
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/352845733

Generating UML Class Diagram from Natural Language Requirements: A Survey

of Approaches and Techniques

Conference Paper · May 2021

DOI: 10.1109/MI-STA52233.2021.9464433

CITATIONS

20
READS

1,936

3 authors:

Esra A. Abdelnabi

University of Benghazi

6 PUBLICATIONS 76 CITATIONS

SEE PROFILE

Abdelsalam M. Maatuk

University of Benghazi

94 PUBLICATIONS 1,569 CITATIONS

SEE PROFILE

Mohamed Hagal

Faculty of information technology, benghazi university

18 PUBLICATIONS 55 CITATIONS

SEE PROFILE

All content following this page was uploaded by Abdelsalam M. Maatuk on 14 November 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/352845733_Generating_UML_Class_Diagram_from_Natural_Language_Requirements_A_Survey_of_Approaches_and_Techniques?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/352845733_Generating_UML_Class_Diagram_from_Natural_Language_Requirements_A_Survey_of_Approaches_and_Techniques?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Esra-Abdelnabi?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Esra-Abdelnabi?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Benghazi?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Esra-Abdelnabi?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelsalam-Maatuk?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelsalam-Maatuk?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Benghazi?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelsalam-Maatuk?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Hagal-2?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Hagal-2?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Hagal-2?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelsalam-Maatuk?enrichId=rgreq-c83dfea4bdd238b516c667bdd24d42da-XXX&enrichSource=Y292ZXJQYWdlOzM1Mjg0NTczMztBUzoxMTQzMTI4MTA5NzA3NTIxNUAxNjY4NDMzOTcxMDY1&el=1_x_10&_esc=publicationCoverPdf

 Generating UML Class Diagram from Natural

Language Requirements: A Survey of Approaches

and Techniques

Abstract— In the last years, many methods and tools for

generating Unified Modeling Language (UML) class diagrams

from natural language (NL) software requirements. These

methods and tools deal with the transformation of NL textual

requirements to UML diagrams. The transformation process

involves analyzing NL requirements and extracting relevant

information from the text to generate UML class models. This

paper aims to survey the existing works of transforming textual

requirements into UML class models to indicate their strengths

and limitations. The paper provides a comprehensive explanation

and evaluation of the existing approaches and tools. The

automation degree, efficiency, and completeness, as well as the

used techniques, are studied and analyzed. The study

demonstrated the necessity of automating the process, in addition

to combining artificial intelligence with engineering requirements

and using Natural Language Processing (NLP) techniques to

extract class diagrams from NL requirements.

Keywords- System Development, Requirement Engineering, NLP,

UML class diagrams.

I. INTRODUCTION

Natural languages are usually used to capture software

requirements, and then the analysts analyze and generate the

UML diagrams such as class, use case diagrams, etc. for system

modeling [1]. Moreover, requirements explained in natural

languages can be often complex, ambiguous, uncertain,

incomplete, inconsistent, and incoherent. Moreover, the faults

that occurred in the earlier phases can be very costly to fix in the

software development process next phases. Therefore, it is better

to handle these faults earlier and at a lower cost. As a result,

analyzing requirements and generating Unified Modeling

Language (UML) diagrams is a difficult process, which needs

automated or semi-automated support [2].

Recent developments of software engineering depend on

object-oriented analysis and design (OOAD) using UML for

software requirements modeling, software development, and

redevelopment. UML class model is the core for OOAD, where

other models are resulting from [3]. Recently, UML Class

Diagrams are one of the most useful tools for describing a

comprehensive understanding of requirements [4].

In recent decades, several studies proposed automatic and

semi-automatic tools to investigate requirements to generate

class diagrams. However, the earlier studies have only

highlighted the NL requirements analysis and are reliant on user

involvement. On the other hand, the recent studies were

highlighted both the NL analysis and extraction of UML

diagrams from NL text using different techniques such as NLP,

mapping rules, patterns, and domain ontology, and linguistic are

also used [4,5].

 Several approaches and tools have been presented for

producing class diagrams from requirements

automatically/semi-automatically, e.g., NL-OOPS [6], LIDA

[7], CM-Builder [8], DC-Builder [9], and ABCD [4]. These

methods focus on the NL requirements automating and

analyzing, and generation of class models from these

requirements [1]. Moreover, the majority of these approaches

concentrate on the extraction of the class diagram and a few of

them can extract other diagrams, e.g., the behavior diagrams.

