
University of Benghazi

Faculty of Information Technology

Computer Science Department

Xml – based parser to extract design pattern

in xml files

A thesis Submitted to faculty of information technology in partial

fulfillment of the requirement of the Master’s Degree

in Software Engineering

By

Samah Ali Naief

Supervisor

Dr.Omar Mustafa El-sallabi

March – 2012

Abstract

 Much research has been carried out on the importance of design patterns as a tool

that saves time in the design of a software program and establishes helpful results

in different platforms. However, the methods for pattern representation,

organization , saving and restoring have not been stated clearly. This study

attempts to find an easy way to turn data into an XML (extensible markup

language) file that shows the component pattern as a text, and in order to help the

designer to organize and save such patterns. We begin by applying a design

pattern that has been described and documented by a catalog, published on a web

page and stored in xml format. The store operation consists of saving the page,

taking the content and using it in an application. Most the time these patterns are

reduced, because no clear methods for saving and returning the data when it is

needed are available. A tool is required to perform this task. The tool will be

applied by using an xml–based parser that compiles an xml file and transforms it

into a formula understandable by all designers. The proposed tool will use the

HTML (Hypertext Markup language) technology to display the xml-file as an

acceptable text, desired by the designer, and suitable language such as vb.net and

asp.net will be selected to implement the tool. The aim of the present work is to

provide a work mechanism for designers. This mechanism will allow information

and experience to be exchanged among designers in different programming

environments, and also reduce time and effort in the design of reliable solutions to

problems.

TABLE OF CONTENTS

Chapter 1. Introduction

 1.1 Introduction 1

 1.2 Problem Statement 3

 1.3 Objectives 5

 1.4 Thesis structure 7

Chapter 2. Background

 2.1 Introduction 6

 2.2 Design pattern representation 7

 2.3 The Extensible Markup Language (XML) 7

 2.4 Xml advantages 7

 2.5 Document object model (DOM) 8

 2.6 Related work 9

 2.6.1 The CO2PS Tool 9

 2.6.2 The Meta-CO2PS Tool 11

 2.6.3 The Design Pattern Framework TM 3.5 12

 2.6.4 The OMT Design Tool 13

 2.6.5 The Tool of Florijn et al 13

 2.6.6 Framework of Balanyi and Ferenc 14

 2.7 Evaluation of the literature tools 15

 2.8 Summary 16

Chapter 3. An overview of xml mapping of the EPT
 3.1 Introduction 18

 3.2 Presenting Data in XML Documents 19

 3.3 The Tree Structure of XML Documents 21

 3.4 Presented Design Patterns in XML Documents 23

 3.5 The Suggested Structure of XML Files 23

 3.6 The Structure of the XML mapping of the EPT 35

 3.7 The XML Generated Files 36

Chapter 4. The EP Tool Architecture

 4.1 Introduction 37

 4.2 The documentation of the classes of the client side 39

 4.3 The Documentation of Classes for the Patterns Stored 45

 4.4 Tool Interface System 46

Chapter 5. Case Study 56

Chapter 6. Conclusion and future work

 6.1 Conclusion 82

 6.2 Scope for future work 84

References 85

Appendix 87

LIST OF FIGURES

Figure 2.1 The main functions in the CO2P2S tool 10

Figure 2.2 Results from the CO2P2S tool 11

Figure 3.1 A general view of an XML structure 21

Figure 3.2 The structure of pattern information in XML files 23

Figure 3.3 The input files for the proposed tool 34

Figure 3.4 General conceptual overview for the proposed tool 35

Figure 4.1 UML class diagram for the EPT 38

Figure 4.2 UML class diagram for patterns stored server side 44

Figure 4.3 The main functions for EPT 46

Figure 4.4 List of patterns available in EPT 47

Figure 4.5 List of classes for the determined pattern 47

Figure 4.6 summery of methods and fileds for the determined pattern 48

Figure 4.7 View details about methods 49

Figure 4.8 Load information xml file of patterns into EPT 50

Figure 4.9 Load xml files of classes for patterns into EPT 50

Figure 4.10 Backup patterns stored in EPT 51

Figure 4.11 Finding pattern availability in EPT 51

Figure 4.12 The result of a search operation 52

Figure 4.13 List of patterns available in EPT 53

Figure 4.14 Details about shapes pattern 54

Figure 4.15 Download files of shapes pattern 55

Figure 5.1 A general view of the proposed graphics pattern classes 57

Figure 5.2a Generating XML files for the Circle class 58

Figure 5.2b Generating XML files for the Square class 59

Figure 5.2c Generating XML files for the triangle class 60

Figure 5.2d Generating XML files for the canvas class 61

Figure 5.2e Generating XML files for all patterns embedded into the tool 62

Figure 5.3 The extraction operation by EPT 71

Figure 5.4 The main functions for EPT 72

Figure 5.5 Load XML file to memory by an XML document 72

Figure 5.6 The list of patterns available in EPT 73

Figure 5.7 List of classes for the shapes pattern 74

Figure 5.8 Load canvas XML file to memory by an xml document 74

Figure 5.9 List of fileds and methods of canvas class 75

Figure 5.10 View details about methods 76

Figure 5.11 Load information xml file of pattern into EPT 76

Figure 5.12 Load xml files of classes for pattern into EPT 77

Figure 5.13 Backup patterns that store in PET 77

Figure 5.14 Find pattern available in EPT 78

Figure 5.15 The result of search operation 78

Figure 5.16 List of patterns available in EPT 79

Figure 5.17 details about shapes pattern 80

Figure 5.18 download files of shapes pattern 81

LIST OF TABLES

Table 3.1 Description tags displaying the general information of patterns 25

Table 3.2 General information about a certain pattern 27

Table 3.3 The description attributes of general info for a shape pattern 28

Table 3.4 description of Fields for a certain class 30

Table 3.5 The filed attributes for a certain class 30

Table 3.6 Tags for methods and functions for a certain class 32

Table 3.7 Attributes of methods and functions for a certain class 33

Table 5.2a Documentation of fields and methods for the Circle class 63

Table 5.2b Documentation of fields and methods for the Canvas class 66

file:///C:/Users/Wollf/Documents/Business/PaperLift/Editing%20Jobs/Samaha%20(Libya)/Canvas.html%23canvas

1

Chapter 1

 Introduction

1.1 Introduction

The process of saving pattern data, in order to be shared or to be published with

other users this became relatively simple with the appearance and widespread use

of the standard file format. which known as XML (extensible markup language).

An XML is a file format containing a data pattern generated and published on a

server. The user may take this file and make use of the pattern through the use of a

tool or mechanism that facilitates the process of reaching the data, extracting what

2

it contains in an understandable way, and then saving the data so that it can be

retrieved whenever necessary.

 Most of the suggested tools for saving data and information associated with a

specific pattern depend on the user. More specifically, they depend on where the

user gathers all the information and data associated with the pattern data that is fed

into the tool so that the components can be displayed as an actual drawing. An

example is the tool CO2P2S (Correct Object-Oriented Pattern-based Programming

System), which is confined to taking all information from the user and then

presenting it as a drawing illustrating the components that belong to the pattern

generated. If a pattern in the shape of an XML were made available and published

on one of the servers, one would not be able to save it or make use of it later if one

wanted to make a high-quality work from it.

Since a pattern represents an active mechanism or tool that saves time in the

preparation and achievement of several solutions, It represents a general reusable

solution to commonly occurring problems in software design; however, as such, It

is not a finished design that can be transformed directly into code language. It is a

description or a template for how to solve a problem that can be used in many

different situations. Object oriented design patterns typically show relationships

and interactions between classes and objects, without specifying the final

application of the classes or objects that are involved [1]. They are informal

descriptions of tested solutions to recurring problems.

3

Most design tools have little or no support for documenting the presence and

usage of patterns in code[5,6,7]. This tool used DOM technology (Document

Object Model) to extract data of design pattern from xml files .

1.2 Problem Statement

The process of representing, organising and preserving these design patterns, and

the process of retrieving them when needed has not been fully determined. Many

studies have investigated these issues ; however, most of them, if not all, have

been restricted to taking all information from the user and then transferring this

information to an XML file from where it can be accessed by the user as a drawing

displaying the components of the pattern generated. This research goes a step

further in attempting to provide a tool that will organise and preserve data patterns

in a way that can be easily referenced for future use [5,6,7].

Some researchers [5,6,7] have attempted to provide tools that describe

generative design patterns embedded in XML files so that classes, relationships

and interactions between patterns can be defined. In the proposed work, the author

attempts design such a tool, namely, a tool that will enable a design pattern

described by an XML file to be used as a standard for storing, sharing and

transferring variant data and information between different applications and to

variant users[5,6,7]. This tool will be applied by using an XML–based parser that

compiles an XML file and transfers it into a formula that can be understood by all

4

users. The proposed tool will use HTML (Hypertext Markup language)

technology to display the XML-file as an acceptable text desired by a user;

further, suitable language such as ASP.NET will be selected to implement the

tool.

1.3 Objectives

The aim of the present work is to provide a work mechanism for exchanging

information and experience among users in different programming environments.

A corollary to this goal is to create a tool will provide standard feedback to all

designers so that reliable and efficient solutions to problems can be found that

reduce time and effort

5

1.4 Thesis Structure

The remaining chapters of this thesis are organized as follows: Chapter 2

presents the literature background. This chapter describes some of the important

methods ,which that have contributed to these research. presents a description of

the proposed XML file format and explains all fields included in it in Chapter 3.

presents the architecture of the tool in Chapter 4. presents a case study to show

how the proposed tool is used throughout its stages of operation in Chapter 5.draws

some concluding remarks and draws the scope for future work in Chapter 6.

6

Chapter 2

Background

2.1 Introduction

 In this chapter, the author provides background information on some

important subjects related to XML files that contribute to the present work. Much

research has been carried out on the importance of design patterns as a tool that

saves time in the design of a program and establishes helpful results in different

platforms. However, the procedures for pattern representation, organization and

saving and restoring have not been clearly stated. The current chapter will

summarize this information by presenting the various procedures available.

7

2.2 Design pattern representation

 Template solutions (Design Patterns) can be saved in two ways:

- On a web page in a UML Diagram display or in specific

language such as VB or C#.

