
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/346641672

Generating UML Class Diagram using NLP Techniques and Heuristic Rules

Conference Paper · December 2020

DOI: 10.1109/STA50679.2020.9329301

CITATIONS

20
READS

693

4 authors:

Esra A. Abdelnabi

University of Benghazi

6 PUBLICATIONS 67 CITATIONS

SEE PROFILE

Abdelsalam M. Maatuk

University of Benghazi

94 PUBLICATIONS 1,419 CITATIONS

SEE PROFILE

Tawfig Abdelaziz

Libyan Interntonal Mdical University

26 PUBLICATIONS 143 CITATIONS

SEE PROFILE

Salwa Elakeili

University of Benghazi

19 PUBLICATIONS 72 CITATIONS

SEE PROFILE

All content following this page was uploaded by Abdelsalam M. Maatuk on 25 November 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/346641672_Generating_UML_Class_Diagram_using_NLP_Techniques_and_Heuristic_Rules?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/346641672_Generating_UML_Class_Diagram_using_NLP_Techniques_and_Heuristic_Rules?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Esra-Abdelnabi?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Esra-Abdelnabi?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Benghazi?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Esra-Abdelnabi?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelsalam-Maatuk?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelsalam-Maatuk?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Benghazi?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelsalam-Maatuk?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tawfig-Abdelaziz?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tawfig-Abdelaziz?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tawfig-Abdelaziz?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salwa-Elakeili?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salwa-Elakeili?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Benghazi?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salwa-Elakeili?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelsalam-Maatuk?enrichId=rgreq-2102e67b5325f9f61c45b0cabd2f53b5-XXX&enrichSource=Y292ZXJQYWdlOzM0NjY0MTY3MjtBUzoxMTQzMTI4MTEwMDgyMjA0NUAxNjY5NDAxNTI4NDQ1&el=1_x_10&_esc=publicationCoverPdf

Generating UML Class Diagram using NLP

Techniques and Heuristic Rules
Esra A. Abdelnabi

Faculty of Information Technology

Benghazi University, Libya

Esraaali9179@gmail.com

Abdelsalam M. Maatuk

Faculty of Information Technology

University of Benghazi, Libya

abdelsalam.maatuk@uob.edu.ly

Tawfig M. Abdelaziz

Faculty of Information Technology

Libyan International Medical University, Libya

tawfigtawill@limu.edu.ly

Salwa M. Elakeili

Faculty of Information Technology

University of Benghazi, Libya

salwa.elakeili@uob.edu.ly

Abstract—Several tools and approaches have been proposed to

generate Unified Modeling Language (UML) diagrams.

Researchers focus on automating the process of extracting

valuable information from Natural Language (NL) text to

generate UML models. The existing approaches show less

accurateness because of the ambiguity of NL. In this paper, we

present a method for generation class models from software

specification requirements using NL practices and a set of

heuristic rules to facilitate the transformation process. The NL

requirements are converted into a formal and controlled

representation to increase the accuracy of the generated class

diagram. A set of pre-defined rules has been developed to extract

OO concepts such as classes, attributes, methods, and

relationships to generate a UML class diagram from the given

requirements specifications. The approach has been applied and

evaluated practically, where the results show that the approach is

both feasible and acceptable.

Keywords - Software Engineering, Natural Language Processing,

Requirement Engineering, UML, Natural language.

I. INTRODUCTION

Requirements engineering can be problematic, as it requires

extra work in requirements elicitation, verification, and

traceability. The extracted requirements that are documented

as software requirements specification (SRS) are transformed

during the system design phase into specific models, e.g.,

Object-Oriented (OO) models using UML [1]. After preparing

the SRS document, some requirements might be missed. This

might lead to an incomplete system, and extra cost and time.

 During the analysis in System Development Life Cycle

(SDLC), the natural language (NL) is used to describe the

specific problem that needs to be solved [11, 12]. However,

NLs are often ambiguous, uncertain, incomplete, and

incoherent. Besides, the requirement document size and the

script of NL can cause extra problems. Some essential

information needed by the verb for completeness is missed. To

facilitate developing accurate UML diagrams, the requirement

analyst has to detect and fix these problems. However, if the

analyst has no enough domain knowledge, this can miss the

defects in NL, which can lead to various interpretations in

implicit requirements recovering. Moreover, it would be

expensive to fix such issues in the subsequent SDLC phases.

