
University of Benghazi

Faculty of Information Technology

Computer Science Department

Design Patterns for Dialog Boxes in User Interface
Mobile Applications

Prepared by:

Sana Mustapha Hassan Alghazali

Under the Supervision of:

Dr. Mohamed Khlaif

A thesis submitted to the Faculty of Information Technology in partial
fulfillment of the requirements of Master's degree in Computer Science

LIBYA-BENGHAZI

December -2015

ii

Dedication

I dedicate this work to my caring parents, wonderful

husband Mohamed and my two adorable children

Abdalrahman and Sohayb.

iii

Table of Content

Abbreviations……...………. x

Acknowledgment ... xi

Abstract …….…………. xii

Chapter 1. Introduction …….. 1

1.1 Introduction …………………………………………………………………………………………….…...…..………………………..…. 1

1.2 Problem Statement ………………………………………………...…………………………………..……………………………...…. 2

1.3 Motivations and Objectives ………………………………………………...………………………………………………….....…
4

1.4 Solution approach …………………………………………...…………...………………..................... 4

1.5Structure of Thesis …………………………………….……………………………………………………………………………....…
5

Chapter 2. Background ...…......... 6

2.1 Introduction ……......…..……. 6

2.2 Overview of Design Pattern ……………………………………………………………………………….……............................ 6

 2.2.1 Design Patterns Definition …………………………………………………………………………………………….……
8

 2.2.2 Design Pattern Catalog …………………………………………………………………………………………………….…
9

 2.2.3 Essential Elements of Pattern ………………………………………………………………………………………..……
12

 2.2.4 Benefits of Design Patterns ……………………………………………………….………………………………………
13

2.3 Families of Model- View-*(MV*) design patterns…………………………………………….……………….……
13

 2.3.1 Model view controller (MVC) design pattern ………………………………………………………………….. 14

 2.3.1.1 MVC Interaction Cycle ………………………………………………………………………………………………
19

 2.3.1.2 Advantage of MVC design pattern ……………………………………………………………………………
20

iv

 2.3.1.3 MVC Architectural Pattern of Mobile Web Application ……………………………………….…
20

 2.3.2 Model View Presentation …………………..………………….……………………………………………………………
21

 2.3.3 Model View View Model ……………………………………………...……………………….……………………….…
22

2.4 ICONX Methodology ………………………………………………………………………………….………………………………. 24

 2.4.1 ICONX Process…………………..…………………………………………………………………………………...…….……
25

 2.4.2 Robustness Analysis …………………..………………………………………………………………………………………
26

 2.4.2.1 Robustness Analysis in MVC ……………..………………………………………………………………..……
27

 2.4.2.2 Robustness Diagram Rules …………………..…………………..………………………………………………
29

2.5 Related Work ……………………………………………………….………………………….………………………………………..….. 31

Chapter 3.The Proposed Approach for Designing a Prototype Model of UI Mobile

33

3.1 Introduction …………………………...…………………………………………………………………….……………………………….. 33

3.2 Overview of a Solution Approach …………………….……………………………………………………………..…………
33

3.3 Framework of MVC Design Pattern ………………………………………...……….…………………………………. 34

3.4 ICONX Methodology ………………………………………...…………………………………………………………………………
35

 3.4.1 Stage One : Requirements Review ……………………………………………………..……………………………... 37

 3.4.1.1 Identify Real-World Domain Objects ………………………………………………………………….....….. 37

 3.4.1.2 Allocate Functional Requirements on Use Case Diagrams ………………………………….….. 37

 3.4.1.3 Generate GUI Prototyping for Each Use Case …………………………………...……………………... 38

 3.4.2 Stage Two : Preliminary Design Review ………………………………………….…..………………………..…
38

 3.4.2.1 Perform Robustness Analysis for each Use Case …………………………………………………….. 38

 3.4.2.2 Update Domain Model ……………………………………………………………………………………………….. 39

 3.4.3 Stage Three : Detailed Design Review …………………………………………………………...…………………
39

 3.4.3.1 Generate Sequence Diagram from Boundary and Entity Objects on the

Robustness Diagram………………………………………...……………………………………………………………………………
39

v

 3.4.3.2 Select Suitable Design Pattern ………………………………………………………………………………….... 40

 3.4.3.3 Update the Domain Model into Class Diagrams as Needed ……………………………...…….. 42

 3.4.4 Stage Four : Implementation ………………….……………………………………...……………………...……….……
43

Chapter 4.Implemention …………………………………………..……………………………………………………
44

Chapter 5. Conclusions and Future Work …………………………………………………………………
65

5.1 Conclusion …………………………………………………………………………………………... 65

5.2 Future Work …….……………
66

References ………...……..…
67

vi

List of Figures

Figure 1.1: The complexity of the problem statement ………………………………………...…..………………………. 3

Figure 2.1: The Land of MV* Design Patterns…………………………………………………………………………………
14

Figure 2.2: Component of MVC design pattern ………...………………………...…………………………..………………. 15

Figure 2.3: Smalltalk’80 MVC pattern ……………………………………………………………………………...…………..…
18

Figure 2.4: Web MVC pattern …………………………………………………………... 18

Figure 2.5: Interaction between components of MVC …………………………………………………………………..…
19

Figure 2.6: Different between MVC & MVP……………………………..…………………………………………………..…
22

Figure 2.7: MVVM pattern ………..…
23

Figure 2.8: ICONIX Methodology ……………………………………………….………………………………………………..…
24

Figure 2.9: The phases of the ICONIX process ………………………..…………………………………………………..…
26

Figure 2.10: Robustness diagram symbols (EBC)……………………….………………………………………………..…
27

Figure 2.11: Robustness analysis in MVC …………………………………………………………………………………..…
28

Figure 2.12: EBC pattern ……..…
28

Figure 2.13: Robustness analysis mediates between analysis and design …………………………………..…
29

Figure 2.14: Actors communication with the system ………………………………………………………..………..…
29

Figure 2.15: Robustness diagram rules ……………………………………………………………...…………………………..…
30

Figure 3.1: .NET Framework and MVC …………………………………………………….…………………………………..…
34

Figure 3.2: The main stages of ICONX methodology …………………………...……………………………………..…
35

Figure 3.3: The sub stages of ICONX methodology stages …………………………..……………………………..…
36

Figure 3.4: Use case diagram ………………………………………………………………………………………………..………..…
37

Figure 3.5: Elements of robustness diagram ………………………………………………………………………..………..…
39

Figure 3.6: Sequence diagram of MVC ……………………………………………………………………………………..…..…
40

Figure 3.7: Observer design pattern …………………………………………………………………………………………...…..…
41

Figure 3.8: Strategy design pattern …………………………………………………………………………………….…………..…
41

vii

Figure 3.9: MVC design pattern ……………………………………………………………………………………………………..…
42

Figure 3.10: Class diagram …………………………………………………………………………….……………………………..…
42

Figure 4.1: Domain model of the application …………………..……………………………………………….…………..…
44

Figure 4.2: Use case diagram of the application …………….…………………………………………………..………..…
45

Figure 4.3: Prototype of the start use case ………………………………………...…………………………………………..…
46

Figure 4.4: Prototype of the Selection process use case ……………..………………………………………………..…
46

Figure 4.5: Prototype of contacts setting use case …………………………………………………………….………..…
47

Figure 4.6: Prototype of the Create message use case …………………………….…………………………………..…
47

Figure 4.7: Robustness Analysis for Star ………………………………………………..……………………………………..…
48

Figure 4.8: Robustness Analysis for contact setting ………………………………….………………………………..…
49

Figure 4.9: Robustness Analysis for Create Message …………………………………………………………………..…
50

Figure 4.10: Robustness Analysis for SEARCH contact ………………………..………………………………….…
51

Figure 4.11: Robustness Analysis for DELETE contact …………………………..……….………………………..…
51

Figure 4.12: Sequence Diagram of the Start Screen …………………………………………….…………………..…..…
52

Figure 4.13: Sequence Diagram of SEARCH contact…………………………………………………………………..…
53

Figure 4.14: Sequence Diagram of ADD contact …………………………………………….…………………………...…
53

Figure 4.15: Sequence Diagram of DELETE contact …………………………………………………………………..…
54

Figure 4.16: Sequence Diagram of COMPOSE message ………………………………………….…………..……..…
54

Figure 4.17: The MVC folders………………………………………………………………………………………………………..…
55

Figure 4.18: Adding a class into a Model………………...…………………………………………………...………………..…
57

Figure 4.19: Create a Storage class into a Model………………...……….…………………………...………………..…
57

Figure 4.20: Adding a Controller ……………………………………………………………...…………………………………..…
57

Figure 4.21: Adding a MobileController into a Controller ………………………………………………………..…
58

Figure 4.22: Adding a view …………………………………………………………………………………………………….……..…
58

Figure 4.23: The Class diagram application ………………………………………………………………………………..…
61

Figure 4.24: The Start screen of the application .. 62

viii

Figure 4.25: The select process screen of the application ……………………………………………………………
62

Figure 4.26: The setting of contact screen of the application ……………………...………………………….……... 62

Figure 4.27: The Message screen of the application ………………………….………………………………...…..……. 63

Figure 4.28: The SMS1 screen of the application…………………………………………………..……………………….. 63

Figure 4.29: The SMS2 screen of the application …………………………………………….……...……………………
64

 Figure 4.30:The SMS3 screen of the application ……………………..………………………...…………………………. 64

ix

List of Table

Table 2.1: Description of design pattern ………………………………………………………………...…..……. 11

Table 2.2: Template of design patterns
……………………………………………………….……………..…….

