

UNIVERSITY OF BENGHAZI FACULTY OF SCIENCE DEPARTMENT OF BOTANY SCIENCE

Allelopathic effects of *solanum elaeagnifolium Cav* . aqueousExtracts on different plant receptors

A Thesis presented to the department of botany faculty of science Benghazi University in partial fulfillment of the requirement for the degree of Master of Science

By

EMAN .A. ABDELRAHMAN

Supervision

Dr. Salem El shatshat

2017

سُــــم اللهِ الرَّحْمَزِ الرَّحِيمِ الم تَرَأَزَالله أنزل مزالستَماء ماءً فأخرجنا به ثمراتٍ مُخْتلفا ألوانها ومزالجبال جُدَدُ بِيضٌ وحمرٌ مختلفٌ ألوانُها وغرابيبُ سُودٌ ومزالنَّاسِ والدَّوابِ والأنعام مُختلفُ ألوانُهُ كذلك إنَّما يَخشر الله من عباده العلماءُ إِزَالله عزيزُ غفور ٢

صــدَقَالله العَظِيم

((سورة فاطر آية : 27- 28))

Acknowledgement

I would like to start by thanking Allah for my existence and for the support He has provided me throughout my life. I would also like to thank my parents for their encouragement and support. They are the reason for my success thus far and will always be the most influential people in my life.

I want to thank my husband who supported me and were supportive and help me in my studies and I like to dedicate this to my son my beloved and I wish him success in his scientific and practical.

I thank my friends for providing me with the experience of a lifetime.

I want to thank my major professor Dr. Salem El Shatshat, for the confidence you had in me and providing me the opportunity to continue a graduate career and for encouraging my research and for allowing me to grow as a research scientist. Your advice on both research as well as on my career have been priceless

I would also like to thank all Al-Arab university laboratory members for their brilliant comments, advises and suggestions, thanks to you.

At the end I would like express appreciation to my beloved husband who was always my support in the moments when there was no one to answer my queries.

Dedication

I actually dedicate this research work first to

my loving parents who are always proud of

me, to husband, friends and all people who

gave me help and advices.

Abstract

(Solanum elaeagnifolium) is a serious perennial broadleaf weed in many semi-arid areas of the world including South Africa. It is one of the important invasive plant species in Mediterranean Basin countries. S. elaeagnifolium has a negative impact on crops, causing up to 75% yield loss, as well as an indirect impact by harboring plant pests and diseases. This study was conducted to determine the allelopathic effect of *S. elaeagnifolium* on germination four receptor plants (radish, wheat, tomato and lettuce) also to study this effect on root and shoot growth in addition to study this effect on dry and fresh weight of the receptors. The study was conducted by preparing five aqueous extracts of Solanum elaeagnifolium parts (root, stem, leaves, flowers, and berries) at six concentrations (0%, 1%, 2%, 5%, 10% and 20%), for experimentation of the allelopathy of S. elaeagnifolium seeds of these receptors were distributed in petri dishes containing whatmann filter paper moistened with 5ml of the aqueous extract, and allowed to germinate at room temperature, The plates containing the receptor plant were maintained wet using by the same treatment concentration added to the plates day after day. Germination percentage of all extracts were calculated, shoot and root length, fresh and dry weigh were measured. The results of this study showed that germination of radish and tomato were less inhibited by S. elaeagnifolium extracts compared with wheat and lettuce which showed inhibited growth at all concentrations of all S. elaeagnifolium parts. Areal parts (leaves, flowers and berries) of S. elaeagnifolium contain more allelochemichals that inhibit germination than roots and stems. S. elaeagnifolium inhibit the root growth of radish and wheat but it doesn't inhibit shoot growth, but it inhibit shoots growth of tomato.

List of contents

Quran verse	Ι
Acknowledgment	II
Dedication	III
English Abstract	IV
Table of contents	VI
List of figures	Х
List of tables	XIV
Chapter one (Introduction)	1
Chapter two (Literature review)	7
Chapter three (Materials and methods)	12
Chapter four (Results)	18
Chapter five (Discussion)	81
Conclusion	84
Reference	85
Appendix	93
Arabic abstract	103

Table of contents

Chapter of	one
------------	-----

1.Introduction	1
Aim of the study:	6

Chapter Two

6

2. Literature Review	7
----------------------	---

Chapter Three

3. Materials And Methods	12
3.1. Study site and Sample collection	`12
3.2. Preparation of aqueous extracts and concentrations of <i>Solanum elaeagnifolium</i>	13
3.2.1. Material used	13
3.2.2. Steps for preparation of aqueous extracts and concentrations of <i>Solanum elaeagnifolium</i>	· 14

3.3. Experimentation of allelopathic effect of <i>Solanum elaeagnifolium</i> on different plant	
receptors (germinating tomato, wheat, radish and lettuce seeds)	15
3.3.1.Material used	15
3.3.2. Steps for experimentation of allelopathic effect of <i>Solanum elaeagnifolium</i> on	
different plants receptors	15
3.4. statistical analysis	17

Chapter Four

4. Results	18
4.1. Allelopathic effect of <i>S. elaeagnifolium</i> on radish	18
4.1.1. Allelopathic effect of <i>S. elaeagnifolium</i> root extract on radish	18
4.1.2 Allelopathic effect of <i>S. elaeagnifolium</i> stem extract on adish	23
4.1.3. Allelopathic effect of <i>S. elaeagnifolium</i> leaves extract on radish	28
4.1.4. Allelopathic effect of <i>S. elaeagnifolium</i> flowers extract radish	33
4.1.5. Allelopathic effect of <i>S. elaeagnifolium</i> fruits extract on radish	38

	Allelopathic						
4.2.2.	Allelopathic	effect of	S. el	aeagnifolium	stem	extract	on
	Allelopathic ef						
	Allelopathic e						on
4.2.5.	Allelopathic	effect of	S. e	elaeagnifolium	fruits	extract	
	Allelopathic					-	
	Allelopathic						
	Allelopathic effe						
	Allelopathic effe						
4.4.	Allelopathic effe	ect of differen	t concenti	ration of Solan	um elaeag	<i>nifolium</i> p	oarts

Allelopathic effect of *Solanum elaeagnifolium* on tomato.....

43

79

4.2.

on lettuce.....

Chapter Five

5. Discussion	81
5.1. Effect of <i>S. elaeagnifolium</i> extracts on the four receptor seeds germination percentages.	82
5.2. Effect of <i>S. elaeagnifolium</i> extracts on the four receptor seeds root and shoot elongation	83
Conclusion	84
References	85
Appendix	93
Arabic abstract	103

List of Figures

Figure 4-1:	Radish seeds germination percentage at different concentrations of	
	Solanum roots extract	23
Figure 4-2:	The effect of Solanum root extract on radish root elongation	25
Figure 4-3:	The effect of Solanum root extract on radish shoot elongation	25
Figure 4-4:	The effect of S. elaeagnifolium roots extract on radish fresh and dry	
	weight	27
Figure 4-5:	Radish germination percentage at different concentrations of Solanum stem extract	28
Figure 4-6:	The effect of Solanum stem extract on radish roots elongation	30
Figure 4-7:	The effect of Solanum stem extract on radish shoot elongation	30
Figure 4-8:	The effect of S. elaeagnifolium stem extract on radish fresh and dry	
	weight	32
Figure 4-9:	Radish germination percentage at different concentrations of Solanum	
	leaves extract	33
Figure 4-10:	The effect of Solanum leaves extract on radish root elongation	35
Figure 4-11:	The effect of Solanum leaves extract on radish shoot elongation	35
Figure 4-12:	The effect of S. elaeagnifolium leaves extract on radish fresh and dry	
	weight	37
Figure 4-13:	Radish germination percentage at different concentrations of Solanum	
	flower extract	38

Figure 4-14:	The effect of Solanum flowers extract on radish root elongation	40
Figure 4-15:	The effect of Solanum flowers extract on radish shoot elongation	40
Figure 4-16:	The effect of <i>S. elaeagnifolium</i> flowers extract on radish fresh and dry weight	42
Figure 4-17:	Radish germination percentage at different concentrations of Solanum fruits extract.	43
Figure 4-18:	The effect of Solanum fruits extract on radish root elongation	45
Figure 4-19:	The effect of Solanum fruits extract on radish shoot elongation	45
Figure 4-20:	The effect of <i>S. elaeagnifolium</i> fruits extract on radish fresh and dry weight	47
Figure 4-21:	Tomato germination percentage at different concentrations of Solanum roots extract.	48
Figure 4-22:	The effect of Solanum roots extract on tomato root elongation	50
Figure 4-23:	The effect of Solanum roots extract on tomato shoot elongation	50
Figure 4-24:	The effect of <i>S. elaeagnifolium</i> roots extract on tomato fresh and dry weight	52
Figure 4-25:	Tomato germination percentage at different concentrations of Solanum stem extract	53
Figure 4-26:	The effect of Solanum stems extract on tomato root elongation	55
Figure 4-27:	The effect of Solanum stems extract on tomato shoot elongation	55
Figure 4-28:	The effect of <i>S. elaeagnifolium</i> stems extract on tomato fresh and dry weight.	57

Figure 4-29:	Tomato germination percentage at different concentrations of Solanum	
	leaves extract.	58
Figure 4-30:	The effect of Solanum leaves extract on tomato root elongation	60
Figure 4-31:	The effect of Solanum leaves extract on tomato shoot elongation	60
Figure 4-32:	The effect of S. elaeagnifolium leaves extract on tomato fresh and dry	
	weight	62
Figure 4-33:	Tomato germination percentage at different concentrations of Solanum	
	flowers extract	63
Figure 4-34:	The effect of Solanum flowers extract on tomato root elongation	65
Figure 4-35:	The effect of Solanum flowers extract on tomato shoot elongation	65
Figure 4-36:	The effect of S. elaeagnifolium flowers extract on tomato seeds fresh and	
	dry weight	67
Figure 4-37:	Tomato germination percentage at different concentrations of Solanum	
	fruits extract	68
Figure 4-38:	The effect of Solanum fruits extract on tomato root elongation	70
Figure 4-39:	The effect of Solanum fruits extract on tomato shoot elongation	70
Figure 4-40:	The effect of S. elaeagnifolium fruits extract on tomato seeds fresh and	
	dry weight	72
Figure 4-41:	wheat seeds germination percentage at different concentrations of	
	Solanum roots extract	73
Figure 4-42:	The effect of Solanum roots extract on wheat roots elongation	75
Figure 4-43:	The effect of solanum roots extract on wheat shoots elongation	75

Figure 4-44:	The effect of S. elaeagnifolium roots extract on wheat fresh and dry	
	weight	77
Figure 4-45:	wheat seeds germination percentage at different concentrations of	
	Solanum stems extract.	78
Figure 4-46:	The effect of Solanum stems extract on wheat roots elongation	80
Figure 4-47:	The effect of Solanum stems extract on wheat shoots elongation	80
Figure 4-48:	The effect of S. elaeagnifolium roots extract on wheat fresh and dry	
	weight	82

List of tables

Table 4-1:	Radish germination percentage at different concentrations of Solanum roots	
	extract	22
Table 4-2:	The effect of S. elaeagnifolium roots extract on radish root and shoot	
	length	24
Table 4-3:	The effect of S. elaeagnifolium roots extract on radish seeds fresh and dry	
	weight.	26
Table 4-4:	Radish germination percentage at different concentrations of Solanum stem	
	extract.	28
Table 4-5:	The effect of S. elaeagnifolium stem extract on radish root and shoot length.	
		29
Table 4-6:	The effect of S. elaeagnifolium stem extract on radish fresh and dry	
	weight	31
Table 4-7:	Radish germination percentage at different concentrations of solanum leaves	
	extract	33
Table 4-8:	The effect of <i>S. elaeagnifolium</i> leaves extract on radish root and shoot length.	
		34
Table 4-9:	The effect of S. elaeagnifolium leaves extract on radish fresh and dry weight.	
		36
Table 4-10:	Radish germination percentage at different concentrations of Solanum	
	flowers extract	•
		38
Table 4-11:	The effect of S. elaeagnifolium flowers extract on radish root and shoot	
	length.	39

Table 4-12:	The effect of <i>S. elaeagnifolium</i> flowers extract on radish fresh and dry weight.	41
Table 4-13:	Radish germination percentage at different concentrations of Solanum flowers extract.	43
Table 4-14:	The effect of <i>S. elaeagnifolium</i> fruits extract on radish root and shoot length.	44
Table 4-15:	The effect of <i>S. elaeagnifolium</i> fruits extract on radish seeds fresh and dry weight	46
Table 4-16:	Tomato germination percentage at different concentrations of Solanum roots extract.	48
Table 4-17:	The effect of <i>S. elaeagnifolium</i> roots extract on tomato root and shoot length.	49
Table 4-18:	The effect of <i>S. elaeagnifolium</i> roots extract on tomato seeds fresh and dry weight	51
Table 4-19:	Tomato germination percentage at different concentrations of Solanum roots extract	53
Table 4-20:	The effect of <i>S. elaeagnifolium</i> stems extract on tomato root and shoot length.	54
Table 4-21:	The effect of <i>S. elaeagnifolium</i> stems extract on tomato fresh and dry weight.	56
Table 4-22:	Tomato germination percentage at different concentrations of Solanum leaves extract.	58

Table 4-23:	The effect of <i>S. elaeagnifolium</i> leaves extract on tomato root and shoot length.	59
Table 4-24:	The effect of <i>S. elaeagnifolium</i> leaves extract on tomato fresh and dry weight	61
Table 4-25:	Tomato germination percentage at different concentrations of Solanum flowers extract	63
Table 4-26:	The effect of <i>S. elaeagnifolium</i> flowers extract on tomato root and shoot length.	64
Table 4-27:	The effect of <i>S. elaeagnifolium</i> flowers extract on tomato fresh and dry weight	66
Table 4-29:	Tomato germination percentage at different concentrations of Solanum fruits extract.	68
Table 4-30:	The effect of <i>S. elaeagnifolium</i> fruits extract on tomato root and shoot length.	69
Table 4-31:	The effect of <i>S. elaeagnifolium</i> fruits extract on tomato seeds fresh and dry weight	71
Table 4-32:	Wheat germination percentage at different concentrations of Solanum roots extract	73
Table 4-33:	The effect of <i>S. elaeagnifolium</i> roots extract on wheat root and shoot length.	74
Table 4-34:	The effect of <i>S. elaeagnifolium</i> roots extract on wheat seeds fresh and dry weight.	76

Table 4-35:	Wheat germination percentage at different concentrations of Solanum stems extract	78
Table 4-36:	The effect of <i>S. elaeagnifolium</i> stems extract on wheat root and shoot length.	-
		/9
Table 4-37:	Wheat germination percentage at different concentrations of Solanum leaves, flowers and fruits extracts.	83
Table 4-38:	Lettuce germination percentage at different concentrations of Solanum roots, stems leaves, flowers and fruits extracts.	84

Chapter one

1. Introduction

Allelopathy where a plant species chemically interferes with germination, growth or development of other plant species has been known for over 2000 years occurs in several plants and refers to the beneficial or harmful effects of one plant on another plant by release of some chemicals from plant parts by leaching, root exudation, volatilization, residue decomposition and another processes in both natural and agricultural systems (Rice, 1984).

The term allelopathy, was introduced by Molisch in 1937. and is derived from the Greek words allelon 'of each other' and pathos 'to suffer' and mean the injurious effect of one upon the other (Rizvi *et al.*, 1992). However, the term is today generally accepted to cover both inhibitory and stimulatory effects of one plant on another plant (Rice, 1984). Some use the term in a wider sense, for instance entomologists, who include the effects of secondary compounds on plantinsect interactions. In 1996 The International Allelopathy Society defined allelopathy as follows: "Any process involving secondary metabolites produced by plants, micro-organisms, viruses, and fungi that influence the growth and development of agricultural and biological systems (excluding animals), including positive and negative effects" (Torres *et al.*, 1996). In the following, the term is used in accordance with Rice (1984), but effects of the chemical compounds involved in plant-plant interactions and the effects of allelopathic plants are discussed in a broader perspective than strictly related to the plant-plant interactions.

Allelopathy involves a plant's secretion of biochemical materials (allelochemicals or allelochemics) into the environment to inhibit germination or growth of surrounding vegetation, theses chemicals released from plants and imposing allelopathic influences. Most allelochemicals are classified as secondary metabolites and are produced as offshoots of the primary metabolic pathways of the plant. Often, their functioning in the plant is unknown, but some allelochemicals are known also to have structural functions (e.g. as intermediates of lignifications) or to play a role in the general defense against herbivores and plant pathogens (e.g. Niemeyer, 1988; Corcuera, 1993; Einhellig, 1995).