Most of the studies produce incomplete diagrams and require

high user interventions and interactions. Moreover, the wide-

ranging UML class elements are challenging be extracted, e.g.,

attributes, operations, and enhanced association types such as

aggregation, composition, generalization, and dependency [10].

This paper surveys the approaches and tools proposed to

generate class diagrams and provides a review of their strengths

and limitations. Different requirement representations, e.g.,

unrestricted and restricted requirements, use case descriptions

required by these approaches, and the techniques used by each

approach to transforming NL requirements into UML class

models are studied and analyzed.

The paper is organized as follows: Section II outlines the

Requirements Engineering concepts, UML, and NLP. Section

III summarizes the research of the transformation from NL

requirements into the UML class diagram. Section IV presents

the results, and Section V concludes the paper.

II. NATURAL LANGUAGE AND REQUIREMENT ENGINEERING

A. Requirement Engineering

Requirement engineering emphasizes the use of systematical

and repeatable techniques to make sure that system

requirements are complete, consistent, and relevant [11]. It

includes the user, the developer in the process, hence it is a very

complex process. The users understand the problem and know

their needs nevertheless not how to develop a system, whereas

developers know how to construct a system, yet, do not know

what the problem is. The software system requirements are the

descriptions of the services that a system should provide and its

operational constraints [2, 11].

Esra A. Abdelnabi

Faculty of Information Technology

University of Benghazi, Libya

esra.ali@uob.edu.ly

Abdelsalam M. Maatuk

Faculty of Information Technology

University of Benghazi, Libya

abdelsalam.maatuk@uob.edu.ly

Mohammed Hagal

Faculty of Information Technology

 University of Benghazi, Libya

mohamed.hagal@uob.edu.ly

mailto:esra.ali@uob.edu.ly
mailto:abdelsalam.maatuk@uob.edu.ly
mailto:mohamed.hagal@uob.edu.ly

B. Requirements Documentation using Natural Language

Software requirements are often documented utilizing natural

language manuscripts [32, 33]. In contrast, stakeholders are

more acquainted with the NL and they do not have to learn a

new notation. Moreover, requirements engineers can use

natural language to express any kind of requirement, which is

an advantage of natural language text [34, 35]. However,

natural language allows requirements to be ambiguous, and

requirements of different perspectives are at risk of being

unintentionally mixed up during documentation [12, 36].

Requirements can be written using either an unrestricted or

restricted NL. A restricted NL is obtained by placing

restrictions on the natural language text. It aims to reduce the

problems of unrestricted NL such as redundancy and ambiguity

to facilitate automated analysis of the requirements [13, 37].

C. Unified Modelling Language (UML)

UML is the de facto standard for object-oriented software

modeling, which was standardized and adopted by Object

Management Group (OMG), and it became a software

development standard [2]. UML a standard formal language for

modeling and documenting software systems. UML can be used

for describing and designing software systems graphically, both

at the requirements and design phases of an SDLC [14, 38].

D. Natural Language Processing and Software Engineering

Natural Language Processing (NLP) and Software Engineering

(SE) and are both branches of computer science and

engineering, which can be applied to each phase in the SDLC

[2, 39]. Requirements written in natural languages can be very

problematic. Firstly, these natural language requirements need

to be analyzed. Then, NLP tools and techniques are needed to

be used to help in linguistic analysis and to create an automated

requirement analysis support tool [15]. The use of NLP

techniques in requirements engineering is very important as the

NL requirement specifications are written by a software analyst

in collaboration with the users, and the customers, and if the

requirements document is written in formal language the

customers would not sign a contract [2].

III. CLASS DIAGRAM GENERATION TOOLS

A semi-automatic tool that is used syntactic knowledge and

needs to generate object diagrams from NL SRS is described in

[16]. The tool uses OMT concepts and a link grammar parser for

the transformation from the specifications into object diagrams.

A list of guidelines has been collected, which is expressed in

parsing rules. A post-processor is developed to apply these

guidelines to the parser output and extract objects, attributes, and

associations. The tool uses refined guidelines and a graph

drawing tool to display the diagrams. However, the approach

treats a small number of guidelines. The diagram is manually

refined and validated and the user needs to have extensive

domain knowledge. The generated diagrams were not

completely acceptable due to many factors, i.e., parser

insufficiency, ambiguous or incomplete descriptions,

insufficient domain knowledge, the inadequacy of guidelines

and transformation rules. The tool does not include relationships

such as generalization, composition, and dependency, or the

multiplicity of relationships.

