xy))
= ¢(h (x)h(y))
=¢(h (x))g(h (y))
= (geoh)(x) (goh)(y).



This completes the proof .
Lemma 3.1.13

Let ¢, and ¢, be character mappings on acomplex Banach algebra A
with unit e =1. Then ¢, and ¢, are linear independent .

Proof

Let c,,c, be constants. Suppose
cC, §,+C,¢,=0 (1).
Then c, ¢, =—-c, ¢, and so
¢, 9, (1) =-¢, 4,(1) .
Since ¢,(1)=¢,(1)=1,%0 c,=-c,.
Equation (1) becomes
¢, (¢, - ¢,)=0.
Since ¢, — ¢, # 0, so we obtain ¢c,=0 and hence c,=0.
Hence ¢, and ¢, are linear independent .
Theorem 3.1.14
Let ¢, and ¢, be character mappings on acomplex Banach algebra A
with unit e =1. If there exists a non-zero constant ¢ such that ¢, =c ¢, ,
then ¢ =1.

Proof
For the technique of the proof we have two methods :
Method (1):
Let ¢, =c ¢, . Then
¢, (1)=c ¢, (1),and so c=1.
Method (2):
Let x € A. Then

¢1(X2): ¢1(X)2-



We obtain

Co,(x°)= ¢, (x*)
(¢, (x))°
=(c 4, (x))
=Cch g, (x7%).

Therefore (¢ —c? )¢, (x?)=0.

Since ¢, (x°)#0,s0 ¢-c*=0,c(1-c)=0, since ¢ is not zero,so
c=1.
Theorem 3.1.15[ 5]

Let ¢ be character mapping on acomplex Banach algebra with unit e .
Then ¢ is continuous and || ¢ ||=1.
Lemma 3.1.16

Let ¢ be character mapping on acomplex Banach algebra with unit .
Then ¢ is 1-1.
Proof

Let x ,yeA and ¢(x)=¢(y ). Then ¢(x —y )=0 and so by

Theorem 1.13 and Theorem 3.1.15 we obtain x —y =0 and so x =y .
Theorem 3.1.17

Let ¢ be character mapping on acomplex Banach algebra with unit . Let
X,—>xand y, >y in A.Then

(1) ¢(x,)—>d(x).

(i) p(x, £y, ) > d(xty).

(iii) g(ax,)>d(ax) (a=#0).

(iv) ¢(x,y,)>o(xy).
Proof

The proof follows by the continuity of ¢ (Theorem 3.1.15).



Lemma 3.1.18

Let ¢ be character mapping on acomplex Banach algebra A with unit .
If (x,)is aCauchy sequence in A, then ¢ (X, ) is Cauchy in C .

Proof
Let (x,) be aCauchy sequence in A . Then for each & >0 there
exists a positive integer N such that
| X, =Xpll<e (n,m>N).
We have
I ¢(Xg )= (Xy) I=1¢(X, =Xy )l
Ul Xy =Xg |l
=1 X

— X (Theorem 3.1.15)

n = Xm |l

< &.

Hence || ¢(Xx,) —d(x,)l<e.

Thus (¢ (x,)) is aCauchy sequence in C .
Proposition 3.1.19

Let ¢ be character mapping on acomplex Banach algebra with unit . Let

X € A .Then
p(exp(x))=0.

Proof

The proof follows by Proposition 3.1.4 and Definition 2.2.2 .
Theorem 3.1.20 [ 13 ]
Let ¢ be alinear functional on a commutative complex Banach algebra A
with unit such that ¢ (exp(x ))=0 for all x € A. Then ¢ is
a character mapping on A .
Proposition 3.1.21

Let ¢ be character mapping on acomplex Banach algebra A with unit .

Then there no exist x ,y € A such that X +x y =y and ¢(x )=1.