 - In an XML file, where the tag structure of pattern display

 carries the data about the design pattern.

2.3 The Extensible Markup Language (XML)

XML is a general-purpose specification for creating custom languages. It is

classified as an extensible language, because it allows the user to define the mark-

up elements. XML's purpose is to aid information systems in sharing structured

data, especially via the Internet [2]. The development of XML is carried out by an

XML working group[2].

2.4 XML Advantages

 The user has a wide range of access to the data through the use of simple and

varied applications.

 Data can be exchanged, edited and shared among users without

complications.

http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/XML#cite_note-XmlOriginsGoals-1

8

 The file format is an easily-constructed open standard that allows the user

to add tags to the data without interruption to the application.

 The format supports various applications in coping with different

platforms.

 The format is internet oriented.

2.5 Document Object Model (DOM)

 The Document Object Model (DOM) is an application programming

interface (API) for valid HTML and well-formed XML documents. It defines the

logical structure of documents and the way a document is accessed and

manipulated. In the DOM specification, the term "document" is used in the broad

sense; increasingly, XML is being used as a way of representing many different

kinds of information that may be stored in diverse systems, and much of this would

traditionally be seen as data rather than as documents. Nevertheless, XML

presents this data as documents, and the DOM may be used to manage this data

[3].

The DOM is separated into 3 different parts / levels:

 Core DOM – the standard model for any structured document

 XML DOM – the standard model for XML documents

 HTML DOM – the standard model for HTML documents

http://en.wikipedia.org/wiki/Internet

9

The DOM defines the objects and properties of all document elements, and also

the methods (interface) to access them [4].

2.6 Related Work

 There are many tools used to parse XML file content data or information

about design patterns. Some of these tools are listed below:

2.6.1 The CO2PS Tool

J. Anvik, S. Bromling, S. MacDonald, J. Schaeffer, D. Szafron, and K. Tan

have designed and implemented a tool called the CO2P2S (Correct Object-

Oriented Pattern-Based Programming System) that combines design patterns and

object–oriented frameworks into a process for writing high–performance object–

oriented programmes. The tool contains design pattern templates, which represent

a family of solutions to a design problem. To select the most appropriate solution,

the designer specializes the pattern template by specifying values for design pattern

template parameters. The tool also has an interface to tazzke values of the

parameters and methods about the pattern from the user so as to generate an XML

file within these parameters. Information about the design pattern is stored in this

file; then, after generating a code, the user can modify the method or code line in

10

the code that has been generated, save this change, and make a back-up for

its contents.

Figure 2.1: The main functions in the CO2P2S tool

 Users have successfully run CO2P2S using native-threaded Java virtual

machines (VMs) on the following operating systems:

- Linux

- Solaris

- SGI Irix

11

The result of this pattern are shown in Figure 2.2.

Figure 2.2 : Results from the CO2P2S tool

 There is no option in this tool for the user to create an individualized pattern.

When opening a programme, the user finds three pattern templates already

installed: the Two–Dimensional Mesh, the Phases, and the Distributor. These

three pattern templates, which can be used in various programmes [5][6][7], will

appear whenever the user creates a new program or opens an existing one.

2.6.2 The Meta-CO2PS Tool

The same group of researchers who developed the CO2PS tool added a new

feature to it that allows users to add new pattern templates, and remove and modify

/**

*Iteration op for a top edge node in a 4 point mesh.

* @ param east the node to the right

* @ param south the node below

* @ param west the node to the left

* @ parameter numNeighhours 4

* @ parameter boundary Non

* @ parameter boundary Horizontal

* @ editable

*/

Public void topEdge(sp_meshElement east,sp_MeshElement

south,sp_meshElement south , south,sp_meshElement west)

{

}

12

them; this modified tool is called the Meta-CO2P2S. A limitation of this tool

relates to the generation code options button that the user presses to generate a

code about selected pattern templates. To address this limitation, the researchers

have advised separating the tool generation design patterns from the framework

that generates the code[5].

The same problem was found when users attempted to use the tool with the

Windows operating system; the tool not successfully run on it [5][6].

2.6.3 The Design Pattern Framework TM 3.5

 Released from Microsoft, this framework contains the most famous design

patterns, such as the Gang of Four, Enterprise and service-oriented architecture(

SOA). “SOA is a service-oriented architecture is essentially a collection of services.

These services communicate with each other. The communication can involve either

simple data passing or it could involve two or more services coordinating some

activity. Some means of connecting services to each other is needed”, in two

editions: C# and VB.NET. The framework provides a multi-package filled with

information and source codes. However, it does not accept any external design

pattern from the user; instead, the templates are included in the tool [8].

13

2.6.4 The OMT Design Tool

The OMT tool represents an early work by Kramer and Prechelt [9] in which

patterns are drawn and translated into Prolog rules. In the design and testing of this

tool, the source code was parsed using the Paradigm Plus tool and converted into

Prolog facts. Then, queries were run to determine what facts matched the rules, i.e.,

what patterns were present in the code. The parsing tool had significant limitations.

It did not extract information that would have been useful, such as whether a

method is a constructor, or whether a class is abstract or concrete. Further, the tool

looked only at header files, and thus contained no information on the function call

hierarchy. This made the recovery of patterns more difficult, since essential parts

of the signature of a pattern that depend on these concepts could not be expressed.

Nevertheless, the tool achieved reasonable recall and precision rates on source

codes of moderate size (150–350 classes) [10].

2.6.5 The Tool of Florijn et al.

Florijn et al. [11] constructed a tool that was integrated in a Smalltalk

environment . “ Smalltalk is an object-oriented, dynamically typed, reflective

programming language. Smalltalk was created as the language to underpin the

"new world" of computing exemplified . It was designed and created in part for

14

educational use [13] ”.The tool supported development at several abstraction

levels, including that of Design Pattern. With this tool it is possible to create new

classes as instances of patterns, connect existing classes with patterns and roles,

and check whether pattern invariants are being upheld by classes in the code. The

real-life test example cited involves about 150 classes.

2.6.6 The Reverse Engineering Framework of Balanyi and Ferenc

Balanyi and Ferenc [12] used a reverse engineering framework to convert

C++ code into metadata (termed Abstract Semantic Graph), and express patterns in

an XML-based language. They then performed a multi-step algorithm to identify

candidate class structures, match them to the pattern descriptions, and filter out

mismatches. One of their major contributions was to look at information from

function bodies, such as function calls and object creations, in addition to the more

traditional static structure.

15

2.7 Evaluation of the literature tools :

J. Anvik, S. Bromling, S. MacDonald, J. Schaeffer, D. Szafron, and K. Tan

have designed and implemented a tool called the CO2P2S (Correct Object-

Oriented Pattern-Based Programming System) that combines design patterns and

object–oriented frameworks into a process for writing high–performance object–

oriented programmes. The tool contains fixed design pattern templates, which

represent a family of solutions to a design problem.

The problem was found when users attempted to use the tool with the Windows

operating system; the tool not successfully run on it.

The same group of researchers who developed the CO2PS tool added a new

feature to it that allows users to add new pattern templates, and remove and modify

them; this modified tool is called the Meta-CO2P2S. A limitation of this tool

relates to the generation code options button that the user presses to generate a

code about selected pattern templates. To address this limitation, the researchers

have advised separating the tool generation design patterns from the framework

that generates the code[5].

The same problem was found when users attempted to use the tool with the

Windows operating system; the tool not successfully run on it [5][6].

16

Released from Microsoft Framework TM 3.5 , this framework contains the

most famous design patterns, in two editions: C# and VB.NET. The framework

provides a multi-package filled with information and source codes. However, it

does not accept any external design pattern from the user; instead, the templates

are included in the tool [8].

 From the literature, most of the previous presented tools have little support of

patterns documentations or incompatible with Windows operating systems, while

our proposed tool focuses on the documentation of design patterns, and to be

compatible tool with all operating systems with no limit number of patterns to be

stored in it.

2.8 Summary

A review of the available literature shows that most previous tools have little

or no support for documenting the presence and usage of patterns in code. They

also lack a method of retrieving these solutions when they are needed. In addition,

because they depend on limited operating systems. The proposed tool will enable

the user to save, document and return many designs that have already been

produced by another user or designer. Sharing and exchanging these designs and

17

experiences will thus be possible, and will save the user much time and effort.

These designs will also guarantee the affectivity and quality of the tool in real

working fields.

18

Chapter 3

An overview of XML

mapping of the Pattern

Extractor Tool

3.1 Introduction

 This chapter outlines the shape of the proposed XML file and describes how

the main access to this tool will be set. The tool is based on presented data

patterns, all of which can be stored in what is called a tag. This tag is the main base

for any XML. It is also filed for downloading the data that is returned by using

what is called the “document object model (DOM).” The DOM contains several

19

methods or functions that allow users access to any tag or any file from which they

want to get information. The features associated with the model are defined below:

 Name of pattern: a meaningful name that reflects the knowledge

embodied by the pattern.

 Description of the problem: the problem that the pattern addresses, i.e.,

the intent of the pattern.

 Forces: the constraints or issues that must be addressed by the solution.

 Solution : a description of the static and dynamic relationships among the

components of patterns.

3.2 Presenting Data in XML Documents

The proposed method for saving any data in an XML file can be explained

as follows: First, the information is saved in a node found in the XML file. Then,

a tree structure of XML documents is formed that starts at "the root" and branches

to "the leaves." Each node is placed in a field. This field will contain the data and

have a particular name relating to the information it holds.

An example of an XML document is provided below. First, the self-

describing and simple syntax is shown:

20

<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

The first line is the XML declaration. It defines the XML version (1.0) and the

encoding used (ISO-8859-1 = Latin-1/West European character set).