 12

Table 2.3: Smalltalk’80 MVC &Web MVC ……………...………………………………….....………………. 17

Table 2.4: Different between MVC & MVVM ………………………...…………………….……………..… 23

Table 4.1: The Application folders ………………………...………………..……………..……………………..… 56

x

List of Abbreviations

UI User Interface

IT Information Technology

SW Software

PC Personal Computer

PDA Personal Digital Assistant

GOF Gang of Four

UML Unified Modeling Language

MV* Model View *

MVC Model View Controller

MVP Model View Presenter

MVVM Model View View Model

WAP Wireless Application Protocol

EBC Entity Boundary Controller

CLR Common Language Runtime

CSS Cascading Style Sheet

GUI Graphical User Interface

OO Object Oriented

EBC Entity Boundary Controller

HCI Human Computer Interaction

WPF Windows Present Foundation

HTML Hyper Text Markup Language

DPs Design Patterns

xi

Acknowledgments

Firstly, praise and gratitude is always to Allah the Almighty and the All-

knowing.

Secondly, special thanks to my supervisor, Dr. Mohamed Khlaif for his

guidance and endless support throughout the whole project.

I thank my wonderful husband, Mohamed, who has always given me the

motivation and courage to finish my thesis.

I would also extend my thanks to my best friend Basma.

Last, but not least , my deepest gratitude is to my parents for their

understanding, support, and believing in me throughout this research

work . Without their prayers ,I would not have been able to finalize this

work on time.

Sana

xii

Abstract

Because of the emerging challenges accompanying the development and advancement of

information technology in many fields and industries, this makes IT experts, designers,

manufactures and researchers in need of creating up-to-date and more effective solutions

to overcome those challenges and obstacles. In fact, technology of mobile phones and

devices proved to be infinite as different brands of modern mobile devices are produced

with a wide variety of features, but at the same time great challenges occur for users and

IT experts. One of these challenges is noticeable when the SW keyboard is shown and

hidden in UI applications of PDA , PC or any other mobile devices. This keyboard is

shown when the user wants to enter a text, which unfortunately leads to the occupation of

the application area by this SW keyboard. This means that the application will have less

room for its " normal interaction "

The main aim of this research is to use ICONX methodology and a Model View Controller

(MVC) design pattern to solve this problem associated with SW keyboard .It attempts to

make the interaction of dialog boxes when entering a text on mobile UI easier , and more

practical as users will enjoy more interaction space as they enter texts.

Key words : User interface (UI),Personal Digital Assistant (PDA),Software(SW),Personal Computer

(PC),Information Technology(IT), Global Positioning Systems(GPS),Model-view-Controller (MVC)

1

CHAPTER 1

 Introduction

1.1 Introduction

 The main part of this research focuses on the stated problem of approaching dialog

boxes when SW keyboard in UI is shown and hidden .As we all know that technology has

witnessed great a advancement in the last decade . Smart phones for example ,they are very

popular and now they are used for different purposes other than just making and receiving

calls. In fact, smart phones are equipped with so many features and applications such as

game applications ,wireless and Wi-Fi network connections and many more interactive

applications. This requires more space for interaction on mobile screens and has become a

real concern for IT experts worldwide. Due to the wide variety of inputs, small screens

tend to interrupt tasks. Finally, mobile user interfaces present big challenges that are not

present when using desktop systems.

 Since designing mobile interfaces is a relatively new practice, but it is actually making

progress and gaining popularity nowadays. This fact is urging manufactures and experts to

find more effective and flexible tools to overcome many problems that might occur when

designing user interface for modern mobile phones. We must be aware that mobile phones

have built-in sensitivity and a wide variety of options and functions .One of the problems

the designers encounter in the mobile phone technology is the range of variation of the

capabilities among devices and platforms. For example, a specific type of phone can have

a touch screen and no buttons, but with a virtual keypad; however another brand can have a

number pad and a few arrows. These variances are equally different when it comes to

computing power, screen capabilities, and more. To accommodate these differences, it

2

likely requires building multiple designs for each platform which the interface needs to run

on [1].

In this research work, we are using Model View Controller (MVC) architecture pattern

for building a user interface for mobile devices , which is a fast and efficient way of creating

different UI for mobile, This pattern is used as a methodology for designing the mobile user

interface [21].

Generally, design patterns can help solve complex design problems if they are properly

used, however the main advantage of using the MVC pattern is decoupling the business and

the presentation layers [23].

 MVC is defined as a common design pattern to integrate a user interface with the

application domain logic. MVC separates the representation of the application domain

(Model) from the display of the application’s state (View) and user interaction control

(Controller). The MVC design pattern is comprised of three major components[23] the Model

(The Data Layer), the View (The User Interface Layer) and The Controller (The Business

Logic Layer).

1.2 The Problem Statement

The main problem in this research is how to resize Text Box to avoid making some parts of

these text dialog boxes invisible. Text Box or Dialog Box is defined as any message/text

created or looking up a contact on the Contact Log saved in your phone. Therefore ,resizing

practically prevents hiding some parts of the dialogs which eventually become invisible once

a long text is being entered. Also, the severity of this problem largely depends on the type and

style of user interface being used. To conclude, smart phones usually have small screens

which do not allow for enough space which means less interaction for users when entering

longer texts.

3

Figure 1.1: The complexity of the problem statement adopted from [19]

4

1.3 Motivations and Objectives

1. The main objective of this study is to use an applicable and effective design pattern

for better and more convenient use of screen space of smart mobile phones.

2. Design a user interface which can help users access the system easily and enjoy

better and more interaction.

3. Understanding and analyzing the theory and practice behind using design patterns

as solutions for UI problems in mobile applications.

4. Have an opportunity to see how we can encounter the challenges of modern

technology.

5. Reassess and reuse the proposed design patterns such as Model View Controller

which is believed to be one of the most popular among UI designers.

1.4 Solution Approach

 The steps of the proposed solution in this research work can be summarized as follows:

1. Provide a clear and specific definition of the problem related to UI of mobile

phone devices.

2. Present a description of the system requirements and specify an effective method

to be used at the designing stage.

3. Illustrate in detail the tool to be used for designing the user to display information

on the screen of the mobile device.

4. Determine a suitable design pattern to solve the stated problem of mobile UI. This

is has to be done by providing clear definitions and explanation of these design

patterns.

5. Choose a corresponding programming language such as J2EE or ASP.NET.

6. Finally, present a case study to examine how the proposed approach works when

applied.

5

1.5 Structure of The Thesis

 The remaining chapters of this thesis are organized as follows:

 Chapter 1: Introduction

 This chapter gives a short overview about design patterns , Model View Controller

(MVC) and it also includes the motivation , objectives and the proposed solution

approach.

 Chapter 2:Background

 This chapter presents a background and a general overview of Design patterns

including families of MVC design pattern. It also introduces the ICONIX Methodology

and the literature survey that are related to the proposed approach.

 Chapter 3: The Proposed Solution for Designing a Mobile User Interface Using MVC

Design Pattern

 This chapter presents the proposed approach for solving the problem. It also explains

in detail all the steps to be taken when using MVC design pattern and ICONX

Methodology.

 Chapter 4: implementation

 This chapter presents the actual application of the proposed approach and the steps

involved . it aims at solving the stated problem by designing a prototype with ASP.NET

programming language.

 Chapter 5: Conclusion

 Presents findings, results and future work.

6

CHAPTER 2

Background

2.1 Introduction

This chapter is organized into five sections. In section 2.2 presents an overview of design

patterns , the definition of the essential elements of patterns , Section 2.3 introduces the

families of Model View * (MV*) design pattern .Section 2.4 presents ICONIX Methodology

and finally Section 2.5 includes the literature survey that is related to the current research

work.

2.2 Overview of Design Pattern

Design Patterns were first introduced as a defined concept by Christopher Alexander in

his two books "A Pattern Language" in 1977, and "The Timeless Way of Building" in 1979

(Seffah 2010). Alexander is an architect who envisioned a way to capture all of the best

aspects of architectural design in an easy-to-understand collection of what he termed

“Patterns.” Doing so enables engineers, architects, and even the laymen who would be using

the buildings to communicate design ideas easily, and understand the problems facing each

design [16].

Ultimately, Alexander wanted his pattern library to be used to help improve the quality of

life for the people who would be living in or using the buildings. He hoped to capture what he

refers to as the quality without a name, which he defined as follows: “there is a central quality

which is the root criterion of life and spirit in a man, a town, a building, a wilderness. This

quality is objective and precise, but it cannot be named” (Wania and Atwood 2009).

Effectively, what this quality describes is those thoughtful designs that, whether obvious or

7

subtle, make inhabiting a space a more pleasant, usable, or relaxing experience. What makes

this emphasis so important is where the focus of the design is placed.

The first appearance of patterns at a conference was in 1997 at the CHI conference,

sponsored by ACM SIGCHI. Since then, there have been numerous published articles and

books furthering the discussion, refining the definition of what a user interface pattern consists

of, and introducing new patterns to the community. In 2010, patterns were given center stage

with the PEICS conference, which focused explicitly on issues surrounding designing and

engineering user interfaces using design patterns. Amongst the things that have been discussed

were how to define and structure patterns, and how to take the patterns and implement them in

an automated fashion.