Proof
On contrary , suppose there exist x ,y € A such that X +Xx y =y and

¢ (x)=1. We have
1+g(y)=¢(x)+¢(x)¢d(y)

=¢(x+xy)

=¢(y),

which is impossible .
Proposition 3.1.22
Let ¢ be character mapping on acomplex Banach algebra with unit .
Let x € A such that ¢ (x )=1. Then
p(a+ax)=2¢(a) (aeA).
Proof
Let a,x €A . Then

g(a+ax)=¢(a)+g¢(ax)
=¢(a)+¢(a)¢(x)

=2¢(a).

3.2 Kernals of Character mappings

Definition 3.2.1
Let ¢ be acharacter mapping on acomplex Banach algebra A with unit
e .The kernal of ¢ ,denoted by Kker (¢) ,is defined by
ker (¢)={xeA :¢(x)=0}
Remarks
(1) Note that Oeker (¢) since ¢(0)=0.So ker (¢) is non-empty .
(2) ker (¢) is asubspace of A.



Theorem 3.2.1
Let ¢ be character mapping on acomplex Banach algebra A with unit .
(i) If xeker(g) ,then x" eker(¢) (neN).
(i) If aeA and x eker(¢) ,then ¢(ax )=0.
(i) If aeA,xeAsuchthat ¢(x )=1,then a—ax eker(¢).
Proof
(i) Let x eker (¢).Then ¢(x )=0 ,since g(x")=¢g(x )" ,s0
#(x")=0,and hence x" eker(¢).

(i) Let acA ,x eker(¢) .Then

g(ax)=¢(a)¢(x)
=0.

(iii)Let aeA.Then
¢(a-ax)=¢(a)-¢(ax)

=¢(a)-¢(a)¢(x)

=0.
Hence a—ax eker (¢).

Lemma 3.2.2

Let ¢ be character mapping on acomplex Banach algebra A with unit .

Let acA.x cA\Vker(4).Then a — 203) 4 ker(4).
$(x)

Proof

Let acA and x e A \ker (¢).Then

s (a MX):¢(a)_¢(¢((a

. )
4 (%) s ")

X))

_ _¢(a)
=¢(a) ¢(X)¢(X)



It follows that

_g(a)  _
a ¢(X)x ker (¢) .

Lemma 3.2.3
Let ¢ be acharacter mapping on acomplex Banach algebra A with unit

e.Let x e A .Then

X —¢g(x)e eker(g) .
Proof
Let x € A. Then

p(x—p(x)e)=¢(x)-g(d(x)e)

=g (x)-¢(x) ¢(e)
=4 (x)=-¢(x)

=0.
So X —¢g(x)e eker(g).
Notation

Let A be acomplex Banach algebra with unit. Let <|>A denote the set of

all character mappings on A.
Theorem 3.2.4[ 13 ]
Let A be acommutative complex Banach algebra with unit .Let M be a

maximal ideal of A .Then there exists ¢ e ¢A such that
M={xeA: :¢(x)=0}
Conversely , for any ¢ € o, , then
{xeA :¢(x)=0}is amaximal ideal of A.
Lemma 3.2.5

Let A be acomplex Banach algebra with unit e =1.Then A €o, (x ) if

and only if ¢ (x )=A for some g, .



Proof
If 1¢o, (x ), then there exists y A such that
(x —2e)y =1.
So it follows that
p((x—Ae)y)=¢(1),
and so

¢ (x—1e) ¢(y)=1.
Therefore
¢ (x —Ae) =0,

¢ (x)-21¢(e)=0.
Hence ¢ (x)#=A.
Remark
Let A be acomplex Banach algebra with unit e.Let x € A.Then
rA(x )=sup{| 1 ]: /IeaA(x ) }.
Lemma 3.2.5, gives us

r(x)=sup (I 2(x)[).

¢ by
Lemma 3.2.6
Let A be acomplex Banach algebra with unit e.Let x e A and ¢ € o,
with ¢ (x )=0. Then rA(x )=0.
Proof

Let x € A.Then

r(x)=sup (1 d(x)]).
ped,

Let ¢(x )=0.Then
rA(x)=O.