The next line describes the root element of the document (e.g., "this document is a

note"):

 <note>

The next four lines describe four child elements of the root (to, from, heading, and

body):

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

Finally, the last line defines the end of the root element:

</note>

21

3.3 The Tree Structure of XML Documents

The elements in an XML document form a document tree. The tree starts at

the root and branches to the lowest level of the tree. All XML documents must

contain a root element, which is "the parent" of all other elements, and all elements

can have sub elements (child elements):

<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

 The terms “parent,” “child,” and “sibling” are used to describe the

relationships between elements. Parent elements have children. Children on the

same level are called siblings (brothers or sisters). All elements can have text

content and attributes (just as in HTML). Example:

Figure 3.1 : A general view of an XML structure

22

Figure 3.1 represents one book in the XML below:

<bookstore>

 <book category="COOKING">

 <title lang="en">Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

 </book>

 <book category="CHILDREN">

 <title lang="en">Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 <book category="WEB">

 <title lang="en">Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

 </book>

</bookstore>

The root element in the example is <bookstore>. All <book> elements in the

document are contained within <bookstore>. The <book> element has four

children: <title>,< author>, <year>, <price> [3].

23

3.4 Presented Design Patterns in XML Documents

Any pattern presented as a solution to any programming problem must have

some elements and specifications that define it. Some of these elements and

specifications are defined in XML files. These are the elements and specifications

already represented inside the nodes, which are the basic ingredient for XML files.

3.5 The Suggested Structure of XML Files

The suggested structure for presenting the pattern inside an XML file is

divided into many levels as shown below:

 Figure 3.2 : The structure of pattern information in XML files

General Information Patterns

Xml files

File of class 1

Attributes of the class

Methods of the class

List of Name patterns

Description of the problem

Category

Solution

Related xml files

Feed back

to data

types files

Information of specific

pattern/ list of classes

Content of Pattern 1

24

 A number of XML files will be proposed one of which will represent all

the patterns found in the tool. This file will be named the general pattern data file

and it will involve the following :

 1) the digital identity for defining the pattern that will be related to the

 name saved on the hard desk;

 2) the classification of the pattern;

 3) a description of how the pattern works.

These fields in the xml file have been represented as follow:

<?xml version="1.0" encoding="utf-8" ?>

<pattern number="">

<pattern1>

<id></id>

<name> </name>

<description> </description>

<category> </category>

</pattern1>

<pattern2>

<id></id>

<name> </name>

<description> </description>

<category> </category>

</pattern2>

</pattern>

25

These fields in the XML file are illustrated by description tags, as shown in the

table below:

Table 3.1 Description tags displaying the general information of patterns

Description Name of tag

Describes the physical name of the class on the

hard disk Id

Indicates the name of the pattern Name

Describes the pattern Description

Indicate the category of pattern Category

Indicate the number of patterns in the tool Number

 There are three patterns embedded in the tool, as shown in the xml file below:

<?xml version="1.0" encoding="utf-8" ?>

<pattern number="3" >

<pattern1>

<id>1</id>

<name>Drawing shape Pattern</name>

<description>This Pattren to drawing different Shapes</description>

<category>Graghical Pattern</category>

</pattern1>

<pattern2><id>2</id>

26

<name>wwww</name>

<description>ww111w</description>

<category>weeeee</category>

</pattern2>

<pattern3>

<id>3</id>

<name>zzzz</name>

<description>zzzzz</description>

<category>xxxxx</category>

</pattern3>

</pattern>

 The shape of the represented data inside this file will be presented first.

Then, the data belonging to each pattern will be represented separately and will be

provided with a proposed file containing that pattern’s special data. Table 3.2

illustrates the description tags of general information in an XML file for a certain

pattern (i.e., a shape pattern).

These fields in the xml file have been represented as follow:

<?xml version="1.0" encoding="utf-8" ?>

<pattern>

<namepatt> </namepatt>

<description> </description>

27

<solution>

</solution>

<catpattern> </catpattern>

<classess number="" >

<class1 id=""> </class1>

<class2 id=""> </class2>

<class3 id=""> </class3>

<class4 id=""> </class4>

</classess>

</pattern>

Table 3.2: General information about a certain pattern

Description Name of tag

 Describes the name of pattern namepatt

Describes of the problem description

The solution to this problem by this pattern solution

Category of pattern catpattern

The list of classes that contain this patterns classes

28

For example, if the user wants to represent special data for a pattern for geometric

shapes, the XML file will be presented as follows:

<?xml version="1.0" encoding="utf-8" ?>

<pattern>

<namepatt>Dreawing Shapes Pattern </namepatt>

<description> The broblem is summerised in drawing different shapes and change it

colors and sizes</description>

<solution>Attach additional responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality.drawing alot of

shapes in different colors and different size</solution>

<catpattern> The Decorator Pattern </catpattern>

<classess number="4" >

<class1 id="1"> Class Canvas </class1>

<class2 id="2">Class Circle</class2>

<class3 id="3">Class Square</class3>

<class4 id="4">Class Triangle</class4>

</classess>

</pattern>

Table 3.3 : The description attributes of general information for a shape pattern

 Description Attributes

 Displays the number of classes Number

Displays the name of the class on the hard disk id

29

Afterwards, a special file will be created for each pattern that represents the

pattern method and another file will be created for each field. The conception of the

XML file is shown in the tables below. The first table, Table 3.4, illustrates the

description tags of XML fields for a certain class. Presented fileds in XML file :

<?xml version="1.0" encoding="utf-8" ?>

<filedclass>

<classname> </classname>

<description>

 </description>

<fileds>

 <filed1 type=" " access=" " dtype=" "> </filed1>

<filed2 type="" access=" " dtype=""> </filed2>

<filed3 type=" " access=" " dtype=""> </filed3>

<filed4 type="" access=" " dtype=""> </filed4>

Description Name of tag

 Describes the name of the class Classname

Describes the class job Description

Displays the list of fields Fields

<filed5 type=" " access=" " dtype=""> </filed5>

<filed6 type="" access=" " dtype=""> </filed6>

</fileds>

</filedclass>

30

Table 3.4 : description of Fields for a certain class

Name of tag Description

Classname Describes the name of the class

Description Describe the class job

Fileds Displays the list of fileds

Description Attributes

Displays the field’s data type Type

Displays the permission to access this field Access

 Displays the type of variant Dtype

Table 3.5 : the filed attributes for a certain class

31

The data can be represented as follow:

<?xml version="1.0" encoding="utf-8" ?>

<filedclass>

<classname>Class Caven </classname>

<description>

 Class Canvas - a class to allow for simple graphical drawing on a canvas. This is a

modification of the general purpose Canvas

</description>

<fileds>

<filed1 type=”Canvas.CanvasPane” access=”private” dtype=”static”>canvas</filed1>

<filed2 type=”JFrame” access=”private” dtype=””>frame</filed2>

<filed3 type=”Graphics2D” access=”private” dtype=””>graphic</filed3>

<filed4 type=”CanvasPane” access=”public” dtype=””>canvas</filed4>

<filed5 type=”Color” access=”private” dtype=””>backgroundColour</filed5>

<filed6 type=”Image” access=”private” dtype=””>canvasImage</filed6>

</fileds>

</filedclass>

Presented methods in XML file :

<?xml version="1.0" encoding="utf-8" ?>

<methods>

<method1 ftype=" " access=" " return=" " name=" ">

<desc> </desc>

<descreturn> </descreturn>

<parameter value=""></parameter>

</method1>

<method2 ftype="" access=" " return="" name=" ">

<desc></desc>

<descreturn></descreturn>

<parameter value="">

32

<par1 ptype=" " desc=" "></par1>

</parameter>

</method2>

<method3 ftype="0" access="public" return="boolean" name="drawImage">

<desc></desc>

<descreturn>

</descreturn>

<parameter value="">

<par1 ptype=" " desc=" "> </par1>

<par2 ptype=" " desc=" "> </par2>

<par3 ptype=" " desc=" "> </par3>

</parameter>

</method3>

</methods>

 Table 3.6: Tags for methods and functions for a certain class

Description Name of tag

Describes the start of method information method1,2,3,--

Describes the job method desc

Displays the return variable descreturn

Display the start information about parameters

Par1 - the name of parameter
parameter par1, 2,…

33

Table 3.7 : Attributes of methods and functions for a certain class

Description Attributes

Displays the type of method, e.g., static method1 ftype

Displays the permission to access of this method:

public or private
Access

Displays the type data of returned; if empty, assume no

returned data.
Return

Displays the name of patterns name

Value=0, the no parameters parameter value=""

Displays the type of parameter par1 ptype=" "

 Describes the parameters desc

The data can be represented as follow:

<?xml version="1.0" encoding="utf-8" ?>

<methods>

<method1 ftype="static" access="public" return="Canvas" name="getCanvas">

<desc>Factory method to get the canvas singleton object.</desc>

<descreturn>return object the created</descreturn>

<parameter value="0"></parameter>

</method1>

<method2 ftype="0" access="public" return="0" name="draw">

<desc>Draws a given shape onto the canvas.</desc>

<descreturn></descreturn>

<parameter value="1">

<par1 ptype="java.awt.Shape" desc="the shape object to be drawn on the

canvas">shape</par1>

</parameter>

34

</method2>

<method3 ftype="0" access="public" return="boolean" name="drawImage">

<desc>Draws an image onto the canvas.</desc>

<descreturn>returns boolean value representing whether the image was completely

 loaded</descreturn>

<parameter value="1">

<par1 ptype="java.awt.Image" desc="the Image object to be displayed">image</par1>

<par2 ptype="int" desc="co-ordinate for Image placement">x</par2>

<par3 ptype="int" desc="co-ordinate for Image placement">y</par3>

</parameter>

</method3>

</methods>

The final shape of the XML file will be as follows:

Figure 3.3: the input files for the proposed tool

<?xml version="1.0"

encoding="utf-8" ?>

<Designpattern>

<namepatt> PSE design

pattern </namepatt>

<description>To process

data </description >

<solution>To process data

</solution >

<classname

name="person" type="0"

nc="void">

<Attributes>

<att1 type="int"

Accesstype

="private">id</att1>

<att2 type="string"

Accesstype

="private">firstname</att2

>

<att3 type="string"

Accesstype

="private">lastname</att2>

<att4 type="int"

Accesstype

="private">sex</att3>

<att5 type="string"

Accesstype

="private">nat</att4>

<att6 type="Date"

Accesstype

="private">birthday</att5>

<att7 type="string"

Accesstype="private">addre

<?xml version="1.0"

encoding="utf-8" ?>

<Designpattern>

<namepatt> PSE design

pattern </namepatt>

<description>To

process data

</description >

<solution>To process

data </solution >

<classname

name="person"

type="0" nc="void">

<Attributes>

<att1 type="int"

Accesstype

="private">id</att1>

<att2 type="string"

Accesstype

="private">firstname</

att2>

<att3 type="string"

Accesstype

="private">lastname</a

tt2>

<att4 type="int"

Accesstype

="private">sex</att3>

<att5 type="string"

Accesstype

="private">nat</att4>

<att6 type="Date"

Accesstype

<?xml version="1.0"

encoding="utf-8" ?>

<Designpattern>

<namepatt> PSE design

pattern </namepatt>

<description>To process

data </description >

<solution>To process data

</solution >

<classname

name="person" type="0"

nc="void">

<Attributes>

<att1 type="int"

Accesstype

="private">id</att1>

<att2 type="string"

Accesstype

="private">firstname</att

2>

<att3 type="string"

Accesstype

="private">lastname</att2

>

<att4 type="int"

Accesstype

<?xml version="1.0"

encoding="utf-8" ?>

<Designpattern>

<namepatt> PSE design

pattern </namepatt>

<description>To

process data

</description >

<solution>To process

data </solution >

<classname

name="person"

type="0" nc="void">

<Attributes>

<att1 type="int"

Accesstype

="private">id</att1>

<att2 type="string"

Related files

35

3.6 The Structure of the XML mapping of the proposed

function

Figure 3.4: General conceptual overview for the proposed tool.