Design patterns represent a highly effective way to improve the quality of software

engineering. Due to its ability to a capture the best practices and design knowledge based on

real experience of software design, making it available to all software engineers [2]. It presents

a generic proven solution to a common recurring design problem.

A design pattern in software engineering is a general repeatable solution to a commonly

occurring problem in software design [3]. A design pattern isn't a finished design that can be

transformed directly into code. It is a description or template for how to solve a problem that

can be used in many different situations. Object-oriented design patterns typically show

relationships and interactions between classes or objects, without specifying the final

application classes or objects that are involved. Many patterns imply object-orientation or

more generally mutable state, and so may not be as applicable in functional

programming languages, in which data is immutable or treated as such.

A design pattern in architecture and computer science is a formal way of documenting a

solution to a design problem in a particular field of expertise. The idea was introduced by the

architect Christopher Alexander in the field of architecture[4] and has been adapted for

various other disciplines, including computer science. An organized collection of design

http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Interaction
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Architecture
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Christopher_Alexander
http://en.wikipedia.org/wiki/Architecture
http://en.wikipedia.org/wiki/Architecture
http://en.wikipedia.org/wiki/Computer_science

8

patterns that relate to a particular field is called a pattern language .The elements of this

language are entities called patterns.

The patterns demonstrated Design Patterns focused around two keys attributes; they had to

be reusable and they had to be flexible.

2.2.1 Design Patterns Definition

 Christopher Alexander in (1977) defined the patterns as follows:

 Each pattern describes a problem that occurs repeatedly in our environment,

and then presents the core of the solution to that problem in a way that you

can reuse this solution a million times , without ever doing it the same way

twice. [5]

 Design patterns gained popularity in Software engineering by the Gang of

Four (GOF) book (1995).

 The design patterns are descriptions of communicating objects and classes that

are customized to solve a general design problem in a particular context [6].

 There are four essential elements of design patterns according to the GOF’s

structure.[7,16]:

1. Pattern name: The name of the pattern is the identity or the description of the design

problem, the solutions and the consequences in a word or two. Giving names to

patterns allows us to get a higher level of abstraction.

2. Problem: describes when the pattern should be applied including its context and what

it solves.

3. Solution: describes the elements of the design, the responsibilities and collaborations.

It does not describe a concrete solution. It is simply a template or a package that can

be applied in different contexts.

http://en.wikipedia.org/wiki/Pattern_language
http://en.wikipedia.org/wiki/Design_pattern#cite_note-Alexander.2C_A_Pattern_Language-0

9

4. Consequences: are the results expected after applying the pattern to solve problems.

They expose the advantages and disadvantages of the solution proposed. They also

include the impact on flexibility, extensibility and portability of the system.

2.2.2 Design Pattern Catalog

Design Patterns are described in graphical notation with Unified Modeling Language

(UML) diagrams which capture the end product of design processes[34]. To reuse the

design, record the designs, alternatives by describing them with a pattern name and

classification, intent, motivation, applicability, structures, participants, collaboration,

implementation and their uses in real systems. Design Patterns vary in their granularity and

level of abstraction. Creational design Patterns concern the process of object creation,

Structural patterns deal with composition of classes or objects while Behavioral patterns

deal with the way in which classes or objects intent and distribute responsibilities [26].

The Gang of Four (GOF) patterns are ultimately considered as the foundation for all

other patterns [8]. They are categorized in three groups: Creational, Structural, and

Behavioral.

1- Creational Patterns

Creational design patterns deal with object creation mechanisms and to try create

objects in a suitable manner to the situation. The basic form of object creation could

result in design problems and increase the complexity to the design [35].

Recommend the way that objects should be created. In fact, these patterns are used

when a decision must be made at the time a class is instantiated.

 Abstract Factory: Creates an instance of several families of

classes.

http://sourcemaking.com/design_patterns/abstract_factory

10

 Builder: Separates object construction from its representation.

 Factory Method: Creates an instance o090f several derived classes.

 Prototype: A fully initialized instance -to be copied or cloned.

 Singleton: A class of which only a single instance can exist.

2- Structural patterns

Structural design patterns basically eases the designing process by identifying a

simple way to realize relationships between entities [35].

These patterns are concerned with how classes inherit from each other or how they are

composed from other classes[8].

 Adapter: matches interfaces of different classes.

 Bridge: separates an interface of an object from its

implementation.

 Composite: a tree structure of simple and composite objects.

 Decorator: add responsibilities of objects dynamically .

 Facade: a single class that represents an entire subsystem.

 Flyweight: a fine-grained instance used for efficient sharing.

 Proxy: an object representing another object.

3- Behavioral patterns

Behavioral design patterns identify common communication patterns between

objects and realize these patterns. These patterns increase flexibility in the

communication among objects [35].

 They also prescribe the way objects interact with each other. They help make

complex behaviors manageable by specifying the responsibilities of objects and the

way they communicate with each other.

http://sourcemaking.com/design_patterns/builder
http://sourcemaking.com/design_patterns/factory_method
http://sourcemaking.com/design_patterns/prototype
http://sourcemaking.com/design_patterns/singleton
http://www.dofactory.com/Patterns/PatternBridge.aspx
http://www.dofactory.com/Patterns/PatternComposite.aspx
http://www.dofactory.com/Patterns/PatternDecorator.aspx
http://www.dofactory.com/Patterns/PatternFacade.aspx
http://www.dofactory.com/Patterns/PatternFlyweight.aspx
http://www.dofactory.com/Patterns/PatternProxy.aspx

11

 Chain of Resp: a way of passing a request between a chain of

objects.

 Command: encapsulate a command request as an object.

 Interpreter: a way to include language elements in a program.

 Iterator: sequentially access the elements of a collection.

 Mediator: defines simplified communication between classes.

 Memento: captures and restores the internal state of an object.

 Observer : a way of notifying change/s to a number of classes.

 State :alters the behavior of an object when its state changes.

 Strategy : encapsulates an algorithm inside a class.

 Template Method: defers the exact steps of an algorithm to a

subclass.

 Visitor: defines a new operation to a class without change.

The table below shows a description of the design pattern .

Creational Design

Patterns

Structural Design

Patterns

Behavioral Design Patterns

Class Object Class Object Class Object

Factory

Method

Abstract

Factory

Builder

Prototype

Singleton

Adapter Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Template

Method

Interpreter

Chain of

Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Table 2.1: Description of design pattern [26].

http://www.dofactory.com/Patterns/PatternInterpreter.aspx
http://www.dofactory.com/Patterns/PatternIterator.aspx
http://www.dofactory.com/Patterns/PatternMediator.aspx
http://www.dofactory.com/Patterns/PatternTemplate.aspx
http://www.dofactory.com/Patterns/PatternVisitor.aspx

12

2.2.3 Essential Elements of Pattern

A pattern is considered as a basic tool of contact between designers, so describing patterns

becomes a very important issue. The effectiveness of this contact leads to the usability and

presentation of the template patterns. Also, the patterns are always documented in a template

format, making the readers understand patterns easily [27].

The template below describes elements of a pattern template. The template does not display

any details about the solution, but only describes information about the template and template

implementation in general , which is dependent on the used programming language [27].

Content Description

Pattern name Describes the identity

Intent Describes what the pattern does

Also known as The list any synonyms for the pattern

Motivation
Motivation provides an example of a problem and how

the pattern solves that problem

Applicability Lists the situation where the pattern is applicable

Structure
Set of diagrams of the classes and objects related to the

pattern

Participants
Describes the classes and objects their responsibilities

that participate in the design pattern

Collaborations
Describes how the participants collaborate to carry out

their responsibilities

Consequences
Describes the forces that exist with the pattern ,the

benefits, and the variable that is isolated by the pattern

Table 2.2: Template of design patterns [27]

13

2.2.4 Benefits of Design Patterns

As we know that design patterns have many benefits. The following states the main

benefits of design patterns. [9]:

1- They can speed up the development process by providing tested, proven

development paradigms.

2- Effective software design requires considering issues that may not become visible

until later in the implementation.

3- Reusing design patterns helps prevent subtle issues that can cause major problems.

Therefore, design patterns improve code readability for coders and architects

familiar with such patterns.

4- Design patterns provide general solutions, documented in a format that does not

seek specific requirements to tackle a particular problem.

5- - Common design patterns can be improved over time, making them more robust

than ad-hoc designs

2.3 Families of Model-View-*(MV*) Design Patterns

The main goal of this section is to introduce the different families of MV* design patterns

and illustrate any differences between and also explore the various patterns within those

families.

Generally speaking, MV* design patterns provide applicable and reusable solutions to the

frequently emerging problem of synchronizing user interfaces with domain data, as in Widget-

based user interfaces (which is not strictly a MV* pattern family).They are easy to implement

for simple applications. However, as the approach does not separate domain and interface

concerns, maintainability may become problematic when the complexity of the user interface

grows [29].

14

 MV* patterns are in fact, classified in three main categories: Model View Controller

(MVC), Model-View-Presenter (MVP)[30] and Model-View-View Model (or Presentation

Model) (MVVM). [31].Moreover with the ongoing evolution of programming languages and

software technology, the MV* design patterns were changing too, and different families of

patterns were born.