NL-OOPS is a tool presented using a semantic network (SN)

of words of an NLP system, which can generate object models

from unrestricted NL requirements [6]. The requirements are

morphologically, syntactically, semantically, and pragmatically

processed, and then converted into an intermediate model SN,

which is a semantic graph used to bridge the gap between the NL

requirements and object models. Finally, the SN is transformed

into object models. The tool considers nouns as objects and uses

links to identify relationships. However, the tool lacks precision

in picking the objects for large systems and cannot distinguish

between objects, and their respective attributes, class nouns, and

attribute nouns. The tool requires user intervention for editing

produced classes and does not produce the class diagrams.

A semi-automatic system called RECORD is described in

[17]. The system generates object models from NL requirements

expressed in use case descriptions. Therefore, a form-based user

interface is used to support the structured input of requirements.

The nouns in the keywords are transformed into objects and the

verbs to behaviors. The use cases are analyzed to extract objects

and their components. Then, the use cases are classified using

the extracted information for discovering object models. Finally,

the results processes are reviewed and adjusted. However, the

system requires excessive user interaction to manually links and

edits the generated models.

A project called D-H, which presents a linguistic tool for

knowledge extraction from NL requirements is presented in

[18]. The D-H performs automatic syntactic analysis by DIPETT

and semi-automatic semantic analysis by a separate module

called HAIKU. The DIPETT and HAIKU are robust

components of a text analysis system, called TANKA. The D-H

can identify candidate objects from noun phrases and candidate

processes from verbs, attributes from adjectives, and adjectival

phrases. However, the approach should be duly assisted by

humans and only identifies simple association relationships

without identifying multiplicity.

LIDA is a semi-automatic tool presented to manually extract

class and object diagrams from unrestricted NL requirements

[7]. The NL description imports and the POS are identified from

NL text. Then, the analyst works manually to identify candidate

classes and removing poor classes or candidates to be attributes

from the noun list. Finally, the analyst identifies candidate

methods and roles from the verb list and then uses LIDA

Modeler to graphically associate the extracted components with

the appropriate classes. However, LIDA needs extensive user

interaction and only capable to assist the users in generating

class diagrams, but not automatically generates complete

models. The approach does not support traceability and nor

identify aggregation and generalization.

CM-Builder is an NLP-based tool proposed to extract a class

model automatically from unrestricted NL requirements using

NLP methods to examine the requirements and build a model

represented in a Semantic Network (SN), which is used to build

a class model that can be directly visualized for further

refinements to generate a final class model[8]. However, the

approach does support traceability. The linguistic analysis is

limited due to the problems of NL. The approach can only derive

structural model elements and they may not be connected. It

does not identify methods, aggregation, generalization, and

relationships multiplicity. The suggested transformation rules

are not structured, and their completeness is not evaluated. Three

requirements pre-processing techniques are used; hence the

efficiency of the approach is low. For large specifications, the

user may be overwhelmed with candidate classes.

An automated conceptual modeling prototype is proposed to

produce a class diagram from a requirement document using

NLP and domain ontology [19]. The NL requirements are

analyzed using NLP. Then, the class identification performance

is improved using a dictionary of domain-based ontology. This

approach extracts classes employing NLP via a tagger, a link

grammar parser, parallel structure, and linguistic patterns. The

final results are further refined using a domain ontology

dictionary. It can identify many relationship types. However, the

approach requires the analysts to be involved to make many

decisions during the modeling. Conversely, this approach deals

with only the basic OO concepts.

REBUILDER UML is a class diagrams generation tool from

NL text [20]. This module uses an approach based on CBR

(Case-Based Reasoning) and NLP that performs morphology,

syntax, and semantics analysis, then, a CBR engine is used to

retrieve cases from the case library. It consists of four modules:

the UML editor, the knowledge base manager, the knowledge

base (KB), and the last module is the CBR engine, which is the

reasoning module. However, this tool needs continuous up-

gradation of the case base. Conversely, if a query-related case is

not available in the case base, the case is not created. There are

some performance issues, e.g., finding the semantic distance

between two concepts can take several seconds due to the use of

WordNet, which is unacceptable for the system usage. The

objects represent abstract concepts and do not necessarily

represent classes to be implemented. The shallowness of

WordNet is not acceptable for specific domains like computing

and software engineering.

MOVA is a tool designed to draw, measure, and validates

class diagrams [21]. It allows users to analyze invariants and

assess OCL metrics. However, the user had to be involved in all

these processes to help in identifying OO concepts since the tool

is incapable to identify them automatically. Finally, the class and

object diagrams are saved in an XML format, which precludes

the models from being exchange with other tools. However,

MOVA requires high human intervention since it incapable of

automatically identifying OO concepts. MOVA Meta model is

only a subset of the UML meta-model; it does not support the

full OCL syntax and has limited support for OCL and UML.