<?xml

version="1.0"

encoding="utf-8"

?>

<Designpattern>

<namepatt> PSE

design pattern

</namepatt>

<description>To

process data

</description >

<solution>To

process data

</solution >

<classname

name="person"

type="0"

nc="void">

<Attributes>

<att1

type="int"

Accesstype

="private">id</a

tt1>

<att2

type="string"

Accesstype

="private">first

name</att2>

 Properties and

methods

Properties

and methods

Properties

and methods

Tool Extracting Patterns Patterns

Presented as xml

<?xml

version="1.0"

encoding="utf-8"

?>

<Designpattern>

<namepatt> PSE

design pattern

</namepatt>

<description>To

process data

</description >

<solution>To

process data

</solution >

<classname

name="person"

type="0"

nc="void">

<Attributes>

<att1

type="int"

Accesstype

="private">id</a

tt1>

<att2

type="string"

Accesstype

="private">first

name</att2>

<att3

type="string"

Accesstype

="private">lastn

ame</att2>

<att4

type="int"

Accesstype

="private">sex</

att3>

<att5

type="string"

Accesstype

="private">nat</

att4>

<att6

type="Date"

Accesstype

="private">birth

<?xml

version="1.0"

encoding="utf-8"

?>

<Designpattern>

<namepatt> PSE

design pattern

</namepatt>

<description>To

process data

</description >

<solution>To

process data

</solution >

<classname

name="person"

type="0"

nc="void">

<Attributes>

<att1

type="int"

Accesstype

="private">id</a

tt1>

<att2

type="string"

Accesstype

="private">first

name</att2>

<att3

type="string"

Accesstype

<?xml

version="1.0"

encoding="utf-8"

?>

<Designpattern>

<namepatt> PSE

design pattern

</namepatt>

<description>To

process data

</description >

<solution>To

process data

</solution >

<classname

name="person"

type="0"

nc="void">

<Attributes>

<att1

type="int"

Accesstype

="private">id</a

tt1>

<att2

type="string"

Accesstype

="private">first

Attached files 1

Attached files 2

As input

Out

put

36

3.7 The XML Generated Files

The proposed XML files have been generated (produced) by using an editor,

available from Microsoft, for editing XML files included in Visual Studio.NET

2003. There are many editors that can be used for editing and producing XML files

such as front page and visual studio 2003. Also, an access program with converting

capability is available that can convert tables created by Microsoft Access into

XML files.

37

Chapter 4

The EP Tool Architecture

 4. 1 Introduction

In this chapter, Extracting Patterns Tool (EPT) will be construct which have

two application. The first one belongs to the user and its function ,in order to

connect to a server to return and save the data the user needs. The second

application belongs to the server itself and it runs the process of saving and

returning the data.

 Figure 4.1 illustrates the UML (Unified Modeling Language) class diagram

for the first application, and Figure 4.2 illustrates the UML class

diagram for the second application.

38

Figure 4.1: UML class diagram for the EPT.

Adapter

odocm As New XmlDocument

onode As XmlNode

oNodeList As XmlNodeList

Loadpattren (ByVal path As String)

Parse_file

odocm As New XmlDocument

onode As XmlNode

 oNodeList As XmlNodeList

str As String

loadpattren(ByVal path As String)

get_attributes(ByVal odoc As XmlDocument)

get_methods(ByVal odoc As XmlDocument)

get_nameclass(ByVal odoc As

XmlDocument)

viewattformatting(ByVal oNodeList As

XmlNodeList)

viewmethformatting(ByVal oNodeList As

XmlNodeList)

get_namepattern(ByVal odoc As

XmlDocument)

parse_fileds

typ As String

 acc As String

 onode As XmlNode

oNodeList As XmlNodeList

 strname As String

get_type(ByVal oNodeList As XmlNodeList)

get_access(ByVal oNodeList As XmlNodeList)

get_name(ByVal oNodeList As XmlNodeList)

Parses_methods

 Dim typ As String

 Dim onode As XmlNode

 Dim oNodeList As XmlNodeList

 Dim strname As String

 Dim ret As String

 Dim chk As String

get_type(ByVal oNodeList As XmlNodeList)

get_name(ByVal oNodeList As XmlNodeList)

get_returnvalue(ByVal oNodeList As XmlNodeList)

get_ptype(ByVal oNodeList As XmlNodeList)

get_access(ByVal oNodeList As XmlNodeList)

Parse_info

 Dim num As Integer

 Dim onode As XmlNode

 Dim oNodeList As XmlNodeList

 Dim strname As String

 get_infonode(ByVal odoc As XmlDocument, ByVal

nodename As String)

printnode(ByVal oNodeList As XmlNodeList)

get_numofpatterns(ByVal oNodeList As

XmlNodeList)

get_IDS(ByVal oNodeList As XmlNodeList)

Page

Dim Visible() As Boolean

Dim IsPostBack() As Boolean

Dim ID() As String

New()

Public Validate()

MapPath(ByVal virtualPath As String) As String

39

In the Appendix, we describe the continent table, which contains the following

information:

 Class name: identifies the class.

 Field summary: lists the attributes that the class contains and their types.

 Methods contained: lists the methods that the class contains and the

types of their returned values.

4.2 The Documentation of Classes for the Client Side

a. class name: adapter

This class contain methods that load the XML file to an XML data document to

start the processing. The adapter class is related to the page class through the

“inherits” attribute, and it contains two methods. For more details, view Appendix

A1 which illustrates the documentation of the adapter class.

1. Loadpatteren: this method will receive the path of any xml file and

load it to start the process operation.

2. Mappath: this method gets the path of xml files to be returned, and send

it to load and to start the processing operation.

40

b. class name: parse_file

This class contains some methods for parsing XML files on the client

side, saving patterns and retrieving files according to the request of the user. The

parse_file class is related to the adapter class through the “use” attribute and to the

page class by the “inherits” attribute. The following list display some of methods

in this class. For more details, see Appendix A2 which illustrates the

documentation of the parse_ file.

1. get_attributes: this method retrieves the attributes from the xml attributes

file and stores the returned values in an xml node list.

2. get_methods: this method retrieves the methods from the xml methods file

and stores the returned values in an xml node list.

3. viewattformatting: this method displays the final formatting of the

display, the shape of methods and the attributes. The XML is returned as

string and printed in the frame view.

d. class name: parse_ info

This class contains some methods for parsing the XML information file on the

client side and retrieving the information about all patterns saved in the tool. The

following list displays some of methods in this class. For more details, see

41

Appendix A3 which illustrates the documentation of the parse_ info.

1. get_IDS: this method returns the sequence number of pattern.

2. get_infonode: this method returns the data stored in a specific node.

3. get_numofpatterns: this method returns the information stored in a node

about the number of patterns in the tool.

4. get_nameclass: this class retrieves the class name presented in the xml file.

e. class name: parse_fields

This class contains some methods for parsing the XML fields file of a specific

class and retrieving the information about these fields. This class is related to

adapter class through the “use” attribute and to the page class through the

“inherits” attribute. The following list displays some of methods in this class. For

more details, see Appendix A4 which illustrates the documentation of the

parse_fields.

1. get_IDS: this method returns the id of a pattern to load it and to start to

return its information.

2. get_infonode :this method retrieves data of a specific node to return full

information about this node.

3. Printnode : this method helps to print data of a specific node

4. get_numofpatterns : this method returns the total number of patterns.

42

f. class name: parse_methods

This class contains some methods for parsing the XML methods file for a specific

class and retrieving the information about these methods. This class is related to

the adapter class through the “use” attribute and to the page class through the

“inherits” attribute. The following list displays some of methods in this class. For

more details, see Appendix A5 which illustrates the documentation of the

parse_methods.

 1. get_name : this method returns the name of the method.

 2. get_access : this method retrieves the permission of this method (private,

public).

 3. get_returnvalue : this method determines if the return contains data or is

void.

 4. get_description : this method gets a description of the work done.

g. class name: mfiles

This class contains some methods for manipulating the XML files that contain the

class and information files. This class is related to the adapter class through the

“use” attribute and to the page class through the “inherits” attribute. The following

43

list displays some of the methods in this class. For more details, see Appendix A6

which illustrates the documentation of mfiles.

1. Copyclass : this method saves the classes file in the new directory.

 2. Checkfilesnames : this method returns the list of class names.

 3. Updateinfofile : this method adds a new information pattern to the

information file.

 4. Createnewdirec: this method creates the new folder.

44

Figure 4.2: UML class diagram for patterns store server side.