Allelochemicals can be present in several parts of plants including roots, rhizomes, leaves, stems, pollen, seeds and flowers. Allelochemicals are released into the environment by root exudation: Roots secrete chemical compounds either as exudates from live roots or from the cells that are sloughed off as they age (Rice, 1974; Putnam, 1985), leaching from aboveground parts Allelopathic compounds may be leached with rainwater or with irrigation water from aerial plant parts into the soil or onto plant surfaces (Lovett, 1982), volatilization: the release

allelochemicals through their surfaces in the form of gases into the atmosphere (Muller, 1965; Del Moral and Muller, 1971; Neill and Rice, 1971). and/or by decomposition of plant material : The greatest amounts of allelochemicals released from plants into the environment are released through plant material decomposition and through leaching from plant material (Putnam and Duke, 1974).

For allelochemicals to be effective in their function, they need to be released from the plant and transferred to the target plant species in sufficient amounts that would cause the effect. Hence, Muller (1974) states that for allelopathy to occur a chemical should be (1) synthesized and produced by a plant, (2) transported from the producing organism to the target plant, and (3) the target plant should be exposed to the chemical at a concentration sufficient to cause an effect. When susceptible plants are exposed to allelochemicals, germination, growth and development may be affected. The most frequent reported gross morphological effects on plants are inhibited or retarded seed germination, effects on coleoptile elongation and on radicle, shoot and root development, they may be largely classified as secondary plant metabolites, which are generally considered to be those compounds (such as alkaloids, phenolics, flavonoids, terpenoids, and glucosinolates, Allelochemicals can be present in several parts of plants including roots, rhizomes, leaves, stems, pollen, seeds and flowers (Niemeyer, 1988; Corcuera, 1993).

One of the best known allelopathic and invasive plants is Silverleaf nightshade (*Solanum elaeagnifoliumm*) also known as "satansbos" it is seed-or vegetativelypropagated deep-rooted summer growing perennial geophyte from the tomato family Solanaceae (EPPO, 2007).

This multi-stemmed plant grows to one meter tall, with the aerial growth normally dying back during winter, the plants have an extensive root system spreading to over two meters deep. These much branched vertical and horizontal roots bear buds that produce new aerial growth each year

S. elaeagnifoliumm is a serious perennial broad leaf weed in many semi-arid areas of the world including South Africa, Australia, Algeria, Egypt, Greece, India, Israel, Zimbabwe, Sicily and Spain (Henderson and Anderson, (1966); Hawkes and Edmonds ,(1972); D'arcy, (1974); Boyd *et al.*, (1984)). It is one of the important invasive plant species in Mediterranean Basin countries. *S. elaeagnifolium* has a negative impact on crops, causing up to 75% yield loss, as well as an indirect impact by harboring plant pests and diseases. *S. elaeagnifolium* is toxic to livestock and has a negative effect on the quality of life for humans. It is listed as a noxious weed in its native region (Americas) and as an invasive alien plant in many other countries (Mekki, 2007).

Buck *et al.*, (1960) isolated both the tropane alkaloid Solanine and steroidal alkaloid solanidine from *S. elaeagnifolium*. Glycoalkaloids as bioactive compounds were isolated from its seeds and leaves (Bekkouche *et al.*, 2000). Chiale *et al.* (1991) identified kaempferol and kaempferol 3- glucoside as monoacylated flavonoid glucosides from its aerial parts. Cholesterol, campesterol, sitosterol, stigmasterol, As-avenasterol, A'avenasterol, A'-stigmasterol and β -spinasterol were also identified from the seeds of 13 species of *Solanum*, including silverleaf nightshade (Keeler *et al.*, 1990; Zygadlo, 1994).

Negative impacts of silverleaf nightshade have been reported worldwide on cotton, peanuts (*Arachis hypogaea*), grain sorghum (*Sorghum bicolor*), alfalfa (*Medicago sativa*), cereal grains and cultivated pastures (Boyd *et al.*, 1984). The main documented cause of the interference of silverleaf nightshade with crops is competition for growth factors (Green *et al.*, 1987; Green *et al.*, 1988; Jacobson *et al.*, 1994).

The most serious crop losses have been recorded in lucerne (in Australia, South Africa and the USA); cotton, sorghum, maize and groundnut (Morocco, USA); wheat (Australia, Greece); and cultivated pastures (Australia, Greece, Morocco, USA) (Cuthbertson, 1976; Molnar and McKenzie, 1976; Robinson *et al.*, 1978; Abernathy and Keeling, 1979; Boyd *et al.*, 1984; Wassermann *et al.*, 1988; Eleftherohorinos *et al.*, 1993).

5

Aim of the study:

To study allelopathic effect of different concentration of *S. elaeagnifolium* plant aqueous extract on different germinating seeds that serve as receptors.

Chapter two

2. Literature review

The earliest reference to phytotoxicity of one plant on another dates back to ancient agriculture when Theophrastus (300 B.C.) observed that some plants inhibit the growth of other plants. At that time various assumptions without proper experimentation were made concerning problems in crop production that could not be rectified through nutrient amendments. De Candolle (1832) was the first to assume that chemicals secreted by crops caused 'soil sickness' and suggested that crop rotation was the only solution to this problem. Schreiner and Reed (1908) were the first to conduct proper research on this subject. They isolated chemical compounds from plants and from the soil. Since then, studies and research on allelopathy have been improving. The term allelopathy, however, was coined by Hans Molisch, a German scientist, in 1937 from two Greek words, 'allelon', meaning to each other, and 'pathos', meaning to suffer (Molisch, 1937; Rizvi et al., 1992). Allelopathy refers to the direct or indirect effect of a plant on another plant through the production and release of chemical compounds into the environment (Rice, 1984). The effect may be inhibitory or stimulatory depending on the amount of the chemical reaching the receiving plant (Putnam & Tang, 1986; Rice, 1995). The discovery of chemical interactions amongst plants provided new knowledge

that, apart from competition for growth factors, plants can affect the growth of neighboring plants by secreting chemicals into the environment. A clear distinction between allelopathy and competition is that, in the former case, something is released into the environment (allelochemicals), whilst in the latter case, something is removed from the environment (nutrients, water, etc.). Allelopathic interactions can involve plants of the same species (intraspecific or autotoxicity) or species that are taxonomically different (interspecific or heterotoxicity or teletoxicity) (Kushal, 1987; Kumar, 1991; Kohli et al., 1998). Identification of allelochemicals and the explanation of the concept of allelopathy have advanced greatly in the last three decades and had been encouraged by the development of research techniques that did not exist in the past. These modern techniques allow for the identification and isolation of the different plant chemicals. Many different compounds released from plants and from microbes are now known to affect the growth or aspects of function of the receiving species (Einheillig, (1995a). Whittaker & Feeny (1971) classified these phytochemicals into five groups: phenyl propanes, acetogenins, terpenoids, steroids and alkaloids.

S. elaeagnifolium is considered to be native to the Americas, although it may have been introduced to the northern and eastern parts of North America (EPPO, 2007). The species has spread primarily as a seed contaminant in soil and crops. Spanish or Portuguese colonists may have been instrumental in spreading the species across the

Americas, and it is thought to have been introduced to California by contaminated railway cars (Boyd et al., 1984). The species was first recorded for Australia in 1901, for Israel during the 1956 war, and to Morocco in 1958 through contaminated crop seeds (EPPO, 2007). In South Africa, the species is thought to have been imported as either a contaminant of pig fodder around 1905 or as a hay contaminant during the 1940s or 1950s, before it was declared a weed in 1966 (EPPO, 2007). The species is thought to have been introduced from Mexico to the Philippines sometime during the Spanish colonial period through the Manila-Acapulco galleon trade (1585-1615), and from there to China and the rest of Asia . Date of introduction to the West Indies is uncertain but may have been relatively recent. Smithsonian Herbarium specimens of this species were collected in Cuba in 1919, Curaçao in the 1950s, and Puerto Rico in the 1960s; for the West Indies, as of 2007 EPPO only reported its presence in Puerto Rico (EPPO, 2007).

Sarah and others investigated the effects of aqueous extracts of *S. lycocarpum* leaves on the germination and growth of *Sesamum indicum* (sesame) by preparing aqueous leaf extracts at concentrations of 1%, 2%, 3%, 4% and 5% (w / v). The experiments were carried out on petri dishes lined by two layers of filter paper plus the solutions to be tested. For the germination experiments the number of germinated seeds was checked every 8 hours. For the growth experiments sesame seeds were previously germinated in water and disposed to grow in the extracts. After five days of incubation the root and

shoot length of the seedlings was measured. All the experiments were performed at 22 $^{\circ}$ C, 30 $^{\circ}$ C and 38 $^{\circ}$ C. they found that, the extracts did not affect the germinability but increased the average germination time in a dose-dependent Manner at the three temperatures. The root growth was more affected by the extracts, showing tip-necrosis, absence of root hairs, and formation of secondary roots (Sarah *et al.*, 2004).

Amra in 2012 conducted a study to examine the allelopathic potential of silverleaf nightshade by testing the effect that aqueous extracts of silverleaf leaves and leaf residues in the soil have on germination and post-germination growth of sunflower, lentil and barley. Leaf residues as the part of the pot study did not seem to have an allelopathic effect onto the growth of indicator plants. Water extracts, on the other hand, while not affecting the germination percentage, significantly, impaired the initial growth in all indicator plants, which was expressed in reduced length of radicles and hypocotyls. Results of the study shed some light on the tools and mechanisms through which *Solanum elaeagnifolium* Cav. achieves its spread, opening new prospects for research towards the better understanding of the allelotoxicity of silverleaf nightshade, all for the purposes of more efficient management of this exceptionally invasive weed species.

Wassermann and others in 1988 examined the effect of the invasive S. elaeagnifolium (Solanaceae) on flower visitation patterns and seed set of the coflowering native *Glaucium flavum* (Papaveraceae). they observed flowering G. flavum plants in invaded and uninvaded sites and found that G. flavum flowers in uninvaded sites received significantly more total visits. In addition, they handpollinated flowers on plants of G. flavum with (i) pure conspecific pollen, (ii) pure S. *elaeagnifolium* pollen and (iii) three different mixtures of the two types of pollen (containing 25, 50 and 75% invasive pollen). As a control, flowers were left unmanipulated or were permanently bagged. Seed set did not differ significantly between flowers receiving pollen mixtures and pure conspecific pollen. However, in the open pollination treatment, seed set was significantly lower than in the 100% conspecific pollen treatment, which suggests pollen limitation. Bagged flowers had very low seed set. G. flavum was generally resilient against the deposition of S. *elaeagnifolium* pollen.

Chapter three 3. Materials and methods.

3.1. Study site and sample collection:

This experiment was conducted at Benghazi city, the second largest city in Eastern Libya a part of the Mediterranean sea, about 1000 km far from the capital Tripoli.

Samples of solanum plant were collected from different regions of Benghazi during May which is the typical time to gather this plant, The entire plant samples of *Solanum elaeagnifolium* were collected, roots, stem, leaves and flowers, the plant were transported to the study laboratory immediately after collection, kept at room temperature. This experiment was performed during the period June to August 2016 at laboratory of Benghazi medical university.

Seeds of receptors (Tomato, wheat, Radish and Lettuce seeds) were obtained from different locations in Benghazi and Tunisia.

Fig. (3-1) Fully grown Solanum elaeagnifolium in May.

3.2. Preparation of aqueous extracts and concentrations of *Solanum elaeagnifolium*:

3.2.1. Material used:

- **1. Porcelain mortar:** used to make plant powder.
- **2. Graduated cylinder:** a 100 ml graduated cylinder was used to measure the volume of distilled water.
- **3. Sensitive balance:** an electronic scale used to take the weight of the powdered *Solanum elaeagnifolium*.

3.2.2. Steps for preparation of aqueous extracts and concentrations of *Solanum elaeagnifolium*:

 The plant was cleaned properly and the different parts of the plant were separated from each other and dried individually by normal method (exposure to natural air and sunlight) for 15-20 days.

2. The plant parts were will grounded by mortar individually and kept in separated cans.

3. For preparation of 1% of aqueous extract 1 g of the grounded plant part were added to 99 ml of distilled water measured by graduated cylinder, the process were repeated for each plant parts.

4. For preparation of 2% of aqueous extract, 2 g of the grounded plant parts were putted in graduated cylinder, the volume completed by 98 ml of distilled water the process were repeated for each plant parts.

5. For preparation of 5% of aqueous extract, 5 g of the grounded plant parts were putted in graduated cylinder, the volume completed by 95 ml of distilled water the process were repeated for each plant parts.

6. For preparation of 10% of aqueous extract, 10 g of the grounded plant parts were putted in graduated cylinder, the volume completed by 90 ml of distilled water the process were repeated for each plant parts. 7. For preparation of 20% of aqueous extract, 20 g of the grounded plant parts were putted in graduated cylinder, the volume completed by 80 ml of distilled water the process were repeated for each plant parts.

8. A solution containing only distilled water 0% will be used as a control treatment.

3.3. Experimentation of allelopathic effect of *Solanum elaeagnifolium* on different plant receptors (germinating tomato, wheat, radish and lettuce seeds):

3.3.1. Material used:

1. Sterile petri dishes:

Petri dishes of 9 cm diameter were used in this experiment.

1. Whatman filter paper No.9:

3.3.2. Steps for experimentation of allelopathic effect of *Solanum elaeagnifolium* on different plant receptors:

The allelopathic effect of different concentration of *Solanum elaeagnifolium* will be tested on germinating tomato, wheat, radish and lettuce seeds, the experiment will be conducted at room temperature (20 C° \pm 2).

1. Ten seeds of each receptor plant will be distributed randomly and grown on petri dishes of 9 cm diameter .

- 2. Whatmann No. 9 filter paper moisten with 5ml of each concentration will be used as a medium for seed germination, while 5 ml of distilled water (0%) will serve as a control treatment.
- 3. Five replicates of each treatment concentration for each receptor plant seeds were used (the total number of plates were 30 plates for each plant).
- 4. The plates containing the receptor plant were maintained wet using the same treatment concentration added to the plates day after day.
- 5. The counting of seed germination will be performed each 24 hours .
- 6. Germination percentage will be calculated for 10 days period by measuring , the total percentage of germination will be calculated by dividing the number of germinating seeds by the total number of seeds and multiplied by 100.

Total number of germinated
seeds in a particular treatmentGermination % =X 100

Total number of treated seeds

7. Germination percentage, shoot and root length were determined after five days. Only seeds with a radical length of more than 2 mm were considered to have germinated successfully.

8. The fresh weight of the germinating seeds were taken by the scale, then the dry weight of the seeds were taken after dryness in the oven at 105°C.

3.4. Statistical analysis:

Data collected from the experiment (germination percentage, shoot and root length, dry and wet weight) were summarized in an excel sheet and after entering all data the collected information were validated by comparison and manual checking with the original paper form data were exported to SPSS for statistical analysis to explore the allelopathic effect of different concentration of *S. elaeagnifolium* plant parts. Data were analyzed using SPSS software (social package statistic software, version 18),One way Anova test was performed to explore the effect of the extract concentration on radish, tomato, wheat and lettuce seeds germination, significance was accepted at *P*-values below 0.05 the confidence interval was set at 95%.

Chapter four

4. Results.

4.1. Allelopathic effect of S. elaeagnifolium on radish:-

4.1.1. Allelopathic effect of S. elaeagnifolium root extract on radish

A. Effect of root extract on radish germination percentage:-

The effect of *S. elaeagnifolium* roots extract on radish seed germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in radish seeds at concentration of 10% as it is shown in the table (4-1) and figures (4-1).

Solanum extract conc.	Radish seeds germination %
0%	90%
1%	70%
2%	60%
5%	20%
10%	No germination
20%	10%

Table (4-1) Radish germination percentage at different
concentrations of solanum roots extract.

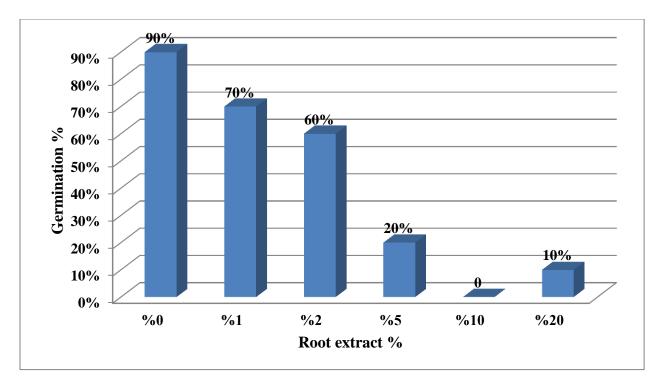


Fig. (4-1) Radish seeds germination percentage at different concentrations of solanum roots extract.