Moreover, advanced relationships like aggregation,

composition, and dependency are not included.

A semi-automated approach that aimed to solve the problems

in an NL SRS is described in [22]. The approach consists of three

steps. Firstly, parsing the Natural Language SRS; then eliciting

OO elements to create an OO analysis model, and finally, the

diagram is generated, which is reviewed by a human reviewer to

detect ambiguities and inconsistencies. However, the static

parser is used to construct the grammar. Thus, it is restricted to

handle static relationships and cannot deal with the dynamic

model. The models obtained are highly incomplete with many

unconnected components, contain many isolated classes, and

redundant classes and relationships. The diagrams lack several

relevant classes and relationships. Moreover, several identified

domain classes are difficult to be semantically termed as domain

classes as they seem to violate the encapsulation principle.

 A method called Relative Extraction Methodology is

proposed to generate a class diagram from the NL problem

statement [23]. Initially, NLP is used for sentence separation and

to extract the subject, object, and predicate from the sentence.

This information is used to produce a graphical representation

named a dependency graph, which acts as a knowledge base. It

allows the user to add new attributes or delete the wrong classes.

However, it needs human intervention and the developer

involvement in the refinement process which is a limitation of

this approach. Moreover, the accuracy of the generated classes

and their components decreases for complex problem

statements. Relationships such as aggregation and dependency

are missing, and the multiplicities between objects were not

considered.

UMLG is an NLP-based system to generate a class diagram

from NL requirements that follows NLP methods and a rule-

based approach [10]. This system designs in six modules: Text

input acquisition, text understanding, knowledge extraction,

generation of UML diagrams, and finally multi-lingual code

generation. First, UMLG reads and tokenizes the requirements

text, POS tags are identified, e.g., nouns, adjectives, etc. The

main parts of a sentence, e.g., subjects, objects, etc. are

identified. Then, to extract the UML the NL text is semantically

analyzed. Finally, the system generates a class diagram using the

extracted information and provides the respective blocks of

programming source code. However, the system needs more

enhancement to extract more classes and diagrams. It does not

identify attributes, multiplicity, and relationships such as

aggregation, generalization, composition.

A method to generate a high-level class diagram from a

structured NL requirement document is proposed in [24]. This

approach is implemented as a tool named FDCT using heuristic

rules and a domain-specific glossary. Requirements Analysis

Tool (RAT) has been developed to be used to put the

requirement sentences in restricted form, and perform lexical

and semantic analysis. The process has three phases. First, the

requirements statement converts into a set of tokens with the

help of glossaries defined by the user. Second, the requirement

statements' syntax is analyzed by using the state machines. The

third phase comprises semantic analysis with the help of

domain-specific ontology. The tool identifies only two kinds of

relationships, i.e., association and generalization. The generated

classes require expert intervention to transform them into

implementation-level fine-grained classes. Also, the produced

high-level design can be too fine-grained/coarse-grained

depending on the statements' granularity, which may cause an

enormous number of classes.

A methodology for class diagram generation from NL text,

based on which a tool named RACE has been developed to

extract the classes and relationships using NLP and domain

ontology is proposed in [25]. This tool finds candidate classes

through a POS tagger and uses the domain ontology to refine the

output. The system can find concepts based on nouns, noun

phrases, and verbs analysis, and defined association,

aggregation, composition, generalization, and dependency

relationships. However, RACE is not platform-independent, it is

restricted to the Windows platform and not able to run on other

platforms. It could not identify the multiplicity of relationships,

and limited to processing simple statements, and does not focus

on the program's internal structure.

A tool was proposed, which can perform OO analysis of

SBVR software requirements specifications [1]. First, the user

inputs a software requirements specification in English, and the

NL to SBVR approach generates SBVR based controlled

representation of requirement specification by performing

lexical, syntactic, and semantic parsing and SBVR vocabulary is

extracted. The OO information is extracted from the SBVR’s

rule-based representation. Finally, a class model is generated.

However, this tool does not deal with natural language

constraints.

A tool named SBVR2UML was proposed to map SBVR

representation to a UML class model [26]. First, the user enters

the SBVR specification as input, and then lexical, syntactic, and

semantic analyses are performed. After that, SBVR vocabulary

is extracted from given SBVR rules. Then, the SBVR rule is

further processed to extract the relevant information that maps

into UML class elements. Finally, a class model is graphically

generated. However, requirements need to be written in the form

of SBVR representation, because this approach only takes the

requirements specified in SBVR syntax.