Parse_file

odocm As New XmlDocument

onode As XmlNode

 oNodeList As XmlNodeList

str As String

loadpattren(ByVal path As String)

get_attributes(ByVal odoc As XmlDocument)

get_methods(ByVal odoc As XmlDocument)

get_nameclass(ByVal odoc As

XmlDocument)

viewattformatting(ByVal oNodeList As

XmlNodeList)

viewmethformatting(ByVal oNodeList As

XmlNodeList)

get_namepattern(ByVal odoc As

XmlDocument)

parse_fileds

typ As String

 acc As String

 onode As XmlNode

oNodeList As XmlNodeList

 strname As String

get_type(ByVal oNodeList As XmlNodeList)

get_access(ByVal oNodeList As XmlNodeList)

get_name(ByVal oNodeList As XmlNodeList)

Parses_methods

 Dim typ As String

 Dim onode As XmlNode

 Dim oNodeList As XmlNodeList

 Dim strname As String

 Dim ret As String

 Dim chk As String

get_type(ByVal oNodeList As XmlNodeList)

get_name(ByVal oNodeList As XmlNodeList)

get_returnvalue(ByVal oNodeList As XmlNodeList)

get_ptype(ByVal oNodeList As XmlNodeList)

get_access(ByVal oNodeList As XmlNodeList)

Page

Dim Visible() As Boolean

Dim IsPostBack() As Boolean

Dim ID() As String

New()

Public Validate()

MapPath(ByVal virtualPath As String) As String

Adapter

odocm As New XmlDocument

onode As XmlNode

oNodeList As XmlNodeList

Loadpattren (ByVal path As String)

Parse_info

 Dim num As Integer

 Dim onode As XmlNode

 Dim oNodeList As XmlNodeList

 Dim strname As String

 get_infonode(ByVal odoc As XmlDocument, ByVal

nodename As String)

printnode(ByVal oNodeList As XmlNodeList)

get_numofpatterns(ByVal oNodeList As

XmlNodeList)

get_IDS(ByVal oNodeList As XmlNodeList)

mtamplates

Dim odocm As New XmlDocument

 Dim onode As XmlNode

Dim oNodeList As XmlNodeList

Dim str As String

 loadpattren(ByVal path As String)

get_attributes(ByVal odoc As XmlDocument)

get_methods(ByVal odoc As XmlDocument)

get_nameclass(ByVal odoc As XmlDocument)

viewattformatting(ByVal oNodeList As

XmlNodeList)

get_namepattern(ByVal odoc As XmlDocument)

45

4.3 The Documentation of Classes for the Patterns Stored

 a. class name: mtamplates class

This class contains some methods for managing all server operations. These

operations include receiving patterns from the user, checking and adding them to

stored templates, making backup patterns, viewing available patterns, and deleting

patterns. This class is related to the adapter class through the “use” attribute and to

the page class through the “inherits” attribute. The following list display some of

methods in this class. For more details, see Appendix A7 which illustrates the

documentation of the mtamplates.

 1. Saverecivedpattern: this method saves the pattern on the server.

 2. AddnewPattern: this method adds new patterns to storage templates.

 3. BackupTamplatesonserver: this method makes backup templates.

 4. Viewavalibaltamplates: this method retrieves all templates available

 on storage templates.

46

4.4 Tool Interface System (tool description work)

This tool works to parse files containing patterns information presented in an xml

file. The following description displays the steps of this tool and how patterns are

parsed with this tool.

The main window is shown as Figure 4.3. As can be seen, this window contains

the interface to navigate this tool. The interface displays the following functions:

Figure 4.3 : The main functions for EPT

 4.4.1- View list patterns:

When the user clicks this function, the following result is obtained:

The total number of patterns available in EPT.

Name of pattern.

Category of pattern.

Description of the pattern use.

47

Link to obtain all details about the selected patterns; when one is selected the result

is the list of classes of this pattern. This operation is shown in Figure 4.4.

Figure 4.4 : List of patterns available in EPT

Figure 4.5: List of classes for the determined pattern

48

When the user presses “view full class,” he or she obtains a summary of the fields

and methods included in this class. At this point, the user can start processing an

XML document.

Figure 4.6: summery of methods and fileds for the determined pattern

Clicking on “methods detail” or “fields detail” will obtain the result shown in

Figure 4.7.

49

Figure 4.7 : View details about methods

4.4.2- Import patterns:

In this function, we will import our patterns to save them in EPT by downloading

the patterns from the stored patterns and uploading them to EPT. Figure 4.8 shows

the result.

50

Figure 4.8 : Load information xml file of patterns into EPT

This tool divides the operation of uploading patterns into two parts:

 1)- upload the pattern information file, as shown in Figure 4.8, and

include the name of the pattern, its description, and the

 category of the pattern.

 2)- upload xml files of classes (fields and methods xml files), as shown

 in Figure 4.9.

Figure 4.9 : Load xml files of classes for patterns into EPT

51

4.4.3 - System backup:

In this function, we will make a backup for all patterns available in EPT, and the

new path of the backup will appear to the user after the operation is completed.

 Figure 4.10 : Backup patterns stored in EPT

4.4.4- Search about pattern:

Use this step to find patterns saved by entering the name of the pattern and

obtaining details about that pattern.

Figure 4.11 : Finding pattern availability in EPT

52

The result obtained from this function is as follows:

Figure 4.12 : The result of a search operation

4.4.5- Dealing with stored patterns:

The storage for the proposed pattern will be as follows: The downloaded patterns

by the users will be presented in the storage of the patterns.

This storage will enable the users to look at the classes , search for and download

any patterns or a particular pattern. Figure 4.13 illustrates the result.

53

Figure 4.13: List of patterns available in EPT

To load any pattern from storage, press the related link and many choices will

appear, as shown in Figure 4.14.

54

Figure 4.14: Details about shapes pattern

 To load the pattern files, we first download the information files for the

chosen file and then download the files belonging to the classes involved in

creating these patterns. Downloading can be done as shown in Figure 4.15.

55

Figure 4.15: download files of shapes pattern.

56

Chapter 5

Case Study

This case study illustrates the concept of extracting design patterns in an

XML file using the EP tool. The examples considered are geometric shapes

patterns, such as “Circle,” “Square,” and “Triangle.” In the first stage, the author

will present these patterns in an XML file, which will be imported into the

proposed tool. The proposed pattern will be a Graphics pattern and it will be used

for drawing the geometric shapes (i.e., circle, square, and triangle) in different

dimensions and places, and with different colors. Thus, four classes will be

generated: . “Circle,” “Square,” “Triangle,” and “Canvas.”

In this first stage also, a method for representing these classes will be

presented in XML files and then these files will be put into the proposed EP tool

57

whose purpose is to translate them and produce patterns that are easy to

understand by users. The final shape for these classes, the proposed functions for

each class, the relation between the classes and how to put these functions in their

own files will be shown. Figure 5.1 illustrates the general view for the proposed

graphics pattern classes.

Figure 5.1: A general view of the proposed graphics pattern classes

5.1 - Generating XML Files

In the example above, the operation can be divided into three stages. The

first stage involves generating the XML files. Each class will be contain three

XML files: the first one is for fields, the second is for methods and last one is for

information.

58

Figure 5.2a illustrates the generation of special xml files for the Circle class.

Figure 5.2a : Generating XML files for the Circle class

Information xml file

<?xml version="1.0"

encoding="utf-8" ?>

<pattern>

<namepatt>Dreawing

Shapes Pattern

</namepatt>

<description> The

broblem is summerised

in drawing different

shapes and change it

colors and

sizes</description>

<solution>Attach

additional

responsibilities to an

object dynamically.

Decorators

provide a flexible

alternative to

subclassing for

extending

functionality.drawing

alot of shapes in

different colors and

different

size</solution>

<catpattern> The

Decorator Pattern

</catpattern>

<classess number="4"

pathc="/Patterns/Shapes

/">

<class1 id="1"> Class

Canvas </class1>

<class2 id="2">Class

Circle</class2>

<class3 id="3">Class

Square</class3>

<class4 id="4">Class

Triangle</class4>

</classess>

</pattern>

Methods xml file

<?xml version="1.0"

encoding="utf-8" ?>

<filedclass>

<classname>Class Caven

</classname>

<description>

 Class Canvas - a

class to allow for

simple graphical drawing

on a

 canvas. This is a

modification of the

general purpose Canvas,

specially

 made for the BlueJ

squares example. The

main modification is

that this

 version treats the

Canvas as a singleton.

</description>

<fileds>

<filed1

type="Canvas.CanvasPane"

access="private"

dtype="static">canvas</f

iled1>

<filed2 type="JFrame"

access="private"

dtype="">frame</filed2>

<filed3

type="Graphics2D"

access="private"

dtype="">graphic</filed3

>

<filed4

type="CanvasPane"

access="public"

dtype="">canvas</filed4>

<filed5 type="Color"

access="private"

dtype="">backgroundColou

r</filed5>

<filed6 type="Image"

access="private"

Fileds xml file

<?xml version="1.0"

encoding="utf-8" ?>

<methods>

<method1 ftype="static"

access="public"

return="Canvas"

name="getCanvas">

<desc>Factory method to

get the canvas singleton

object.</desc>

<descreturn>return

object the

created</descreturn>

<parameter

value="0"></parameter>

</method1>

<method2 ftype="0"

access="public"

return="0" name="draw">

<desc>Draws a given

shape onto the

canvas.</desc>

<descreturn></descreturn

>

<parameter value="1">

<par1

ptype="java.awt.Shape"

desc="the shape object

to be drawn on the

canvas">shape</par1>

</parameter>

</method2>

<method3 ftype="0"

access="public"

return="boolean"

name="drawImage">

<desc>Draws an image

onto the canvas.</desc>

<descreturn>returns

boolean value

representing whether the

image was completely

loaded</descreturn>

<parameter value="1">

59

Figure 5.2b illustrates the generation of special XML files for the Square class.

Figure 5.2b : Generating XML files for the Square class

Information xml file

<?xml version="1.0"

encoding="utf-8" ?>

<pattern>

<namepatt>Dreawing

Shapes Pattern

</namepatt>

<description> The

broblem is summerised

in drawing different

shapes and change it

colors and

sizes</description>

<solution>Attach

additional

responsibilities to an

object dynamically.