Conversely, software systems require extra cleanness and

correctness, which are missing in NLs [2]. Analyzing and

reconstructing NL requirements and generating UML models

is a challenging task, which needs automated support. For that

reason, some approaches and tools have been developed to

facilitate this process. NL processing (NLP) techniques play

an essential role in analyzing NL requirements and generating

UML diagrams from these requirements [3]. Software

engineering developments depend on OO design using UML

for software development. The UML class diagram is the most

suitable tool to describe a comprehensive understanding of

requirements [3].

 To resolve such problems and automating the generation of

UML models process from requirements, a lot of techniques

have been proposed [1, 13, 14, 18]. Conversely, the

experiments with these tools show that they are not used

SDLCs because of their restrictions. Moreover, most of the

tools concentrate on the class diagrams with high user

interventions to finish the process. Besides, most of them are

unable to extract the complete UML elements, e.g., methods,

associations, and other advanced relationship types. Some

solutions just extract the names of classes, and some of them

deal with objects [2, 20]. In recent decades, several tools are

proposed to analyze NL requirements and produce UML

models, yet they have emphasized the analysis of NL

requirements and extremely dependent on user intervention.

Many approaches use NLP techniques, mapping, graphs, and

patterns, whereas others use ontology and linguistic concepts.

 This paper describes a proposed method for analyzing the

NL requirements and extracting the relative software

information and concepts to facilitate the process of

generating a UML class diagram from unrestricted NL

requirements. Our approach reduces the ambiguity and

complexity of NL by using NLP techniques. We proposed a

set of heuristics rules to perform the transformation process.

The results were encouraging and support the combination of

NLP techniques and heuristic rules, which combines the

strength of automation and human reasoning. The method has

been applied and evaluated using a case study, the results of

which demonstrate that it is practical and satisfactory.

 The remainder of the paper is organized as follows: Section

II presents the related work. Section III introduces the

mailto:Esraaali9179@gmail.com
mailto:abdelsalam.maatuk@uob.edu.ly
mailto:tawfigtawill@limu.edu.ly
mailto:salwa.elakeili@uob.edu.ly

proposed approach. Section IV discusses some of the obtained

results, and Section V concludes the paper.

II. RELATED WORK

Several approaches have been presented for generating UML

diagrams from requirements. They have focused on the

automation of the process by analyzing the NL requirements

while generating the models.

 DC-Builder is a tool, which uses NLP techniques to analyze

requirements and ontologies to extract class diagrams [4]. The

domain ontology advances the quality of outputs. The UML

concepts such as classes, attributes, and associations are

extracted using a set of heuristic rules. However, the heuristic

rules presented are not exhaustive and certain sentence

structures are not covered. DC-Builder cannot identify either

methods or the multiplicity of relationships and requires

manual intervention.

 The architecture of SRS using an NLP is described in [5].

This work focuses on specification verifications. The

architecture consists of three modules with a user interface,

which are (i) a tokenizer that reads sentences from a

document, (ii) an NLP parser that parses each requirements

sentence and extracts all unique noun terms, and (iii) a term

management system that performs the filtering of unimportant

terms. However, this system is unable to identify the

relationships between classes and objects or multiplicity.

 An approach based on Grammatical Knowledge Patterns

(GKPs) is proposed for class diagrams generation from

requirements [6]. The requirements statements are transformed

into a frame-based representation using a dependency analysis

of requirements statements and the GKP. However, the

approach can only generate class diagrams and unable to

identify the multiplicity of relationships.

 A tool was proposed to understanding and managing the

requirements by using application-specific ontologies and

NLP techniques [7]. The tool, known as NLTK, has been used

to receive unstructured requirements and makes segmentation

to the text to acquire sentences. Then, text entered to be

tokenized to words or punctuation characters that then

normalized via the stemming. Moreover, a part of speech

(POS) tagging is performed to identify the word roles; then,

identify groups of tokens, and recognize requirements.

However, this approach ignores more enriched relationships

such as generalization, composition, and dependency, yet

many-to-many multiplicity is not identified.

 An approach to generate class diagrams from requirements

document as use case specifications (UCSs) is presented in

[8]. The UCSs are taken as input, and the Stanford parser is

used to produce type dependencies and POS tags of each

sentence in the UCS. A set of comprehensive rules is applied

to systematically process, interpret the sentences, and identify

the elements for the generation of analysis class diagram.