B. Effect of *S. elaeagnifolium* root extract on radish root and shoot elongation:

Allelopathy of *S. elaeagnifolium* roots extracts concentrations on radish roots and shoot was examined by Anova test, which showed no significant effect on radish seeds roots and shoots elongation (p-0.076, 0.17) as it is shown in table (4-2).

	I	Descriptive		AN	ANOVA	
Plant part	Concentration	Mean	S.D (±)	F	p- values	
	0%	0.673	0.279			
	1%	0.449	0.329		0.076	
Roots	2%	0.408	0.245	2.491		
	5%	0.1	0.156			
	10%	-	-			
	20%	0.13	-			
	0%	0.603	0.194			
	1%	0.673	0.391	1.79	0.17	
Shoot	2%	0.517	0.259			
bilott	5%	1.01	0.480			
	10%	-	-			
	20%	0.2	-			
*The	mean difference	is signific	ant at the 0.05 le	evel.		

Table (4-2) The effect of S. elaeagnifolium roots extract on radish root and
shoot length.

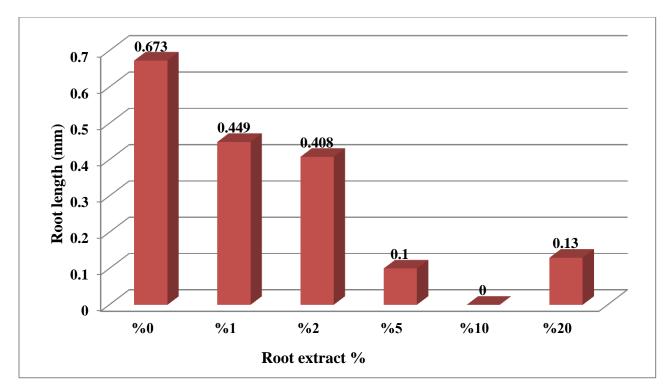


Fig. (4-2) The effect of solanum root extract on radish root elongation.

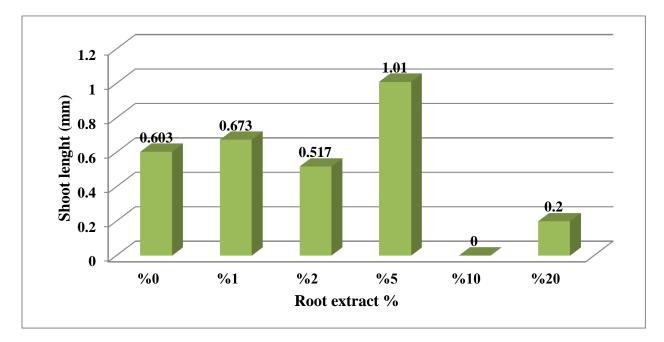


Fig. (4-3) The effect of solanum root extract on radish shoot elongation.

C. Effect of root extract on radish dry and fresh weight:-

The effect of different concentrations of *S. elaeagnifolium* roots extract on radish dry and fresh weight showed decrease of the both dry and fresh weight anova test was performed to explore the significance of this effect but this effects was not significant (p- value 0.68 and 0.613>0.05). as it is shown in table (4-3) and figure (4-4).

	I	Descriptiv	e	ANOVA	
weight	Concentration	Mean	S.D (±)	F	p- values
	0%	0.120	0.030		
	1%	0.112	0.034		
Fresh weight	2%	0.098	0.040		0.680
i resir wergite	5%	0.100	0.052		
	10%	-	-		
	20%	-	-		
	0%	0.0203	0.025		
	1%	0.019	0.021		
Dry Weight	2%	0.007	0.005		0.613
, ,	5%	0.0204	0.008		
	10%	-	-		
	20%	-	-		
*The mean difference is significant at the 0.05 level.					

 Table (4-3) The effect of S. elaeagnifolium roots extract on radish seeds fresh and dry weight.

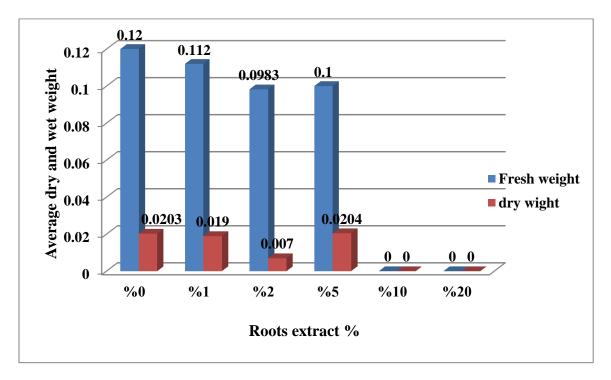


Fig. (4-4) The effect of *S. elaeagnifolium* roots extract on radish fresh and dry weight.

4.1.2 Allelopathic effect of S. elaeagnifolium stem extract on radish:-

A. Effect of *S. elaeagnifolium* stem extract on radish germination percentage:-

The effect of *S. elaeagnifolium* stem extract on radish germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in radish at concentration of 10% nd 20% as it is shown in the table (4-3) and figure (4-4).

Solanum extract conc.	Radish seeds germination %
0%	90%
1%	60%
2%	60%
5%	50%
10%	No germination
20%	No germination

Table (4-4) Radish germination percentage at different concentrations of solanum stem extract.

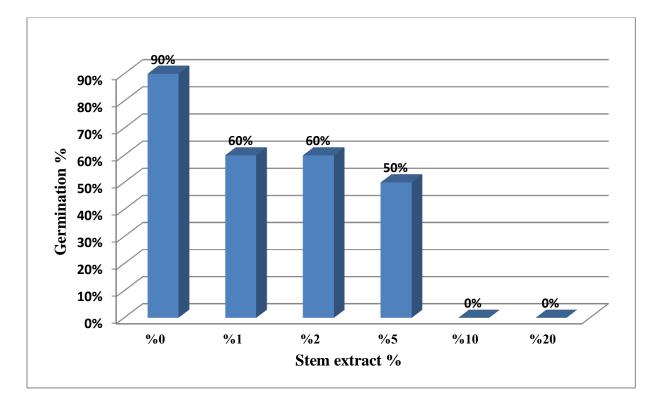


Fig. (4-5) Radish germination percentage at different concentrations of solanum stem extract.

B. Effect of *S. elaeagnifolium* stem extract on radish root and shoot elongation:

Allelopathiy of *S. elaeagnifolium* stem extracts concentration on radish root and shoot elongation were examined by Anova statistical test, which showed a significant effect on root length (p-value 0.032), while no significant effects were detected on shoot length (p-value 0.541) as shown in table (4-3), figures (4-5) and (4-6).

	Descriptive				
Plant part	Concentrati on	Mean	S.D (±)	F	p- values
	0%	0.67	0.28	3.527	0.032
	1%	0.18	0.078		
Roots	2%	0.68	0.365		
	5%	0.5	0.483		
	10%	-	-		
	20%	-	-		
	0%	0.60	0.194	0.737	0.541
	1%	0.68	0.294		
Shoot	2%	0.60	0.262		
	5%	0.452	0.325		
	10%	-	-		
	20%	-	-		
*The r	nean differenc	e is signi	ificant at the 0	0.05 level.	

Table (4-5) The effect of S. elaeagnifolium stem extract on radish root and
shoot length.

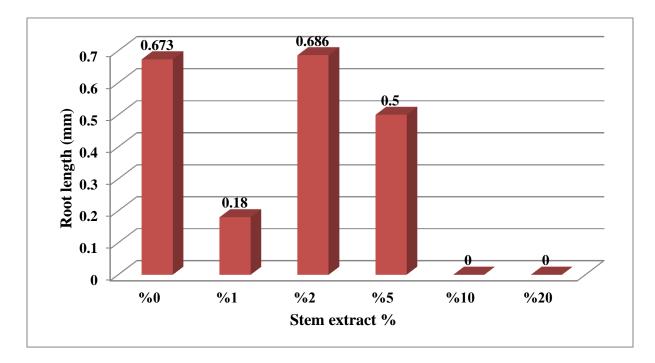


Fig. (4-6) The effect of solanum stem extract on radish roots elongation.

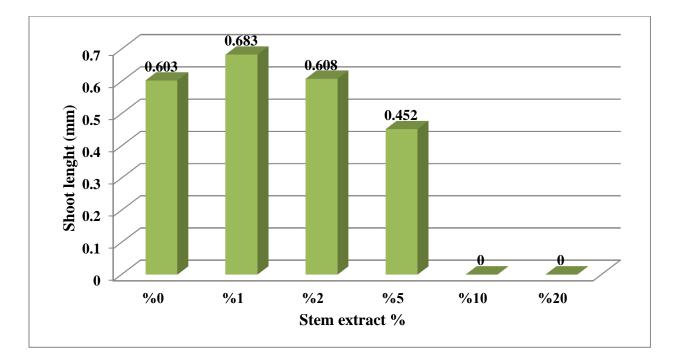


Fig. (4-7) The effect of solanum stem extract on radish shoot elongation.

C. Effect of S. elaeagnifolium stem extract on radish dry and fresh weight :

The effect of different concentrations of *S. elaeagnifolium* stem extract on radish dry and fresh weight showed decrease of the both dry and fresh weight, anova test was performed to explore the significance of this effect , the effect on fresh weight was significant (p- value 0.005 < 0.05), but this effects was not significant on dry weights (p- value 0.224 > 0.05). as it is shown in table (4-6) and figure (4-8).

Weight	Descriptive			ANOVA		
weight	Concentration	Mean	S.D (±)	F	p- values	
	0%	0.073	0.033			
	1%	0.110	0.050			
Fresh weight	2%	0.178	0.005		0.005	
	5%	0.176	0.091		01000	
	10%	-	-	•		
	20%	-	-			
	0%	0.008	0.006			
	1%	0.034	0.033			
Dry Weight	2%	0.031	0.034		0.224	
	5%	0.029	0.029			
	10%	-	-			
	20%	-	-			
*The	*The mean difference is significant at the 0.05 level.					

Table (4-6) The effect of S. elaeagnifolium stem extract on radish fresh and
dry weight.

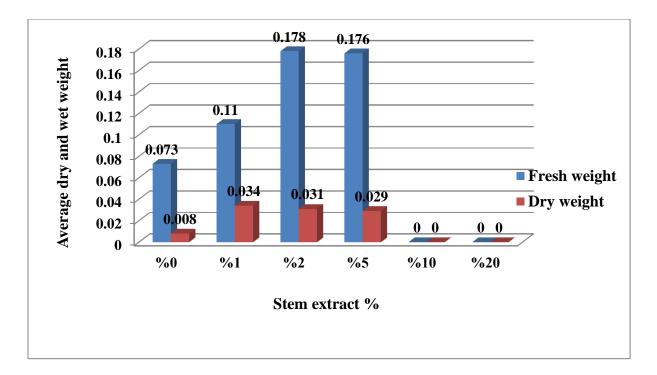
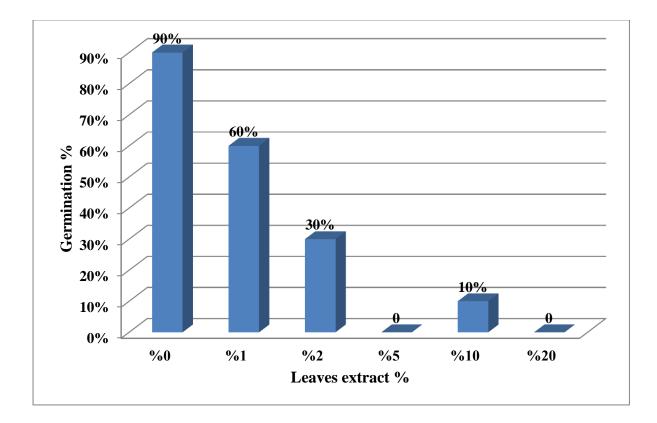


Fig. (4-8) The effect of *S. elaeagnifolium* stem extract on radish fresh and dry weight.


4.1.3. Allelopathic effect of *S. elaeagnifolium* leaves extract on radish:

A. Effect of *S. elaeagnifolium* leaves extract on radish germination percentage:

The effect of *S. elaeagnifolium* leaves extract on radish germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in radish at concentration of 5% and 20%, only one seed was grown at 10% concentration as it is shown in the table (4-7) and figure (4-9).

Solanum extract conc.	Radish seeds germination %
0%	90%
1%	60%
2%	30%
5%	No germination
10%	10%
20%	No germination

Table (4-7) Radish germination percentage at different concentrations of solanum leaves extract.

Fig. (4-9) Radish germination percentage at different concentrations of solanum leaves extract.

B. Effect of *S. elaeagnifolium* leaves extract on radish root and shoot elongation:-

Allelopathy of *S. elaeagnifolium* leaves extracts concentration on radish root and shoot elongation were examined by Anova statistical test, which showed a significant effect on root length (p-value 0.026), while no significant effects were detected on shoot length (p-value 0.97) as shown in table (4-8), figures (4-10) and (4-11).

	E	Descriptive ANO ^V		ANOVA			
Plant part	Concentration	Mean	S.D (±)	F	p- values		
	0%	0.673	0.279	4.107	0.026		
	1%	0.34	0.188				
Roots	2%	0.303	0.172				
	5%	-	-				
	10%	0.08	-				
	20%	-	-				
	0%	0.603	0.194	2.520	0.97		
	1%	0.618	0.232				
Shoot	2%	0.327	0.192				
	5%	-	-				
	10%	0.2	-				
	20%	-	-				
*The	*The mean difference is significant at the 0.05 level.						

Table (4-8) The effect of S. elaeagnifolium leaves extract on radish root and
shoot length.

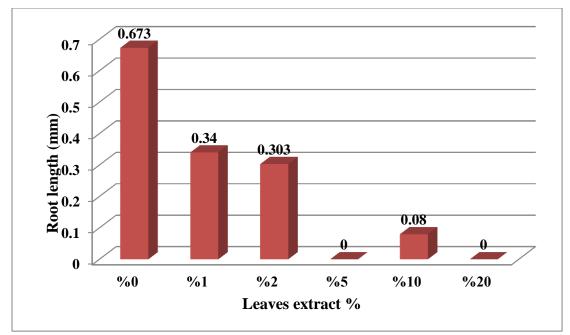


Fig. (4-10) The effect of *S. elaeagnifolium* leaves extract on radish root elongation.

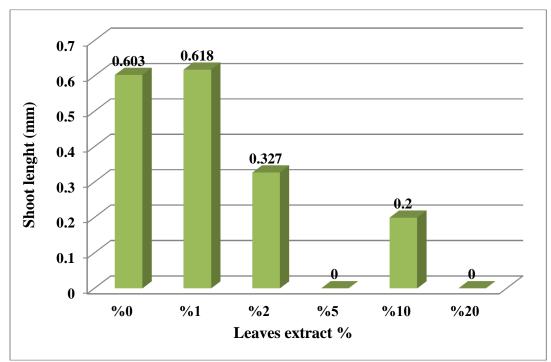


Fig. (4-11) The effect of *S. elaeagnifolium* leaves extract on radish shoot elongation.

C. Effect of *S. elaeagnifolium* leaves extract on Radish dry and fresh weight :

The effect of different concentrations of *S. elaeagnifolium* leaves extract on radish dry and fresh weight showed decrease of the both dry and fresh weight, anova test was performed to explore the significance of this effect, the effect on fresh weight was significant (p- value 0.005 < 0.05), but this effects was not significant on dry weights (p- value 0.174 > 0.05) as it is shown in table (4-9) and figure (4-12).

weight	Descriptive			ANOVA	
worght	Concentration	Mean	S.D (±)	F	p- values
	0%	0.106	0.023		
	1%	0.173	0.053		
Fresh weight	2%	0.092	0.038		0.005
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.017	0.012		
	1%	0.031	0.033		
Dry Weight	2%	0.006	0.003		0.174
	5%	-	-		
	10%	-	_		
	20%	-	-		
*The	mean difference	is signific	ant at the 0.05 le	evel.	

Table (4-9) The effect of S. elaeagnifolium leaves extract on radish fresh and
dry weight.

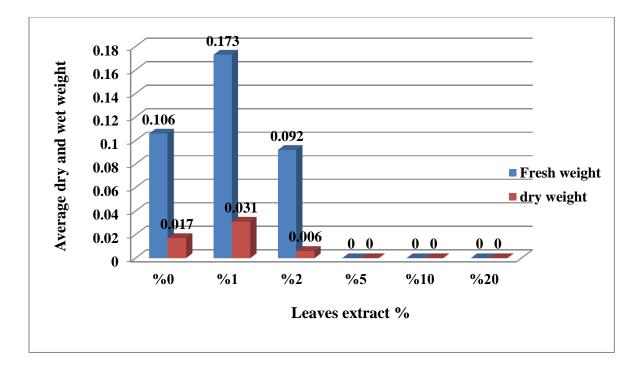


Fig. (4-12) The effect of *S. elaeagnifolium* leaves extract on radish fresh and dry weight.