Theorem 3.2.7

Let A be acomplex Banach algebra with unit e.Let x,y € A and

A eC .Then
(i) r(Ax)=|alr(x).
(i) r(x+y)<r(x)+r(y).
(iii) r(xy)<r(x)r(y).
Proof

Let x,y e Aand AeC .Then

(1) r(x)=sup (1 4(x)]).
pei,

r(Ax)=sup (| 24(x)])
ped,

= sup (| Al1o(x)1])
ped,

=] A] sup (| #(x)1)
peb,

= 2]r (x).

(ii) r(x+y)= sup (I 2(x+y)l)
ped,

= sup (I 2(x)+4(y)I)

ped,
< sup (1@(x)[)+ sup (1o(Cy)I)
ped, ped,

:rA(x)+rA(y).

(i) r(xy)= sup (I 2(xy)l)
ped,

=sup ([2(x) ¢(y) )
peb,



=sup ([2(x)[[e(Cy) )
peb,

Ssup (1@(x)) sup (12Cy)I)
ped, e,
=r (x)r (y).

Definition 3.2.2

Let A be acommutative complex Banach algebra with unit. The radical
of A is defined by
rad (A)= ) ker(¢).

<

If rad (A)={0},then A is called semi-simple.
Examples 3.2[ 3]
(i)Cl[O,l] is a semi-simple Banach algebra.

(i) The disc algebra A (D) is asemi-simple Banach algebra .
(iii) (= = the space of all bounded sequences .

Then (> is a semi-simple Banach algebra .
Lemma 3.2.8

Let A be commutative complex Banach algebra with unit e.Let x € A.
Then x is in the radical of A if and only if ¢ (x )=0 forall ¢ec¢ .
Proof

Let x e rad (A ) . Then

x e (1 ker ,
() ke (9)

if and only if x e ker (¢ ) for all ¢e¢A.
If and only if ¢(x )=0.
Corollary 3.2.9

Let A be acommutative complex Banach algebra with unit e.Let x € A.

Then x is in the radical of A if and only if r (x)=0.



Proof
Let x e rad (A ) if and only if

¢ (x)=0 for all ¢e¢A (Lemma 3.2.8),
if and only if rA(x )=0.
Theorem 3.2.10 [ 3]

If w:A — B is homomorphism of acomplex Banach algebra A with

unit into a semi-simple commutative complex Banach algebra B with unit,

then y is continuous .

3.3 The Gelfand transforms

Definition 3.3.1

Let A be acomplex Banach algebra with unit.For each x € A,we

define the Gelfand transform x of x by

X (8)=¢(x) ().
Then x is acontinuous complex - valued function from o, into C .

We give some results concerning Gelfand transforms .
Lemma 3.3.1

Let A be acomplex Banach algebra with unit. Then the Gelfand
transform x — x is homomorphism .
Proof
Let Xx ,y e A, aeC and peco, . Then
(ax)(g)=¢(ax)
=a¢(x)
=a x(4) .

and we have



(x +y ) (g)=0(x+y)
=g (x)+4(y)

=x(¢)+y (4)

=(x+y)(¢).
Thus x is linear.

Also, (x y) (g4)=9¢(xYy)

=¢(x)g(y)

=x(¢)y (4)

=(xy)(9).
Hence x — X is homomorphism .

Lemma 3.3.2

Let A be acomplex Banach algebra with unit.Let x € A.Then the

Gelfand transform x — X is one-one.

Proof

Let X (¢,)=x(¢4,) (¢y.4,€ ¢, ). Then
g, (x)=¢,(x),and so ¢, =¢,.
Lemma 3.3.3
Let A be acomplex Banach algebra with unit.If x is invertible in A,

then x (¢)=0 for all ¢e¢A.

Proof
Let x be an invertible element in A . Then

p(x)=0 forall ¢e o, ( Proposition 3.1.4) .



Hence x (¢)=0 .
Lemma 3.3.4
Let A be acomplex Banach algebra with unit.Let x € A and ¢ € ¢, -

Then x (c|>A)=<;A (x).