However, the approach requires the UCSs to be scripted using

some restrictions to handle the NL issues such as ambiguity

and inconsistency. Moreover, it does not use entity

disambiguation techniques such as misspelling, abbreviation,

and alias identifications, etc.

 An NLP approach is proposed for UML class generation

using NLP techniques to avoid requirements manual

processing [9]. However, the approach does not consider

relationships and other class diagram concepts such as

methods and multiplicities.

 The method described in [10] focuses on the formulation of

rules for the extraction of class elements from semi-structured

requirements using NLP techniques. The rules use keywords

such as use case name, actor, etc., and the dependencies

among the sentence words. The process starts with classes,

attributes, methods, and relations extractions. However, the

rule-based techniques cannot cover all the conditions, so that

the approach does not include advanced relationships like

aggregation, dependency and the multiplicity of relationships.

Furthermore, more rules and patterns for different sentence

arrangements are needed.

III. THE PROPOSED APPROACH

This section describes the proposed approach, which works in

five phases as shown in Fig. 1. Phase I: Reconstruction and

Normalization of NL text, Phase II: Processing NL

requirements, Phase III: Applying mapping rules to extract

UML elements, Phase IV: Refinement of the results, and

finally, Phase V: UML diagrams generation.

Fig. 1: Generating Class diagrams from NL requirements

A. Phase I: Reconstruction and Normalization of NL Text

To reconstruct the NL text and normalizing the complex

requirements into simple statements, a set of syntactic rules is

proposed to increase the knowledge accuracy extracted from

the requirements document [14]. These rules could be used for

writing and normalizing the requirements documents. These

rules should be applied while writing the requirements

document to facilitate the process of extracting the UML

elements, to give better results, and to save time and effort

spent on analyzing the requirements.

 Rule 1: The NL text is reconstructed to Subject-Predicate

(S-O) or Subject-Predicate-Object (S-V-O) forms.

 Rule 2: If a sentence is of the form (S-V1-O1-V2-O2),

then it splits into more sentences (S-V1-O1) (S-V2- O2).

 Rule 3: If a sentence consists of several actions or

subordinate sentences, then separate it into more

sentences, only one subject and one predicate or action.

(NP1-VP1-NP2- and -NP3- and -VP2-NP2- and -NP3)

convert it into two sentences (NP1-VP1-NP2- and -NP3)

(NP1-VP2-NP2- and -NP3).

 Rule 4: If a sentence is separated by connectives like

“and, or, but, yet”, e.g., (S-V-O1-, /and-O2-, /and,-O3),

then split into two (or more) simpler sentences (S-V-O1)

(S-V-O2) (S-V-O3).

 Rule 5: If a sentence is of the form of ((S)-V-O1-, /and-

O2-, /and, - O3…) but the only verb leads equal parallel

structure, then split it into ((S)-V-O1) (V-O2) (V-O3).

 Rule 6: If a sentence is a passive voice, translated it to an

active voice, which can be translated to a message sent.

 Rule 7: Do not use diverse verbs for the same action, but

use the same verb for the same action in different

sentences.

 Rule 8: Replace a pronoun of the object with the object

name in the normalized sentence to resolve the ambiguity.

 Rule 9: Start a conditional sentence with If-clause, which

contains a condition, and terminate it with endIf-clause.

Rule 10: Start a set of concurrent actions with

StartConcurrency-clause, and terminate the concurrency

description with endConcurrency-clause.

 Rule 11: Start a set of synchronized actions with

StartSynchronization-clause, and terminate the

synchronization with endSynchronization-clause.

 Rule 12: To introduce a condition, start an iteration with

While-clause, and terminate it with endWhile-clause.

 Rule 13: If NP and VP are preceded by “No”, then

convert it into “NP not VP”.

 Rule 14: If a sentence has no verbs (VP), then discard it.

 Rule 15: If a prepositional phrase (PP), adjective phrase

(ADJP), determiner (DT), or adjective (JJ) precedes the

subject of the sentence, then discard that phrases.

 Rule 16: If a sentence has a semicolon, then treat it after

the semicolon as extra information for the preceding

sentence and so discard the sentence after the semicolon.

B. Phase II: Natural Language Processing (NLP)

Several NLP tools are used for processing NL requirements

text to avoid manual processing on NL requirements before

the generation of UML. “Stanford CoreNLP” [16] is used to

perform NLP as it offers outstanding results, as follows:

1. Text Tokenization

Sentence Tokenization (Sentence Splitting): The given input

text is split into sentences to determine the borders of

sentences and to define the structuring and transformation of

the words to ease the further processing, e.g., [The library

contains both books and journals.].