4.1.4. Allelopathic effect of S. elaeagnifolium flowers extract on radish:-

A. Effect of *S. elaeagnifolium* flowers extract on radish germination percentage:-

The effect of *S. elaeagnifolium* flowers extract on radish germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in radish at concentration of 5%, 10% and 20% as it is shown in the table (4-10) and figure (4-13).

Solanum extract conc.	Radish seeds germination %
0%	90%
1%	40%
2%	30%
5%	No germination
10%	No germination
20%	No germination

Table (4-10) Radish germination percentage at differentconcentrations of solanum flowers extract.

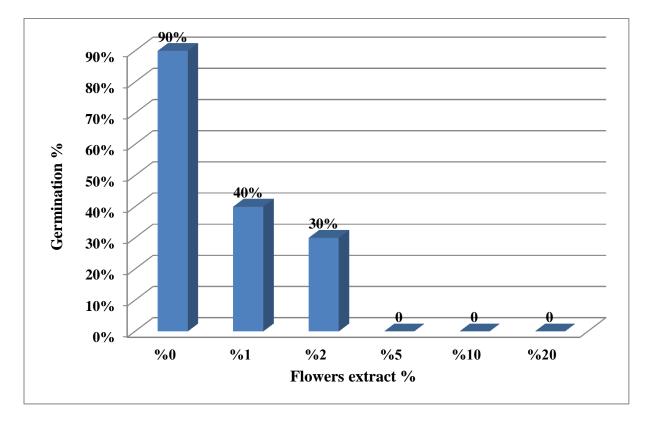


Fig. (4-13) Radish germination percentage at different concentrations of solanum flower extract.

B. Effect of *S. elaeagnifolium* flowers extract on radish root and shoot elongation:

Allelopathiy of *S. elaeagnifolium* flowers extracts concentration on radish root and shoot elongation were examined by Anova statistical test, which showed no significant effect of solanum flowers extract on root and shoot length (p-value 0.457 and 0.58), as shown in table (4-11), figures (4-14) and (4-15).

Table (4-11) The effect of S. elaeagnifolium flowers extract on radish root and
shoot length.

True of cools	L	Descriptive			OVA
Type of seeds	Concentration	Mean	S.D (±)	F	p- values
	0%	0.673	0.279	0.832	0.457
	1%	0.545	0.37	-	
Roots	2%	0.432	0.538	-	
	5%	-	-		
	10%	-	-	-	
	20%	-	-		
	0%	0.603	0.194	3.005	0.58
	1%	0.558	0.205		
Shoot	2%	0.297	0.134		
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The	mean difference	is signific	ant at the 0.05 l	evel.	I

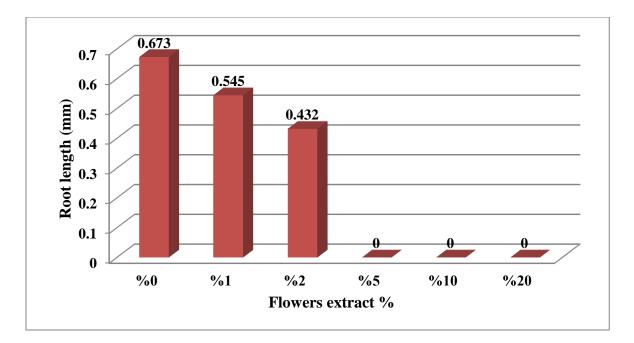


Fig. (4-14) The effect of solanum flowers extract on radish root elongation.

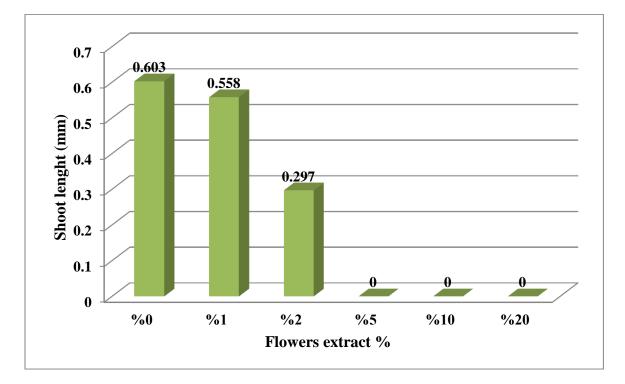


Fig. (4-15) The effect of solanum flowers extract on radish shoot elongation.

C. Effect of *S. elaeagnifolium* flowers extract on radish dry and fresh weight:

The effect of different concentrations of *S. elaeagnifolium* flowers extract on radish fresh weight showed increased fresh weight at 1% and 2% concentrations compared with the control, but decreased dry weights at 1% and 2% concentrations compared with the control. Anova test was performed to explore the significance of this effect but this effects was not significant (p- value 0.119 and 0.742 >0.05) as it is shown in table (4-12) and figure (4-16).

weight	Descriptive			ANOVA			
weight	Concentration	Mean	S.D (±)	F	p- values		
	00/	0.005	0.040				
	0%	0.095	0.049				
	1%	0.165	0.049				
Fresh weight	2%	0.110	0.045		0.119		
	5%	-	-				
	10%	-	-				
	20%	-	-				
	0%	0.020	0.030	0.74			
	1%	0.0153	0.010				
Dry Weight	2%	0.007	0.003		0.742		
Dig worght	5%	-	-				
	10%	-	-				
	20%	-	-				
*The	*The mean difference is significant at the 0.05 level.						

 Table (4-12) The effect of S. elaeagnifolium flowers extract on radish fresh and dry weight.

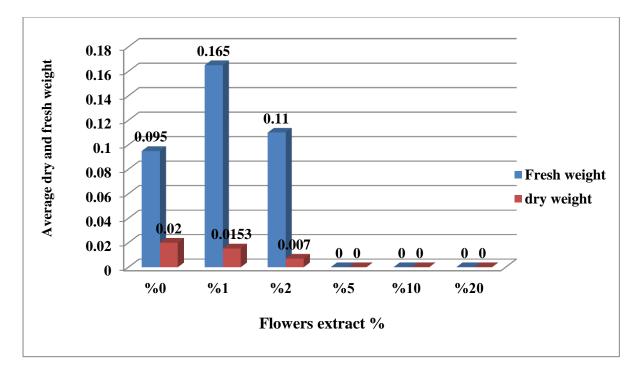


Fig. (4-16) The effect of *S. elaeagnifolium* flowers extract on radish fresh and dry weight.

4.1.5. Allelopathic effect of S. elaeagnifolium fruits extract on radish:-

A. Effect of *S. elaeagnifolium* fruits extract on radish seed germination percentage:

The effect of *S. elaeagnifolium* fruits extract on radish germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in radish at concentration of 5%, 10% and 20% as it is shown in the table (4-13) and figure (4-17).

Solanum extract conc.	Radish seeds germination %
0%	90%
1%	60%
2%	10%
5%	No germination
10%	No germination
20%	No germination

Table (4-13) Radish germination percentage at differentconcentrations of solanum flowers extract.

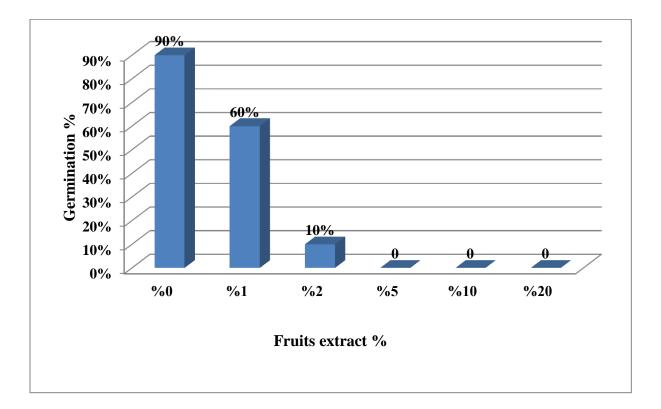


Fig. (4-17) Radish germination percentage at different concentrations of solanum fruits extract.

B. Effect of *S. elaeagnifolium* fruits extract on Radish root and shoot elongation:

Allelopathiy of solanum fruits extracts concentration on radish root and shoot elongation were examined by Anova statistical test, which showed a significant effect of solanum flowers extract on root length (p-value 0.016 < 0.05), while no significant effects where observed on radish shoot length . (p-value 0.077 > 0.05) as shown in table (4-14), figures (4-18) and (4-19).

	Descriptive			ANOVA			
Plant part	Concentration	Mean	S.D (±)	F	p- values		
	0%	0.673	0.279	5.66	0.016		
	1%	0.268	0.216				
Roots	2%	0.2	-				
	5%	-	-				
	10%	-	-				
	20%	-	-				
	0%	0.603	0.194	3.097	0.077		
	1%	0.359	0.261				
Shoot	2%	0.12	-				
	5%	-	-				
	10%	-	-				
	20%	-	-				
*The	*The mean difference is significant at the 0.05 level.						

Table (4-14) The effect of S. elaeagnifolium fruits extract on radish root and
shoot length.

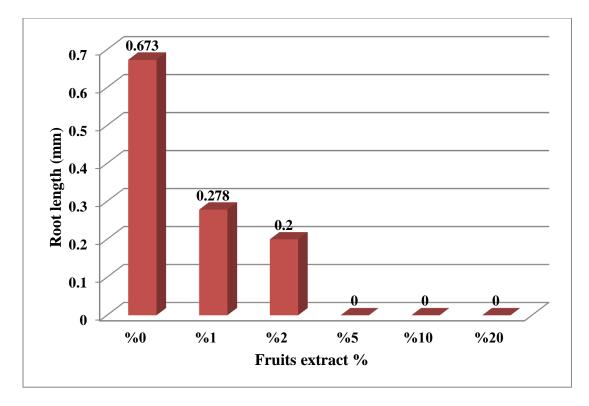


Fig. (4-18) The effect of solanum fruits extract on radish root elongation.

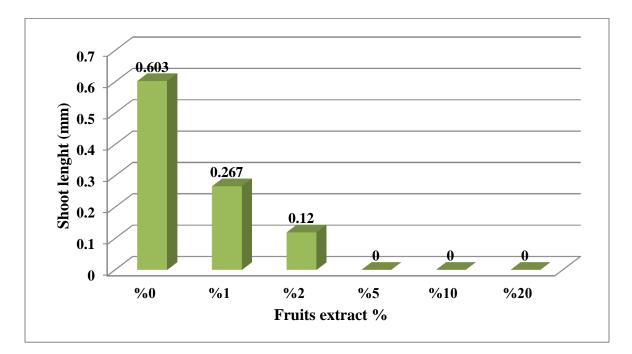


Fig. (4-19) The effect of solanum fruits extract on radish shoot elongation.

C. Effect of *S. elaeagnifolium* fruits extract on Radish seeds dry and fresh weight:

The effect of different concentrations of *S. elaeagnifolium* fruits extract on radish fresh and dry weight showed increased weight at 1% concentration compared with the control. Anova test was performed to explore the significance of this effect but this effects was not significant (p- value 0.09 and 0.703 >0.05) as it is shown in table (4-15) and figure (4-20).

Diant nort	Descriptive			ANOVA	
Plant part	Concentration	Mean	S.D (±)	F	p- values
	0%	0.120	0.030		
	1%	0.182	0.098		
Fresh weight	2%	-	-		0.090
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.019	0.025	0.7	
	1%	0.024	0.024		
Dry Weight	2%	-	-		0.703
, , , , , , , , , ,	5%	-	-		
	10%	-	-		
	20%	-	-		
*The	mean difference	is signific	ant at the 0.05 le	evel.	

 Table (4-15) The effect of S. elaeagnifolium fruitss extract on radish seeds fresh and dry weight.

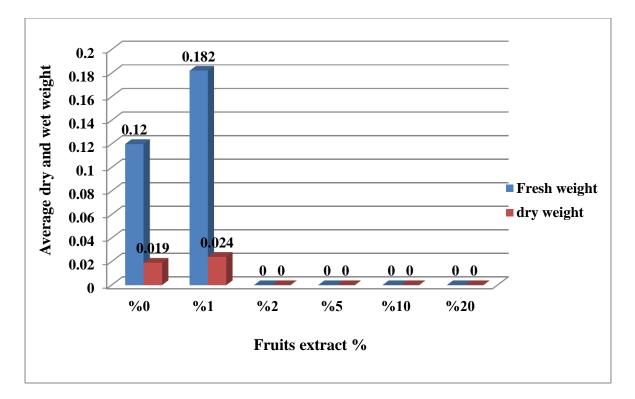


Fig. (4-20) The effect of *S. elaeagnifolium* fruits extract on radish fresh and dry weight.

4.2. Allelopathic effect of Solanum elaeagnifolium on tomato:-

4.2.1. Allelopathic effect of S. elaeagnifolium roots extract on tomato:-

A. Effect of root extract on tomato seed germination percentage:-

The effect of *S. elaeagnifolium* roots extract on tomato germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in tomato at concentration of 10% concentration, only one seed was grown at concentration 20% as it is shown in the table (4-16) and figure (4-21).

Solanum extract conc.	Radish seeds germination %
0%	100%
1%	100%
2%	50%
5%	20%
10%	No germination
20%	10%

Table (4-16) Tomato germination percentage at differentconcentrations of solanum roots extract.

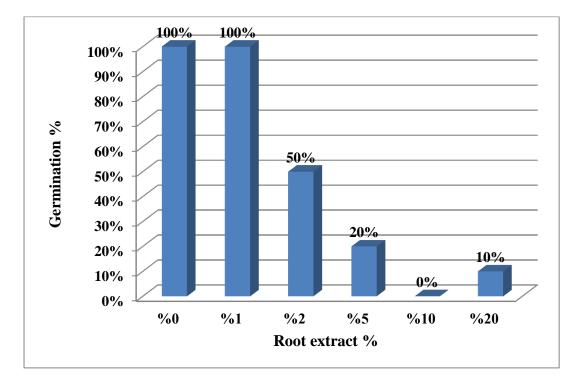


Fig. (4-21) Tomato germination percentage at different concentrations of solanum roots extract.

B. Effect of *S. elaeagnifolium* roots extract on tomato root and shoot elongation:

Allelopathiy of *S. elaeagnifolium* roots extracts concentration on tomato root and shoot elongation were examined by Anova statistical test, which showed a significant effect of solanum roots extract on shoot length (p-value 0.015 < 0.05), while no significant effects where observed on tomato root length .(p-value 0.858 > 0.05) as shown in table (4-17), figures (4-22) and (4-23).

Diant nort	Γ	Descriptive			IOVA		
Plant part	Concentration	Mean	S.D (±)	F	p- values		
	0%	0.412	0.253	0.325	0.858		
	1%	0.336	0.142				
Roots	2%	0.318	0.114				
	5%	0.323	0.092				
	10%	-	-				
	20%	0.3	-				
	0%	0.388	0.256	3.901	0.015		
	1%	0.616	0.616				
Shoot	2%	0.558	0.558				
	5%	0.493	0.44				
	10%	-	-				
	20%	0.06	-				
*The r	*The mean difference is significant at the 0.05 level.						

 Table (4-17) The effect of S. elaeagnifolium roots extract on tomato root and shoot length.

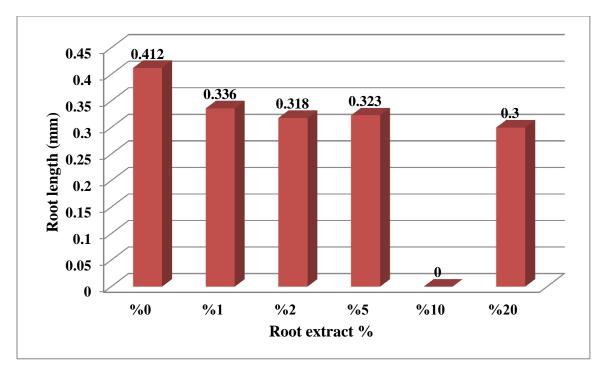


Fig. (4-22) The effect of solanum roots extract on tomato root elongation.