Proof
Let ¢e ¢A . Then

X (0,)={x (#):4ed }
={$(x)idet)

=0, (x).
Lemma3.3.5[6]
Let A be acomplex Banach algebra with unit.Let x e A and ¢ e ¢, -

Then

I x I < x|
b A

Proof
Let x €A, ¢e¢A.Then

| x (@) =1 (x )< x|
It follows that

x 1 <1 x|l
O A
Theorem 3.3.6
Let A be acommutative complex Banach algebra with unit.Let x € A.
Then
r, (x)=0 if and only if x =0.
Proof

Let r, (x)=0.Then ¢(x)=0.



x (¢)=9¢(x)=0.
Conversely ,let x (¢)=0. Then
p(x)=0andso r, (x)=0.



Chapter Four

Banach algebras with involutions

4.1 Banach star algebras

Definition 4.1.1

Let A be acomplex algebra. A mapping x — x~ of A into A is
called an involution on A if it has the following properties for all
x,yeA,1eC:

(i) (x+y) =x+y
(i) (Ax) = ax"
(i) (xy) =y x
(iv) x* 7 = x.
Axioms (i) and (ii) define amapping x — x~ as linear conjugate .
Axiom (iv) implies that the involution is onto mapping .
Remarks
Let A be acomplex algebra with involution * . Let x ,y €A . Then
(i) x " = (x")".
(i) (x =y ) =x"-y".
(iii) Let i eC.Then (x+iy) =x—-iy .
(iv) In general, x x = X X.
Definition 4.1.2

A complex algebra A with an involution * is called astar algebra or
an algebra with involution .
Remark

Let A Dbe astar algebra. Then

*

0 =0.



Lemma4.1.1

Let A be astar algebra .Then 0 =0.

Proof
0°=(0".0)
=0 .07
=0.0
=0.
Remark

*

Let A be astar algebra with unit e . Then e’ =e.
Lemma4.1.2
Let A be astar algebra with unit e. Then e =e .

Proof
Let e be the identity element of A . Then

Hence e =e .
Remark

In particular , if e =1,then 1 =1.



Examples 4.1
(1) Let f eC'[0,1].
Define f on C![0,1] by

f = f .

let f ,geC'[0,1],2eC. Then

. — *

*

(Y(f+g)=Ff+g=Ff +9g =f"+g .
(iY(Af)Y=(af)=2 f =2
(i) (fg) =(fg)=(gf)=

(iv) £ =(f" ) =(Ff )V="f =f.

*

f

* *

A
9 g f

f

Hence f — f defines an involution on C'[0,1].
Thus C'[0,1] is astar algebra.
(2) We define an involution on A (D) by
f°(z)=f(z) (feA(D),zeC).
In the same way, A (D) becomes astar algebra .

(3) Let TeBL(H) and T  eBL(H) Hilbert space adjoint operator of
T.
Let T,SeBL(H).Then

(i) (T+S)Y =T"+ S".

(i) (AT )= 2 T" (A1eC).

(i) (TS)Y =S"T"

(iv) (T")Y =T

Hence T — T is an involution .

Thus BL (H ) is astar algebra .
(4) Let AeM,,, .

Define A" on M, , by
A" =AL.

( The complex conjugate of transpose of A ).



Let A,BeM,,,.Then

*

C 1A

(i) (AAY =(AA) = LAY =71 A"
-

(iii)(AB) =(AB) = B'A' =
(iv) A" =(A"Y =(A) =A.
Hence A — A” is an involution .
Thus M, ., is astar algebra .
(5) Let A be acommutative star algebra with unit e and an involution * .
Let x €A, 1 eC ,and (x,4 )eA” .Define
(x ,2A) =x"+1e.
Let x,,X,eA, A,,4,eC and (x,,4,),(x,,4,) A" Then
(i) (X, A )+ (X, A,)) =((X +%X,, A, +4,))
(X, +%X,) +(A,+2,)e
:xl*+x2*+(i_l+l_2)e
=X, +X, +A, e+ A,e
—(x, +4,e)+(x, +4,¢e)
= (X, A) + (X, 2,) .
(i) Let A eC. Then
(A(%, ,2)) =(Ax,,A4,)

(iii)((xw;tl) (Xz’/12))*:()(1)(2+11X2+22X1’/11/12)*



:(x1x2+ﬂlx2+/12xl)*+(m)e
:(X1X2)*+(/11X2)*+(2,2X1)*+(l_l l_z)e
=X, X, A X, + A, X, +(A, A, e)
=(X, + A,) (% +4,¢)
= (X, 2,) (X, A,) .
(iv) We have
(x  2) =((x,2))
=(x " +1e)
=x "+ (A e)
=X + 1 ¢
=X + A e
=(x,0)+14(0,1)
=(x ,4).
Hence A" is acommutative star algebra with the given involution .