Word Tokenization: After sentence tokenization, each

sentence goes via word tokenization, e.g., “The library

contains both books and journals.” is tokenized as [The]

[library] [contains] [both] [books] [and] [journals] [.]

2. Parts-of-Speech (POS) Tagging

The tokenized NL text is categorized into various POS Tags,

in which all the words in the input text are tagged to the

corresponding POS, based on word meaning and the context,

in which the word has been used. The Stanford POS tagger or

NLTK is used to identify the basic POS tags of each sentence

such as verbs, proper nouns, a common noun, adverbs,

adjectives, prepositions, etc. based on predefined rules for

categorization. For example, the POS analysis of “The library

contains both books and journals.” is as: “The/DT library/NN

contains/VB both/P books/NS and/CN journals/NS. /.”.

3. Stemming and Lemmatization

Stemming is the process of removing affixes and suffixes

attached to the nouns and verbs, to remove non-word tokens

like s, es, and ies. For example, the verb “contains” is

analyzed as “contain+s” and “books” is analyzed as “book+s”.

This is to get word root form to convert actors and class names

from the plural to singular. However, the transformed token

may not be a linguistically correct word because of its

simplicity. On the other hand, lemmatization always returns

the true root form of a word. For lemmatization to work

correctly, the original word has to be tagged (i.e., a tag to

identify it as a noun, verb, or other parts of speech) so that

lemmatization can restore the word to its correct root form.

4. Type Dependencies

To represent the syntactic structure of a sentence and perform

the syntactic analysis, the dependency parse can be used to

identify the noun and the verb phrases. The Stanford typed

dependencies [15] provides a representation of grammatical

relations between words that can be understood by people

without linguistic expertise. Stanford dependencies (SD) are

triplets: name of the relation, governor, and dependent. A type

dependency (TD) is used in our approach to the extraction of

relevant elements from the NL sentences. Our approach uses

Stanford Dependency Parser to generate TDs.

5. Open Information Extraction

The Open Information Extraction (OpenIE) extracts domain

relation triples, representing subjects, relations, and their

objects, e.g., Customer may be candidate, Customer (subject),

may-be (relation), and candidate (object). Open IE refers to

the extraction of relation tuples text. It creates a triple

(Customer; may-be; candidate), corresponding to the open

domain relation may-be (Customer, candidate). The system

splits sentences to be as several clauses, which are shortened,

producing a set of entailed shorter sentence fragments [15].

C. Phase III: Mapping Rules to Extract UML Concepts

In this phase, the UML class diagram concepts are generated

from the NL processing phase output after using the Stanford

Corenlp NLP tool to parse the requirements text. To apply the

transformation process, a set of heuristics rules are proposed,

based on English grammar and UML diagrams constructing

rules. Finally, the resulted class diagram components can be

drawn manually or using UML drawing tools.

1. Class Identification Rules

 C-Rule 1: Extract the common nouns (e.g., Person, User)

<NN> tags, and proper nouns (e.g., System, Human)

<NNP> tags from the text and map them to classes.

 C-Rule 2: If a sentence in (Subject–Verb–Object);

Subject <nsubj> and Object <dobj> forms are mapped to

candidate classes.

 C-Rule 3: If the noun is post-fixed by preposition <IN>

tag, then ignore it as a class and map it as a part of a

method, e.g., System records details of a candidate.

“System” and “candidate” are candidate classes, and

“records details” is a method of the class “system”.

 C-Rule 4: Identify candidate classes from the ‘IsA’

relationship (inheritance), e.g., EU-Rent is a car rental

company. EU-Rent is a subclass of Car Rental Company.

 O-Rule 5: For a noun phrase (Noun+Noun), if the first

noun is a candidate class, then the second noun is mapped

into candidate instances (objects) of that class.

2. Attribute Identification Rules

 A-Rule 1: Extract the adjectives in sentences from <JJ>

tag, e.g., “sale line item with description, price and total”.

 A-Rule 2: Extract the sentences like “is-property-of”

“identified by” that associated with a candidate class, e.g.,

“name is-property-of customer”, “A student identified by

student–id”.