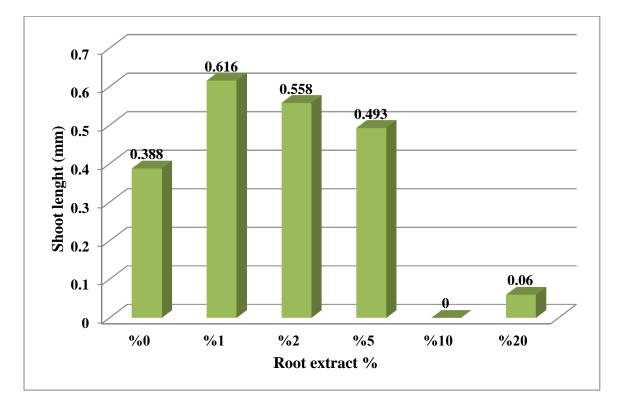


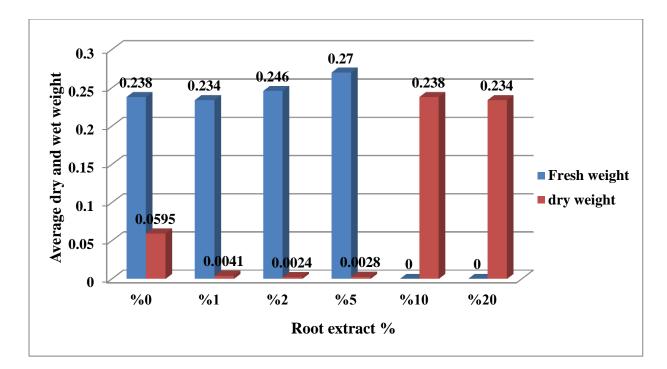
Fig. (4-23) The effect of solanum roots extract on tomato shoot elongation.

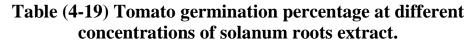
C. Effect of *S. elaeagnifolium* roots extract on tomato seeds dry and fresh weight:

The effect of different concentrations of *S. elaeagnifolium* roots extract on tomato fresh weight showed increased weight at 2% and 5% concentration compared with the control. Anova test was performed to explore the significance of this effect, this effects was not significant on dry weight (p- value 0.272) while the effect was significant on fresh weight (0.001 < 0.05) as it is shown in table (4-18) and figure (4-24).

weight	Descriptive			ANOVA			
weight	Concentration	Mean	S.D (±)	F	p- values		
	00/	0.000	0.012				
	0%	0.238	0.013				
	1%	0.234	0.009				
Fresh weight	2%	0.246	0.0114		0.001		
	5%	0.270	0.0100				
	10%	-	-				
	20%	-	-				
	0%	0.0595	0.0117	0.27			
	1%	0.0041	0.0019				
Dry Weight	2%	0.0024	0.0009		0.272		
	5%	0.0028	0.0005		0.272		
	10%	0.238	0.013				
	20%	0.234	0.009				
*The	*The mean difference is significant at the 0.05 level.						

 Table (4-18) The effect of S. elaeagnifolium roots extract on tomato seeds fresh and dry weight.




Fig. (4-24) The effect of *S. elaeagnifolium* roots extract on tomato fresh and dry weight.

4.2.2. Allelopathic effect of S. elaeagnifolium stem extract on tomato:-

A. Effect of *S. elaeagnifolium* stem extract on tomato germination percentage:-

The effect of *S. elaeagnifolium* stems extract on tomato germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in tomato at concentration of 5 % and 10% concentration, only one seed was grown at concentration 20% as it is shown in the table (4-19) and figure (4-25).

Solanum extract conc.	Radish seeds germination %
0%	100%
1%	90%
2%	50%
5%	No germination
10%	No germination
20%	10%

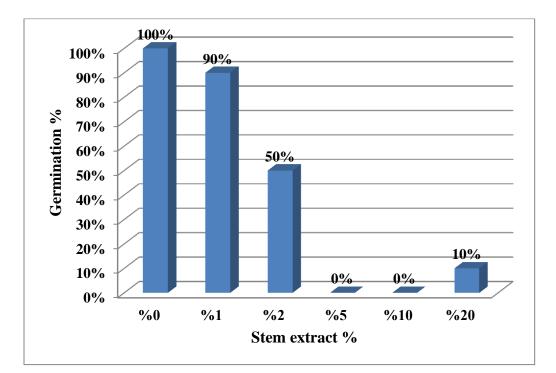


Fig. (4-25) Tomato germination percentage at different concentrations of solanum stem extract.

B. Effect of *S. elaeagnifolium* stem extract on tomato root and shoot elongation:

Allelopathiy of solanum stem extracts concentration on tomato root and shoot elongation were examined by Anova statistical test, which showed a significant effect of solanum stem extract on shoot length (p-value 0.004 < 0.05), while no significant effects where observed on tomato root length .(p-value 0.143 > 0.05) as shown in table (4-20), figures (4-26) and (4-27).

7	Fund of goods	Descriptive			ANOVA	
	Гуре of seeds	Concentration	Mean	S.D (±)	F	p- values
		0%	0.412	0.235	2.014	0.143
		1%	0.426	0.114		
	Roots	2%	0.25	0.128		
		5%	-	-		
		10%	-	-		
		20%	0.03	-		
		0%	0.388	0.255	5.925	0.004
		1%	0.705	0.118		
	Shoot	2%	0.4	0.158		
		5%	-	-		
		10%	-	-		
		20%	0.15	-		
	*The r	mean difference i	is signific	ant at the 0.05 le	evel.	1

Table (4-20) The effect of S. elaeagnifolium stems extract on tomato root and
shoot length.

Fig. (4-26) The effect of solanum stems extract on tomato root elongation.

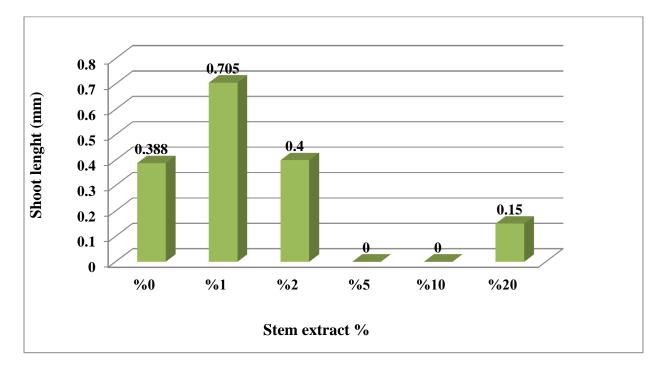


Fig. (4-27) The effect of solanum stems extract on tomato shoot elongation.

C. Effect of *S. elaeagnifolium* stems extract on tomato seeds dry and fresh weight:

The effect of different concentrations of *S. elaeagnifolium* stems extract on tomato fresh and dry weight showed increased weight with increased concentration compared with the control. Anova test was performed to explore the significance of this effect , there was a significant effect on both dry and fresh weight (0.000 and 0.023 < 0.05) as it is shown in table (4-21) and figure (4-28).

	Descriptive			ANOVA	
Weight	Concentration	Mean	S.D (±)	F	p- values
	0%	0.178	0.065		
	1%	0.272	0.017		
	2%	0.272	0.017		
Fresh weight		0.241	0.014		0.000
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.0020	0.0007	0.0	
	1%	0.0039	0.0013		
Dry Weight	2%	0.0039	0.0017		0.023
, , , , , , , , , ,	5%	-	-		
	10%	-	-		
	20%	-	-		
*The	mean difference	is signific	ant at the 0.05 le	evel.	

Table (4-21) The effect of S. elaeagnifolium stems extract on tomato fresh and
dry weight.

Fig. (4-28) The effect of *S. elaeagnifolium* stems extract on tomato fresh and dry weight.

4.2.3. Allelopathic effect of *S. elaeagnifolium* leaves extract on tomato seeds:

A. Effect of *S. elaeagnifolium* leaves extract on tomato seed germination percentage:

The effect of *S. elaeagnifolium* leaves extract on tomato germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in tomato seeds at concentration of 5 %, 10% and 20% concentration, as it is shown in the table (4-22) and figure (4-29).

Solanum extract conc.	Radish seeds germination %
0%	100%
1%	80%
2%	60%
5%	No germination
10%	No germination
20%	No germination

Table (4-22) Tomato germination percentage at differentconcentrations of solanum leaves extract.

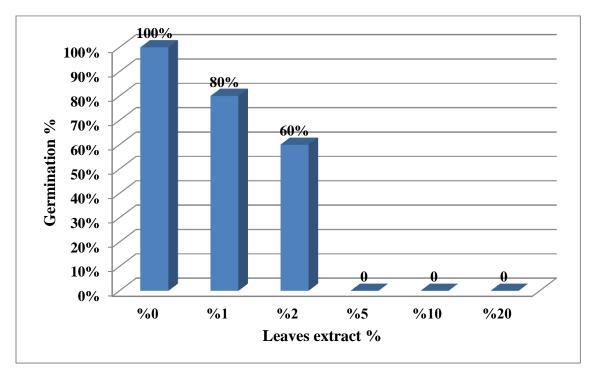


Fig. (4-29) Tomato germination percentage at different concentrations of solanum leaves extract.

B. Effect of *S. elaeagnifolium* leaves extract on tomato root and shoot elongation:

Allelopathiy of solanum leaves extracts concentration on tomato root and shoot elongation were examined by Anova statistical test, which showed a significant effect of solanum leaves extract on shoot length (p-value 0.035 < 0.05), while no significant effects where observed on tomato root length .(p-value 0.076 > 0.05) as shown in table (4-23), figures (4-30) and (4-31)

	Descriptive			ANOVA	
Plant part	Concentration	Mean	S.D (±)	F	p- values
	0%	0.412	0.430		
	1%	0.25	0.270	2.916	
Roots	2%	0.16	0.116		0.076
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.388	0.224		0.035
	1%	0.27	0.049		
Shoot	2%	0.116	0.017	2065	
	5%	-	-	3.965	
	10%	-	-		
	20%	-	-		
*The r	nean difference	is signific	ant at the 0.05 le	evel.	

Table (4-23) The effect of S. elaeagnifolium stems extract on tomato root and
shoot length.

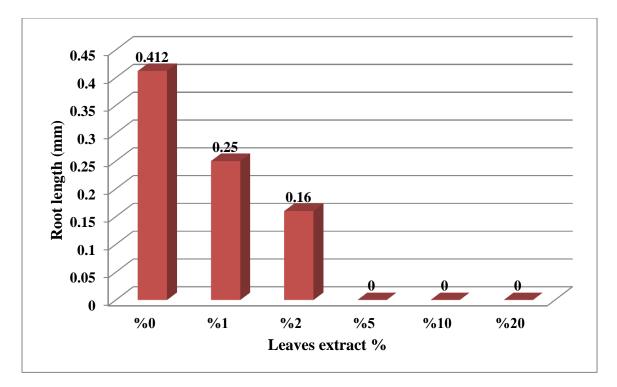


Fig. (4-30) The effect of solanum leaves extract on tomato root elongation.

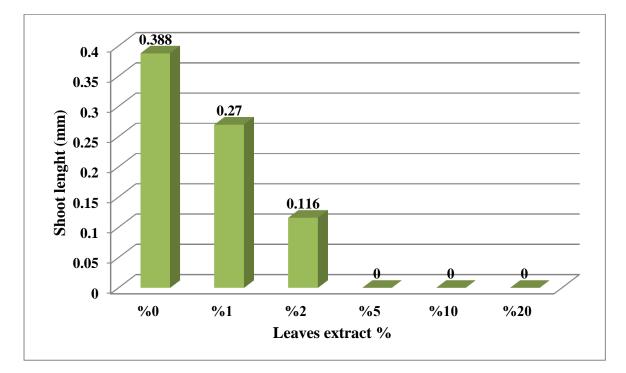


Fig. (4-31) The effect of solanum leaves extract on tomato shoot elongation.

C. Effect of *S. elaeagnifolium* leaves extract on tomato seeds dry and fresh weight:

The effect of different concentrations of *S. elaeagnifolium* leaves extract on tomato fresh weight showed decreased weight with increased concentration compared with the control, but dry weight decreased with increase extract concentration compared with the control . Anova test was performed to explore the significance of this effect, there was a significant effect on fresh weight (p-value 0.015 < 0.05) but no significant effect was observed on dry weight (p -value 0.592 > 0.05) as it is shown in table (4-24) and figure (4-32).

weight	Descriptive			A	NOVA
0	Concentration	Mean	S.D (±)	F	p- values
	0%	0.242	0.017		
	1%	0.226	0.007		
Fresh weight	2%	0.225	0.005		0.015
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.0046	0.0016		
	1%	0.0040	0.0014		
Dry Weight	2%	0.0040	0.0013		0.592
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The mean difference is significant at the 0.05 level.					

Table (4-24) The effect of S. elaeagnifolium stems extract on tomato fresh and
dry weight.

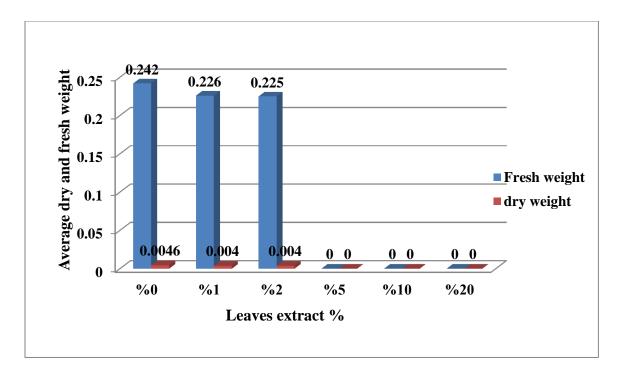


Fig. (4-32) The effect of *S. elaeagnifolium* leaves extract on tomato fresh and dry weight.

4.2.4. Allelopathic effect of S. elaeagnifolium flowers extract on tomato:-

A. Effect of *S. elaeagnifolium* flowers extract on tomato seeds germination percentage:-

The effect of *S. elaeagnifolium* flowers extract on tomato germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in tomato seeds at concentration of 5 %, 10% and 20% concentration, as it is shown in the table (4-25) and figure (4-33).

Solanum extract conc.	Tomato seeds germination
0%	100%
1%	20%
2%	10%
5%	No germination
10%	No germination
20%	No germination

Table (4-25) Tomato germination percentage at different concentrations of solanum flowers extract.

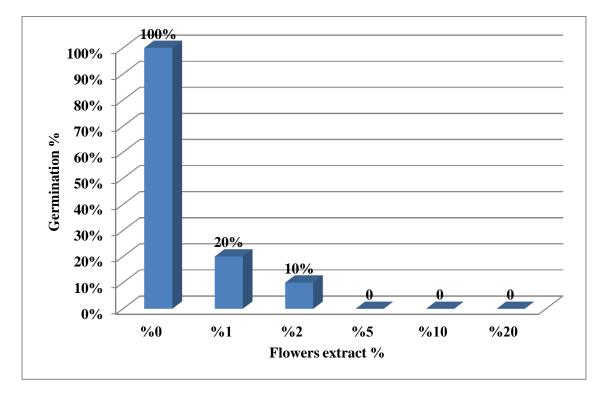


Fig. (4-33) Tomato germination percentage at different concentrations of solanum flowers extract.

B. Effect of *S. elaeagnifolium* flowers extract on tomato root and shoot elongation:

Allelopathiy of solanum flowers extracts concentration on tomato root and shoot elongation were examined by Anova statistical test, which showed no significant effect of solanum flowers extract on root and shoot length (p-value 0.201 and 0.716 > 0.05) as shown in table (4-26), figures (4-34) and (4-35).

Table (4-26) The effect of S. elaeagnifolium flowers extract on tomato root and
shoot length.

Plant part	Descriptive			AN	NOVA
	Concentration	Mean	S.D (±)	F	p- values
	0%	0.412	0.207	1.893	0.201
	1%	0.105	0.045		
Roots	2%	0.1	-		
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.388	0.286	0.346	0.716
	1%	0.53	0.034		
Shoot	2%	0.05	-		
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The ı	mean difference	is signific	ant at the 0.05 lev	vel.	

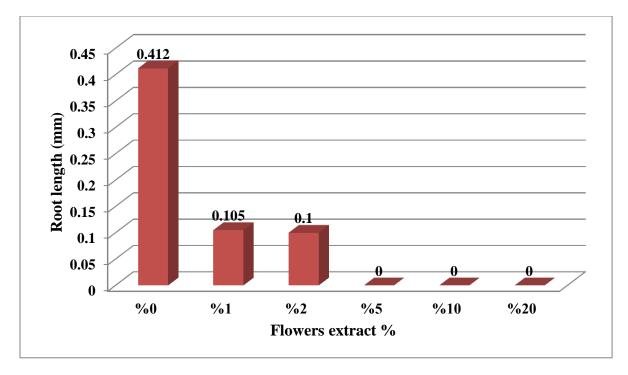


Fig. (4-34) The effect of solanum flowers extract on tomato root elongation.

