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Abstract—Several tools and approaches have been proposed to 

generate Unified Modeling Language (UML) diagrams. 

Researchers focus on automating the process of extracting 

valuable information from Natural Language (NL) text to 

generate UML models. The existing approaches show less 

accurateness because of the ambiguity of NL. In this paper, we 

present a method for generation class models from software 

specification requirements using NL practices and a set of 

heuristic rules to facilitate the transformation process. The NL 

requirements are converted into a formal and controlled 

representation to increase the accuracy of the generated class 

diagram. A set of pre-defined rules has been developed to extract 

OO concepts such as classes, attributes, methods, and 

relationships to generate a UML class diagram from the given 

requirements specifications. The approach has been applied and 

evaluated practically, where the results show that the approach is 

both feasible and acceptable. 

Keywords - Software Engineering, Natural Language Processing, 

Requirement Engineering, UML, Natural language. 

I.  INTRODUCTION 

Requirements engineering can be problematic, as it requires 

extra work in requirements elicitation, verification, and 

traceability. The extracted requirements that are documented 

as software requirements specification (SRS) are transformed 

during the system design phase into specific models, e.g., 

Object-Oriented (OO) models using UML [1]. After preparing 

the SRS document, some requirements might be missed. This 

might lead to an incomplete system, and extra cost and time. 

    During the analysis in System Development Life Cycle 

(SDLC), the natural language (NL) is used to describe the 

specific problem that needs to be solved [11, 12]. However, 

NLs are often ambiguous, uncertain, incomplete, and 

incoherent. Besides, the requirement document size and the 

script of NL can cause extra problems. Some essential 

information needed by the verb for completeness is missed. To 

facilitate developing accurate UML diagrams, the requirement 

analyst has to detect and fix these problems. However, if the 

analyst has no enough domain knowledge, this can miss the 

defects in NL, which can lead to various interpretations in 

implicit requirements recovering. Moreover, it would be 

expensive to fix such issues in the subsequent SDLC phases. 

Conversely, software systems require extra cleanness and 

correctness, which are missing in NLs [2]. Analyzing and 

reconstructing NL requirements and generating UML models 

is a challenging task, which needs automated support. For that 

reason, some approaches and tools have been developed to 

facilitate this process. NL processing (NLP) techniques play 

an essential role in analyzing NL requirements and generating 

UML diagrams from these requirements [3]. Software 

engineering developments depend on OO design using UML 

for software development. The UML class diagram is the most 

suitable tool to describe a comprehensive understanding of 

requirements [3]. 

    To resolve such problems and automating the generation of 

UML models process from requirements, a lot of techniques 

have been proposed [1, 13, 14, 18]. Conversely, the 

experiments with these tools show that they are not used 

SDLCs because of their restrictions. Moreover, most of the 

tools concentrate on the class diagrams with high user 

interventions to finish the process. Besides, most of them are 

unable to extract the complete UML elements, e.g., methods, 

associations, and other advanced relationship types. Some 

solutions just extract the names of classes, and some of them 

deal with objects [2, 20].  In recent decades, several tools are 

proposed to analyze NL requirements and produce UML 

models, yet they have emphasized the analysis of NL 

requirements and extremely dependent on user intervention. 

Many approaches use NLP techniques, mapping, graphs, and 

patterns, whereas others use ontology and linguistic concepts. 

   This paper describes a proposed method for analyzing the 

NL requirements and extracting the relative software 

information and concepts to facilitate the process of 

generating a UML class diagram from unrestricted NL 

requirements. Our approach reduces the ambiguity and 

complexity of NL by using NLP techniques. We proposed a 

set of heuristics rules to perform the transformation process. 

The results were encouraging and support the combination of 

NLP techniques and heuristic rules, which combines the 

strength of automation and human reasoning. The method has 

been applied and evaluated using a case study, the results of 

which demonstrate that it is practical and satisfactory. 