An approach to transforming informal NL requirements into

UML class diagrams proposed in [27]. The approach is

implemented as a tool named RAPID using several NLP

technologies such as an OpenNLP to perform lexical and

syntactical analysis; Stemming Algorithm to find the root of

words; and WordNet, which performs analysis of semantics for

semantic correctness validation. Then, the Class Extraction

Engine module applies a set of heuristic rules on the output of

the previous module to generate class diagrams, which are then

refined using domain ontology. However, it is limited to

processing simple statements as each sentence in the

requirements document must meet a pre-defined structure.

An approach is proposed to convert textual requirements into

class diagrams based on domain ontology and NLP [28]. A tool

called RAUE filtering algorithm has been implemented along

with applications such as OpenNLP parser, WordNet, and Java

Native Interfaces. OpenNLP is for extracting information by

used lexical, syntactic parser, and POS tagging. RAUE can

identify concepts based on noun phrases, and verb analysis, and

relationships, e.g., association, aggregation, generalization,

dependency, and multiplicity of these relationships. However,

RAUE is limited to processing simple statements.

DC-Builder is a tool to analyze textual requirements using

NLP techniques and domain ontologies to extract a class

diagram [9]. First, the GATE framework is used to analyze the

NL requirements. Then, to extract UML elements from the text,

a set of heuristic rules are defined. Thus, it produced an XML

file that contains mistaken concepts. The ontologies are used to

eliminate unrelated concepts, and then keep only the final class

diagram elements. However, the heuristic rules do not cover all

the sentence structures. DC-Builder requires manual

intervention and relationships multiplicity not included.

An architecture of requirements specification using an NLP

is developed in [29]. This work focuses on the verification of

requirements and the automatic extraction of objects from a

requirements document. The system comprises a tokenizer to

tokenize the input sentences, an NLP parser to parse the

requirement sentences and extract the nouns, and perform the

filtering of irrelevant terms, classify the remaining terms into

one of three categories, and insert objects into a project

knowledgebase. However, the parsing system is unable to

perform syntactic parse trees disambiguation, compound noun

and proper noun processing, anaphoric resolution, and semantic

interpretation of terms.

An approach to transforming NL requirements into class

diagrams is described in [30]. The requirements statements are

transformed into an intermediary frame-based structured

representation using a dependency analysis and Grammatical

Knowledge Patterns (GKPs). The class diagrams are generated

from the knowledge stored in the frame-based structured

representation by using a rule-based algorithm. This approach

produced class diagrams based on linguistic analysis with

annotation or manual intervention. The requirements

representation is stored in an intermediate form that can accept

user changes. However, this approach does not identify the

multiplicity of the relationship and does not integrate with a

graphical CASE tool to produce graphical class diagrams.

A tool is developed to managing textual requirements based

on NLP and application-specific ontologies [31]. An NLP tool

named NLTK receives unstructured requirement text and

performs sentence segmentation. After that, the text entered into

the word tokenization process to tokenize text into words or

punctuation characters and normalize them through the

stemming process. Then, POS tagging is performed to identify

the role of each word in the sentence; noun, verb, adjective, etc.

Then, groups of tokens especially noun phrases are identified

through the chunking process. However, this approach generates

a class diagram but some relationships like composition,

dependency, generalization are not included.

ABCD is an automated tool designed to convert NL

requirements to class diagrams [4]. This tool uses NLP

techniques combined with pattern rules. It applies lexical and

syntactical processing. The text preprocessing consists of four

steps; sentence splitting, tokenization, POS tagging, and

syntactic parsing. Then, a pattern-matching NLP technique is

used to extract the class diagram concepts such as aggregation,

composition, and generalization, which are saved into an XMI

file. Finally, a CASE tool called ArgoUML is used to build the

corresponding UML diagrams from the XMI file. However, the

tool deficiencies to handle redundant information problems and

confuses the concepts of association and method identification

as both are identified by verbs.

An approach to convert SRS into UML class models and

developed as a tool named SUCM is presented in [3]. The tool

uses OpenNLP for semantic analysis to extract tokens and

generate POS tags. Then, it uses the SBVR standard to extract

the OO classes from the NL processed SRS. SUCM can identify

associations, generalization, aggregation relationships, and

multiplicity. The techniques used to obtain good accuracy in less

time. Nonetheless, it can only generate UML class diagrams,

which just models the structure of a system and one diagram is

not enough.