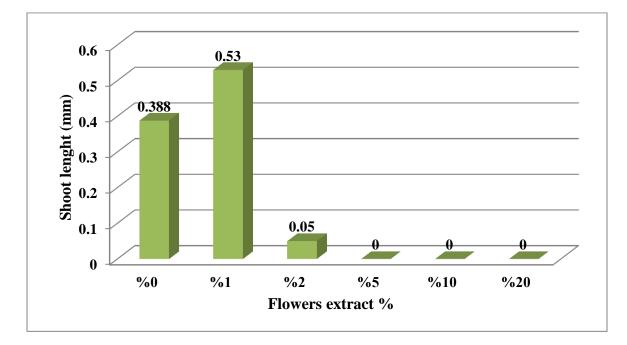


Fig. (4-35) The effect of solanum flowers extract on tomato shoot elongation.

C. Effect of *S. elaeagnifolium* flowers extract on tomato dry and fresh weight:

The effect of different concentrations of *S. elaeagnifolium* flowers extract on tomato fresh and dry weight showed decreased weight with increased concentration compared with the control, but dry weight decreased with increase extract concentration compared with the control . Anova test was performed to explore the significance of this effect, there was no significant effect on fresh and dry weights (p- value 0.766 and 0.329 > 0.05) as it is shown in table (4-27) and figure (4-36).

Weight	Weight Descriptive			Al	NOVA
U	Concentration	Mean	S.D (±)	F	p- values
	0%	0.250	-0.036		
	1%	0.256	-0.005		
Fresh weight	2%	-	_		0.766
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.0033	0.0019		
	1%	0.0021	0.0005		
Dry Weight	2%	-	-		0.329
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The mean difference is significant at the 0.05 level.					

 Table (4-27) The effect of S. elaeagnifolium flowers extract on tomato fresh and dry weight.

Fig. (4-36) The effect of *S. elaeagnifolium* flowers extract on tomato seeds fresh and dry weight.

4.2.5. Allelopathic effect of S. elaeagnifolium fruits extract on tomato:-

A. Effect of *S. elaeagnifolium* fruits extract on tomato germination percentage:

The effect of *S. elaeagnifolium* fruits extract on tomato germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in tomato at concentration of 2%, 5 %, 10% and 20% concentration, as it is shown in the table (4-28) and figure (4-37).

Solanum extract conc.	Tomato seeds germination %
0%	100%
1%	40%
2%	No germination
5%	No germination
10%	No germination
20%	No germination

Table (4-28) Tomato germination percentage at differentconcentrations of solanum fruits extract.

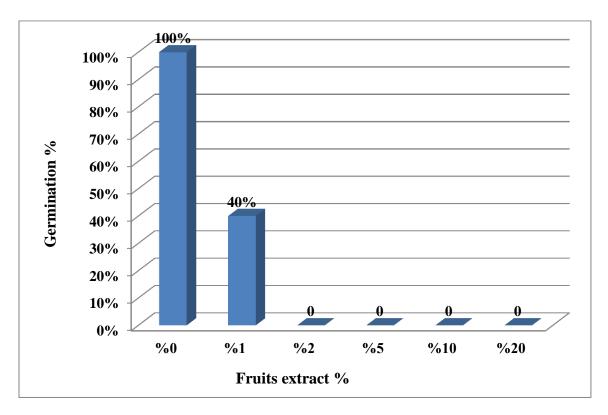


Fig. (4-37) Tomato germination percentage at different concentrations of solanum fruits extract.

B. Effect of *S. elaeagnifolium* fruits extract on tomato root and shoot elongation:

Allelopathiy of solanum fruits extracts concentration on tomato root and shoot elongation were examined by Anova statistical test, which showed no significant effect of solanum flowers extract on root and shoot length (p-value 0.68 and 0.109 > 0.05) as shown in table (4-29), figures (4-38) and (4-39).

Table (4-29) The effect of S. elaeagnifolium fruits extract on tomato root and
shoot length.

Type of seeds	E	Descriptive			IOVA
21	Concentration	Mean	S.D (±)	F	p- values
	0%	0.412	0.207	0.178	0.68
	1%	0.335	0.045		
Roots	2%	-	_		
	5%	-	_		
	10%	-	-		
	20%	-	_		
	0%	0.388	0.286	2.99	0.109
	1%	0.355	0.034		
Shoot	2%	-	-		
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The r	nean difference	is signific	ant at the 0.05 le	evel.	

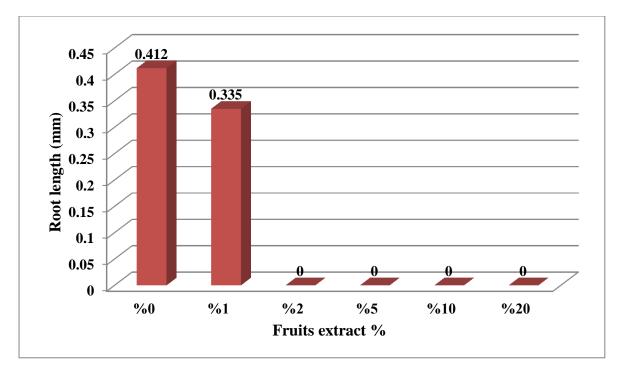


Fig. (4-38) The effect of solanum fruits extract on tomato root elongation.

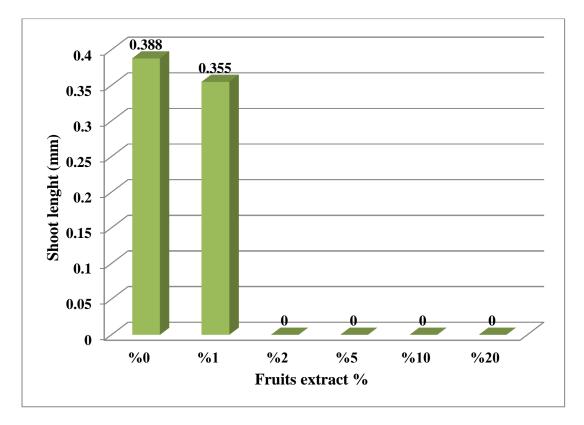


Fig. (4-39) The effect of solanum fruits extract on tomato shoot elongation.

C. Effect of *S. elaeagnifolium* fruits extract of dry and fresh weight of tomato seeds:

The effect of different concentrations of *S. elaeagnifol*ium fruits extract on tomato fresh and fresh weight showed decreased weight with increased concentration compared with the control, but dry weight decreased with increase extract concentration compared with the control. Anova test was performed to explore the significance of this effect, there was no significant effect on fresh and dry weights (p- value 0.090 and 0.703 > 0.05) as it is shown in table (4-30) and figure (4-40).

Weight	Descriptive			Al	NOVA
6	Concentration	Mean	S.D (±)	F	p- values
	0%	0.120	0.030		
	1%	0.182	0.098		
Fresh weight	2%	-	-		0.090
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.019	0.025		
	1%	0.024	0.024		
Dry Weight	2%	-	-		0.703
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The mean difference is significant at the 0.05 level.					

Table (4-30) The effect of S. elaeagnifolium fruits extract on tomato seedsfresh and dry weight.

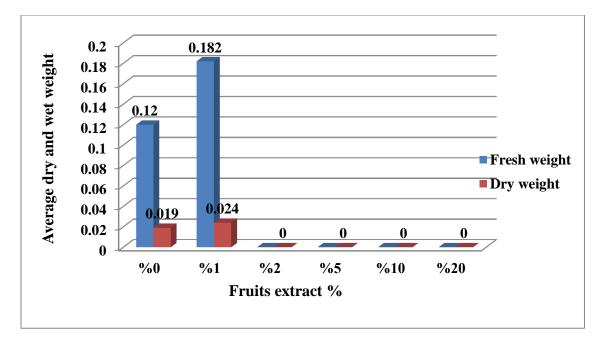


Fig. (4-40) The effect of *S. elaeagnifolium* fruits extract on tomato seeds fresh and dry weight.

4.3. Allelopathic effect of S. elaeagnifolium parts on wheat:

4.3.1. Allelopathic effect of *S. elaeagnifolium* root extract on wheat germination:

A. Effect of *S. elaeagnifolium* root extract on wheat seed germination percentage:

The effect of *S. elaeagnifolium* roots extract on wheat germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in wheat at concentration of 5 and 20%% as it is shown in the table (4-31) and figure (4-41).

Solanum extract conc.	wheat seeds germination %
0%	90%
1%	30%
2%	10%
5%	No germination
10%	10%
20%	No germination

Table (4-31) wheat germination percentage at differentconcentrations of solanum roots extract.

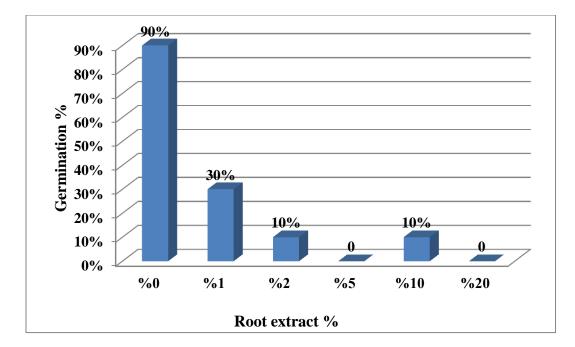


Fig. (4-41) wheat seeds germination percentage at different concentrations of solanum roots extract.

B. Effect of *S. elaeagnifolium* roots extract on wheat root and shoot elongation:

Allelopathiy of solanum roots extracts concentration on wheat root and shoot elongation were examined by Anova statistical test, which showed no significant effect of solanum root extract on root length (p-value 0.72 > 0.05), but a significant effect was observed on shoot length (0.043 < 0.05) as shown in table (4-32), figures (4-42) and (4-43).

Table (4-32) The effect of S. elaeagnifolium roots extract on wheat root and
shoot length.

Plant part	Descriptive		ANOVA		
	Concentration	Mean	S.D (±)	F	p- values
	0%	0.74	0.128		
	1%	0.513	0.19	0.455	
Roots	2%	0.36	-		0.720
	5%	-	-		
	10%	0.55	-		
	20%	-	-		
	0%	0.37	0.187		0.043
	1%	0.63	0.036	4.308	
Shoot	2%	0.49	-		
	5%	-	-		
	10%	0.32	-		
	20%	-	-		
*The n	nean difference i	s significa	ant at the 0.05 le	vel.	

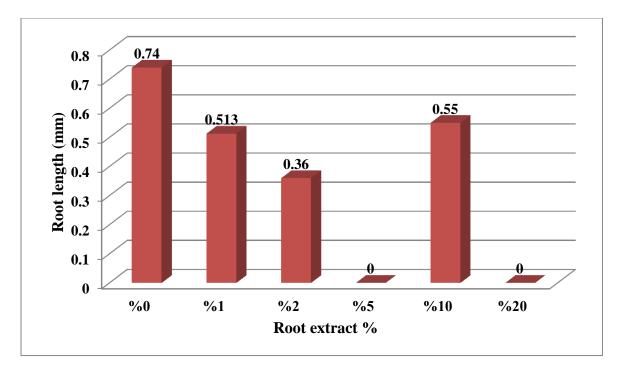


Fig. (4-42) The effect of solanum roots extract on wheat roots elongation.

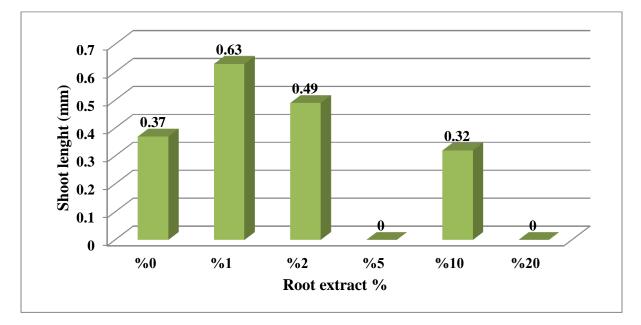


Fig. (4-43) The effect of solanum roots extract on wheat shoots elongation.

C. Effect of *S. elaeagnifolium* roots extract on wheat seeds dry and fresh weight:

The effect of different concentrations of *S. elaeagnifolium* roots extract on wheat fresh and dry weight showed increased weight at 1% concentration compared with the control . Anova test was performed to explore the significance of this effect, there was no significant effect on fresh weight (p- value 0.285 >0.05), but a significant effect was observed on dry weight (p- value 0.00< 0.05) as it is shown in table (4-33) and figure (4-44).

Weight	Descriptive			ANOVA	
	Concentration	Mean	S.D (±)	F	p- values
	0%	0.1189	0.0284		
	1%	0.387	0.445		
Fresh weight	2%	-	-		0.285
	5%	-	-		
	10%	-	-		
	20%	-	-		
	0%	0.0354	0.0137		
	1%	0.039	0.005		
Dry Weight	2%	-	-		0.00
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The ı	mean difference	is signific	ant at the 0.05 le	evel.	

 Table (4-33) The effect of S. elaeagnifolium roots extract on wheat seeds fresh and dry weight.

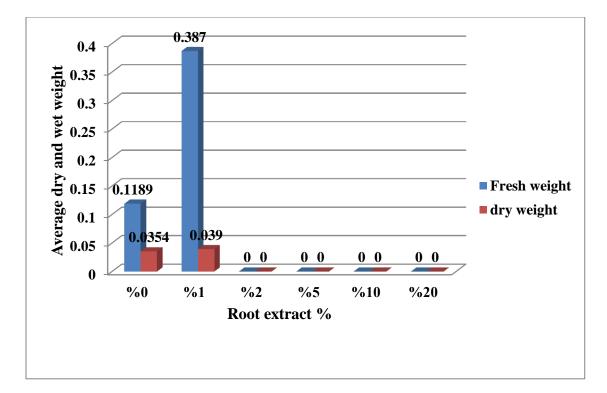


Fig. (4-44) The effect of *S. elaeagnifolium* roots extract on wheat fresh and dry weight.

4.3.2. Allelopathic effect of *S. elaeagnifolium* stem extract on wheat:

A. Effect of *S. elaeagnifolium* stem extract on wheat germination percentage:

The effect of *S. elaeagnifolium* stem extract on wheat germination percentage showed that germination percentage decrease with increase treatment concentration, no germination in wheat at concentration of 5%, 10% and 20%% as it is shown in the table (4-34) and figure (4-45).

Solanum extract conc.	wheat seeds germination %
0%	80%
1%	30%
2%	30%
5%	No germination
10%	No germination
20%	No germination

Table (4-34) Wheat germination percentage at differentconcentrations of solanum stems extract.

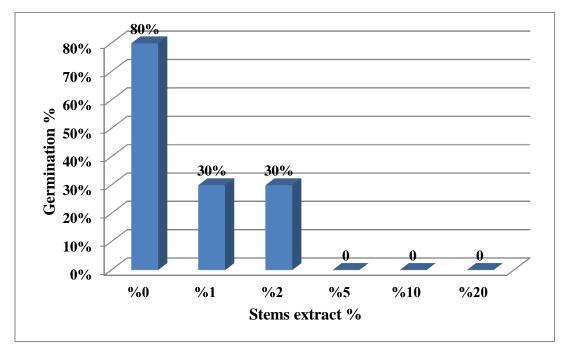


Fig. (4-45) Wheat seeds germination percentage at different concentrations of solanum stems extract.

B. Effect of *S. elaeagnifolium* stems extract on wheat root and shoot elongation:

Allelopathiy of solanum stems extracts concentration on wheat root and shoot elongation were examined by Anova statistical test, which showed no significant effect of solanum stems extract on root length (p-value 0.083 > 0.05), but a significant effect was observed on shoot length (0.002 < 0.05) as shown in table (4-35), figures (4-46) and (4-47).

Table (4-35) The effect of S. elaeagnifolium stems extract on wheat root and
shoot length.

Plant part	Descriptive		ANOVA		
	Concentration	Mean	S.D (±)	F	p- values
Roots	0%	0.695	0.076	0.455	0.083
	1%	0.496	0.309		
	2%	0.800	0.100		
	5%	-	-		
	10%	-	-		
	20%	-	-		
Shoot	0%	0.356	0.049	4.308	0.002
	1%	0.633	0.275		
	2%	0.750	0.132		
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The mean difference is significant at the 0.05 level.					

Fig. (4-46) The effect of solanum stems extract on wheat roots elongation.

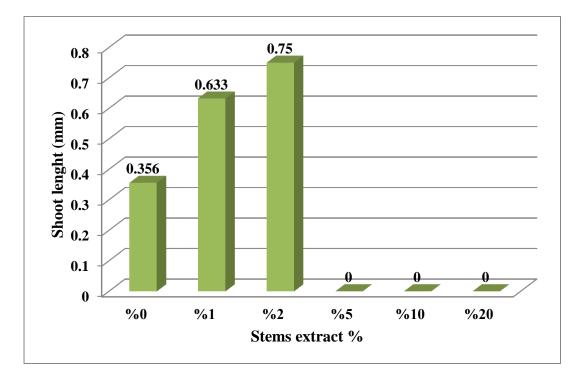


Fig. (4-47) The effect of solanum stems extract on wheat shoots elongation.