We shall state and prove some results concerning star algebras .
Lemma 4.1.3

Let A be astar algebra and x €A .Then x — X is one—one .

Proof
Let x,,x,e A and let x, = x, .Then
X, =X, =0.
Therefore
(x,-%x,) =0 (Lemma4.l.1).
It follows that
(x,=%,) =(0)".
So

X, =X, =0.



Thus x, = x, .

Theorem 4.1.4

Let A be astar algebra with unit e.Let x € A .Then x is invertible

* w -1 *
if and only if x is invertible and (x ) = (x7') .
Proof

Let x be invertible element in A . Then

So

(x'x) =e =e (Lemmadl2).

Therefore

X (x )Y =e.

It follows that

*

(x7) = (x")
Conversely , let x~ be an invertible element in A . Then

*

x (x 1) =e.

Thus (x *x) =e and (xix) =¢e

It follows that x 'x =e.

Hence x is invertible in A .

Lemma 4.1.5

Let A be astar algebra with unit e .If x is invertible in A, then xx
is invertible .

Proof

Let x be an invertible element in A .Then x is invertible (Theorem 4.1.4).
Hence x x is invertible ( Theorem 1.5).

Remark

In the same way, we can prove that x x is invertible.



Lemma 4.1.6

Let A be astar algebra with unit e .Let x be invertible in A . Then
x“(x x ) t=x"1
Proof
Let x € A.Then

xT(x x ) t=x"((xT)txh)

=(x" (x )y yx

Lemma 4.1.7

Let A be acommutative star algebra and x ,y € A. Then

Xy =y X
Proof
X"y =(yx),
since A is commutative , SO
X'y =(xy)
= y*x*

Remark

Let A be acommutative star algebra.Let x,y eA. Then

*

(xy) =y x =x"y
Lemma 4.1.8
Let neN.Let A be astar algebra and x €A . Then

(x™)" =(x"".



Proof

We shall use mathematical induction
Let n=1.Then

(x') =(x")'  (xeA).
Now, suppose it is true for n =k
(x* )" = (x )"
We shall prove it is true for n =k +1.We have

*

(x*rhy = (x* x)

_(X*)k +1

Thus  (x") = (x)".
Definition 4.1.3

A complex normed algebra A with an involution * is called anormed

star algebra .
Definition 4.1.4

A complete normed star algebra is called a Banach star algebra.
Remark

An involution on aBanach star algebra may or may not be continuous .

Theorem 4.1.9[ 3]

Let A be acommutative Banach star algebra and semisimple . Then every

involution is continuous .
Proposition 4.1.10 [ 5]
Let A be aBanach star algebra with unit. Then
exp (x")=(exp(x)) (xeA).
Proof



Let x e A.Then

(o (x)) = 3 L

= i (x )" (Lemma4.1.8).

Corollary 4.1.11

Let A be aBanach star algebra with unit.Let a< A and exp(x )=1.
Then exp (x" ) =1.
Proof
exp(x )=(exp(x))  (Proposition4.1.10).
=(1)
=1.
Theorem 4.1.12
Let A be aBanach star algebra with unit e .Let 1 € C,x €A.Then
Aeo, (x) if and only if ZEO‘A (x*) :
Proof

Since x is invertible in A if and only if x is invertible ( Theorem4.1.4)

, and

*

(X =(x1)".
Let A€o, (x).Then

X —Ae is not invertible in A if and only if (x —Ae )" is not invertible

in A.So
(x —de) =x"-a¢"
—x"— 1 e is not invertible in A.

Hence 1 e O\ (x*).