IV. DISCUSSIONS

In summary, after the study and analysis of the existing

literature, we could conclude that it seems that there is no

comprehensive attempt has been made for the UML class

diagrams generation from the NL requirements. All the

approaches are either highly complex or have a lot of

limitations. Some of these solutions could identify classes and

generate object models; though, the generated diagrams often

comprise redundant classes, while leaving the needed classes.

Some important and more enriched relationship types such as

association, generalization, aggregation, composition, and

dependency are not provided in most existing tools.

 There is no framework for an automatic generation of

complete class diagrams or other UML diagrams from free-text

requirements documents. Most of the earlier tools do not allow

the user to visualize UML diagrams and some of the existing

tools require human interactions for the automatic development

of UML diagrams along with associated attributes and methods.

Only a few approaches are fully automatic. Furthermore, most

of the existing tools accept only a small set of requirements and

require developers' support in the refinement process and

identify inconsistencies in requirements. The existing tools

more or less require the requirements to be written in a restricted

language or to be written in a specific form instead of NL-free

texts.

 Table I presents a comparison of the discussed tools based

on the input followed by the level of automation (viz. manual,

semi-automatic, automatic), the output of the approach, and the

used techniques.

V. CONCLUSION

This paper aims to provide a review of existing approaches and

tools for generating UML class models from NL text. These

approaches and tools use different techniques and diverse levels

of linguistic analysis to extract the UML class diagrams from

NL requirements. The paper deeply studied several works,

compared them, and identified the strengths and weaknesses of

each of them. Some of these tools can automatically extract the

UML elements and produce class models from natural language

text. In contrast, most of the tools require consistent user

intervention and interaction in the process of UML class

diagrams extraction. Even with the substantial enhancements

that have been made recently, it seems that we cannot say that

solutions could generate all the UML elements and data

semantics automatically, i.e., class names, operations, and

relationships, i.e., associations, and other advanced relationship

types such as generalization, aggregation, and dependency.

REFERENCES

[1] I. Bajwa and M. Choudhary, “From natural language software
specifications to UML class models”, Int. Conf. on Enterprise Inf.
Systems (ICEIS), Berlin, pp. 224–237, 2011.

[2] O. Dawood and A. Sahraoui, “From Requirements Engineering to UML
using Natural Language Processing – Survey Study”, European Jour. of
Eng. Res. and Science, vol. 2(1), pp. 44-50, 2017.

[3] M. Mohanan and P. Samuel, “Natural Language Processing Approach for
UML Class Model Generation from Software Requirement Specifications
via SBVR,” Int. Jour. on Artif. Intell. Tools, vol. 27(06), 2018.

[4] W. Karaa, Z. Azzouz, A. Singh, N. Dey, A. Ashour and H. Ghazala,
“Automatic builder of class diagram (ABCD): an application of UML
generation from functional requirements,” Jour. of Soft. Practice and
Experience, vol. 46(11), pp. 1443-1458, 2015.

[5] M. Abdouli, B. Karaa and H. Ghezala, “Survey of Works that Transform
Requirements into UML Diagrams,” 14th Int. Conf. on Soft. Eng.
Research, Manag. and App. (SERA) , pp. 117-123, 2016

TABLE I: A COMPARISON OF THE CLASS GENERATION APPROACHES AND TOOLS

Study Input Automation Output Technique Used

[16] High-level specification (SRS) Semi-automatic Object diagram OMT guidelines+ NLP link grammar parser

[6] Unrestricted NL Semi-automatic Object diagram NLP heuristics

[17] Use Case descriptions Semi-automatic Object diagram NLP

[18] NL requirements Automatic Object diagram Linguistic tools

[7] Unrestricted NL requirements Semi-automatic Class+ Object diagrams NLP heuristics (Chen’s rules)

[8] Unrestricted NL requirements Automatic Class diagram NLP rules

[19] Unstructured NL requirements Automatic Class diagram NLP techniques+ domain ontology

[20] NL textual requirements Automatic Class diagram Case-based reasoning + NLP

[21] Textual requirements Semi-automatic Class+ Object diagrams (Rewriting-based UML) programming + OCL

[22] Restricted NL requirements Semi-automatic Class diagram Grammar+ NL parser+ rules

[23] NL problem statements Semi-automatic Class diagram Dependency Graph

[10] NL requirements Automatic Class diagram+code NLP heuristic+ rule-based algorithm