   The remainder of the paper is organized as follows: Section 

II presents the related work. Section III introduces the 
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proposed approach. Section IV discusses some of the obtained 

results, and Section V concludes the paper. 

II. RELATED WORK 

Several approaches have been presented for generating UML 

diagrams from requirements. They have focused on the 

automation of the process by analyzing the NL requirements 

while generating the models. 

    DC-Builder is a tool, which uses NLP techniques to analyze 

requirements and ontologies to extract class diagrams [4]. The 

domain ontology advances the quality of outputs. The UML 

concepts such as classes, attributes, and associations are 

extracted using a set of heuristic rules. However, the heuristic 

rules presented are not exhaustive and certain sentence 

structures are not covered. DC-Builder cannot identify either 

methods or the multiplicity of relationships and requires 

manual intervention. 

   The architecture of SRS using an NLP is described in [5]. 

This work focuses on specification verifications. The 

architecture consists of three modules with a user interface, 

which are (i) a tokenizer that reads sentences from a 

document, (ii) an NLP parser that parses each requirements 

sentence and extracts all unique noun terms, and (iii) a term 

management system that performs the filtering of unimportant 

terms. However, this system is unable to identify the 

relationships between classes and objects or multiplicity.  

   An approach based on Grammatical Knowledge Patterns 

(GKPs) is proposed for class diagrams generation from 

requirements [6]. The requirements statements are transformed 

into a frame-based representation using a dependency analysis 

of requirements statements and the GKP. However, the 

approach can only generate class diagrams and unable to 

identify the multiplicity of relationships.  

    A tool was proposed to understanding and managing the 

requirements by using application-specific ontologies and 

NLP techniques [7]. The tool, known as NLTK, has been used 

to receive unstructured requirements and makes segmentation 

to the text to acquire sentences. Then, text entered to be 

tokenized to words or punctuation characters that then 

normalized via the stemming. Moreover, a part of speech 

(POS) tagging is performed to identify the word roles; then, 

identify groups of tokens, and recognize requirements. 

However, this approach ignores more enriched relationships 

such as generalization, composition, and dependency, yet 

many-to-many multiplicity is not identified. 

    An approach to generate class diagrams from requirements 

document as use case specifications (UCSs) is presented in 

[8].  The UCSs are taken as input, and the Stanford parser is 

used to produce type dependencies and POS tags of each 

sentence in the UCS. A set of comprehensive rules is applied 

to systematically process, interpret the sentences, and identify 

the elements for the generation of analysis class diagram. 

However, the approach requires the UCSs to be scripted using 

some restrictions to handle the NL issues such as ambiguity 

and inconsistency. Moreover, it does not use entity 

disambiguation techniques such as misspelling, abbreviation, 

and alias identifications, etc.  

    An NLP approach is proposed for UML class generation 

using NLP techniques to avoid requirements manual 

processing [9]. However, the approach does not consider 

relationships and other class diagram concepts such as 

methods and multiplicities.   

  The method described in [10] focuses on the formulation of 

rules for the extraction of class elements from semi-structured 

requirements using NLP techniques. The rules use keywords 

such as use case name, actor, etc., and the dependencies 

among the sentence words. The process starts with classes, 

attributes, methods, and relations extractions. However, the 

rule-based techniques cannot cover all the conditions, so that 

the approach does not include advanced relationships like 

aggregation, dependency and the multiplicity of relationships. 

Furthermore, more rules and patterns for different sentence 

arrangements are needed. 

III. THE PROPOSED APPROACH    

This section describes the proposed approach, which works in 

five phases as shown in Fig. 1. Phase I: Reconstruction and 

Normalization of NL text, Phase II: Processing NL 

requirements, Phase III: Applying mapping rules to extract 

UML elements, Phase IV: Refinement of the results, and 

finally, Phase V: UML diagrams generation.  