Figure 2.1: The Land of MV* Design Patterns [29]

2.3.1 Model View Controller (MVC) Design Pattern:

The term MVC has been in use since the late 1970s. It is made from Smalltalk, which is a

programming language that was particularly designed to support the concepts of object-

oriented programming. In the early 1970's, Alan Kay led a team of researchers at Xerox to

invent a language that let programmers modify the data objects they intended to

manipulate[45].

15

Model View Controller design pattern is also an architectural design that helps in making a

user interface mobile applications modify-able with future requirements by splitting the whole

application into three components, model, view and controller [42]. Each of these components

handles discrete set of tasks.

 Model: is the core of the application. This maintains the state and data that the

application represents. When significant changes occur in the model, it updates all of

its views

 Controller: basically takes the role of a vocal point between the model and the view.

 View: The user interface which displays information about the Model to the user. Any

object that needs information about the Model needs to be a registered View with

the Model.

Figure 2.2: Component of MVC design pattern[57]

MVC is the most influential family of design patterns for synchronizing a user interface

with the state of the application domain. The approach was first introduced in the 1980s, even

before widget-based user interfaces were used [32]. Initially, MVC was used for designing

and building desktop applications with rich graphical user interfaces. Over time, the original

MVC pattern evolved and variants emerged driven by technological evolutions and new

16

needs. Nowadays, MVC is used for integrating interface logic with domain logic in

development of various domains, such as Web applications and Mobile systems [33].

Central to MVC is the separation of the representation of the application domain (the

model) from the display of the application’s state (the view) and the user interaction

processing (the controller)[29]

Since the late 1980s when MVC was documented, numerous new MV* design patterns

emerged that aimed to eliminate the drawbacks of their predecessors.

The table below shows a brief description of the main characteristics of two different

programming languages for MVC.

17

Table 2.3: Smalltalk’80 MVC &Web MVC adapted from [29]

 Intent Motivation Structure Collaborations Consequences

Smalltalk’80

MVC

Separates the

concerns of the

application

domain and its

representation in

three modules,

each handling a

specific task

Support the design

and development of

highly maintainable

applications with rich

user interfaces by

maintaining a strict

separation between

domain logic and

presentation logic

The three

key

components

of the MVC

pattern are

Model, View

and

Controller.

The cooperation

between Model,

View and

Controller relies

on observer

synchronization

The division of

responsibilities

of the MVC

pattern has

proven to be

very effective.

Web MVC Separates the

domain logic

from the

presentation logic

for the domain of

Web applications

in three

components with

distinct

responsibilities

Due to specifics of the

way the Web works, it

matches well with the

principles of the MVC

design pattern.

The general

principles of

the MVC

family apply

to the MVC

pattern:

Model stores

data, View

displays

data, and

Controller

handles user

input.

The Web is

stateless and

operates as a set

of requests and

responses, so

there is no need

of strong

synchronization.

The MVC

design pattern

supports

clear separation

of

responsibilities

of web

application

logic, which

leads to better-

organized code

that is easy to

understand

and maintain.

18

Figure 2.3: Smalltalk’80 MVC pattern [29]

Figure 2.4: Web MVC pattern [29]

19

2.3.1.1 MVC Interaction Cycle

In this section we illustrate the MVC Interaction Cycle in four steps [43][44]:

 The first step: The user interacts with the view through a user input such as clicking a

button or a link on a user interface. The view sends the user input event to the

controller. The controller handles this request.

 The second step: The controller sends calls to the model to modify its state according

to the request

 The third step: The controller sends calls to the view to modify its state. In fact, when

the controller receives a request from the view, it may need to modify the view state;

for example, the controller could enable or disable certain buttons or menu items in the

user interface.

 The fourth step: The model updates the view representation when its state is changed.

Actually, something changes in the model. This change is based on some requests by

user input, such as clicking a button, or some other internal changes. The model

updates the view that makes its display and eventually the user interface changes.

This means that the view updates its state directly from the model.

Figure 2.5: Interaction between components of MVC [38]

20

2.3.1.2 Advantage of MVC Design Pattern

1- The biggest advantage of the MVC design pattern is that it separates the model from

the view. As stated earlier that the model represents the data and the business rules

and the view represents elements of the user interface such as texts, images, and form

inputs.

 This separation allows for easy changes for each object without affecting

each other. It also leads to easier maintenance and modification of the

UI[46].

 Separates the three objects that lead designers to work on the UI of mobile

devices without worrying about the underlying data .It also helps developers

focus on the data instead of being too concerned about data presentation

and avoid code repetition[44].

2- MVC has the ability to reduce designing time because programmers who focus on

the controller object can work independently while designers are responsible only for

the view object or model object.

3- MVC has the ability to bring about changes in the view object without recompiling

the code of the model objects or the object of the controller[46].

2.3.1.3 MVC Architectural Pattern of Mobile Web Application

It was already mentioned in the introduction, that mobile technologies is one of the swiftly

evolving areas in information technology. Mobile technologies are a perspective and a well

suited investment for many reasons. Most electronic devices are becoming smaller, requiring

less energy and a lower data transfer rate.

 Nowadays, more and more people start to use mobile devices because they are simply

very useful tools in for a wide range of purposes and fields. At the same time, the performance

of these devices increases rapidly and extends the possibilities of using such devices. Based on

21

innovations, new and more smart devices are produced , which means using mobile devices is

becoming inevitably prevailing and handy in so many fields.[41]

As we all know that there are so many types and brands of mobile devices and different

ways to present website content to them. In 1997 ,there was a Wireless Application Protocol

(WAP) Forum established and one year later , WAP 1.0 standard was introduced , which

described complete software stack for mobile internet access [25].

Since 2004, WAP disappeared from handsets as there is now support for full HTML even

in low-end market phones. Before WAP in Europe there were similar technologies, most

notably was Japanese i-Mode which also used cut-down version of HTML back in late 90’

[24].

The market of mobile devices will be increasing in the next few years. So using an

effective method to easily transfer existing applications into the new market will be very

valuable as mobile web application using MVC architectural pattern ,which is a very fast and

efficient way to build different end-user sites without the need of redeveloping the core

application .

2.3.2 Model View Presentation (MVP) Design Pattern

MVP was first described by Mike Potel from Taligent (IBM) in 1996. Potel in his work on

MVP [36] questioned the need for the Controller class in MVC. He noticed that modern

Operating System user interfaces already provide most of the Controller functionality in the

View class and therefore the Controller seems slightly redundant [29].

MVP patterns provide flexibility for designers who can allocate responsibilities in different

ways, so the patterns can be adjusted into a wide range of application scenarios. On the

counter side, MVP patterns are not very strict regarding separation of concerns, which may

increase the complexity of the code and hamper maintainability.

22

Figure 2.6: Differences between MVC & MVP [29].

2.3.3 Model View View Model (MVVM) Design Pattern

The term MVVM was first introduced by the WPF Architect, John Gossman, on his blog

in 2005 [37]. It was then described in depths by Josh Smith in his MSDN article “WPF Apps

with the Model-View-View Model Design Pattern” [38].

MVVM patterns support simultaneous representation of multiple views on the same data.

State of the art frameworks that support MVVM provide support for declarative specification

of parts of the synchronization and its automatic execution. MVVM emphasizes separation of

concerns, which Support understandability and maintainability. On the other hand, extensive

23

use of observer synchronization combined with multiple views can have a negative effect on

system [29].

Figure 2.7: MVVM pattern [29]

The table below illustrates the main differences between MVC and MVVM.

MVC

MVVM

The controller determines the Application

Flow

View Model encapsulates presentation

logic and state

Controller is a must View Model is an optional pattern

User hits the controller first User hits the view first

The view knows about the Model View can not see the Model

View obtains an instance of the Model View has an instance of the View Model

Table 2.4: Differences between MVC & MVVM

24

2.4 ICONIX Methodology

ICONIX is an object oriented software development methodology, consists of dynamic and

static workflows [47], and it uses UML diagrams in a four-step process that transfers from use

case to code.

Figure 2.8: ICONIX Methodology [48]

ICONX process is very suitable for MVC and focuses on the area that lies in between use

cases and code. It also describes the core logical analysis and design process.

This essential logical analysis is designed to move the user from requirement analysis to

implementation in a quick and efficient manner.

A very essential element of the ICONIX Process is the use of Jacobson's Robustness

Analysis technique to bridge the gap between requirements analysis and detailed design. In

fact, this analysis approach is the most convenient for MVC.

25

 2.4.1 ICONX Process

 The ICONIX process is divided into four milestones or founding steps .At every

stage; all steps are carefully reviewed and updated.

Milestone 1: Requirements Review

 This step is considered as requirements analysis, which is performed by

identifying a problem statement and real-world domain objects in a domain model.

It also includes identified functions requirement by Use Case diagram, which

generates some prototypes for each use case. From this analysis, use cases can be

identified, a domain model is produced and some prototype GUIs are made.

 Milestone 2: Preliminary Design Review

 Another very important milestone is Robustness Analysis. It is considered as a

middle ground between analysis and design as it discovers objects for each use case

and updates the domain model according to the objects discovered.

 Once use cases are identified, texts can be entered to see how users and the system

will interact. Then, robustness analysis is done to find any potential errors in the

use case text which means the domain model is updated accordingly.

 The use case text is important to observe how users will interact with the

proposed system.