 A-Rule 3: Extract the possessed nouns (i.e., pre-fixed

by’s or post-fixed by of) that are associated with a

candidate class, e.g., student’s address or address of a

student.

 A-Rule 4: Identify attributes from the ‘HasA’ relationship

(aggregation), e.g., Librarian has a name.

 A-Rule 5: Identify attributes from common nouns (e.g.,

“Class Student attributes are first name, last name,

address, etc.”), and nouns after possessive pronoun

<PP$> tag (e.g., Candidate updates his details.)

 A-Rule6: If two nouns appear in a sequence (Noun+

Noun), then if the first Noun is a candidate class, the

second Noun is mapped into candidate properties (Class-

Property) of this class according to position, e.g., “shoe

size” assumed that “size” is a property of class “shoe”.

 A-Rule7: If two nouns appear in a sequence (Noun+

Noun) including the underscore mark “_” between them,

then if the first Noun is mapped to candidate class and the

second Noun is mapped into candidate attribute of that

class, e.g., “student_name”.

 A-Rule 8: If a concept has one unique value, then it is an

attribute, e.g., “name, date, ID, type, and number”.

3. Methods Identification Rules

 M-Rule 1: Extract verb phrase that contains lexical verbs

(e.g., see, want, act, make) associated with a noun from

<VB> tags and map them to candidate methods of this

noun as a candidate class.

 M-Rule 2: Extract verb phrase that contains action verbs

(e.g., calculate, start, enter) associated with a noun from

<VB> tags and map them to candidate methods of this

noun as a candidate class.

 M-Rule 3: Extract verb phrases in the form (Verb <VB>+

Noun <NN>) and map them to candidate methods of the

subject of the sentence as a class.

 M-Rule 4: If a sentence in (Subject–Verb–Object) or

(Noun+Verb+Noun) forms are mapped to a class with

Subject and Object as classes sharing the verb as a

method and select the sender and receiver classes.

4. Relationship Identification Rules

This section presents the rules for relationship identifications

as well as the multiplicity and recursive relationship rules.

Relationship Attributes:

 RA-Rule: An adverb <RB> can be identified as an

attribute of a relationship type. It may refer to “time, date,

place, degree, cause, duration, etc.”.

Associations Identification Rules:

A transitive verb can be a candidate for an association

relationship. The following are the association rules:

 AS-Rule 1: Extract the prepositional phrases from

(<VB>+ <IN> or <To>) tags among noun phrases (two

classes), such as “has”, “next to”, “part of”, “works for”,

“contained in”, “talk to”, “order to”, and identify the noun

phrases associated with it. These phrases are mapped to

association relationships and the associated verb is used

as the caption of association.

 AS-Rule 2: Extract the verb phrases which is a collection

of two verbs <VB>+ <VB> tags, e.g., savings-checking,

and identify the noun phrases associated with it to identify

the participant classes. This verb phrase is mapped to an

association relationship.

 AS-Rule 3: If a sentence is in the form (Noun+Verb+

Noun) where both nouns are candidate classes, then the

verb is an association relationship. Similarly, if the

sentence is in the form of (Subject-Predicate-Object), then

there is an association between subject and object.

 AS-Rule 4: Extract transitive verb (e.g., take, send, buy)

from <VB> tags between two candidate classes and map

it to association relationship, e.g., System records details

of employer. “System” is the subject, “employer” is the

object and they are candidate classes. The verb “records”

is a transitive verb and it represents an association.

Multiplicity Identification Rules:

 MR-Rule: Extract indefinite articles (a and an) from

<DT> tag, plural nouns (prefixed with s) from <NNS>

and <NNPS> tags, and cardinal numbers (2 or two) from

<CD> tag to identify multiplicity. For example: “library

member can borrow books (s)” this is a one-to-many

association between a library member and a book.

Participation Types Identification Rules:

 PT-Rule 1: Identify the participation type from a noun or

a prepositional phrase whose occurrence is singular which

gets a minimal and maximum cardinality of 1, e.g., “Each

department is managed by only one employee”. Here,

“department” and “employee” are singular nouns so that

the multiplicity is of type one-to-one.

 PT-Rule 2: Extract Modal verbs From <MD> tag to

identify the participation types, “Can/could” and

“may/might” refer to optional participation, and

“must/have” to refer to required participation.