 
Fig. 1: Generating Class diagrams from NL requirements 

A. Phase I: Reconstruction and Normalization of NL Text 

To reconstruct the NL text and normalizing the complex 

requirements into simple statements, a set of syntactic rules is 

proposed to increase the knowledge accuracy extracted from 

the requirements document [14]. These rules could be used for 

writing and normalizing the requirements documents. These 

rules should be applied while writing the requirements 

document to facilitate the process of extracting the UML 

elements, to give better results, and to save time and effort 

spent on analyzing the requirements.  

 Rule 1: The NL text is reconstructed to Subject-Predicate 

(S-O) or Subject-Predicate-Object (S-V-O) forms. 

 Rule 2: If a sentence is of the form (S-V1-O1-V2-O2), 

then it splits into more sentences (S-V1-O1) (S-V2- O2). 

 Rule 3: If a sentence consists of several actions or 

subordinate sentences, then separate it into more 

sentences, only one subject and one predicate or action. 



(NP1-VP1-NP2- and -NP3- and -VP2-NP2- and -NP3) 

convert it into two sentences (NP1-VP1-NP2- and -NP3) 

(NP1-VP2-NP2- and -NP3). 

 Rule 4:  If a sentence is separated by connectives like 

“and, or, but, yet”, e.g., (S-V-O1-, /and-O2-, /and,-O3), 

then split into two (or more) simpler sentences (S-V-O1) 

(S-V-O2) (S-V-O3).  

 Rule 5: If a sentence is of the form of ((S)-V-O1-, /and-

O2-, /and, - O3…) but the only verb leads equal parallel 

structure, then split it into ((S)-V-O1) (V-O2) (V-O3). 

 Rule 6: If a sentence is a passive voice, translated it to an 

active voice, which can be translated to a message sent.  

 Rule 7: Do not use diverse verbs for the same action, but 

use the same verb for the same action in different 

sentences.  

 Rule 8: Replace a pronoun of the object with the object 

name in the normalized sentence to resolve the ambiguity. 

 Rule 9: Start a conditional sentence with If-clause, which 

contains a condition, and terminate it with endIf-clause. 

Rule 10: Start a set of concurrent actions with 

StartConcurrency-clause, and terminate the concurrency 

description with endConcurrency-clause.  

 Rule 11: Start a set of synchronized actions with 

StartSynchronization-clause, and terminate the 

synchronization with endSynchronization-clause.  

 Rule 12: To introduce a condition, start an iteration with 

While-clause, and terminate it with endWhile-clause. 

 Rule 13: If NP and VP are preceded by “No”, then 

convert it into “NP not VP”. 

 Rule 14: If a sentence has no verbs (VP), then discard it. 

 Rule 15: If a prepositional phrase (PP), adjective phrase 

(ADJP), determiner (DT), or adjective (JJ) precedes the 

subject of the sentence, then discard that phrases. 

 Rule 16: If a sentence has a semicolon, then treat it after 

the semicolon as extra information for the preceding 

sentence and so discard the sentence after the semicolon. 

B. Phase II: Natural Language Processing (NLP) 

Several NLP tools are used for processing NL requirements 

text to avoid manual processing on NL requirements before 

the generation of UML.  “Stanford CoreNLP” [16] is used to 

perform NLP as it offers outstanding results, as follows:  

1. Text Tokenization 

Sentence Tokenization (Sentence Splitting): The given input 

text is split into sentences to determine the borders of 

sentences and to define the structuring and transformation of 

the words to ease the further processing, e.g., [The library 

contains both books and journals.]. 

Word Tokenization: After sentence tokenization, each 

sentence goes via word tokenization, e.g., “The library 

contains both books and journals.” is tokenized as [The] 

[library] [contains] [both] [books] [and] [journals] [.]  

2. Parts-of-Speech (POS) Tagging 

The tokenized NL text is categorized into various POS Tags, 

in which all the words in the input text are tagged to the 

corresponding POS, based on word meaning and the context, 

in which the word has been used. The Stanford POS tagger or 

NLTK is used to identify the basic POS tags of each sentence 

such as verbs, proper nouns, a common noun, adverbs, 

adjectives, prepositions, etc. based on predefined rules for 

categorization. For example, the POS analysis of “The library 

contains both books and journals.” is as: “The/DT library/NN 

contains/VB both/P books/NS and/CN journals/NS. /.”. 