4.2 Hermitian and Normal elements

Definition 4.2.1
Let A be astar algebra . An element x € A is called hermitian

( or self—adjoint ) if

Examples 4.2.1

(i) 0 is hermitian since 0" =0 (Lemma4.1.1).

(ii) e is hermitian since e" =e (Lemma4.1.2).

(iii ) The identity operator | of B L (H) is hermitian since 1~ = I
(Theorem 1.32 (Vv)) .

Remark

Let A be astar algebra . Let a, ,a,,..,a, be hermitian elements in A.

Then
alzal*!azzaz*’ ’an:an*
Therefore
k k .
Z an = Z an
n=1 n=1
Lemma4.2.1

Let TeBL(H).Then (T T —1) is hermitian.
Proof
(T°T 1) =(T°T) -1’
—TTT -
=T°T 1.
Hence (T T —1) is hermitian .

Lemma4.2.2

Let A be astar algebra and x e A.Then x is hermitian if and only if x”

is hermitian .



Proof

Let x be hermitian . Then

So

( x*)* =X =X =X .
Hence x~ is hermitian .
Conversely , let x "~ be hermitian .

Then

So

Hence x is hermitian .
Theorem 4.2.3
Let A be astar algebra and let x ,y € A be hermitian .Let «, feR.
Then
(i) x+y
(ii) ax
() ax+py
are hermitian .
Proof
(i) Let x,y eA be hermitian. Then

Then

(x +y)*=x*+ y*
X +Vy.

Hence X + Yy is hermitian .

(i) Let xeA and aeR. Then

(ax)*zgx*

=aX.



Hence « x is hermitian .
(1) The proof follows by (i) and (ii) .
Theorem 4.2.4
Let A be acommutative star algebra. Let x , y be hermitian elements
in A.Then xy is hermitian.
Proof

Let x, y be hermitian in A.

Then
x =x and y =vy.
We have
(xy) =y x
=XYy.
Lemma 4.2.5

Let A be astar algebra and x ,y € A.If x y is hermitian and a non-
zero element x is hermitian ,then y is hermitian .

Proof

Let x y be hermitian and x be anon-zero hermitian element in A.

Then
(xy) =xy
We have
(xy) =y x
=y X.
We obtain
y X =XYy.

It follows that y =y.

Hence y is hermitian.



Lemma 4.2.6

Let neN and let A be astar algebra and x € A.Let x be hermitian
element. Then x" is hermitian .

Proof

The proof follows By mathematical induction .
Theorem 4.2.7

Let A be astar algebra and x € A. Then x +x is hermitian .

Proof
Let x € A.Then

(x+x*)*= x*+(x*)*

Remark
Let x € A.Then

* *

(x =x ) =x =X
=X —X.
Hence x — X is not hermitian .

Theorem 4.2.8

Let A be astar algebra and x € A. Then x x and x x are
hermitian .

Proof

* *

(x x ) =x""x
=X X ,
and also, we have
(x*x)*:x*x**
=X X.

Remarks



Let A Dbe astar algebra and x € A. Then

(1) ix is not hermitian since

(ix) =-ix".
(ii) i (x —x ") is hermitian since
(i (x=x")) =(=i)(x=x")
=(—i)(x =x)
=i (x —x").

Remarks

*

Let A be astar algebra and x € A. Let u = X+ X

Then

« (x +x*)*
2

u

*

* *
X +X

=Uu.

Hence u is ahermitian element in A .

*
X —X

Let v = . Then

N X_X**
o (x=x)




Hence v is not hermitian .
Let i € C.We have

—i(x =X )V i (x =x)

( 2 )_ 2

- (x=x")
_ 5 _

Hence —ix=-x) is hermitian .

Theorem 4.29[ 3]

Let A be astar algebra and x € A.Then x has aunique representation
X=u+iv (u,veA),

where u and v are hermitian .