 Milestone 3: Detailed Design Review

 This step is mainly concerned with the design. We use objects which are

discovered from the robustness analysis to make sequence diagrams, and we use the

domain model as explained in the previous step to design the class diagrams.

 During this stage of the ICONIX process, the domain model and use case text

from milestone 2 are used to design the system . In this step ,class diagrams are

produced from the domain model and the use case texts are used to make sequence

diagrams.

https://en.wikipedia.org/wiki/Domain_model
https://en.wikipedia.org/wiki/Prototype
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Sequence_diagrams
https://en.wikipedia.org/wiki/Sequence_diagrams

26

 Milestone 4: Deployment

 The final step is the execution of all the desired system .Unit tests are written to

verify if the system matches to the use case text and sequence diagrams. Finally, the

code is written using the class and sequence diagrams as a guide.

Figure 2.9: The phases of the ICONIX process [48]

2.4.2 Robustness Analysis

Robustness analysis intends to fill the gap between analysis (the what) and design (the

how). Actually, robustness analysis is considered as a preliminary design when designers

make assumptions on the design structure and start thinking of any possible technical

solutions.

For supporting robustness analysis, they use robustness diagrams. it uses UML concepts.

and also It is a specialized communication diagram that uses stereotyped objects.

27

 It was Introduced by Jacobson and it basically analyzes use cases and estimates

the first set of objects that participate with those use cases. It also classifies objects

according to the roles that use cases play. Robustness analysis helps discover

objects and identify the main domain classes before design or implementation [49].

Robustness Analysis consists three of elements

 Entity objects: describe objects dealing with persisting states.

 Boundary objects: describe links between the system and environment.

 Controller objects: describe use-case specific behavior

Figure 2.10: Robustness diagram symbols (EBC) [49]

2.4.2.1 Robustness Analysis in MVC Design Pattern

 MVC objects are related to EBC objects in one-to-one mapping. Thus, entity object

maps onto model object, boundary object maps onto view object, and controller is the

same in MVC and EBC [50].

 The MVC and EBC are techniques that separate responsibilities in software to avoid

potential coupling [51].

28

Figure 2.11: Robustness analysis in MVC [50]

 ICONIX is a methodology approach that uses entity, boundary, and controller

objects that presents a fundamental approach for modeling software systems , and also

it is the most convenient for GUI-based Object-Oriented (OO) applications.

The figure below shows Entity Boundary Controller pattern:

Figure 2.12: EBC pattern

29

 Since the analysis use cases consider matters such as “what”, and design “how,”

robustness analysis is therefore really preliminary design[49].

Figure 2.13: Robustness analysis mediates between analysis and design [48]

2.4.2.2 Robustness Diagrams Rules:

Robustness analysis describe how actors use boundary (interface) objects to

communication with the system[52] .

Figure 2.14: Actors communication with the system

30

When we start extracting objects, analyze use cases and attempt to ignite interaction

among diagrams through these objects, there are four primary rules that must be followed:

 Actors are allowed only to interact with the boundary objects.

 Boundary objects are allowed only to deal with controllers and actors.

 Entity objects controllers are allowed to engage in the same interaction.

 Controllers basically interact with boundary objects and entity objects, and to other

controllers, but not with actors.

 Generally, there is one basic map between the actor and the boundary objects. In this

context, The controller objects can merely interact with all the objects, but not allowed to

access the actor. Also, the entity objects can interact with each other through the controller

object. Thus, the controller object is considered the route of communication between objects

[50].

Figure 2.15: Robustness diagram rules [50]

31

2.5 Related work

Erik G. Nilsson [15]: has proposed a set of important guidelines on how to solve various and complex

problems. This set was mainly used as means for facilitating development of more user friendly

applications on mobile devices (PDAs/Smart Phones).His work has explicitly provided practical

advice for each single problem in different contexts.The main focus was given to three problems

which were categorized as follows : utilizing screen space ,interaction mechanism and design at

large .Each was described in more detail.

Eric Magnuson[16]: attempted to provide a clearer definition for design patterns, find out how

effective they are and why they have not been utilized to their full potential .Additionally, the

use of design patterns in practice is demonstrated by using patterns to design a user interface.

The interface was then implemented in a prototype application for Nokia N 900 mobile as a

model. Examples for the prototype were the Two Panel selector , Card Stack and Hub and

Spoke applications for the mentioned device .In his detailed work , there was a great effort to

demonstrate the full process involved in developing user interfaces with design patterns.

Amin A.Rasooli[17]: has clearly presented the real-world challenges faced by users of mobile

devices like Visibility of system status, Flexibility and efficiency of use and many more. It was

suggested in his work that designing a HCI pattern is a solution to solve our usability problem

that occurs in different contexts of use. The way the problems were categorized was similar to

Erick G.Nillson .

Astahovs Ilja[18]: has adopted MVC design pattern for game development and conducted a number of

case studies .It was aimed at assessing the functionality and efficiency of a variety of design patterns on

32

a game project. His findings were that Some design patterns (e.g. MVC and Observer, State Machine

and Singleton) are best suited when used together. Both MVC and State (State Machine) patterns have

shown its great potential as a foundation for small game applications. The MVC is a decent choice for

overall game structure and this pattern is adopted by other middleware. The State Machine can be used

to split the Model further into smaller modules. He also emphasized that Even though the mentioned

design patterns date back to 1994, they are still used by the popular frameworks. Such DPs as MVC

and State Machine are best suited for building a game engine or a small game from scratch because

they define the whole structure of the application.

33

CHAPTER 3

The Proposed Solution for Designing a Mobile User Interface

Using MVC Design Pattern

3.1 Introduction

 This chapter describes in detail the proposed solution that we used to solve the problem.

The proposed approach is based on using Model View Controller design pattern (MVC) and

ICONX methodology for mobile devices. Section 3.2 gives an overview on the proposed

prototype. Section 3.3 introduces the framework of Model View Controller pattern. Section

3.4 explains the ICONX methodology, including the stages, the models and the techniques of

each stage of the solution approach.

3.2 Overview of the Solution Approach

 The proposed solution to the stated problem is mainly based on utilizing MVC pattern (see

Section 2.3.1 in Chapter 2) and ICONX methodology (as given in Section 2.4 in Chapter 2).

The methodology used for solving this problem is ICONX. It involves many steps including

the selection of a proper design pattern. The ICONIX process is a streamlined approach to

software development. One of the main advantages of this process is that helps extract code

from use cases quickly and efficiently. This process is done by using a concentrated subset of

the UML and related tools and techniques. This methodology has also the ability to solve

complex problems related to mobile user interface. Thus, MVC proves to be the most effective

and convenient design pattern to fix the stated problem.

34

3.3 Framework of MVC Design Pattern

 MVC pattern is usually implemented by ASP MVC.NET and J2EE, but in this research

we use ASP.NET MVC because it is easier than J2EE because J2EE has more details that

need to be well studied .The following describes the major differences between ASP.NET

MVC and J2EE MVC:

 The Model in ASP.NET MVC is business-based logic, while in J2EE MVC is simple

java bean classes.

 The View in ASP.NET MVC is ASP files ,but in J2EE MVC is JSP pages.

 ASP.NET MVC has one controller for each possible view, but in J2EE MVC has only

one controller.

 ASP.NET is a development framework for building web pages and web sites with HTML,

CSS, JavaScript and server scripting. This application framework was developed by Microsoft

for building desktop applications. It is based on Common Language Runtime (CLR) which

gives developers the freedom to develop applications in multiple languages like Visual C#,

VB.NET, Visual J#, Visual C++ and other languages that are supported by the .NET

framework [39].

 ASP.NET supports three different development models: Web Pages, MVC , and Web

Forms.

.NET FREMWORK

ASP.NET

MVC

framework

Web forms

Figure 3.1: .NET framework and MVC[55]

35

 MVC is actually one of three ASP.NET programming models, which include framework for

building web applications using the Model View Controller design. The MVC model defines

web applications with three logic layers: the data access layer (Controller logic), the display

layer (View logic) and the business logic layer (Model logic), (for more detail on MVC

design, see chapter 2 section 2.3.1)

 In this research, we used a specific programming language with a framework such as C#,

which is an object-oriented programming language by Microsoft. It mainly aims at combining

the computing power of C++ with the programming ease of ASP.net [36].

3.4 ICONX Methodology

 The ICONX Methodology is defined in detail. (see chapter 2 section 2.4). It mainly

consists of four stages. Figure 3.2 shows the main stages of ICONX methodology and Figure

3.3 shows the sub-stages of each main stage.

Requirements Review

Preliminary Design Review

Detailed Design Review

Implementation

Figure 3.2: The main stages of ICONX methodology

http://searchsoa.techtarget.com/definition/object-oriented-programming
http://searchsqlserver.techtarget.com/definition/C

36

MNB

Figure 3.3: The sub- stages of ICONX methodology

Stage 1: Requirements Review

Stage 2: Preliminary Design Review

Stage 3: Detailed Design Review

Stage 4: Implementation

1-Perform robustness analysis for each use case

2-Update domain model

1-Identify real-world domain objects

2 Allocate functional requirements on use case diagrams

3-Generate GUI Prototyping for each use case

1-Generate Sequence diagram from Boundary and Entity Objects

on the Robustness diagram.

2-Select a convenient design pattern.