3. Stemming and Lemmatization 

Stemming is the process of removing affixes and suffixes 

attached to the nouns and verbs, to remove non-word tokens 

like s, es, and ies. For example, the verb “contains” is 

analyzed as “contain+s” and “books” is analyzed as “book+s”. 

This is to get word root form to convert actors and class names 

from the plural to singular. However, the transformed token 

may not be a linguistically correct word because of its 

simplicity. On the other hand, lemmatization always returns 

the true root form of a word. For lemmatization to work 

correctly, the original word has to be tagged (i.e., a tag to 

identify it as a noun, verb, or other parts of speech) so that 

lemmatization can restore the word to its correct root form.  

4. Type Dependencies 

To represent the syntactic structure of a sentence and perform 

the syntactic analysis, the dependency parse can be used to 

identify the noun and the verb phrases. The Stanford typed 

dependencies [15] provides a representation of grammatical 

relations between words that can be understood by people 

without linguistic expertise. Stanford dependencies (SD) are 

triplets: name of the relation, governor, and dependent. A type 

dependency (TD) is used in our approach to the extraction of 

relevant elements from the NL sentences.   Our approach uses 

Stanford Dependency Parser to generate TDs.  

5. Open Information Extraction  

The Open Information Extraction (OpenIE) extracts domain 

relation triples, representing subjects, relations, and their 

objects, e.g., Customer may be candidate, Customer (subject), 

may-be (relation), and candidate (object). Open IE refers to 

the extraction of relation tuples text. It creates a triple 

(Customer; may-be; candidate), corresponding to the open 

domain relation may-be (Customer, candidate). The system 

splits sentences to be as several clauses, which are shortened, 

producing a set of entailed shorter sentence fragments [15]. 

C. Phase III: Mapping Rules to Extract UML Concepts 

In this phase, the UML class diagram concepts are generated 

from the NL processing phase output after using the Stanford 

Corenlp NLP tool to parse the requirements text. To apply the 

transformation process, a set of heuristics rules are proposed, 

based on English grammar and UML diagrams constructing 

rules. Finally, the resulted class diagram components can be 

drawn manually or using UML drawing tools.  

1. Class Identification Rules 

 C-Rule 1: Extract the common nouns (e.g., Person, User) 

<NN> tags, and proper nouns (e.g., System, Human) 

<NNP> tags from the text and map them to classes. 



 C-Rule 2: If a sentence in (Subject–Verb–Object); 

Subject <nsubj> and Object <dobj> forms are mapped to 

candidate classes. 

 C-Rule 3: If the noun is post-fixed by preposition <IN> 

tag, then ignore it as a class and map it as a part of a 

method, e.g., System records details of a candidate. 

“System” and “candidate” are candidate classes, and 

“records details” is a method of the class “system”. 

 C-Rule 4:  Identify candidate classes from the ‘IsA’ 

relationship (inheritance), e.g., EU-Rent is a car rental 

company. EU-Rent is a subclass of Car Rental Company. 

 O-Rule 5: For a noun phrase (Noun+Noun), if the first 

noun is a candidate class, then the second noun is mapped 

into candidate instances (objects) of that class. 

2. Attribute Identification Rules 

 A-Rule 1: Extract the adjectives in sentences from <JJ> 

tag, e.g., “sale line item with description, price and total”.  

 A-Rule 2: Extract the sentences like “is-property-of” 

“identified by” that associated with a candidate class, e.g., 

“name is-property-of customer”, “A student identified by 

student–id”.  

 A-Rule 3: Extract the possessed nouns (i.e., pre-fixed 

by’s or post-fixed by of) that are associated with a 

candidate class, e.g., student’s address or address of a 

student. 

 A-Rule 4: Identify attributes from the ‘HasA’ relationship 

(aggregation), e.g., Librarian has a name. 