Decorators

provide a flexible

alternative to

subclassing for

extending

functionality.drawing

alot of shapes in

different colors and

different

size</solution>

<catpattern> The

Decorator Pattern

</catpattern>

<classess number="4"

pathc="/Patterns/Shapes

/">

<class1 id="1"> Class

Canvas </class1>

<class2 id="2">Class

Circle</class2>

<class3 id="3">Class

Square</class3>

<class4 id="4">Class

Triangle</class4>

</classess>

</pattern>

Methods xml file

<?xml version="1.0"

encoding="utf-8" ?>

<filedclass>

<classname>Class square

</classname>

<description>

 Class Canvas - a

class to allow for

simple graphical drawing

on a

 canvas. This is a

modification of the

general purpose Canvas,

specially

 made for the BlueJ

squares example. The

main modification is

that this

 version treats the

Canvas as a singleton.

</description>

<fileds>

<filed1

type="Canvas.CanvasPane"

access="private"

dtype="static">canvas</f

iled1>

<filed2 type="JFrame"

access="private"

dtype="">frame</filed2>

<filed3

type="Graphics2D"

access="private"

dtype="">graphic</filed3

>

<filed4

type="CanvasPane"

access="public"

dtype="">canvas</filed4>

<filed5 type="Color"

access="private"

dtype="">backgroundColou

r</filed5>

Fileds xml file

<?xml version="1.0"

encoding="utf-8" ?>

<methods>

<method1 ftype="static"

access="public"

return="Canvas"

name="getCanvas">

<desc>Factory method to

get the canvas singleton

object.</desc>

<descreturn>return

object the

created</descreturn>

<parameter

value="0"></parameter>

</method1>

<method2 ftype="0"

access="public"

return="0" name="draw">

<desc>Draws a given

shape onto the

canvas.</desc>

<descreturn></descreturn

>

<parameter value="1">

<par1

ptype="java.awt.Shape"

desc="the shape object

to be drawn on the

canvas">shape</par1>

</parameter>

</method2>

<method3 ftype="0"

access="public"

return="boolean"

name="drawImage">

<desc>Draws an image

onto the canvas.</desc>

<descreturn>returns

boolean value

representing whether the

image was completely

60

Figure 5.2c illustrates the generation of special XML files for the triangle class.

Figure 5.2c: Generating XML files for the triangle class

Information xml file

<?xml version="1.0"

encoding="utf-8" ?>

<pattern>

<namepatt>Dreawing

Shapes Pattern

</namepatt>

<description> The

broblem is summerised

in drawing different

shapes and change it

colors and

sizes</description>

<solution>Attach

additional

responsibilities to an

object dynamically.

Decorators

provide a flexible

alternative to

subclassing for

extending

functionality.drawing

alot of shapes in

different colors and

different

size</solution>

<catpattern> The

Decorator Pattern

</catpattern>

<classess number="4"

pathc="/Patterns/Shapes

/">

<class1 id="1"> Class

Canvas </class1>

<class2 id="2">Class

Circle</class2>

<class3 id="3">Class

Square</class3>

<class4 id="4">Class

Triangle</class4>

</classess>

Methods xml file

<?xml version="1.0"

encoding="utf-8" ?>

<filedclass>

<classname>Class square

</classname>

<description>

 Class Canvas - a

class to allow for

simple graphical drawing

on a

 canvas. This is a

modification of the

general purpose Canvas,

specially

 made for the BlueJ

squares example. The

main modification is

that this

 version treats the

Canvas as a singleton.

</description>

<fileds>

<filed1

type="Canvas.CanvasPane"

access="private"

dtype="static">canvas</f

iled1>

<filed2 type="JFrame"

access="private"

dtype="">frame</filed2>

<filed3

type="Graphics2D"

access="private"

dtype="">graphic</filed3

>

<filed4

type="CanvasPane"

access="public"

dtype="">canvas</filed4>

<filed5 type="Color"

access="private"

Fileds xml file

<?xml version="1.0"

encoding="utf-8" ?>

<methods>

<method1 ftype="static"

access="public"

return="Canvas"

name="getCanvas">

<desc>Factory method to

get the canvas singleton

object.</desc>

<descreturn>return

object the

created</descreturn>

<parameter

value="0"></parameter>

</method1>

<method2 ftype="0"

access="public"

return="0" name="draw">

<desc>Draws a given

shape onto the

canvas.</desc>

<descreturn></descreturn

>

<parameter value="1">

<par1

ptype="java.awt.Shape"

desc="the shape object

to be drawn on the

canvas">shape</par1>

</parameter>

</method2>

<method3 ftype="0"

access="public"

return="boolean"

name="drawImage">

<desc>Draws an image

onto the canvas.</desc>

<descreturn>returns

boolean value

representing whether the

61

Figure 5.2d illustrates the generation of special XML files for the canvas class.

Figure 5.2d: Generating XML files for the canvas class

Information xml file

<?xml version="1.0"

encoding="utf-8" ?>

<pattern>

<namepatt>Dreawing

Shapes Pattern

</namepatt>

<description> The

broblem is summerised

in drawing different

shapes and change it

colors and

sizes</description>

<solution>Attach

additional

responsibilities to an

object dynamically.

Decorators

provide a flexible

alternative to

subclassing for

extending

functionality.drawing

alot of shapes in

different colors and

different

size</solution>

<catpattern> The

Decorator Pattern

</catpattern>

<classess number="4"

pathc="/Patterns/Shapes

/">

<class1 id="1"> Class

Canvas </class1>

<class2 id="2">Class

Circle</class2>

<class3 id="3">Class

Square</class3>

<class4 id="4">Class

Triangle</class4>

</classess>

Methods xml file

<?xml version="1.0"

encoding="utf-8" ?>

<filedclass>

<classname>Class square

</classname>

<description>

 Class Canvas - a

class to allow for

simple graphical drawing

on a

 canvas. This is a

modification of the

general purpose Canvas,

specially

 made for the BlueJ

squares example. The

main modification is

that this

 version treats the

Canvas as a singleton.

</description>

<fileds>

<filed1

type="Canvas.CanvasPane"

access="private"

dtype="static">canvas</f

iled1>

<filed2 type="JFrame"

access="private"

dtype="">frame</filed2>

<filed3

type="Graphics2D"

access="private"

dtype="">graphic</filed3

>

<filed4

type="CanvasPane"

access="public"

dtype="">canvas</filed4>

<filed5 type="Color"

access="private"

Fileds xml file

<?xml version="1.0"

encoding="utf-8" ?>

<methods>

<method1 ftype="static"

access="public"

return="Canvas"

name="getCanvas">

<desc>Factory method to

get the canvas singleton

object.</desc>

<descreturn>return

object the

created</descreturn>

<parameter

value="0"></parameter>

</method1>

<method2 ftype="0"

access="public"

return="0" name="draw">

<desc>Draws a given

shape onto the

canvas.</desc>

<descreturn></descreturn

>

<parameter value="1">

<par1

ptype="java.awt.Shape"

desc="the shape object

to be drawn on the

canvas">shape</par1>

</parameter>

</method2>

<method3 ftype="0"

access="public"

return="boolean"

name="drawImage">

<desc>Draws an image

onto the canvas.</desc>

<descreturn>returns

boolean value

representing whether the

62

There is also a general file containing information about all the patterns available

in this tool. Figure 5.2e illustrates how this general XML file of pattern

information will be generated.

Figure 5.2e : Generating XML files for all patterns embedded into the tool

Pattern 1

Pattern 2

Information xml file

<?xml

version="1.0"

encoding="utf-8"

?>

<pattern>

<namepatt>Dreawin

g Shapes Pattern

</namepatt>

<description> The

broblem is

summerised in

drawing different

shapes and change

it colors and

sizes</descriptio

n>

<solution>Attach

additional

responsibilities

to an object

dynamically.

Decorators

provide a

flexible

alternative to

subclassing for

extending

functionality.dra

wing alot of

shapes in

different colors

and different

size</solution>

<catpattern> The

Decorator Pattern

</catpattern>

<classess

number="4"

pathc="/Patterns/

Shapes/">

<class1 id="1">

Class Canvas

</class1>

Pattern n

63

5.2 - Parsing and Documentation

In the second stage, the classes are documented as XML files, which are then

parsed. The proposed mechanism is divided into two parts: the first one is fields

and the second is methods.

First, all the fields and methods for the first class in this pattern, i.e., the Circle

class, are represented.

Class Circle

public class Circle

A circle that can be manipulated and that draws itself on a canvas.

Table 5.2a Documentation of fields and methods for the Circle class

Constructor Summary

Circle()

 Create a new circle at default position with default color.

 Method Summary

void changeColor(String newColor)

 Change the color.

void changeSize(int newDiameter)

 Change the size to the new size (in pixels).

void moveDown()

 Move the circle a few pixels down.

void moveHorizontal(int distance)

 Move the circle horizontally by 'distance' pixels.

void moveLeft()

 Move the circle a few pixels to the left.

void moveRight()

 Move the circle a few pixels to the right.

../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#Circle()
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#changeColor(java.lang.String)
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#changeSize(int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#moveDown()
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#moveHorizontal(int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#moveLeft()
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#moveRight()

64

void

moveUp()

 Move the circle a few pixels up.

void moveVertical (int distance)

 Move the circle vertically by 'distance' pixels.

void slowMoveHorizontal(int distance)

 Slowly move the circle horizontally by 'distance' pixels.

void slowMoveVertical(int distance)

 Slowly move the circle vertically by 'distance' pixels.

 For fileds, the file format will be presented in XML file as follows:

<?xml version="1.0" encoding="utf-8" ?>

<filedclass>

<classname>Class circle </classname>

<description>

 A circle that can be manipulated and that draws itself on a canvas.

 </description>

<fileds>

<filed1 type=" int " access="private" dtype=" "> diameter </filed1>

<filed2 type="int" access="private" dtype=""> xPosition </filed2>

<filed3 type="int" access="private" dtype=""> yPosition</filed3>

<filed4 type=" String " access=" private " dtype=""> color </filed4>

</fileds>

</filedclass>

../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#moveUp()
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#moveVertical(int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#slowMoveHorizontal(int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#slowMoveVertical(int)

65

For methods, the file format will be presented in XML file as follows:

<?xml version="1.0" encoding="utf-8" ?>

<methods>

<method1 ftype="String " access=" public" return=" 0" name="changeColor">

<desc>Change the color. Valid colors are "red", "yellow", "blue", "green", "magenta"

and "black".