3-Update the domain Model into class diagrams as needed.

write the code by using the Class and Sequence Diagram and

select Program Language .

37

3.4.1 Stage One : Requirements Review

 Once we think about implementing the ICONIX process, we must bear in mind some

requirements for analysis. This analysis enables use cases to be identified, a domain model can

be produced and some prototype GUIs are created as a result. This step includes identifying

domain model, use cases and generating GUI prototyping for each use case.

 3.4.1.1 Identifying Real-World Domain Objects

 This is the first and the most important step. It simply focuses on the real world and

describes the problem of user interface. A clear definition of the problem leads to better

understand the next stages and to explicitly understand the scope of the problem.

 3.4.1.2 Allocate Functional Requirements on Use Case Diagrams

 The use case diagrams are usually defined during the requirements activities to capture

the requirements of the functionalities of the system. It also presents the requirements that

need to in explained in more detail. The scenario of the use case is to describe the

interaction of the user with the system.

 The use case illustrates all actors (actor is any person who has interaction with the

user interface) .Another function of the use case is to describe how the user interface

responds to those actors . The representation is used to extract the functional requirements

of the system.

Figure 3.4: Use case diagram

Task n

Task1

Task2

Actor

38

 3.4.1.3 Generate GUI Prototyping for each Use Case

 At this stage, the final prototypes of the main components are placed. The user interface

is the main component and user interface prototypes will be generated for each use case of

the system being developed to illustrate their actions.

 For examples, the elements of the proposed GUI include:

 Button : a control that can be clicked to perform an action

 A text box: allows the user to enter text information which is to be used by the

program.

 A list box: a type of box within a collection of graphical user interface widgets that

can be grouped.

3.4.2 Stage Two :Preliminary Design Review

 This step is mainly concerned with using a robustness analysis, which is the best for

visually describing the MVC (discussed in more detail in chapter 2 section 2.4.2).This

analytical procedure has two sub-steps : Perform Robustness Analysis and Update Domain

Model.

 3.4.2.1 Perform Robustness Analysis for each Use Case

 The Robustness diagram includes multiple elements. It actually consists of a class

diagram and an activity diagram. It visually represents behavior of use case , showing both

participating classes and software behavior. A robustness diagram is probably easier to read

than an activity diagram since objects speak to each other.

 Boundary: is the interface between the system and the outside world. Boundary

objects are typically screens or web pages (i.e., the presentation layer that the actor

interacts with).

 Entity: Entities are usually objects from the domain model.

 Control: Control objects are the “glue” between boundary and entity objects.

39

 Figure 3.5: Elements of robustness diagram

 3.4.2.2 Update Domain Model

 This sub-task is performed through extracting entity classes from the domain model, then

adding any missing entities discovered during the robustness analysis.

3.4.3 Stage Three: Detailed Design Review

 During the stage of ICONIX process, the domain model and use case text from

stage 2 are used to design the system being built. A class diagram is produced from the

domain model and the use case text is used to make sequence diagram. This step is

categorized into: Sequence diagram, Design patterns ,and Class diagram.

 3.4.3.1 Generate Sequence Diagram from EBC on the Robustness

Diagram.

 This step explains the sequence model, which is one of the UML models .We must show

interaction between the set of objects(e.g. boundary and entity) ,messages being sent and

received by those objects and demonstrate the behavior of objects[53].

 In fact ,the boundary and entity classes in a robustness diagram will generally become

object instances in a sequence diagram, while controllers will become messages[49].

40

Figure 3.6: Sequence diagram of MVC[49]

 3.4.3.2 Select Suitable Design Pattern

 As we know, there are 23 different types of design pattern (explained in detail in chapter

2 section 2.2) However, we still need to define what we actually mean by MVC design pattern.

 MVC is basically a set of classes to build a user interface. Those classes that define the

main MVC relationship are Observer and Strategy .The diagram below illustrates the three

essential types of objects in the Observer: the model is the application data, the view is the

screen and the controller defines the way the View reacts to user input. As shown, this

comprehensive Observer process allows us to attach multiple Views to the same model.

41

Figure 3.7: Observer design pattern[59]

 This Observer pattern aims at defining the one-to- many relationships

between the subject and the observers. This means that if the Subject is altered,

then all Observers are updated .The Subject here keeps the list of the Observers

and can attach and detach objects to the list. Another component of MVC is the

View –Controller relationship.

 The Controller is used by the View to implement a certain type of response .It

also allows the View to respond differently to user input .This View-Controller

connection is an example of the strategy design pattern.

Figure 3.8: Strategy design pattern [58]

42

 Now we can state that the View takes on the role of the Observer object and the

Model acts as a Subject from the Observer pattern as shown in the two diagrams

below:

 The View is a Context and the Controller is a Strategy object. From this

combined knowledge we can draw the MVC UML class diagram.

 Figure 3.9: MVC design pattern

 3.4.3.3 Update the Domain Model into Class Diagrams as needed.

 Class diagrams indicate the set of classes and relationship between them. Every class

contains three elements: Class name, Attributes and Method or Operation.

Class Name

Attributes

Operation

Figure 3.10: Class diagram

43

3.4.4 Stage Four : Implementation

 This is the final stage of the ICONEX methodology. It verifies the system which will match

up with the Use case, Text and Sequence diagrams. Finally, Code is written by using the Class

and Sequence diagrams .In this research we used the ASP.NET MVC framework for

designing user interface of mobile.

44

CHAPTER 4

Implementation

4.1 Introduction

 In this chapter we explain the actual implementation of the proposed solution .The

whole process is based on the selected methodology and the programming language for

user interface of mobile devices.

4.2 Steps of the ICONIX Methodology

 As we already mentioned that ICONX methodology (more details in Chapter 3

section 3.4) .This methodology is very efficient at solving such mobile related

applications. It consists of four main steps and each step has its own secondary parts. All

of these steps will be executed to solve the problem according to the proposed

methodology.

 4.2.1 Step One :Requirement Analysis

 This step is divided into three subtasks, these subtasks are:

 Domain model : is the Class in its primitive status. In this step there are three

classes : Storage Class , MobileController Class and User Class.

The next Figure illustrates domain model of the application.

Storage
MobileController

User

 Figure 4.1 : The domain model of the application.

45

 Use Case Diagram

 This step illustrates the roles of the proposed actors who interact with the

application. This step also shows the most interactive user/s with the general functions

of the system.

Mobile User

Open

Looking up SEARCH

ADD

DELET

Creat SMS

SELECT

WRITE

SEND

END

Figure 4.2 :Use case diagram of the application.

46

 GUI Prototype

 It shows a prototype of each use case in the application. And these use case

are:

1. Use case: Start

Figure 4.3:Prototype of the start use case

2. Use case: Selection process

Figure 4.4:Prototype of the Selection process use case.

47

3. Use case: Contacts Setting

Figure 4.5:Prototype of contacts setting use case.

4. Use case: Create a message

Figure 4.6:Prototype of the Create a message use case.

48

 4.2.2 Step two: Preliminary Design Review

 This step consists of two subtasks: Perform robustness analysis for each use case and

update domain model.

 Perform Robustness Analysis

1. Robustness Analysis for Star

1-The application displays the Start Screen as shown in figure(4.3)

2-The user clicks on the open button

3-The application displays the choose screen between processes

4-The application displays Contact screen

5- The application displays Message Screen

6-Select of typing

7-Choose a contact

Figure 4.7: Robustness Analysis for Star

Display different ways of texting Chooses the contact

MobileController

1
UI

2

display

3

4

5

6

Storag

e

Display of the names

7

Contact screen

Message screen

Mobile user

49

2. Robustness Analysis for contact setting

1- The user clicks on the contact button

2- The application displays the contact screen as shown in figure(4.5)

3- The user selects ADD process

4- The user selects SEARCH process

5- The user selects DELETE process

Figure 4.8 :Robustness Analysis for contacts setting.

ADD Contact screen Display

SEARCH

Mobile

MobileController
5

4

3 2 1

DELETE

Mobile User

50

3. Robustness Analysis for Create Message

1- The user clicks the MESSAGE button

2- The application displays the message screen as shown in figure (4.6)

3- Select one of the typing options to compose SMS messages.

4- Choose the contact

5- Send the message

Figure 4.9: Robustness Analysis for Create Message.

display

compose

Choose the name

MobileController

5

4

3

2
1

Message screen

Mobile User

51

4. Robustness Analysis for Search.

1- The user clicks on the CONTACT button

2- Then, the user searches for Contact by entering contact names

3- The application executes the search of the name from MobileController class

4- The application tests (if the contact name found or not)

5- The contact is SELECTTED if found.

6- If not found, then the keyboard is automatically hidden

 Figure 4.10: Robustness Analysis for SEARCH Contact.

5. Robustness Analysis for DELETE Contact

1-The user clicks on the CONTACT button

 2-The application displays the Contact Screen

3-Select the contact name from the list box

 4-Choose the DELETE option.

Contact screen
SEARCH MobileController

YES NO

5

1
2 3

6

4

1 2 3

4

Contact screen
MobileController

Mobile User

 Figure 4.11: Robustness Analysis for DELETE contact

52

 4.2.3 Step Tree: Detailed Design Review

 This step divided into three subtasks : generate sequence diagram from boundary and

entity objects on the robustness diagram ,choose a suitable design pattern and update the

domain model into class diagrams as needed. These subtasks are:

 Sequence Diagram

 Sequence diagrams illustrate the behavior allocation in timeline for each use case.