Aggregations Identification Rules:

 AG-Rule 1: Extract phrases such as “have”, “hold”,

“possess”, “carry”, “involve”, “imply”, “embrace”,

“contains”, “consists of”, “comprises of”, “is-part-of”,

“included-in”, “belong-to”, “divided to”, “has part” or “is-

made-up-of” between subject and object.

 AG –Rule 2: If the concept is verb <VB> and it is equal

to one of the phrases mentioned in AG-Rule 1, then they

are mapped to composition or aggregation, e.g., Library

contains Books, Library contains Journals.

 AG-Rule 3: If the phrases “comprises, have, include,

possess, and contains” are found between object and

subject, then a composition relationship exists from object

to subject.

 AG-Rule 4: If the “is a part of” phrase is found between

subject and object, then aggregation (weak) relation

occurs from subject to object.

 AG-Rule 5: The subject-part is a class in aggregation and

the object-part is considered as the subclass.

 AG –Rule 6: The collective nouns usually represent

aggregation, e.g., a library of books.

Generalization Identification Rules:

 GE-Rule 1: Extract phrases such as “is-category-of” or

“is-type-of”, “is-kind-of” “maybe”, “is-a” between

subject and object, e.g., “EU-Rent is a car rental

company”, “Customer may be candidate or employer”.

 GE-Rule 2: If the concept is verb <VB> and it is equal to

one of the phrases mentioned in the previous rule, then

they are mapped to generalizations, e.g., Service may be

Standard, Silver, or Gold.

 GE-Rule 3: If the “maybe” phrase is found between

subject and object, represent inheritance relation

(direction) from object to subject, “maybe” and “can be”

denotes top-down simple inheritance.

 GE-Rule 4: If the “is a type of” phrase occurs then

inheritance is from subject to object, “is a type of”

denotes bottom-up simple inheritance.

 GE-Rule 5: The phrase “N1+ is a N2+ and a N3” denotes

multiple inheritances between N1, N2, and N3.

 GE-Rule 6: The subject-part is considered the main class

in generalization, and the object-part, as the subclass.

 GE-Rule 7: Extract the objects that have similar

attributes or methods and group similar things to an

abstract class, e.g., Standard service and Silver service

objects both are a type of Service object, therefore these

two objects can be specializations of Service class.

Dependency Identification Rules:

 DE-Rule 1: Extract the following phrases "require",

"depends on", "rely on", "based on", "uses", "follows"

between subject and object.

 DE-Rule 2: If the concept is verb <VB> and it is equal to

one of the phrases mentioned in the previous rule, then

they are mapped to a dependency relationship.

 DE-Rule 3: If a sentence is in the form (Noun1+Relation

+ Noun2+ “AND”+ Noun3), where all the three nouns are

classes. Then, the relation is between the classes (Noun1,

Noun2) and between the classes (Noun1, Noun3).

 DE-Rule 4: If a sentence is in the form (Noun1+Relation

+Noun2+“AND NOT”+Noun3) where the three nouns are

classes, then the relation is between the classes (Noun1,

Noun2) and not between the classes (Noun1, Noun3).

Recursive Relationship Identification Rules:

 RR-Rule: If a sentence is in the form (Noun1+Verb+

Noun1) when the subject is the same as the object of the

sentence, then the relationship is recursive, called self-

transitions, e.g., System enters request as a record.

D. Phase IV: Refinement of the Results

This phase deals with filtering and refining the extracted

concepts. After applying the rules in Phase III, the extracted

information is further processed to generate the class diagram.

The output of Phase III produces a set of initial candidates,

which may be poorly defined or not related to the problem

domain. The collected candidates can be further analyzed to

discover details through a set of refinement rules. This leads to

more refined results, which can be an input to the production

of UML class models. To refine candidate UML elements, the

results are matched with the defined following rules.

 C-Rule 1: If a candidate class occurred only one time in

the text and its frequency is less than 2 %, then ignore it

as a class as well as an object name.

 C-Rule 2: If a candidate class does not have any

attributes, then ignore it as a class.

 C-Rule 3: If a candidate class does not participate in any

relationship; ignore it as a class.

 C-Rule 4: If a candidate class is related to the design,

location name, people name, then ignore it as a class.

 C-Rule 5: If a concept is an attribute, ignore it as a class.

 C-Rule 6: If a candidate class contains information such

as relationships, attributes, then that candidate is a class.

 C-Rule 7: Remove redundant candidates from the list of

the output as they are not required.

 C-Rule 8: If two classes reveal the same information,

remove a class to avoid redundant classes.