</desc>

<descreturn> </descreturn>

<parameter value="1">

<par1 ptype=" String" desc="Change the color. "> newColor</par1>

</parameter>

</method1>

<method2 ftype="0" access="public" return="0" name="changeSize ">

<desc>Change the size to the new size (in pixels) .</desc>

<descreturn></descreturn>

<parameter value="1">

<par1 ptype="int " desc="Change the size to the new size (in pixels). Size must be >=

0.">newDiameter </par1></parameter>

</method2>

<method3 ftype="0" access="public" return="0" name="moveDown">

<desc> Move the circle a few pixels down.</desc>

<descreturn> </descreturn>

<parameter value="0"></parameter>

</method3>

<method4 ftype="0" access="public" return="0" name=" moveHorizontal ">

<desc> Move the circle horizontally by 'distance' pixels.</desc>

<descreturn> </descreturn></methods>

../التعديل%20الأخيييييير%20هنا%20للسحب/Circle.html#changeSize(int)

66

 Second, all fields and methods for the second class in this pattern, i.e., the

Canvas class, are represented.

Table 5.2b Documentation of fields and methods for the Canvas class

Field Summary

 Canvas.CanvasPane canvas

 Method Summary

void draw(Shape shape

 Draws a given shape onto the canvas.

boolean drawImage(Image image, int x, int y)

 Draws an image onto the canvas.

void drawLine(int x1, int y1, int x2, int y2)

 Draws a line on the Canvas.

void drawString(String text, int x, int y)

 Draws a String on the Canvas.

void erase(Shape shape)

 Erases a given shape's interior on the screen.

void eraseOutline(Shape shape)

 Erases a given shape's outline on the screen.

void eraseString(String text, int x, int y)

 Erases a String on the Canvas.

void fill(Shape shape)

 Fills the internal dimensions of a given shape with the current

foreground colour of the canvas.

Color getBackgroundColour()

 Returns the current colour of the background

static Canvas getCanvas()

 Factory method to get the canvas singleton object.

Font getFont()

 Returns the current font of the canvas.

Color getForegroundColour()

 Returns the current colour of the foreground.

Dimension getSize()

 Returns the size of the canvas.

boolean isVisible()

file:///C:/Users/Wollf/Documents/Business/PaperLift/Editing%20Jobs/Samaha%20(Libya)/Canvas.html%23canvas
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#canvas
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#draw(java.awt.Shape)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#drawImage(java.awt.Image, int, int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#drawLine(int, int, int, int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#drawString(java.lang.String, int, int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#erase(java.awt.Shape)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#eraseOutline(java.awt.Shape)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#eraseString(java.lang.String, int, int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#fill(java.awt.Shape)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#getBackgroundColour()
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#getCanvas()
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#getFont()
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#getForegroundColour()
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#getSize()
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#isVisible()

 Provides information on visibility of the Canvas.

void setBackgroundColour(Color newColour)

 Sets the background colour of the Canvas.

void setFont(Font newFont)

 changes the current Font used on the Canvas

void setForegroundColour(Color newColour)

 Sets the foreground colour of the Canvas.

void setForegroundColour(String colourString)

 Sets the foreground colour of the Canvas.

void setSize(int width, int height)

 Sets the size of the canvas.

void setVisible(boolean visible)

 Sets the canvas visibility and brings canvas to the front of screen

when made visible.

void wait(int milliseconds)

 Waits for a specified number of milliseconds before finishing.

../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#setBackgroundColour(java.awt.Color)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#setFont(java.awt.Font)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#setForegroundColour(java.awt.Color)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#setForegroundColour(java.lang.String)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#setSize(int, int)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#setVisible(boolean)
../التعديل%20الأخيييييير%20هنا%20للسحب/Canvas.html#wait(int)

68

 For fileds, the file format will be presented in XML file as follows:

<?xml version="1.0" encoding="utf-8" ?>

<filedclass>

<classname>Class Caven </classname>

<description>

 Class Canvas - a class to allow for simple graphical drawing on a

 canvas. This is a modification of the general purpose Canvas, specially

 made for the squares example. The main modification is that this

 version treats the Canvas as a singleton.

</description>

<fileds>

<filed1 type="Canvas.CanvasPane" access="private" dtype="static">canvas</filed1>

<filed2 type="JFrame" access="private" dtype="">frame</filed2>

<filed3 type="Graphics2D" access="private" dtype="">graphic</filed3>

<filed4 type="CanvasPane" access="public" dtype="">canvas</filed4>

<filed5 type="Color" access="private" dtype="">backgroundColour</filed5>

<filed6 type="Image" access="private" dtype="">canvasImage</filed6>

</fileds>

</filedclass>

69

 For methods, the file format will be presented in XML file as follows:

<?xml version="1.0" encoding="utf-8" ?>

<methods>

<method1 ftype="static" access="public" return="Canvas" name="getCanvas">

<desc>Factory method to get the canvas singleton object.</desc>

<descreturn>return object the created</descreturn>

<parameter value="0"></parameter>

</method1>

<method2 ftype="0" access="public" return="0" name="draw">

<desc>Draws a given shape onto the canvas.</desc>

<descreturn></descreturn>

<parameter value="1">

<par1 ptype=" Shape" desc="the shape object to be drawn on the

canvas">shape</par1>

</parameter>

</method2>

</methods>

70

 The proposed information file for this pattern can then be displayed.

<?xml version="1.0" encoding="utf-8" ?>

<pattern>

<namepatt>Dreawing Shapes Pattern </namepatt>

<description> The broblem is summerised in drawing different shapes and change it

colors and sizes</description>

<solution>Attach additional responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality.drawing alot of

shapes in different colors and different size</solution>

<catpattern> The Decorator Pattern </catpattern>

<classess number="4" pathc="/Patterns/Shapes/">

<class1 id="1"> Class Canvas </class1>

<class2 id="2">Class Circle</class2>

<class3 id="3">Class Square</class3>

<class4 id="4">Class Triangle</class4>

</classess>

</pattern>

71

In this second stage, the XML files are parsed by entering them as input into

the EP tool. This tool will take the information from the user, who will import the

patterns downloaded from patterns stored and embed them into EPT. Figure 5.1.2

illustrates the extraction patterns from XML files.

Figure 5.3: The extraction operation by EPT

72

The tool will parse XML files and display the data by the functions available in

EPT. Figure 5.4 shows the main functions available in the EP tool.

Figure 5.4 : The main functions for EPT

5.3- Loading and Displaying Pattern Data

In the third stage, all the patterns provided in this tool will be loaded and

displayed to the user. These patterns will be saved in the general information file,

and then loaded into an XML data document.

Figure 5.5: Load XML file to memory by an XML document

<?xml version="1.0" encoding="utf-8"?>
<pattern number="4">
 <pattern1>
 <id>1</id>
 <name>Drawing shape Pattern</name>
 <description>This Pattren to drawing different
Shapes</description>
 <category>Graghical Pattern</category>
 </pattern1>
 <pattern2>
 <id>2</id>
 <name>r</name>
 <description>rest</description>
 <category>r</category>

 </pattern2>
 <pattern3>
 <id>3</id>
 <name>t</name>
 <description>t</description>
 <category>t</category>
 </pattern3>
 <pattern4>

 <id>4</id>

 <name>e</name>

<description>e</description

>

 <category>e</category>

 </pattern4>

Information xml

Load xml file into

Odocm

List of patterns

process

73

The result obtained from this operation is shown in Figure 5.6.

Figure 5.6: The list of patterns available in EPT

The result obtained from this function is explained as follows:

The total number of patterns available in EPT; in this case study, one pattern.

Name of pattern: drawing shapes pattern.

Category of pattern: graphical pattern.

Link to obtain all details about the selected patterns; when one is selected the

result is list of classes of this pattern.

1

74

When the user presses “view full class,” obtains a summary of the fields and

methods included in this class. At this point, the user can start processing an XML

document.

 Figure 5.7: List of classes for the shapes pattern

Figure 5.8 : Load canvas XML file to memory by an xml document

<?xml version="1.0" encoding="utf-8"?>
<pattern number="4">
 <pattern1>
 <id>1</id>
 <name>Drawing shape Pattern</name>
 <description>This Pattren to drawing different
Shapes</description>
 <category>Graghical Pattern</category>
 </pattern1>
 <pattern2>
 <id>2</id>
 <name>r</name>
 <description>rest</description>
 <category>r</category>

 </pattern2>
 <pattern3>
 <id>3</id>
 <name>t</name>
 <description>t</description>
 <category>t</category>
 </pattern3>
 <pattern4>

 <id>4</id>

 <name>e</name>

<description>e</description

>

Load xml file into

Odocm

List of methods and

fileds

Canvas xml

process

75

The result obtained from this operation is shown in Figure 5.9

Figure 5.9: list of fileds and methods of canvas class

And when press methods details or fileds details, will obtain the follow result,

shown in Figure 5.10

76

Figure 5. 10: view details about methods

5.4- Import patterns

 In this function we will import our patterns to save their in EPT by download

pattern from store pattern and upload it to EPT, Figure 5.11 explain the result.

Figure 5.11: load information xml file of pattern into EPT

78

 This tool divided the operation of upload pattern in two parts:

 1)- upload the information file of pattern ,as Figure 5.11 and include (name

of pattern, description, category of pattern) .

 2)- upload xml files specially of classes (fileds and methods xml files) as

follow ,Figure 5.12

Figure 5.12: load xml files of classes for pattern into EPT

5.5- System Backup

In this function will make backup for all patterns available in EPT ,and the new

path of backup will appear to the user after the operation is completely.

Figure 5.13: Backup patterns that store in PET

79

5.6- Search about pattern

 Present this tool the practicability find pattern saved in it by enter name of

pattern ,and obtain details about that pattern.

Figure 5.14: find pattern available in EPT

The result obtained from this function can be as follow:

Figure 5.15: the result of search operation

80

5.7- dealing with store patterns

 The storage for the proposed pattern will be as follow:

 The downloaded patterns by the users will presented in the storage of the

pattern.