1. Sequence Diagram of the Start Screen

1:open

Object1

2:click open button

Object2

2.1:if click contact button

Object3
Object4

3:if click message button

Figure 4.12: Sequence Diagram of the Start Screen.

Start screen

Open button Contact screen Message screen
Mobile user

53

2. Sequence Diagram of SEARCH Contact

type the name

2:search on the name

Object2Object1

3:searching a contact

4:if the name found

5: not found

3. Sequence Diagram of ADD Contact

1:open

2:click contact button

Object2 Object3

3:click add button

Object1

4:add contact

Figure 4.14: Sequence diagram of ADD contact.

Figure 4.13: Sequence diagram of search contact.

Mobile user Start screen Contact screen MobileController

MobileController Contact screen Mobile user

54

4. Sequence Diagram of DELETE Contact

1:open

2:click contact button

Object2 Object3

3:click delete button

Object1

4:select contact

5:delete contact

Figure 4.15: Sequence diagram of DELETE contact

5. Sequence Diagram of COMPOSE Message

 Figure 4.16 :Sequence diagram of COMPOSE message.

Contact screen

screen

Mobile user Start screen MobileController

1:open

2:click message button

Object2 Object3

5:select a contact

Object1

3:chose any type

4:typy message

6:send a message

MobileController Message screen
Start screen Mobile user

55

 Design Pattern

 At this stage , we determine the appropriate pattern. As we stated earlier that the

MVC pattern is the most suitable and most effective for the proposed methodology in

this thesis. Also, the ASP.NET is selected because MVC is one of three main ASP.NET

programming models. The most important components of MVC in ASP.NET are as

follows:

 MVC Folder: A typical ASP.NET MVC web application has the following

content of all folders.

Application

information

Properties

References

Application folders

App_Data Folder

Content Folder

Controllers Folder

Models Folder

Scripts Folder

Views Folder

Configuration files

Global.asax

Web.config

Figure 4.17: The MVC Folders.

The folder names are equal in all MVC applications. The MVC framework is based on

default naming. Controllers are in the Controllers folder. Views are in the Views folder,

and Models are in the Models folder. You do not have to use the folder names in your

application code. Standard naming reduces the amount of code to make it easier for

developers to understand MVC projects.

The table below describes each single folder and its function.

56

The Name Folder Description

App Data folder is for storing application data

Content Folder is used for static files like style sheets (CSS files), icons and images.

the file Site.css in the content folder. The style sheet file is used to edit or

change the style of the application.

Controllers

Folder

contains the controller classes responsible for handling user input and

responses.

MVC requires the name of all controller files to end with "Controller".

Models Folder contains the classes that represent the application models. Models hold

and manipulate application data.

Scripts Folder stores the JavaScript files of the application.

Views Folder The Views folder stores the ASP.NET files related to the display of the

application (the user interfaces). And also it contains one folder for

each controller.

Table 4.1: The Application Folders

The main operations that MVC contains :

1- Adding a Model

 Folders of Models contains the classes that represent the application model.

57

Figure 4.18: Adding a class into a Model

Figure 4.19: Create a Storage class into a Model .

2- Adding a Controller

Storage.cs

 Figure 4.20: Adding a Controller.

58

Figure 4.21: Adding a MobileController into Controller.

3- Adding Views for Displaying the Application

 The Views folder stores the files (ASP files) related to the display of the

application (the user interfaces). These files may have the extensions html, asp, aspx,

cshtml, and vbhtml, depending on the language content. The Views folder contains one

folder for each controller. Create a Mobile folder, and a Shared folder (inside the Views

folder).

Figure 4.22: Adding a view.

MvcApplication2.Model.Storage

59

 The Mobile folder contains pages for Index. The Shared folder is used to store views

shared between controllers (master pages and layout pages).

 Class Diagram

 The system is analyzed based on the point of view of each single user. The most

important classes in this application:

1. Storage Class

In this class, all variables are identified which will be used in the application .

It is important that this class is inside the model folder.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace MvcApplication2.Models
{
 public class Storage

 {
 public List<string> NAMES { get; set; }

 }
}

2. Mobile Controller Class

This class contains this function (ActionResult Index()) , which connects the

Controller with the View. Also, an object is created from the variables defined in

the class model folder which means adding a value to those variables.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcApplication2.Models;

namespace MvcApplication2.Controllers
{ public class MobileController : Controller {

 public ActionResult Index()
 { Storage obj = new Storage();
 obj.NAMES = new List<string>()
 {
 "MOHAMED",

60

 "SANA",
 "SOHIB",
 "ABDALRAHMAN",
 "BASMA",
 "MUSTAPHA",
 "SAMAR",
 "AHMED",
 "NORA",
 "REIAM",
 "NONA",
 "MAHA",
 "FARH",
 "MAMA",
 "BABA",
 "ALI",
 "SOSO",
 "MEDO",
 "AHLAM",
 "SAMAR",
 "SALAH",
 "AHMAD"

 }; return View(obj); } }}

3. UI Class

This class is responsible for designing the user interfaces of the application. The

designing of UIs relies on the HTML language. The HTML contains many

functions which are written by JavaScript .This UI class and Site Class are both in

the View folder , It is responsible for the action in the application.

4. MVC Application Class

 This class contains the function of the RegisterRouter which helps in the routing

process. This function helps identify URL structure and map the URL with the

Controller. Example: http://localhost:2014/.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

namespace MvcApplication2
{ public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 { routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

http://localhost:2014/

61

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Mobile", action = "Index", id =
UrlParameter.Optional } // Parameter defaults
);

 }

 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes); } }}

5. Site-Page_Load Class

This class provides an instant online application at (www.mobiletest.me)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

 namespace MvcApplication2.Views.Shared
 {public partial class Site1 : System.Web.UI.MasterPage
 { protected void Page_Load(object sender, EventArgs e){} }

The next figure describes Classes Diagram of the application.

+set()

+get()

+Names : String

 Storage

+ActioResult Index()

MobileContller

UI

+RegisterRoutes(RouteCollection routes)()

MVCApplication

#Page_Load()

Site-Page_Load()

Figure 4.23: The class diagram of the application

62

4.5 Step 4: Implementation

 This step introduces all the screens of the application as shown below.

Samples from screenshots for the application.

 ة

Figure4.24:The Start Screen of the application

Figure4.25:The Select Process Screen of the application

Figure 4.4:Prototype of the (contact setting , create

message) use case

Figure4.26: Contacts Settings Screen of the application

63

 Figure4.28: SMS1 Screen of the application

Figure4.27:Message Screen of the application

64

Figure4.29:SMS 2 Screen of the application

Figure4.30: SMS3 Screen of the application

65

CHAPTER 5

Conclusions and Future work

5.1 Conclusions

 One of the most important findings in this research is that Design Patterns can solve

specific design problems and make object oriented designs more flexible and reusable.

They also help designers reuse several designs, including design alternatives to avoid other

alternatives that might compromise reusability.

 It was also concluded that the main objective of design patterns is to reuse good practice

in the design of newly developed applications. Another important objective of using design

patterns is to develop common applications and better understanding of the overall

designing process which is performed by reusing the same generic names for implemented

solutions.

 This thesis has concluded that MVC patterns are considered as pioneering patterns for

synchronizing user interfaces with domain data. It is actually an excellent choice for Web-

based applications .In fact, Web structures naturally support the division of responsibilities

of the components of MVC patterns . However, these patterns suffer from poor handling of

view state logic, and assume decoupled View and Controller which does not match with

many state of the frameworks in project.

 Robustness Analysis helps discover objects for each use case and identify the main

classes before designing or implementation , also it is the best way to analyze MVC

because it represents three objects :Entity objects present classes, Boundary objects present

links between the system and the external environment and Controller objects present

logical software functions.

 Finally, we used ASP MVC .NET framework to solve the problem. After applying

ICONEX and MVC.

66

5.2 Future Work

 The researcher will attempt to implement all of the proposed work on "actual mobile

phones connected to Internet which can allow for more options for users such adding and

editing photos, looking up contacts via emailing. Another future goal is to research for

more up-to-date design patterns and find what other UI related problems can be solved by

using design patterns.

67

Reference

[1] Bettina Biel, Thomas Grill, Volker Gruhn, “Exploring the benefits of the combination of a

software architecture analysis and a usability evaluation of a mobile application”, Journal of

Systems and Software (JSS) Vol 83(11), pp 2031-2044, 2010.

[2] Dragos Manolescu, Markus Voelter, and James Noble, "Pattern Languages of Program Design

", 1st ed.: Addison Wesley, 2006, vol. 5.

[3] www.gofpatterns.com/sitemap.php Acceded in [April_2013].

[4] wiki.sdn.sap.com/wiki/display/ABAP/UnitSu.GoF+Design+Patterns Acceded in[April_2013]

 [5] Christopher Alexander, Sara Ishikawa, and Murray Silverstein, "A Pattern Language: Towns,

Buildings, Construction (Cess Center for Environmental)", NewYork: Oxford University Press,

1977.

[6] Erich Gamma, Ralph Johnson, Richard Helm, and John Vlissides, "Design Patterns: Elements

of Reusable Object-Oriented Software",Boston, MA, USA: Addison-Wesley Longman Publishing,

1995.