 A-Rule 5: Identify attributes from common nouns (e.g., 

“Class Student attributes are first name, last name, 

address, etc.”), and nouns after possessive pronoun 

<PP$> tag (e.g., Candidate updates his details.) 

 A-Rule6: If two nouns appear in a sequence (Noun+ 

Noun), then if the first Noun is a candidate class, the 

second Noun is mapped into candidate properties (Class-

Property) of this class according to position, e.g., “shoe 

size” assumed that “size” is a property of class “shoe”. 

 A-Rule7: If two nouns appear in a sequence (Noun+ 

Noun) including the underscore mark “_” between them, 

then if the first Noun is mapped to candidate class and the 

second Noun is mapped into candidate attribute of that 

class, e.g., “student_name”. 

 A-Rule 8: If a concept has one unique value, then it is an 

attribute, e.g., “name, date, ID, type, and number”.  

3. Methods Identification Rules 

 M-Rule 1: Extract verb phrase that contains lexical verbs 

(e.g., see, want, act, make) associated with a noun from 

<VB> tags and map them to candidate methods of this 

noun as a candidate class.  

 M-Rule 2: Extract verb phrase that contains action verbs 

(e.g., calculate, start, enter) associated with a noun from 

<VB> tags and map them to candidate methods of this 

noun as a candidate class. 

 M-Rule 3: Extract verb phrases in the form (Verb <VB>+ 

Noun <NN>) and map them to candidate methods of the 

subject of the sentence as a class. 

 M-Rule 4: If a sentence in (Subject–Verb–Object) or 

(Noun+Verb+Noun) forms are mapped to a class with 

Subject and Object as classes sharing the verb as a 

method and select the sender and receiver classes. 

4. Relationship Identification Rules 

This section presents the rules for relationship identifications 

as well as the multiplicity and recursive relationship rules.  

Relationship Attributes: 

 RA-Rule: An adverb <RB> can be identified as an 

attribute of a relationship type. It may refer to “time, date, 

place, degree, cause, duration, etc.”. 

Associations Identification Rules:  

A transitive verb can be a candidate for an association 

relationship. The following are the association rules: 

 AS-Rule 1: Extract the prepositional phrases from 

(<VB>+ <IN> or <To>) tags among noun phrases (two 

classes), such as “has”, “next to”, “part of”, “works for”, 

“contained in”, “talk to”, “order to”, and identify the noun 

phrases associated with it. These phrases are mapped to 

association relationships and the associated verb is used 

as the caption of association. 

 AS-Rule 2: Extract the verb phrases which is a collection 

of two verbs <VB>+ <VB> tags, e.g., savings-checking, 

and identify the noun phrases associated with it to identify 

the participant classes. This verb phrase is mapped to an 

association relationship. 

 AS-Rule 3: If a sentence is in the form (Noun+Verb+ 

Noun) where both nouns are candidate classes, then the 

verb is an association relationship. Similarly, if the 

sentence is in the form of (Subject-Predicate-Object), then 

there is an association between subject and object.  

 AS-Rule 4: Extract transitive verb (e.g., take, send, buy) 

from <VB> tags between two candidate classes and map 

it to association relationship, e.g., System records details 

of employer. “System” is the subject, “employer” is the 

object and they are candidate classes. The verb “records” 

is a transitive verb and it represents an association. 

Multiplicity Identification Rules:  

 MR-Rule: Extract indefinite articles (a and an) from 

<DT> tag, plural nouns (prefixed with s) from <NNS> 

and <NNPS> tags, and cardinal numbers (2 or two) from 

<CD> tag to identify multiplicity. For example: “library 

member can borrow books (s)” this is a one-to-many 

association between a library member and a book. 

Participation Types Identification Rules:  

 PT-Rule 1: Identify the participation type from a noun or 

a prepositional phrase whose occurrence is singular which 

gets a minimal and maximum cardinality of 1, e.g., “Each 

department is managed by only one employee”. Here, 

“department” and “employee” are singular nouns so that 

the multiplicity is of type one-to-one. 