C. Effect of stems extract on wheat dry and fresh weight:

The effect of different concentrations of *S. elaeagnifolium* stems extract on wheat fresh and dry weight showed increased weight at 1% concentration compared with the control . Anova test was performed to explore the significance of this effect, there was no significant effect on dry weight (p- value 0.708 > 0.05), but a significant effect was observed on fresh weight (p- value 0.005 < 0.05) as it is shown in table (4-36) and figure (4-48).

Weight	Descriptive		ANOVA		
weight	Concentration	Mean	S.D (±)	F	p- values
Fresh weight	0%	0.155	0.028		
	1%	0.193	0.100		
	2%	0.316	0.066		0.005
	5%	-	-		
	10%	-	-		
	20%	-	-		
Dry Weight	0%	0.034	0.007		
	1%	0.0298	0.011		
	2%	0.029	0.017		0.708
	5%	-	-		
	10%	-	-		
	20%	-	-		
*The mean difference is significant at the 0.05 level.					

 Table (4-36) The effect of S. elaeagnifolium stems extract on wheat fresh and dry weight.

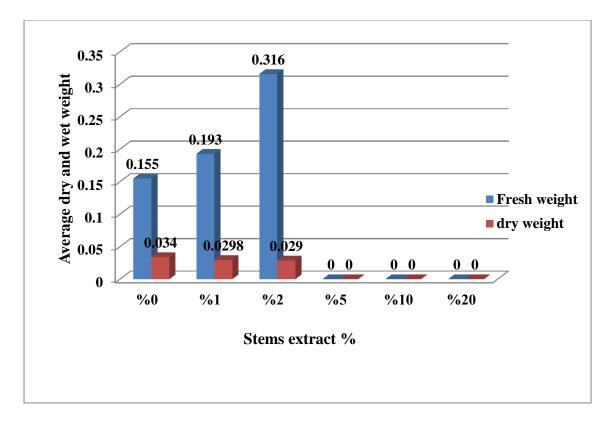


Fig. (4-48) The effect of *S. elaeagnifolium* roots extract on wheat fresh and dry weight.

4.3.3. Allelopathic effect of *S. elaeagnifolium* leaves, flowers, and fruits extracts on wheat germination:

No germination were occurred at all concentrations of leaves, flowers and fruits extracts of *S. elaeagnifolium*, only the control plates showed 80% germination.

Solanum extract conc.	Wheat seeds germination %
Control 0%	80%
Leaves extract 1%	No germination
Leaves extract 2%	No germination
Leaves extract 5%	No germination
Leaves extract 10%	No germination
Leaves extract 20%	No germination
Flower extract 1%	No germination
Flower extract 2%	No germination
Flower extract 5%	No germination
Flower extract 10%	No germination
Flower extract 20%	No germination
Fruit extract 1%	No germination
Fruit extract 2%	No germination
Fruit extract 5%	No germination
Fruit extract 10%	No germination
Fruit extract 20%	No germination

Table (4-37) Wheat germination percentage at different concentrations of solanum leaves, flowers and fruits extracts.

4.4. Allelopathic effect of different concentration of *S. elaeagnifolium* parts on lettuce seeds:

Only control plates were germinated, no germination occurred at all concentrations of all *S. elaeagnifolium parts*.

Table (4-38) Lettuce germination percentage at different		
concentrations of solanum roots, stems leaves, flowers and fruits		
extracts.		

Solanum extract conc.	Wheat seeds germination %		
Control 0%	70%		
Root extract 1%	No germination		
Root extract 2%	No germination		
Root extract 5%	No germination		
Root extract 10%	No germination		
Root extract 20%	No germination		
Stem extract 1%	No germination		
Stem extract 2%	No germination		
Stem extract 5%	No germination		
Stem extract 10%	No germination		
Stem extract 20%	No germination		
Leaves extract 1%	No germination		
Leaves extract 2%	No germination		
Leaves extract 5%	No germination		
Leaves extract 10%	No germination		
Leaves extract 20%	No germination		
Flower extract 1%	No germination		
Flower extract 2%	No germination		
Flower extract 5%	No germination		
Flower extract 10%	No germination		
Flower extract 20%	No germination		
Fruit extract 1%	No germination		
Fruit extract 2%	No germination		
Fruit extract 5%	No germination		
Fruit extract 10%	No germination		
Fruit extract 20%	No germination		

Chapter five

5- Discussion

Silverleafe nightshade is a very competitive and aggressive weed species (Boyd *et al.*, 1984; Trione and Cony, 1990). According to Roe (1971), a single plant can produce thousands of viable seeds. A dense population of silverleaf nightshade is capable of producing millions of viable seed (Cooley and Smith, 1973). The seriousness of silverleaf nightshade as a weed is enhanced by a growth habit where vegetative growth appears early in the spring followed by rapid growth from a well-developed root system (Boyd *et al.*, 1984). This characteristic gives silverleaf nightshade a competitive advantage over many agricultural crops.

Silverleaf nightshade contained the highest amount of the alkaloid solasodine. They reported that the ripe berries contained 3.2 % of their dry weight as solasodine. Kaul and Zutshi (1973) reported 1.8 % solasodine in berries. A concentration of 1.6 % was reported for green berries and 1.7% in ripe berries by Bradley *et al.* (1978). Higher concentrations of allelochemicals have been reported mostly in leaves but also in roots or seeds in some cases (Rice, 1974). Generally, leaves are the common source of allelochemicals and roots usually either contain low amounts of a particular compound, or chemicals of low toxicity (Rice, 1974). High concentrations of the glycoalkaloid solasodine that are extracted from ripe berries of silverleaf nightshade is used in the manufacture of steroidal drugs (Chiale *et al.*, 1991).

This study was conducted to examine the allelopathic effect of *S. elaeagnifolium* plant parts (roots, stems, leaves, flowers and berries) on four receptor seeds (radish, tomato, lettuce and wheat), seed germination, seedling length or seedling fresh mass are the parameters usually tested to quantify the effects of allelochemicals inhibitory effects of *S. elaeagnifolium* (Muller, 1965; Jankay & Muller, 1976; Rice, 1984; Ortega *et al.*, 1988).

5.1. Effect of *S. elaeagnifolium* extracts on the four receptor seeds germination percentages:

The effect of *S. elaeagnifolium* plant parts extract in different concentrations on radish and tomato seeds showed decreased germination percentage with increased concentrations of these extracts, in addition to completely inhibition of radish and tomato growth was observed at high concentrations of these extract, this discuses the fact that, all parts of *S. elaeagnifolium* even the root parts contains some allelochemicals, either low amounts or chemicals of low toxicity (Rice, 1974). *S. elaeagnifolium* leaves, flowers and fruits (berries) inhibit the germination of radish and tomato seeds even in low concentrations, which discuses the fact that leaves, flowers and fruits parts of *S. elaeagnifolium* contain high concentrations of allelochemichals (Rice, 1974). Lettuce seeds germination were completely inhibited even by low concentration of *S. elaeagnifolium* only control seeds (0%) were germinated, so it was the most sensitive receptor to the allelopathy of *S. elaeagnifolium*, wheat seeds germinated at low concentrations of 1 and 2 % of the *S. elaeagnifolium* roots and stems extracts only, which mean that lettuce followed by wheat are the most receptors inhibited by *S. elaeagnifolium* extracts.

5.2. Effect of *S. elaeagnifolium* extracts on the four receptor seeds root and shoot elongation:

Roots and shoots of germinating receptor seeds were measured with the ruler at the same day, radish seeds showed different responses to different concentration of different *S. elaeagnifolium* plant parts, *S. elaeagnifolium* stem, leaves, and fruits extracts showed significant effects on radish seed germination, these extracts severely inhibit radish and wheat root growth, this can be explained by the fact that higher concentrations of alkaloid solasodine were reported in these parts, there was no significant effects of theses extracts on shoots of radish seeds, Tomato and wheat shoots lengths were affected by different parts of *S. elaeagnifolium* (tomato and wheat shoots decreased with increased *S. elaeagnifolium* concentrations).

Conclusion

- Radish germination is less likely inhibited by increased concentrations of all parts of *S. elaeagnifolium* plant but this inhibition was more obvious when radish was treated with areal parts of *S. elaeagnifolium* (leaves, flowers and berries).
- 2. Tomato is also affected by allelopathy of *S. elaeagnifolium*, germination of tomato is inhibited by increased concentration of *S. elaeagnifolium* extracts of leaves, flowers and berries.
- **3.** Wheat growth is very inhibited by *S. elaeagnifolium* even at low concentrations, no growth was occurred when treated by leaves, flowers and berries extracts.
- **4.** Lettuce is more sensitive to allelopathy of *S. elaeagnifolium*, no growth was occurred at all concentrations of all *S. elaeagnifolium* parts extracts
- **5.** Areal parts (leaves, flowers and berries) of *S. elaeagnifolium* contain more allelochemichals that inhibit germination than roots and stems
- **6.** *S. elaeagnifolium* inhibit the root growth of radish and wheat but it doesn't inhibit shoot growth, but it inhibit shoots growth of tomato.

References

Abernathy, J. and Keeling J. (1979). "Silverleaf nightshade control in cotton with glyphhosate". *Proc. South. Weed Sci. Soc.* 32, 380.

Amra, K. (2012). "Allelopathic interference of silverleaf nightshade (*Solanum elaeagnifolium Cav.*) with germination and initial growth of sunflower (*Helianthus annuus L.*), Lentil (*Lens culinaris Medic.*) and barley (*Hordeum vulgare L.*)" Perrotis College. University of Wales Institute, Cardiff.

Bekkouche, K.; Markouk M.; Larhsini M.; Jana M. and Lazrek H. (2000). "Molluscicidal properties of glycoalkaloid extracts from Moroccan Solanum species". *Phytotherapy Research*, 14: 366-367.

Boyd, J.; Murray D. and Tyrl R. (1984) "Silverleaf Nightshade, *Solanum elaeagnifolium*, origin, distribution, and relation to man". *Economic Botany*. 38:210–217.

Bradley, V.; Collins D.; Crabbe P.; Eastwood F.; Irvine M.C.; Swan J.M. and Symon, D. (1978). "A Survey of Australian *Solanum* plants for potentially useful sources of solasodine". *Aust. J. Bot.* 26(6): 723-745.

Buck, W. B.; Dollahite J. W. and Allen T. J. (1960). "Solanum elaeagnifolium, silver-leafed nightshade, poisoning in livestock". *Journal of the American Veterinary Medical Association*, 137: 348-351.

Chiale, C.; Cabrera J. and Juliani H. (1991). "Kaempferol 3-(6"-ciscinnamoylglucoside) from *Solanum elaeagnifolium*". *Phytochem* 30(3): 1042-1043.

Cooley, A. and Smith D. (1973). "Silverleaf nightshade (whiteweed) establishment from seed and clipped seedlings. In Weed and Herbicide Research in West Texas 1971-1973". Progress Report 3198, pp 6-9. Texas Agric. Exp. Sta., Coll. Sta.

Corcuera, L. (1993). "Biochemical basis for the resistance of barley to aphids. Review article number 78". *Phytochemistry*. 33: 741-747.

Cuthbertson, E. (1976). "Silverleaf nightshade, a potential threat to agriculture". *Agric. Gaz. N.S.W.* 87:11-13.

D'Arcy, W. (1974). "Solanum and its close relatives in Florida". Ann. Missouri Bot. Gard. 61: 819-867.

De Candolle, M. (1832) . "Physiologie Vegetale". Tome III. Paris: Bechet Jeune, Lib. Fac. Med., pp. 1474-1475.

Del Moral, R. and Cates R. (1971). "Allelopathic potential of the dominant vegetation of Western Washington". *Ecol.* 52: 1030-1037.

Einhellig, F. (1995a). "Allelopathy - Current Status and Future Goals. In Allelopathy: Organisms", *Processes and Applications*. (ed.Inderjit, K. M. M. Dakshini and F. A. Einhellig), pp. 1-24. American Chemical Society.

Einhellig, F. (1995b). "Mechanism of action of allelochemicals in allelopathy". In Inderjit, *et al*, (eds). Allelopathy: organisms, Processes and Applications, pp. 96-116. *ACS Symp. Ser. 582. Am.Chem. Soc.*, Washington, DC.

Eleftherohorinos I.; Bell C. and Kotoula-Syka E. (1993). "Silverleaf Nightshade (Solanum elaeagnifolium) control with foliar herbicides". *Weed Technol* 7:808–811.

EPPO. (2007). "Solanum elaeagnifolium. Datasheets on Quarantine Pests. European and Mediterranean Plant Protection Organization (EPPO)". Bulletin (OEPP/EPPO)Bulletin,37(2):236-245.

http://www.eppo.int/QUARANTINE/data_sheets/plants/Solanum_elaeagnifolium_ DS.pdf.

Green J.; Murray D. and Stone J. (1988). "Soil water relationships of silverleaf nightshade (*Solanum elaeagnifolium*) with *cotton (Gossypium hirsutum*)". *Weed Sci.* 36(6):740-746.

Green J.; Murray D. and Verhalen L. (1987). "Full-season interference of Silverleaf nightshade (*Solanum elaeagnifolium*) with cotton (*Gossypium hirsutum*)". Weed Sci. 35(6), 813-818.

Hawkes, J. and Edmonds J. (1972). *Flora Europae*. 3, 197-199. Cambridge Univ. Press.

Henderson, M. and Anderson J. (1966). "Common weeds in South Africa". *Botanical Survey. Memoir* No. 37: 276-277.

Jacobson, B.; Murray D. and Stone J. (1994). "Soil-water extraction profiles of cotton (*Gossypium hirsutum*) and weed species". *Weed Technol.* 8 (2):190-198.

Jankay, P. and Muller W. (1976). "The relationship among *umbelliferone*, growth, and peroxidase levels in cucumber roots". *Am. J. Bot.* 63:126-132.

Kaul, B.L. and Zutshi U. (1973). "Solanum elaeagnifolium Cav., a potential source of solasodine". *Indian J. Pharm.* 35(3), 94-96.

Keeler, R. Baker D. and Gaffield W. (1990). "Spirosolane-containing *Solanum* species and induction of congenital craniofacial malformations". *Toxicon*, 28(8): 873-884.

Kohli, R.; Batish D. and Singh H. (1998). "Allelopathy and it implications in agroecosystems". In A.S. Basra (Ed.). Crop Sciences: Recent advances, pp. 169-202. Haworth Press. N.Y.

Kumar, R. (1991). "Studies on autotoxicity in *Lantana camara* L. Ph.D". Thesis, Panjab University, Chandigarh, India.

Kushal, B. (1987). "Physiological and biochemical aspects of teletoxicity and eradication of *Lantana camara* L". Ph.D. Thesis Panjab University, Chandigarh, India.

Lovett, J. (1982). "Allelopathy and self defense in plants". Aus. Weeds 2:23-36.

Mekki, M. (2007). "Biology, distribution and impacts of Silverleaf Nightshade (*Solanum elaeagnifolium Cav*)". *EPPO Bull* 37:114–118.

Molisch, H. (1937) . "Der einflus einer Pfanze auf die andere-Allelopathi" Gustav Fischer, Jena.

Molnar, V. and Mckenzie D. (1976). "Progress report on silverleaf nightshade research". Keith Turnbull Res. Inst. Victoria, Australia.Pamphlet no. 61.

Muller, C. (1965). "Inhibitory terpenes volatilized from Salvia shrubs." *Bull. Torrey Bot. Club* 92, 38.

Muller, C. H. (1974). "Allelopathy in the environmental complex. In B.R. Strain and W.D. Billings (eds). "Handbook of vegetation science Part IV: Vegetation and environment, pp. 73-85. Dr. W. Junk, B.V. Publisher, The Hague.

Neill, R. and Rice E. (1971). "Possible role of *Ambrosia psilostachya* on patterning and succession in old fields". *Am. Middl. Nat.* 86: 344-357.
Niemeyer, H. (1988). "Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defense chemicals in the Gramineae". *Phytochemistry.* 27: 3349-3358.

Ortega, R.; Anaya A. and Ramos L. (1988). "Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon". *J. Chem. Ecol.* 14:71-86.

Putnam, A. (1985). "Weed allelopathy". *In Weed Physiology.*, vol. 1 (ed. S. O. Duke), pp. 131-155. CRC Press, Inc.

Putnam, A. R. and Duke W. B. (1974). Sci. 185, 370.