[24] Restricted NL requirements Semi-automatic Class diagram Heuristic rules+ domain-specific glossary

[25] Informal NL requirements Automatic Class diagram NLP +domain ontology

[1] NL software specification Automatic Class diagram Linguistic Analysis+ SBVR business rules

[26] SBVR specification of software requirements Automatic Class diagram Linguistic Analysis+ SBVR business rules

[27] Informal NL requirements Semi-automatic Class diagram NLP + domain ontology

[28] Informal NL problem statements Automatic Class diagram NLP +domain ontology

[9] NL textual requirements descriptions Automatic Class diagram NLP heuristic rules +domain ontology

[29] NL requirements document Automatic Object diagram NLP

[30] Informal NL textual requirements Automatic Class diagram Syntactic dependency analysis + GKPs

[31] Informal NL textual requirements Automatic Class diagram NLP (NLTK+ ontologies)

[4] NL textual requirements Automatic Class diagram NLP techniques+ pattern rules

[3] Software Requirements Specification (SRS) Automatic Class diagram NLP + SBVR business rules

[6] L. Mich and R. Garigliano, “NL-OOPS: A requirements analysis tool
based on natural language processing,” the 3rd Int. Conf. on Data Mining
Methods and Databases for Eng., Italy, pp. 322_330, 2002.

[7] S. Overmyer, B. Lavoie and O. Rambow, “Conceptual Modeling through
Linguistics Analysis Using LIDA,” the 23rd Int. Conf. on Soft. Eng.
(ICSE’01), Canada, pp. 401-410, 2001.

[8] H. Harmain and R. Gaizauskas, “CM-Builder: A Natural Language-based
CASE Tool,” Jou. of Auto. Soft. Eng., vol. 10(2), pp. 157-181, 2003.

[9] H. Herchi and W. Abdessalem, “From user requirements to UML class
diagram,” Int. Conf. on Comp. Related Knowledge (ICCRK’ 2012),
Tunisia, 2012.

[10] I. Bajwa, A. Samad and S. Mumtaz, “Object-Oriented Software Modeling
Using NLP Based Knowledge Extraction,” Europ. Jour. of Sci. Research,
vol. 35(1), pp. 22-33, 2009.

[11] I. Sommerville, Software engineering, 10th ed. Boston: Pearson
Education, 2016.

[12] K. Pohl and C. Rupp, Requirements engineering fundamentals, 2nd,
California: Rocky Nook, 2015.

[13] T. Yue, L. Briand and Y. Labiche, “A systematic review of transformation
approaches between user requirements and analysis models,”
Requirements Eng., vol. 16(2), pp. 75-99, 2010.

[14] OMG, “Unified Modeling Language (UML),” v. 2.5, 2013. Available at:
http://www.omg.org/spec/UML/2.5.

[15] A. Lash, K. Murray and G. Mocko, “Natural language processing
applications in requirements engineering,” the Int. Design Eng. Technical
Conf. & Computers and Inf. in Eng. Conf., USA, pp. 1-9, 2012.

[16] S. Nanduri and S. Rugaber, “Requirements Validation via Automated
Natural Language Parsing,” Jour. of Manag. Inf. Sys., vol. 12(3), pp. 9-
19, 1995.

[17] J. Börstler, “User-Centered Requirements Engineering in RECORD - An
Overview,” Nordic Workshop on Programming Environment Research,
Denmark, pp. 149-156, 1996.

[18] S. Delisle, K. Barker and I. Biskri, “Object-Oriented Analysis: Getting
Help from Robust Computational Linguistic Tools,” the 4th Int. Conf. on
Appl. of Natural Language to Inf. Sys., Austria, 167- 171, 1999.

[19] N. Zhou and X. Zhou, “Automatic Acquisition of Linguistic Patterns for
Conceptual Modeling,” INFO 629: Artificial Intell., pp. 1-19, 2004.

[20] A. Oliveira, N. Seco and P. Gomes, “A CBR Approach to Text to Class
Diagram Translation,” the 8th European Conf. on Case-Based Reasoning,
Turkey, 2006.

[21] M. Clavel, M. Egea and V. Silva, “The MOVA Tool: A Rewriting-Based
UML Modeling, Measuring, and Validation Tool,” the 12th Conf. on Sof.
Eng. and Databases, Spain, 2007.

[22] D. Popescu, S. Rugaber, N. Medvidovic and D. Berry, “Reducing
Ambiguities in Requirements Specifications Via Automatically Created
Object-Oriented Models,” Monterey Workshop, pp. 103-124, 2008.