 PT-Rule 2: Extract Modal verbs From <MD> tag to 

identify the participation types, “Can/could” and 



“may/might” refer to optional participation, and 

“must/have” to refer to required participation. 

Aggregations Identification Rules:  

 AG-Rule 1: Extract phrases such as “have”, “hold”, 

“possess”, “carry”, “involve”, “imply”, “embrace”, 

“contains”, “consists of”, “comprises of”, “is-part-of”, 

“included-in”, “belong-to”, “divided to”, “has part” or “is-

made-up-of” between subject and object. 

 AG –Rule 2: If the concept is verb <VB> and it is equal 

to one of the phrases mentioned in AG-Rule 1, then they 

are mapped to composition or aggregation, e.g., Library 

contains Books, Library contains Journals. 

 AG-Rule 3: If the phrases “comprises, have, include, 

possess, and contains” are found between object and 

subject, then a composition relationship exists from object 

to subject. 

 AG-Rule 4: If the “is a part of” phrase is found between 

subject and object, then aggregation (weak) relation 

occurs from subject to object.  

 AG-Rule 5: The subject-part is a class in aggregation and 

the object-part is considered as the subclass.  

 AG –Rule 6: The collective nouns usually represent 

aggregation, e.g., a library of books. 

Generalization Identification Rules:  

 GE-Rule 1: Extract phrases such as “is-category-of” or 

“is-type-of”, “is-kind-of” “maybe”, “is-a” between 

subject and object, e.g., “EU-Rent is a car rental 

company”, “Customer may be candidate or employer”. 

 GE-Rule 2: If the concept is verb <VB> and it is equal to 

one of the phrases mentioned in the previous rule, then 

they are mapped to generalizations, e.g., Service may be 

Standard, Silver, or Gold. 

 GE-Rule 3: If the “maybe” phrase is found between 

subject and object, represent inheritance relation 

(direction) from object to subject, “maybe” and “can be” 

denotes top-down simple inheritance. 

 GE-Rule 4: If the “is a type of” phrase occurs then 

inheritance is from subject to object, “is a type of” 

denotes bottom-up simple inheritance. 

 GE-Rule 5: The phrase “N1+ is a N2+ and a N3” denotes 

multiple inheritances between N1, N2, and N3. 

 GE-Rule 6: The subject-part is considered the main class 

in generalization, and the object-part, as the subclass. 

 GE-Rule 7: Extract the objects that have similar 

attributes or methods and group similar things to an 

abstract class, e.g., Standard service and Silver service 

objects both are a type of Service object, therefore these 

two objects can be specializations of Service class. 

Dependency Identification Rules: 

 DE-Rule 1: Extract the following phrases "require", 

"depends on", "rely on", "based on", "uses", "follows" 

between subject and object. 

 DE-Rule 2: If the concept is verb <VB> and it is equal to 

one of the phrases mentioned in the previous rule, then 

they are mapped to a dependency relationship. 

 DE-Rule 3: If a sentence is in the form (Noun1+Relation 

+ Noun2+ “AND”+ Noun3), where all the three nouns are 

classes. Then, the relation is between the classes (Noun1, 

Noun2) and between the classes (Noun1, Noun3). 

 DE-Rule 4: If a sentence is in the form (Noun1+Relation 

+Noun2+“AND NOT”+Noun3) where the three nouns are 

classes, then the relation is between the classes (Noun1, 

Noun2) and not between the classes (Noun1, Noun3). 

Recursive Relationship Identification Rules: 

 RR-Rule: If a sentence is in the form (Noun1+Verb+ 

Noun1) when the subject is the same as the object of the 

sentence, then the relationship is recursive, called self-

transitions, e.g., System enters request as a record. 

D. Phase IV: Refinement of the Results 

This phase deals with filtering and refining the extracted 

concepts. After applying the rules in Phase III, the extracted 

information is further processed to generate the class diagram. 