Putnam, A. R. and Tang C.S. (1986). "Allelopathy: State of the science. In A.R. Putnam, & C.S. Tang (eds) ". The science of allelopathy, pp. 1- 19. Wiley, N.Y.

Rice, E. (1974). "Allelopathy". Academic Press, New York.

Rice, E. L. (1984). "Allelopathy". Second Edition . Academic Press, Inc., Academic Press, New York. 421 pp.

Rice, E. (1995). "Allelopathy in forestry. In E.L. Rice (ed.). Biological control of weeds and plant diseases": *Advances in applied allelopathy*. University of Oklahoma Press, Norman.

Rizvi, S. and Rizvi V. (1992). "Allelopathy: basic and applied aspects". Chapman & Hall, London, N.Y., Tokyo, Melbourne, Madras.

Rizvi, S.; Haque H.; Singh V. and Rizvi V. (1992). "A discipline called allelopathy. In Allelopathy". *Basic and applied aspects* (ed. S. J. H.Rizvi and V. Rizvi), pp. 1-8. Chapman & Hall, London.

Robinson, A.; Orr C. and Abenarthy J. (1978). "Distribution of *Nothanguina phyllobia* and its potential as a biological control agent of silverleaf nightshade". *J. Nematol.* 10:361-366.

Roe, K. (1971)."Terminology of hairs in the genus Solanum". Taxon. 4: 501-508.

Sarah, C.; Gui A. and Fabian B. (2004). "Allelopathic effect of *Solanum Lycocarpum* A. St.-Hil.leaves on the germination and growth of *Sesamum indicum*L. (Pedaliaceae) under different temperatures" *Acta Botanica Brasilica* vol.18 no.3.

Schreiner, O. and Reed H.(1908). "The toxic action of certain organic plant constituents". *Bot. Gaz.* 45:73-102.

Torres, A.; Oliva R.; Castellano D. and Cross P. (1996). "First World Congress on Allelopathy". *A Science of the Future.*, pp. 278. SAI (University of Cadiz). Spain, Cadiz.

Trione, S.and Cony M. (1990). "Thermoperiodism and other physiological traits of *Solanum elaeagnifolium* seeds in relation to germination". *Seed Sci. and Technol.* 18 (3), 525-540.

Wassermann, V.; Zimmermann H. and Neser S. (1988). "The Weed Silverleaf Bitter Apple ('Satansbos') (*Solanum elaeagnifolium Cav.*) with special reference to its status in South Africa". Technical Communication no. 214. Department of Agriculture and Water Supply: Pretoria (ZA).

Whittaker, R. and Feeny P. (1971). "Allelochemicals: chemical interaction between species". *Science* 171: 757-770.

Zygadlo, J. (1994). "A comparative study of sterols in oil seeds of *Solanum spp*." *Phytochem. Oxford*. 35(1): 163-167.

Appendix

- 1. Allelopathic effect of S. elaeagnifolium on radish:
 - I. Allelopathic effect of *S. elaeagnifolium* root extract on radish Effect of root extract on radish root and shoot elongation

	Report						
treatr	nent	root	shoot				
0%	Mean	0.6733	0.6033				
	Ν	9	9				
	Std. Deviation	0.27946	0.19384				
1%	Mean	0.4486	0.6729				
	Ν	7	7				
	Std. Deviation	0.32921	0.39148				
2%	Mean	0.4083	0.5167				
	Ν	6	6				
	Std. Deviation	0.24523	0.25897				
5%	Mean	0.1000	1.0100				
	Ν	2	2				
	Std. Deviation	0.02828	0.15556				
20%	Mean	0.1300	0.2000				
	Ν	1	1				
	Std. Deviation						
Tota	Mean	0.4792	0.6184				
1	Ν	25	25				
	Std. Deviation	0.31371	0.29905				

	ANOVA							
		Sum of						
		Squares	df	Mean Square	F	Sig.		
root	Between	0.785	4	0.196	2.491	0.076		
	Groups							
	Within Groups	1.577	20	0.079				
	Total	2.362	24					
shoot	Between	0.567	4	0.142	1.794	0.170		
	Groups							
	Within Groups	1.580	20	0.079				
	Total	2.146	24					

	Report					
treatm	ent	radish root	radish shoot			
		length	length			
0%	Mean	0.6733	0.6033			
	Ν	9	9			
	Std. Deviation	0.27946	0.19384			
1%	Mean	0.1767	0.6833			
	Ν	6	6			
	Std. Deviation	0.07815	0.29480			
2%	Mean	0.6867	0.6083			
	Ν	6	6			
	Std. Deviation	0.36484	0.26157			
5%	Mean	0.5000	0.4520			
	Ν	5	5			
	Std. Deviation	0.48384	0.32522			
Total	Mean	0.5285	0.5938			
	N	26	26			
	Std. Deviation	0.36567	0.25698			

II. Allelopathic effect of *S. elaeagnifolium* stem extract on radish:

Effect of S. elaeagnifolium stem extract on radish root and shoot elongation:

	ANOVA							
		Sum of		Mean				
		Squares	df	Square	F	Sig.		
radish root length	Between	1.110	3	0.370	4.616	0.032		
	Groups							
	Within Groups	1.763	22	0.080				
	Total	2.873	25					
radish shoot	Between	1.101	3	0.367	6.578	0.541		
length	Groups							
	Within Groups	1.228	22	0.056				
	Total	2.329	25					

III. Allelopathic effect of *S. elaeagnifolium* leaves extract on radish:

Effect of S. elaeagnifolium leaves extract on radish root and shoot elongation

	Report					
extract		root	Shoot			
0%	Mean	0.6733	0.6033			
	Ν	9	9			
	Std. Deviation	0.27946	0.19384			
1%	Mean	0.3400	0.6183			
	Ν	6	6			
	Std. Deviation	0.18836	0.23241			
2%	Mean	0.3033	0.3267			
	Ν	3	3			
	Std. Deviation	0.17214	0.19218			
10%	Mean	0.0800	0.2000			
	Ν	1	1			
Std. Deviation		•	•			
Total	Mean	0.4784	0.5432			
	Ν	19	19			
	Std. Deviation	0.29524	0.23207			

	ANOVA							
		Sum of						
		Squares	df	Mean Square	F	Sig.		
root	Between	0.090	3	0.030	0.729	0.026		
	Groups							
	Within Groups	0.619	15	0.041				
	Total	0.709	18					
shoot	Between	0.266	3	0.089	2.164	0.97		
	Groups							
	Within Groups	0.615	15	0.041				
	Total	0.882	18					

	Report					
extrac	et	root	shoot			
0%	Mean	0.6733	0.6033			
	Ν	9	9			
	Std. Deviation	0.27946	0.19384			
1%	Mean	0.5450	0.5575			
	Ν	4	4			
	Std. Deviation	0.37036	0.20597			
2%	Mean	0.4233	0.2967			
	Ν	3	3			
	Std. Deviation	0.28572	0.13429			
Total	Mean	0.5944	0.5344			
	Ν	16	16			
	Std. Deviation	0.30035	0.21266			

IV. Allelopathic effect of *S. elaeagnifolium* flowers extract on radish:

Effect of *S. elaeagnifolium* flowers extract on radish root and shoot elongation:

	ANOVA							
		Sum of						
		Squares	df	Mean Square	F	Sig.		
Root	Between	0.320	2	0.160	2.970	0.457		
	Groups							
	Within Groups	0.701	13	0.054				
	Total	1.022	15					
Shoot	Between	0.117	2	0.059	1.231	0.58		
	Groups							
	Within Groups	0.619	13	0.048				
	Total	0.736	15					

	Report					
Extrac	et	shoot	root			
0%	Mean	0.6033	0.6733			
	Ν	9	9			
	Std. Deviation	0.19384	0.27946			
1%	Mean	0.3957	0.2671			
	Ν	7	7			
	Std. Deviation	0.26165	0.21616			
2%	Mean	0.1200	0.2000			
	Ν	1	1			
	Std. Deviation	•	•			
Total	Mean	0.4894	0.4782			
	Ν	17	17			
	Std. Deviation	0.25324	0.31987			

V. Allelopathic effect of *S. elaeagnifolium* fruits extract on radish Effect of *S. elaeagnifolium* fruits extract on Radish root and shoot elongation

	ANOVA							
		Sum of						
		Squares	df	Mean Square	F	Sig.		
shoot	Between	0.315	2	0.157	3.097	0.077		
	Groups							
	Within Groups	0.711	14	0.051				
	Total	1.026	16					
root	Between	0.732	2	0.366	5.660	0.016		
	Groups							
	Within Groups	0.905	14	0.065				
	Total	1.637	16					

2. Allelopathic effect of S. elaeagnifolium on tomato

Report					
Extrac	t	root	shoot		
0%	Mean	0.4120	0.3880		
	Ν	10	10		
	Std. Deviation	0.25315	0.25568		
1%	Mean	0.3360	0.6160		
	Ν	10	10		
	Std. Deviation	0.14253	0.06620		
2%	Mean	0.3180	0.5580		
	Ν	5	5		
	Std. Deviation	0.11432	0.13255		
5%	Mean	0.3350	0.4400		
	Ν	2	2		
	Std. Deviation	0.09192	0.05657		
20%	Mean	0.3000	0.0600		
	Ν	1	1		
	Std. Deviation	•			
Total	Mean	0.3586	0.4918		
	Ν	28	28		
	Std. Deviation	0.17917	0.20879		

I. Allelopathic effect of *S. elaeagnifolium* root extract on tomato Effect of root extract on tomato root and shoot elongation

	ANOVA							
		Sum of						
		Squares	df	Mean Square	F	Sig.		
shoot	Between	0.476	4	0.119	3.901	0.015		
	Groups							
	Within Groups	0.701	23	0.030				
	Total	1.177	27					
root	Between	0.046	4	0.012	0.325	0.858		
	Groups							
	Within Groups	0.820	23	0.036				
	Total	0.867	27					

II. Allelopathic effect of *S. elaeagnifolium* stem extract on tomato: Effect of *S. elaeagnifolium* stem extract on tomato root and shoot elongation:

	Report					
	extract	Shoot	root			
0%	Mean	0.3880	0.4120			
	Ν	10	10			
	Std. Deviation	0.25568	0.25315			
1%	Mean	0.2700	0.2500			
	Ν	8	8			
	Std. Deviation	0.14010	0.15811			
2%	Mean	0.1167	0.1600			
	Ν	6	6			
	Std. Deviation	0.04274	0.19667			
Total	Mean	0.2808	0.2950			
	Ν	24	24			
	Std. Deviation	0.20980	0.22914			

	ANOVA							
		Sum of						
		Squares	df	Mean Square	F	Sig.		
shoot	Between	0.277	2	0.139	3.965	0.004		
	Groups							
	Within Groups	0.735	21	0.035				
	Total	1.012	23					
root	Between	0.262	2	0.131	2.916	0.143		
	Groups							
	Within Groups	0.945	21	0.045				
	Total	1.208	23					

III. Allelopathic effect of *S. elaeagnifolium* leaves extract on tomato: Effect of *S. elaeagnifolium* leaves extract on tomato root and shoot elongation

	Report					
Extrac	t	root	shoot			
0%	Mean	0.2956	0.4300			
	Ν	9	9			
	Std.	0.19080	0.22411			
	Deviation					
1%	Mean	0.2500	0.2700			
	Ν	8	8			
	Std.	0.15811	0.14010			
	Deviation					
2%	Mean	0.1600	0.1167			
	Ν	6	6			
	Std.	0.19667	0.04274			
	Deviation					
Total	Mean	0.2443	0.2926			
	Ν	23	23			
	Std.	0.18168	0.20316			
	Deviation					

	ANOVA						
		Sum of					
		Squares	df	Mean Square	F	Sig.	
shoot	Between Groups	0.360	2	0.180	6.560	0.035	
	Within Groups	0.548	20	0.027			
	Total	0.908	22				
root	Between Groups	0.067	2	0.033	1.009	0.076	
	Within Groups	0.660	20	0.033			
	Total	0.726	22				

IV.	Allelopathic effect of S. elaeagnifolium flowers extract on tomato:
Effect of S. el	aeagnifolium flowers extract on tomato root and shoot elongation

	Report					
extrac	t	root	shoot			
0%	Mean	0.4120	0.3880			
	Ν	10	10			
	Std. Deviation	0.25315	0.25568			
1%	Mean	0.3550	0.6200			
	Ν	4	4			
	Std. Deviation	0.12689	0.09798			
Total	Mean	0.3957	0.4543			
	N	14	14			
	Std. Deviation	0.22090	0.24352			

	ANOVA							
		Sum of						
		Squares	df	Mean Square	F	Sig.		
root	Between Groups	0.009	1	0.009	0.178	0.201		
	Within Groups	0.625	12	0.052				
	Total	0.634	13					
shoot	Between Groups	0.154	1	0.154	2.990	0.716		
	Within Groups	0.617	12	0.051				
	Total	0.771	13					

V. Allelopathic effect of *S. elaeagnifolium* fruits extract on tomato: Effect of *S. elaeagnifolium* fruits extract on tomato root and shoot elongation

Report					
extract	t	root	shoot		
0%	Mean	0.4120	0.3880		
	Ν	10	10		
	Std. Deviation	0.25315	0.25568		
1%	Mean	0.4267	0.7056		
	Ν	9	9		
	Std. Deviation	0.11369	0.11844		
2%	Mean	0.2500	0.4000		
	Ν	5	5		
	Std. Deviation	0.12826	0.15811		
20%	Mean	0.0600	0.1500		
	Ν	1	1		
	Std. Deviation				
Total	Mean	0.3708	0.4952		
	N	25	25		
	Std. Deviation	0.20006	0.24818		

	ANOVA						
		Sum of					
		Squares	df	Mean Square	F	Sig.	
root	Between Groups	0.215	3	0.072	2.014	0.68	
	Within Groups	0.746	21	0.036			
	Total	0.961	24				
shoot	Between Groups	0.678	3	0.226	5.925	0.109	
	Within Groups	0.801	21	0.038			
	Total	1.478	24				

الملخص

يعتبر نبات السولانيوم (Solanum elaeagnifolium) من الاعشاب الضارة المعمرة في العديد من مناطق العالم و الشبه قاحلة و التي تشمل شمال افريقيا حيث يعد نبات السولانيوم من النباتات الغازية لمنطقة حوض البحر المتوسط و التي لها تأثير سلبي على المحاصيل الزراعية و التي تقدر خسائره للمحصول بنسبة 75 % و قد يسبب خسائر بطرق غير مباشرة حيث انه يأوي العديد من الحشرات الضارة و الامراض ، اجريت هذه الدراسة لمعرفة التأثير السمى لهذا النبات على اربعة مستقبلات نباتية من ذوات الفلقة الواحدة و ذوات الفلقتين و هذه النباتات هي (الفجل و الطماطم و القمح و الخس) و لدر اسة تأثير هذا النبات على طول الجذر و الساق بالإضافة الى تأثيره على الوزن الجاف و الرطب حيث تم تحضير 5 مستخلصات مائية من الجذر و الساق و الاوراق و الزهور و الثمار كلا على حده بست تراكيز مختلفة (1%، 2% ، 5% ، 10 % و 20 %) حيث تمت دراسة السمية عن طريق زراعة عشر بذور من هذه المستقبلات في اطباق خاصة تحتوي على ورق ترشيح مبللة ب 5 مل من المستخلص المائي المراد دراسته تترك هذه الاطباق لتنمو في درجة حرارة الغرفة حيث يتم المحافظة على رطوبتها بإضافة المستخلص المائي يوم بعد يوم ، يتم حساب كلا من نسبة الانبات ، طول الجذر و الساق و الوزن الرطب و الوزن الجاف ، و قد اثبتت نتائج هذه الدر اسة ان انبات بذور الفجل و الطماطم اقل تأثر ا بسمية نبات السولانيوم مقارنة بنباتي القمح و الخس حيث انها لم تظهر إي انبات خاصة عند التراكيز العالية ، كما اظهرت الدراسة إن الاجزاء العليا من النبات مثل الاز هار و الثمار و الأوراق تحتوى على نسبة عالية من القلويدات السامة اكثر من الجذور و السيقان ، كما اظهرت الدراسة ان مستخلصات نبات السولانيوم تؤثر سلبا على نمو الجذر في نبات الفجل و القمح و لا تؤثر على نمو الساق في هذه النباتات كما انها تؤثر سلبا على نمو الساق في نبات الطماطم و لا تؤثر في نمو الجذر بالإضافة الى ان كل مستخلصات اجزاء نبات السولانيوم بكل تر اكيز ها منعت نمو نبات الخس و هذا ما يؤكد وجود مواد سامة في جذر النبات .