[7]www.intechopen.com/books/human_computer_interaction_new_developments/hci_design_patte

rns_for_mobile_applications_applied_to_cultural_environments Acceded [April_2013].

 [8] www.wiki.sdn.sap.com/wiki/display/ABAP/UnitSu.GoF+Design+Patterns Acceded in [March

_2013].

 [9] www.javagyan.com/blogs/design-patterns Acceded in [March_2013].

[10] msdn.microsoft.com/en-us/library/ff649643.aspx Acceded [May _2013].

[11] Hojat A. Hasanvand and others ," Mobile Computing:Principles, Devices and Operating

Systems ", World Applied Programming, Vol (2), Issue (7),pp 399-408 ,July 2012.

 [12] Kot, Chelsea , "A Brief History of Tablets and Tablet Cases". Tablets2Cases.

http://www.tablet2cases.com/wiki/about/history/.Retrieved December 10, 2011. of-personal-

digital-assistants1.

 [13] "History of the HP 95LX computer". HP Virtual Museum. Hewlett Packard.

http://www.hp.com/hpinfo/abouthp/histnfacts/museum/personalsystems/0025/0025history.html.

[14] www.webopedia.com/quick_ref/mobile_OS.asp Acceded [May_2013].

http://www.gofpatterns.com/sitemap.php
http://www.intechopen.com/books/human_computer_interaction_new_developments/hci_design_patterns_for_mobile_applications_applied_to_cultural_environments
http://www.intechopen.com/books/human_computer_interaction_new_developments/hci_design_patterns_for_mobile_applications_applied_to_cultural_environments
http://www.wiki.sdn.sap.com/wiki/display/ABAP/UnitSu.GoF+Design+Patterns
http://www.javagyan.com/blogs/design-patterns
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://www.webopedia.com/quick_ref/mobile_OS.asp

68

 [15] Nilsson Erik G,"Design guidelines for mobile applications", [Report] : SINTEF Report

STF90 A06003. - Oslo : SINTEF Telecom and Informatics, 2005. - ISBN 82-14-03820-0.

 [16] Eric Magnuson, "design patterns in user interface design"[project], Worcester Polytechnic

Institute, Project Advisor Project Matthew Ward and Jeffrey LeBlanc ,2010.

[17] Amin A.Rasooli," Design patterns for user interface", Topic paper, CS5760 by Prof. Pastel,

Spring 2012.

[18] Astahovs Ilja,"Use of design patterns for mobile game development"[project], Project Advisor

Project Johan Eliasson ,spring 2012.

 [19] Erik G. Nilsson,"Design Patterns for User Interface for Mobile Applications", Computer-

Aided Design of User Interfaces VI, pp 307-312, 2009.

[20]www.techterms.com/definition/smartphone Acceded [March_2013].

[21] S. Alpaev .” Applied MVC Patterns. A pattern language”, presented at the Viking PLoP

conference,2005.

[23] Joydip Kanjilal ,"Implementing the MVC Design Pattern in ASP.NET",article,31 Jan 2008.

[24] Brian Fling, "Mobile Design and Development: Practical Concepts and Techniques for

Creating Mobile Sites and Web Apps", O’Reilly, 2009 .

[25] Marek Stępień, "WAP dla każdego," Helion, 2001.

 [26] K.Wseem Abrar , Prof. R.M.Noorullah ," Comparative Study In Utilization Of Creational

And Structural Design Patterns In Solving Design Problems", International Journal of Information

Technology (IJIT), Volume – 1, Issue – 1, August 2012

[27] S. S. Suresh, Prof. Dr. M. M. Naidu and S. Asha Kiran.” Design Pattern Recommendation

System (Methodology, Data Model and Algorithms)”. presented at International Conference on

Computational Techniques and Artificial Intelligence (ICCTAI'2011).

 [28] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view controller user interface

paradigm in smalltalk-80,” J. Object OrientedProgram., vol. 1, no. 3, pp. 26–49, Aug. 1988.

[29] Artem Syromiatnikov , Danny Weyns," A Journey Through the Land of Model-View-*

Design Patterns",Topic paper , October-2013.

[30] M. Potel, “MVP: Model-View-Presenter The Taligent Programming Model for C++ and

Java,” Taligent Inc, 1996.

[31] “GUI architectures,” http://martinfowler.com/eaaDev/uiArchs. html, 2006, [accessed October-

2013].

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides," Design patterns: elements of reusable

object oriented software", Boston, MA, USA:Addison-Wesley Longman Publishing Co., Inc.,

1995.

http://www.techterms.com/definition/smartphone

69

[33] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view controller user interface

paradigm in smalltalk-80,” J. Object Oriented Program., vol. 1, no. 3, pp. 26–49, Aug. 1988.

[34] ” Software design pattern”. Available :http://en.wikipedia.org/wiki/Software_design_pattern

[35]] S. S. Suresh, Prof. Dr. M. M. Naidu and S. Asha Kiran.” Design Pattern Recommendation

System (Methodology, Data Model and Algorithms)”. presented at International Conference on

Computational Techniques and Artificial Intelligence (ICCTAI'2011).

[36] The Taligent Programming Model for C++ and Java (1996) by Mike Potel,

http://www.wildcrest.com/Potel/Portfolio/mvp.pdf.

[37]Introduction to Model/View/ViewModel pattern for building WPF apps (2005) by John

Gossman, http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx

[38]WPF Apps With the Model-View-ViewModel Design Pattern (2009) by Josh Smith,

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx.

[39] S. Danturthi, “Comparative Study of Web Application Development with SQL Server and

Db4o,” Master’s Thesis in Computer Science, Mlardalen University, Vasteras, 2011.

[40] S. Rakibul Hasan . “Developing an online store for a startup apparel business”. Bachelor's

Thesis. Business Information Technology. April 2013.

[41] Tomáš Chlouba "Design Patterns in Mobile Architectures", Topic paper , University of

Hradec Kralove, Rokitanskeho 62, Hradec Kralove, 500 03 Czech Republic, October 31, 2010..

[42]] P. Argall1, R. J. Sica1.” Development of a new Lidar Data Analysis Program”. The

University of Western Ontario London ,2013.

 [43] G. E. Krasner , S. T. Pope. “A description of the model-view-controller user interface

paradigm in the smalltalk-80 system”. Journal of Object Oriented Programming, , 1988.

[44] A. Kolu.” MVC FRAMEWORKS IN WEB DEVELOPMENT”. Master thesis, University of

JYVSKYLN, 2012.

 [45]] E. Gamma, R. Helm, R. Johnson, and J. Vlissides , “Design Patterns: Elements of Reusable

Object Oriented Software”, Addison Wesley, Boston, 1995.

[46]] L. D Í E Z.” Secure, scalable and component based Web shop using Struts and Hibernate”.

Master of Science Thesis Stockholm, Sweden 2006.

[47] ” ICONIX Process “. available : http://iconixprocess.com/iconix-process/.

[48] ” Mastering UML with Enterprise Architect and the ICONIX Process”. available :

http://www.iconixsw.com/eaiconixprocess.html [2013].

[49] F. Cover. D. Rosenberg, M Stephens .”Use Case Driven Object Modeling with UML: Theory

and Practice” . Apress Berkely, CA, USA ©2007, Jul 31, - 472 pages.

http://en.wikipedia.org/wiki/Software_design_pattern
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://iconixprocess.com/iconix-process/
http://www.iconixsw.com/eaiconixprocess.html

70

[50] S. Mukhtar. 22 Aug 2004 .” Applying Robustness Analysis on the Model–

View–Controller (MVC) Architecture in ASP.NET Framework, using UML”.

Available: http://www.codeproject.com/KB/architecture/#General [1999-2013].

[51] J. Denham, George Heineman. “Entity, Boundary, Control as Modularity Force Multiplier”,

01/2009.

 [52] K. Scott and D. Rosenberg. March 01, 2001” Successful Robustness Analysis”.

Available : http://www.drdobbs.com/successful-robustness-analysis/184414712.

[53] Helen Sharp, Finkelstein and Galal Galal, ” Stakeholder Identification in the Requirements

Engineering Process”, Publisher: IEEE, Conference: Florence, pp 387 – 391, No 6359086, 1999.

 [54] G. E. Krasner , S. T. Pope. “A description of the model-view-controller user interface

paradigm in the smalltalk-80 system”. Journal of Object Oriented Programming, , 1988.

[55] Ashish Shukla, “Overview of ASP.NET MVC”, article, Apr 25, 2011.

[56] Walter Zimmer," Relationships between Design Patterns",[topic paper], Forschungszentrum

Informatik, Bereich Programmstrukturen, 2000.

[57] Anuar Lezama," Introduction to the mobile application development"[Master Thesis],

Advisor: Josep Solé Pareta, Fotis Christodoulopoulos, November 2010 .

 [58] E. Gamma, R. Helm, R. Johnson, and J. Vlissides , “Design Patterns: Elements of Reusable

Object Oriented Software”, Addison Wesley, Boston, 1995.

“User Interfaces and Events”. Available: K. A. Robbins. [59]

http://vip.cs.utsa.edu/classes/cs4773s2004/lectures/cs4773week4.html [February 2, 2014].

http://www.drdobbs.com/successful-robustness-analysis/184414712
http://www.c-sharpcorner.com/Authors/ashish_2008/ashish-shukla.aspx