 C-Rule 9: If any two candidate classes are related by

‘known as’, ‘same as’ and ‘similar to’, then they are

treated as a single class only.

 C-Rule 10: If any class is found in both adjective and

attribute class list, removes such class from the list.

 C-Rule 11: If a class takes a list of values (Boolean, list,

etc.), such classes are taken as attributes of a class.

 C-Rule 12: Every class should have a specific purpose

and be necessary for the system, if not remove it. Manual

interference is needed to identify irrelevant classes.

E. Phase V: UML Diagrams Generation

The outcomes of Phase IV produces a set of final UML class

elements. The resulted UML diagrams components are

obtained to be drawn manually or using UML drawing tools.

IV. EXPERIMENTS AND RESULTS

In this study, two experiments have been conducted to validate

the solution by the assessment of UML class components

resulting from it. Firstly, the approach has been evaluated by

comparing the obtained results using another tool called

UMGAR [19], with the same scenario used in this tool to

apply the proposed approach to as a case study. Secondly, the

proposed approach was compared with some other approaches

in terms of the UML class model and elements obtained from

each approach. The approach outputs were given and the

overall results of the evaluation were discussed. The class

diagram generated by UMGAR lacks in identifying attributes

of classes and fails to identify aggregation, composition,

dependency, and recursive relationships. Moreover, the

UMGAR approach does not identify multiplicity and

participation types among classes. In contrast, our approach

handles the issues in the resulted diagrams. Our approach has

a distinct advantage in terms of the graphical models that

present the knowledge extracted from the NL text. With our

approach, UML class diagrams with a variety of elements can

be extracted such as classes, attributes, methods, association,

aggregation, composition, dependency, and recursive

relationships. The approach also identifies multiplicity and

participation types among classes. Further details of the

experimental study can be found in [22].

V. CONCLUSIONS

This paper describes a method for generating UML class

diagrams from NL requirements using NLP techniques and

heuristic rules. The proposed approach uses an NLP tool to

read and accomplish the user requirements analysis to

facilitate the process of mapping the extracted knowledge into

UML class models. Our approach uses NLP techniques and

types dependency to parse the NL specifications using a set of

pre-defined heuristics rules. Then, a set of rules is proposed to

identify the UML concepts from the parsed requirement text.

The approach was validated and evaluated using a comparison

between its results with the results obtained from another tool

using the same scenario of a well-known case study. This

work could help engineers in the analysis stage in OO SDLC,

hence reducing the cost and time required for manual

processes and software developers reducing their time in the

design process, specifically in manual generation of UML

class diagrams. This approach can be used to generate

diagrams by students who just learn about UML diagrams.

This approach also can help software analysts to save more

time from drawing diagrams and can focus more on

developing the software and system.

REFERENCES

[1] O. Dawood and A. Sahraoui, “From Requirements Engineering to UML
using Natural Language Processing – Survey Study”, European Journal
of Engineering Research and Science, vol. 2, no. 1, pp. 44-50, 2017.

[2] D. Thakore and R. P. Patki, “Generation of Software Artifacts and
Models at Analysis Phase”, International Journal of Engineering
Research and Applications (IJERA), vol. 2, no. 5, pp. 1624-1630, 2012.

[3] M. Mohanan and P. Samuel, “Natural Language Processing Approach
for UML Class Model Generation from Software Requirement

Specifications via SBVR”, International Journal on Artificial
Intelligence Tools, vol. 27, no. 06, pp. 1850027–1-1850027–22, 2018.

[4] H. Herchi and W. B. Abdessalem, “From user requirements to UML
class diagram”, in International Conference on Computer Related
Knowledge (ICCRK’ 2012), Sousse, Tunisia, 2012.

[5] S. G. MacDonell, K. Min and A. M. Connor, “Autonomous
requirements specification processing using natural language
processing”, arXiv preprint arXiv: 1407.6099, 2014.

[6] R. Sharma, P. K. Srivastava and K. K. Biswas, “From Natural Language
Requirements to UML Class Diagrams”, in 2015 IEEE Second
International Workshop on Artificial Intelligence for Requirements
Engineering (AIRE), IEEE, 2015, pp. 1-8.

[7] A. Arellano, E. Carney and M. A. Austin, “Natural language processing
of textual requirements”, in The Tenth International Conference on
Systems (ICONS 2015), Barcelona, Spain, 2015, pp. 93-97.