The output of Phase III produces a set of initial candidates, 

which may be poorly defined or not related to the problem 

domain. The collected candidates can be further analyzed to 

discover details through a set of refinement rules. This leads to 

more refined results, which can be an input to the production 

of UML class models. To refine candidate UML elements, the 

results are matched with the defined following rules. 

 C-Rule 1: If a candidate class occurred only one time in 

the text and its frequency is less than 2 %, then ignore it 

as a class as well as an object name. 

 C-Rule 2: If a candidate class does not have any 

attributes, then ignore it as a class. 

 C-Rule 3: If a candidate class does not participate in any 

relationship; ignore it as a class. 

 C-Rule 4: If a candidate class is related to the design, 

location name, people name, then ignore it as a class. 

 C-Rule 5: If a concept is an attribute, ignore it as a class. 

 C-Rule 6: If a candidate class contains information such 

as relationships, attributes, then that candidate is a class. 

 C-Rule 7: Remove redundant candidates from the list of 

the output as they are not required.  

 C-Rule 8: If two classes reveal the same information, 

remove a class to avoid redundant classes.  

 C-Rule 9: If any two candidate classes are related by 

‘known as’, ‘same as’ and ‘similar to’, then they are 

treated as a single class only.  

 C-Rule 10: If any class is found in both adjective and 

attribute class list, removes such class from the list. 

 C-Rule 11: If a class takes a list of values (Boolean, list, 

etc.), such classes are taken as attributes of a class. 

 C-Rule 12: Every class should have a specific purpose 

and be necessary for the system, if not remove it. Manual 

interference is needed to identify irrelevant classes. 

E. Phase V:  UML Diagrams Generation 

The outcomes of Phase IV produces a set of final UML class 

elements. The resulted UML diagrams components are 

obtained to be drawn manually or using UML drawing tools.  



IV. EXPERIMENTS AND RESULTS 

In this study, two experiments have been conducted to validate 

the solution by the assessment of UML class components 

resulting from it. Firstly, the approach has been evaluated by 

comparing the obtained results using another tool called 

UMGAR [19], with the same scenario used in this tool to 

apply the proposed approach to as a case study. Secondly, the 

proposed approach was compared with some other approaches 

in terms of the UML class model and elements obtained from 

each approach. The approach outputs were given and the 

overall results of the evaluation were discussed. The class 

diagram generated by UMGAR lacks in identifying attributes 

of classes and fails to identify aggregation, composition, 

dependency, and recursive relationships. Moreover, the 

UMGAR approach does not identify multiplicity and 

participation types among classes. In contrast, our approach 

handles the issues in the resulted diagrams. Our approach has 

a distinct advantage in terms of the graphical models that 

present the knowledge extracted from the NL text. With our 

approach, UML class diagrams with a variety of elements can 

be extracted such as classes, attributes, methods, association, 

aggregation, composition, dependency, and recursive 

relationships. The approach also identifies multiplicity and 

participation types among classes. Further details of the 

experimental study can be found in [22].  

V. CONCLUSIONS 

This paper describes a method for generating UML class 

diagrams from NL requirements using NLP techniques and 

heuristic rules. The proposed approach uses an NLP tool to 

read and accomplish the user requirements analysis to 

facilitate the process of mapping the extracted knowledge into 

UML class models. Our approach uses NLP techniques and 

types dependency to parse the NL specifications using a set of 

pre-defined heuristics rules. Then, a set of rules is proposed to 

identify the UML concepts from the parsed requirement text. 

The approach was validated and evaluated using a comparison 

between its results with the results obtained from another tool 

using the same scenario of a well-known case study. This 

work could help engineers in the analysis stage in OO SDLC, 

hence reducing the cost and time required for manual 

processes and software developers reducing their time in the 

design process, specifically in manual generation of UML 

class diagrams. This approach can be used to generate 

diagrams by students who just learn about UML diagrams. 

This approach also can help software analysts to save more 

time from drawing diagrams and can focus more on 

developing the software and system. 
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