Proof

X + X and V:—l(xz—x )

Then u and v are hermitian and we obtain

Let u =

X =U-+1iV (u,veA).
For uniqueness, suppose X =u +iv (u and v  are hermitian,
(u',v'eA).Then

U+iv=u +iv

u-u =i (v —v).
Putw =v —v.Then iw=u-u . By Theorem 4.2.3 We get w and iw
are hermitian . We have

iw=(iw)=—iw =—iw.

Hence w =0 and so v=v and u=u .

This completes the proof .



Definition 4.2.2

Let A be astar algebra. An element x € A is called normal if

Examples 4.2.2
(1) O is normal since
00 =0,
and
00=0.
(1i) The unit element e in astar algebra A is normal since
ee’ =ee=e,
and

e e=¢€ee=¢e.

(iii) Let AeM,,,.

Define A" on M, , by

1 1
Let A= . e M, ., .
I 3+2i

* 1 1 1 —i
AA =| . . )
[I 3+2|j[1 3—2|J
B 2 3-3i
\3+3i 14 )’
and

* 1 —i 1 1
A A= , : :
[1 3—2|j(| 3+2|J



(2 3-3ij
| 3+3i 14 |

Thus AA =A"A.

Hence A is normal .

1 i
Let B = 01 €M2><2'

* 1 0
Then B =( ] j
-1 1

So

Since BB %B B, so B is not normal .
Theorem 4.2.10
Let A be astar algebra with unit and x € A.Then x is normal if and
only if x ' is normal.
Proof
Let x be normal in A.Then

(x )" xP=(x")ytx' (Theorem4.14)

=(x x )*!



= (x"x)
=x M (x )

=x1(x 7Y

1

Hence x ~° is normal .

Conversely , let x ' be normal . Then (x *)~*'is normal .

Hence x is normal .

Lemma 4.2.11

Let A be astar algebra and x € A.If x is hermitian, then x is
normal .
Proof

Let x be hermitian in A. Then

XX =XX
:)(2
and
X*XZXX
=X2.
Remark

Note that, normal element in astar algebra A need not be hermitian .
For example :
Define T eBL(H) by
T=2il,
where | :H — H is the identity operator . Then
T =-2il,
and so
TT =TT =41.

Hence T is normal .



But T #T".So T is not hermitian .

4.3 B*-algebras

Definition 4.3.1
Let A be aBanach star algebra such that
X" x I=1x11* (x eA).

Then A is called a B™ —algebra .

Examples 4.3
(i) Let X be acompact Hausdorff space.Let C ( X ) denote the algebra of

all complex —valued continuous functions on X .

The norm on C (X ) is given by
Il f I= sup (1f(x)l) (feC(X)).

The involution on C ( X ) is given by
fr=f .
Let f e C(X ). Then
IE7F = sup (If (x)f(x)])
X eX
= sup (| f (x)|%)
X eX

2
= (sup (1T (x)1))
X eX
=1l f 1%
Thus C (X ) is a B"— algebra .
(ii) Let H be acomplex Hilbert space.Let T eBL(H) and Let T be

the Hilbert space adjoint of T .

Then T —T is an involution on B L (H ). Then
IT T I=0T 1%

Hence BL(H) is a B —algebra.



(iii ) Let /= be the space of all bounded sequences.The norm on = is
given by
lal[=sup{|a,|:neN}
Let a,b e /*.We define
ab=(a,b, ) _; -

Define involution * on /= by

*

a :(a_n)sozl-
Then />~ is a B" —algebra.

Theorem 4.3.1[19]

Let A be a B —algebra. Then the involution on A is unique .

We state and prove some results concerning B~ —algebras .
Lemma 4.3.2

Let A be a B —algebra with unit e =1 .Then ||1]=1.
Proof
111 =111 =111l (since I'=1).
It follows that ||1]| =1.
Theorem 4.3.3
Let A be a B"—algebra and x A. Then
() Ix I =1x"1.
(i) X x =1 XTI
Proof
(i) Let x e A.Then
X 12 =1x"x |
<IN x
Hence x| <1 x|
It follows that

x < fx f=IxI.