[8] J. S. Thakur and A. Gupta, “Automatic generation of analysis class
diagrams from use case specifications”, arXiv preprint
arXiv:1708.01796, pp. 1-41, 2017.

[9] M. Ahmed, W. Butt, I. Ahsan, M. Anwar, M. Latif and F. Azam, "A
Novel Natural Language Processing (NLP) Approach to Automatically
Generate Conceptual Class Model from Initial Software Requirements",
in International Conference on Information Science and Applications,
Singapore, 2017, pp. 476-484.

[10] R. S. Shweta, and B. Ghoshal, “Automatic Extraction of Structural
Model from Semi-Structured Software Requirement Specification”, in
2018 IEEE/ACIS 17th International Conference on Computer and
Information Science (ICIS), IEEE, 2018, pp. 543-58.

[11] S. F. Alshareef, A. M Maatuk, T. M., Abdelaziz, and M. Hagal.
“Validation Framework for Aspectual Requirements Engineering
(ValFAR)”. In Proc. of the 6th Int. Conf. on Eng. & MIS, 2020, pp. 1–7.
DOI:https://doi.org/10.1145/3410352.3410777

[12] S. F. Alshareef, A. M Maatuk, T. M., Abdelaziz. “Aspect-Oriented
Requirements Engineering: Approaches and Techniques”. In DATA '18,
October 1–2, 2018, ACM. https://doi.org/10.1145/3279996.3280009

[13] T. M., Abdelaziz, A. M Maatuk and F. Rajab. “An Approach to
Improvement the Usability in Software Products”. In Int. Journal of
Software Engineering & Applications (IJSEA), Vol.7, No.2, March
2016. DOI : 10.5121/ijsea.2016.7202 11

[14] D. K. Deeptimahanti and R. Sanyal, “An Innovative Approach for
Generating Static UML Models from Natural Language Requirements”,
Advances in Software Engineering Communications in Computer and
Information Science, vol. 30, pp. 147–163, 2009.

[15] The Stanford NLP Group, “Stanford Parser", v.1.6, 2007. [Online].
Available: http://nlp.stanford.edu/software/lex-parser.shtml. [Accessed:
3- May- 2020].

[16] The Stanford NLP Group, “CoreNLP”, v. 4.0. [Online]. Available:
https://stanfordnlp.github.io/CoreNLP/. [Accessed: 7- May- 2020].

[17] D. Jurafsky and J. H. Martin, “Word Classes and Part-of-Speech
Tagging,” in Speech and language processing: an introduction to
natural language processing, computational linguistics, and speech
recognition, Upper Saddle River, NJ: Prentice-Hall, 2004.

[18] M. C. De Marneffe and C. D. Manning, “The Stanford typed
dependencies representation”, in the workshop on Cross- Framework
and Cross-Domain Parser Evaluation (Coling 2008), Association for
Computational Linguistics, 2008, pp 1-8.

[19] D. K. Deeptimahanti and M. A. Babar, “An Automated Tool for
Generating UML Models from Natural Language Requirements
(UMGAR)”, in Inter. Conference on Automated Software Engineering,
IEEE, 2009, pp. 680-682.

[20] A. O Mohammed, Z. A Abdelnabi, A. M. Maatuk, and A. S Abdalla.
“An Experimental Study on Detecting Semantic Defects in Object-
Oriented Programs using Software Reading Techniques”. In Pro. of
ACM Int. Conf. on Engineering & MIS (ICEMIS '15), 2015, 6 pp.
DOI=http://dx.doi.org/10.1145/2832987.2833025

[21] A. M. Maatuk, M. A. Ali and S. Aljawarneh. “Translating Relational
Database Schemas into Object-based Schemas: University Case Study”.
In Recent Patents on Computer Science. Innovations in Educational
Technology and E-learning Social Networking. Vol. 8, No 2, pages 122-
132, 2015. DOI: 10.2174/2213275908666150710174102.

[22] E. A. Abdelnabi, “Generating UML Diagrams using NLP Processing
Techniques and Heuristics Rules”, Benghazi University, 2020.

View publication stats

https://doi.org/10.1145/3279996.3280009
http://nlp.stanford.edu/software/lex-parser.shtml
https://stanfordnlp.github.io/CoreNLP/
http://dx.doi.org/10.2174/2213275908666150710174102
https://www.researchgate.net/publication/346641672