This storage enables the users to look at the classes , search for and download any

patterns a particular pattern. Figure 5.16 illustrates the result.

Figure 5.16: list of patterns available in EPT

To load any pattern from the storage ,press the related link and many choices will

appear as shown ,Figure 5.17 illustrates the result.

81

Figure 5.17 : details about shapes pattern

 And To load the pattern files .First we download the information files for

the chosen file and then we download the files belonging to the classes which are

involved in creating these pattern. Downloading can be done as follow, Figure 5.18

Figure 5.18 : download files of shapes pattern

82

Chapter 6

Conclusion and future work

6.1 Conclusion

Workers in the fields of computer design and development encounter many

problems. A recurrent problem is how to save and document pattern templates and

solutions to programming problems that have already been produced or obtained

by other designers or developers. These patterns and solutions can also be the

collective effort of a firm that needs to document them, so they can be exchanged

83

by developers and users inside the firm or across firms through the internet.

Since the patterns and solutions are located either in a local computer or a web

server, a way needs to be found to store them so they can be retrieved for

development by firm members or by students in a university lab who use this data

to improve their experience.

 In this research, a tool is designed for solving this storage problem. The data

are saved in an XML file containing information about patterns and class

interactions, so that the content of the file can be analyzed to provide

understandable information to developers and designers. The suggested tool has

the following functions:

 On the user side, when the user imports the design pattern presented in an

XML file and lists it inside the tool, this tool will parse the XML file,

extract the information in it and display this information in an

understandable format.

 The tool file will request the storage templates from the server or from a

local computer.

 It will allow the user to manage the pattern templates, list them in the

system, save them and have them returned whenever they are needed.

84

6.2 Scope of Future Work

This work can be used as a basis for designing patterns in XML or

producing a special code or DLL for patterns. Much effort may be needed to make

this tool generalizable to any kind of XML document carrying special data for

different patterns.

85

References

[1] - Wikipedia team. 2009. http://en.wikipedia.org/wiki/Design_pattern.

http://en.wikipedia.org. [Online] 6 5 2009. [Cited: 15 9 2009.]

 [2]- Bray, Tim; Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau. September

2006. Extensible Markup Language (XML) 1.0 (Fourth Edition)-Origin and Goals. s.l. : World

Wide Web Consortium. http://www.w3.org/TR/2006/REC-xml-20060816/#sec-origin-goals,

September 2006.

[3]- w3schools team.http://www.w3schools.com/htmldom/ introduction.html [Online][Cited:

25 06 2010]

[4]- w3schools team .http://www.w3schools.com/htmldom/ dom_intro.asp [Online][Cited: 9

10 2010]

 [5]- S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling and K. Tan.

http://www.cs.ualberta.ca/~systems/cops. http://www.cs.ualberta.ca. [Online] [Cited: 9 10

2009.]

[6] - S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling and K. Tan. 2006. Generative

Design Patterns. canada : http://wwpw.cs.ualberta.ca, 2006.

—. http://www.cs.ualberta.ca/~systems/cops. http://www.cs.ualberta.ca. [Online] [Cited: 9 10

2009.]

[7] M. Massingill, T. Mattson, and B. Sanders. 1999. A pattern language for parallel application

programs. Florida : Technical Report CISE TR 99-022, University of Florida, 1999, 1999.

[8] Marek Vok´aˇc, Software Engineering Department, Simula Research Laboratory,

Oslo, Norway . 2006.An efficient tool for recovering Design Patterns from C++ Code

[9] C Kramer and L. Prechelt. Design recovery by automated search for structural

design patterns in object-oriented software. In Reverse Engineering, 1996.,Proceedings of the

Third Working Conference on, pages 208–215, 1996.

[10] Microsoft. C# programmer’s reference: foreach, in, 2004.

http://www.w3schools.com/htmldom/dom_intro.asp
http://www.w3schools.com/htmldom/dom_intro.asp

86

[11] G. Florijn, M. Meijers, and P. van Winsen. Tool support for object-oriented

patterns. In Ecoop’97: Object-Oriented Programming, volume 1241 of Lecture

Notes in Computer Science, pages 472–495. 1997.

[12] Zsolt Balanyi and Rudolf Ferenc. Mining design patterns from c++ source

code. In International Conference on Software Maintenance (ICSM’03), page

305, Amsterdam, The Netherlands, 2003. IEEE.

[13] - Wikipedia team. 2012. http://en.wikipedia.org/wiki/Design_pattern.

http://en.wikipedia.org. [Online] 4/ 7/ 2012 . [Cited: 10 /7/2012.]

87

Table A2 Parse_file class documentation

Field Summary

Name Type

Odocm XmlDocument

Onode XmlNode

oNodeList XmlNodeList

str string

Methods Summary

Name Description

loadpattren(ByVal path As String): XmlDocument Load xml file and retrieve it in Odocm object .

get_attributes(ByVal odoc As XmlDocument)
 Retrieve attributes that presented in xml file and return

XmlNodeList.

get_methods(ByVal odoc As XmlDocument)
Retrieve methods that presented in xml file and return

XmlNodeList.

get_nameclass(ByVal odoc As XmlDocument) Retrieve class name that presented in xml file

viewattformatting(ByVal oNodeList As

XmlNodeList) : string
Retrieve formatting ready to print of attributes

Appendix
Table A1 Adapter class documentation

Field Summary

Name Type

Odocm XmlDocument

Methods Summary

Name Description

Loadpattren (path As String) Load xml file and retrieve it in Odocm object .

Mappath(string path) To get path of files

Methods inherited from class System.Web.UI.Page , System.Xml, System. data

Server,mappath

viewmethformatting (ByVal oNodeList As

XmlNodeList) : string
Retrieve formatting ready to print of methods

Methods inherited from class System.Web.UI.Page , System.Xml, System. Data

Table A3 Parse_info class documentation

Field Summary

Name Type

Odocm XmlDocument

Onode XmlNode

num Integer

strname String

Methods Summary

Name Description

get_IDS(ByVal oNodeList As XmlNodeList) Return the id of pattern

get_infonode(ByVal odoc As XmlDocument, ByVal

nodename As String)
Retrieve data of specific node

printnode(ByVal oNodeList As XmlNodeList) Print data of specific node

get_numofpatterns(ByVal oNodeList As

XmlNodeList)
Return the total number of patterns

get_name(ByVal oNodeList As XmlNodeList)
Return the name of pattern

get_description (ByVal oNodeList As XmlNodeList) Return the description of pattern

get_category (ByVal oNodeList As XmlNodeList) Return the category of pattern

Methods inherited from class System.Web.UI.Page , System.Xml, System. data

Server,mappath

89

Table A4 Parse_fields class documentation

Field Summary

Name Type

Typ String

Acc String

onode XmlNode

oNodeList XmlNodeList

strname String

Methods Summary

Name Description

get_type(ByVal oNodeList As XmlNodeList) Return the type of fields (integer ,string,..)

get_access(ByVal oNodeList As XmlNodeList) Retrieve the permission of this filed (private ,public)

get_name(ByVal oNodeList As XmlNodeList) Return the name of filed

get_description(ByVal oNodeList As XmlNodeList) Get description of class

get_dtype(ByVal oNodeList As XmlNodeList) Get type of data (static,..)

Viewformating(ByVal oNodeList As XmlNodeList) Print the data in final format

Methods inherited from class System.Web.UI.Page , System.Xml, System. data

Table A5 Mfiles class documentation

Field Summary

Name Type

typ string

onode XmlNode

oNodeList XmlNodeList

strname String

ret String

Methods Summary

Name Description

get_name(ByVal oNodeList As XmlNodeList) Return name of method

get_access(ByVal oNodeList As XmlNodeList) Retrieve the permission of this method (private ,public)

get_returnvalue(ByVal oNodeList As XmlNodeList) determine if method return data or void

get_description(ByVal oNodeList As XmlNodeList) Get description the work of method

Methods Summary

Name Description

get_name(ByVal oNodeList As XmlNodeList) Return name of method

get_access(ByVal oNodeList As XmlNodeList) Retrieve the permission of this method (private ,public)

get_returnvalue(ByVal oNodeList As XmlNodeList) determine if method return data or void

get_description(ByVal oNodeList As XmlNodeList) Get description the work of method

get_type(ByVal oNodeList As XmlNodeList) Get type of method

Checkhasparameters(ByVal oNodeList As

XmlNodeList): boolean
Check if the method has parameters

Returnparameters(ByVal oNodeList As

XmlNodeList)
Return parameters for specific method

get_type(ByVal oNodeList As XmlNodeList) Get type of method

Checkhasparameters(ByVal oNodeList As

XmlNodeList): boolean
Check if the method has parameters

Returnparameters(ByVal oNodeList As

XmlNodeList)
Return parameters for specific method

Get_description(ByVal oNodeList As XmlNodeList) Return the description of specific method

Get_namepara(ByVal oNodeList As XmlNodeList) Return the name of parameter

Get_paradescr(ByVal oNodeList As XmlNodeList) Return the description of parameter

Methods inherited from class System.Web.UI.Page , System.Xml, System. data

Table A6 Parse_methods class documentation

Field Summary

Name Type

typ String

onode XmlNode

oNodeList XmlNodeList

strname String

Ret String

Get_description(ByVal oNodeList As XmlNodeList) Return the description of specific method

Get_namepara(ByVal oNodeList As XmlNodeList) Return the name of parameter

Get_paradescr(ByVal oNodeList As XmlNodeList) Return the description of parameter

Methods inherited from class System.Web.UI.Page , System.Xml, System. data

Table A7 Mtamplates class documentation

Field Summary

Name Type

Found boolean

PathS string

docm xmldocument

Methods Summary

Name Description

Saverecivedpattern(xdoc as xmldocument) : void Save pattern on the server .

AddnewPattern(xdoc as xmldocument) : void Add new patterns to storage templates.

Viewavalibaltamplates() : void Retrieve all templates available on storage templates

BackupTamplatesonserver() : void Make backup templates

Deletepatterns(xpath as string) : void Delete stored patterns from storage patterns

Methods inherited from class System.Web.UI.Page , System.Xml, System. Data