Thus || x [[=Ix"|.
(i) Let x e A.Then

X x =1 x 12 (1)
We have
NS E Y NEY (By(i))
=[x 1I?. (2)
From (1) and (2),we obtain
X =1 XTI x -
Lemma4.3.4
Let A be aBanach star algebra.Let x e A such that || x||=]| x || and
Ix" x |I=Ix " |IIIx]l.Then A is a B —algebra.

Proof
Let x € A.Then

I x =[x |l
=[x (X ]

=[x 1°.
Hence A is a B —algebra.
Theorem 4.3.5[11]

Let A be a B"—algebra.Let x eA .If x, — x in A,then x, —>Xx .
Theorem 4.3.6
Let A be a B —algebra.Let x be hermitian in A . Then
(i) r(x)=1xIl.
(i) ry (X" x ) =[x |I” .
(i) r, (x)=r, (x7) .
Proof
(i) Let x be hermitian in A . Then



So
X 2 =0x"x =1 x 11%.
Since x?,x*,x®,..are all hermitian, we obtain
X 1= %2
=% II*.
It follows that
I = 1x 7 (n=1,2,3,.).
We obtain
I x™ Q=" for m=2".
Therefore

1
o (x )= lim (I x™ ™)

. m L
= lim (|l x I ™)
m — o

= x .
(ii) Let x be hermitian in A.Then x  x is also hermitian ( Theorem
42.8). By Theorem4.36,r, (x x )= x x|.
Since A is a B "-algebra, so
X" x =1 11”
It follows that
(7 x )=l x 17,
(1ii) Let x be hermitian in A . Then
ry (x)=Ix1 ( Theorem 4.3.6) .
Since x " is hermitian (Lemma4.2.2),so
o (x )=l x 1.

Since A is a B - algebra, so



Ix I=Il x| (Theorem4.3.3).
Hence r, (x )=r, (x).
Theorem 4.3.7
Let A be a B -algebra.Let x be hermitian in A . Then
(i) o (x"x)=r, (x)*.
(i) 1, (X" x) =1, (x7)%.
Proof
(i) Let x be hermitian in A . Then
ro(x x)=| x|? ( Theorem 4.3.6) .
Since r (x)=1 x| (Theorem4.3.6), so
(X x)=r, (x).
(i1) The proof follows by (i) and Theorem 4.3.6 .
Definition 4.3.2

A homomorphism mapping h from aBanach star algebra A into

a Banach star algebra B is called astar homomorphism if
h(x )=(h(x)) (xeA).

Proposition 4.3.8

Let A be acommutative Banach star algebra with unit.Let x be in the
radical of A.Let ¢ be astar homomorphism.Then r, (x ) =0.
Proof

Let x e rad(A ) .Then

¢ (x)=0 for all ¢e¢A ( Lemma3.2.8).

(X )=sup (Ig(x")])

bed,

sup (1 (8(x))1)

N

0 (since 00°=0 (Lemma4.11)).



Theorem 4.3.9 ( Gelfand - Naimark ) [ 19 ]

Let A be acommutative B -algebra.Let x — x be the Gelfand

transform . Then
(x ) =% (xeA).
In particular, x is hermitian if and only if x is areal —valued function.

Theorem 4.3.10

Let A be acommutative Banach star algebra and x € A .Then x — X
is astar homomorphism .
Proof
Let x € A. Then by Theorem 4.2.9, x has aunique representation
X =h+1ik,

where h , k are hermitian elements in A .

Then by Gelfand — Naimark Theorem , h , k are real - valued functions on

o, .Let x eA,ped . Then

x“(¢)=(h+ik)(¢)

=(h" i k™) (9)
(h—-ik)(¢)
h*(¢)-1k"(¢)
h™(¢)—i k™ (4)
=(h(¢) +ik(g))
=(x (¢4)).

Theorem 4.3.11

Let A be acommutative B -algebra .Let X — x be astar

homomorphism . Then

o (x x)=r, (x)* (xeA).



Proof
Let x € A. Then

(X7 x )= sup (1(x"x) ()]

N
= sup ([ (x*(¢)) x"(¢) ]
by
= sup (I(x"(¢) x"(¢) D
N

sup (1(x"()1%)

bed,

r (x)°.
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