[23] H. Krishnan and P. Samuel, “Relative Extraction Methodology for class
diagram generation using dependency graph,” Int. Conf. On Commun.
Control & Comp. Tech, pp. 815-820, 2010.

[24] V. Sharma, S. Sarkar, K. Verma, A. Panayappan and A. Kass, “Extracting
high-level functional design from software requirements,” 16th Asia-
Pacific Soft. Eng. Conf., pp. 35-42, 2009.

[25] M. Ibrahim and R. Ahmad, “Class diagram extraction from textual
requirements using natural language processing (NLP) techniques,” 2nd
Int. Conf. on Comp. Research and Develop., pp. 200-204, 2010.

[26] H. Afreen and I. S. Bajwa, “Generating UML Class Models from SBVR
Software Requirements Specifications,” 23rd Conf. on Artif. Intell., pp.
23-32, 2011.

[27] P. More and R. Phalnikar, “Generating UML Diagrams from Natural
Language Specifications,” Jour. of Applied Inf. Sys., vol. 1(8), pp. 19-23,
2012.

[28] S. Joshi and D. Deshpande, “Textual Requirement Analysis for UML
Diagram Extraction by using NLP,” Jour. of Comp. Appl., vol. 50(8), pp.
42-46, 2012.

[29] S. MacDonell, K. Min and A. Connor, “Autonomous requirements
specification processing using natural language processing,” arXiv
preprint arXiv: 1407.6099, 2014.

[30] R. Sharma, P. Srivastava and K. Biswas, “From Natural Language
Requirements to UML Class Diagrams,” 2nd Workshop on Artif. Intell.
for Requirements Eng, pp. 1-8, 2015.

[31] A. Arellano, E. Carney and M. A. Austin, “Natural language processing
of textual requirements,” The 10th Conf. on Sys., Spain, pp. 93-97, 2015.

[32] J. Thakur and A. Gupta, “Automatic generation of analysis class diagrams
from use case specifications,” arXiv preprint arXiv:1708.01796, pp. 1-41,
2017.

[33] A. M. Maatuk and E A. Abdelnabi. “Generating UML Use Case and
Activity Diagrams Using NLP Techniques and Heuristics Rules”, 2021.
In the 3rd International Conference on Data Science, E-learning and
Information Systems 2021 (Data'2021), Petra, Jordan, 6pp.

[34] F. Mohammed, Z. Abdelnabi, A. M. Maatuk, and A. Abdalla. “An
Experimental Study on Detecting Semantic Defects in Object-Oriented
Programs using Software Reading Techniques”. In Pro. of
ACM ICEMIS, 2015, DOI=http://dx.doi.org/10.1145/2832987.2833025

[35] A. M. Maatuk, M. A. Ali and S. Aljawarneh. “Translating Relational
Database Schemas into Object-based Schemas: University Case Study”.
In Recent Patents on Computer Science. Innovations in Educational
Technology and E-learning Social Networking. Vol. 8, No 2, pages 122-
132, 2015. DOI: 10.2174/2213275908666150710174102.

[36] S. F. Alshareef, A. M. Maatuk, T. M., Abdelaziz, and M. Hagal.
“Validation Framework for Aspectual Requirements Engineering
(ValFAR)”. In Proc. of the 6th Int. Conf. on Eng. & MIS, 2020, pp. 1–7.
DOI:https://doi.org/10.1145/3410352.3410777</bib>

[37] S. Alshareef, A. M. Maatuk, T. Abdelaziz. “Aspect-Oriented
Requirements Engineering: Approaches and Techniques”. In DATA '18,
2018, https://doi.org/10.1145/3279996.3280009

[38] T. M., Abdelaziz, A. M. Maatuk and F. Rajab. “An Approach to
Improvement the Usability in Software Products”. In Int. Jour. of Soft.
Eng. & Applications, Vol.7(2), 2016.

[39] E. A. Abdelnabi, A. M. Maatuk, T. M. Abdelaziz, and S. Elakeili. 2020.
“Generating UML Class Diagram using NLP Techniques and Heuristic
Rules”, In 20th Int. Conf. on Sciences and Techniques of Automatic
Control and Computer Engineering (STA). IEEE, Tunisia, 277-282.
https://doi.org/10.1109/STA50679.2020.9329301

View publication stats

http://www.omg.org/spec/UML/2.5
https://doi.org/10.1145/3279996.3280009
https://www.researchgate.net/publication/352845733

