

# The Effect of Simulated Seawater on Two Ornamental Plant Species At Benghazi City

By

Raja B. Al ferjani

Supervised by

Prof. Dr. Salem El shatshat

A thesis presented to the department of botany faculty of science Benghazi University in partial fulfillment of the requirement for the degree of master in Botany

> University of Benghazi Faculty of science

> > Feb 2022

Copyright ©2022. All rights reserved, no part of this thesis may be reproduced in any form, electronic or mechanical including photocopy, recordings, scanning, or any information, without the permission in writhing from the author or Directorate of the Graduate Studies and Training university of Benghazi.

حقوق النشر © 2022 جميع الحقوق محفوظة ، لا يسمح أخذ أي معلومة من أي جزء من هذه الرسالة على هيئة نسخة إلكترونية أو ميكانيكية ، بما في ذلك التصوير أو التسجيلات أو المسح الضوئي أو أي معلومات ، دون إذن كتابي من المؤلف أو إدارة الدر اسات العليا والتدريب بجامعة بنغازي .

**University of Benghazi** 

**Faculty of Sciences** 



### **Department of Botany**

## The Effect of Simulated Seawater on Two Ornamental Plant Species At Benghazi City

By

Raja B. Al ferjani

This Thesis was Successfully Defended and Approved on 8/2/2022

Supervised by:

Prof . Dr. Salem El Shatshat

Signature .....

Prof. Yacoub El-Barasi (Internal examiner)

Signature:.....

Dr. Ahmad Buhedma (External examiner)

Signature .....

**Dean of Faculty** 

**Director of Graduate studies and Training** 

Dr. Younis O. Ben Amer

Signature .....

Dr. Othman Mohammed Albadri

Signature .....

بسم الله الرحمن الرحيم

اقْرَأْ بِاسْمِ رَبِّكَ الَّذِي خَلَقَ (1) خَلَقَ الْإِنْسَانَ مِنْ عَلَقٍ (2) اقْرَأْ وَرَبُّكَ الْأَكْرَمُ (3) الَّذِي عَلَّمَ بِالْقَلَمِ (4) عَلَّمَ الْإِنْسَانَ مَا لَمْ يَعْلَمْ (5) صدق الله العظيم

سورة العلق أية (1)

### Acknowledgement

I humbly begin my gratefulness to Allah whose blessing upon me are beyond recognition. My sincere gratitude to my supervisor pro. Salem Elshatshat I would like to express my appreciation to my department and its staff members (The and my university Department) (Benghazi Botany to University). My special thanks and profound gratitude to my father and my mother whose love and care nourished my soul, support shaped my life, and whose whose help and encouragement and trust made me believe that impossible is just a word in a dictionary. To them I express my deepest thanks, sincere gratitude and absolute appreciation. I also would like to thank to all those who showed even the slightest interest and support to my work, for that I wish them all the best and hope they achieve what they aim for.

## Dedication

I Dedicate My Work To My Parents, And To My Brothers And Sisters, This Dedication Is Also Extended To All Those Who Hopefully Will Benefit From This Humble Research.

### **Table Of Content**

| Page | Contents                                                               |
|------|------------------------------------------------------------------------|
| ii   | Copy right ©2021                                                       |
| iii  | Examination committee                                                  |
| iv   | Quran verse                                                            |
| V    | Acknowledgment                                                         |
| vi   | Dedication                                                             |
| vii  | Table of content                                                       |
| X    | List of tables                                                         |
| xiv  | List of figures                                                        |
| XX   | Abstract                                                               |
| 1    | 1.Introduction                                                         |
| 1    | 1.1. Climate of Libya                                                  |
| 2    | 1.2. Soil in Libya                                                     |
| 2    | 1.3. Salinity                                                          |
| 3    | 1.4. Effect of salinity on plants                                      |
| 5    | 1.5. Ornamental plants                                                 |
| 5    | 1.6. Effect of salinity on ornamental plants                           |
| 8    | 1.7. Tolerance of ornamental plants to salinity                        |
| 9    | 1.8. Mechanism of tolerance                                            |
| 11   | 1.9. Study objectives                                                  |
| 12   | 2. Literature Review                                                   |
| 12   | 2.1. Acacia cyanophyla                                                 |
| 13   | 2.2. Albizia Lebbeck                                                   |
| 14   | 2.3. Review for methods for determination of salt tolerance in plants. |
| 15   | 2.4. Review of past studies                                            |
| 16   | 3. Materials and methods                                               |
| 16   | 3.1. Study location and plant materials                                |

| 20 | 3.2. Preparation of simulated water                                       |
|----|---------------------------------------------------------------------------|
| 20 | 3.3. Preparation of different dilutions of simulated seawater             |
| 21 | 3.4. Measurements of both electro conductivity and PH                     |
| 21 | 3.5. Experimentation of salinity effect on germination parameters         |
| 24 | 3.6. Seedling development study                                           |
| 25 | 3.7. Statistical analysis                                                 |
| 26 | 4. Results                                                                |
| 26 | 4.1. Results of Lebbeck Seeds treated with boiled water                   |
| 26 | 4.1.1. Germination experiment                                             |
| 28 | 4.1.2. Seedling experiment                                                |
| 38 | 4.2. Results of Lebbeck Seeds treated with hot tap water                  |
| 38 | 4.2.1. Germination experiment                                             |
| 40 | 4.2.2. Seedling experiment                                                |
| 51 | 4.3. Results of Lebbeck Seeds treated with mechanical scarification       |
| 51 | 4.3.1. Germination experiment                                             |
| 53 | 4.3.2. Seedling experiment                                                |
| 61 | 4.4. Results of Lebbeck Seeds treated with H <sub>2</sub> SO <sub>4</sub> |
| 81 | 4.4.1. Germination experiment                                             |
| 63 | 4.4.2. Seedling experiment                                                |
| 75 | 4.5. Results of Acacias seeds treated with boiled water                   |
| 75 | 4.5.1. Germination experiment                                             |
| 78 | 4.5.2. Seedling experiment                                                |
| 83 | 4.6. Results of Acacias seeds treated with hot tap water                  |
| 83 | 4.6.1. Germination experiment                                             |
| 85 | 4.6.2. Seedling experiment                                                |
| 89 | 4.7. Results of Acacias seeds treated with mechanical scarification       |
| 89 | 4.7.1. Germination experiment                                             |
| 91 | 4.7.2. Seedling experiment                                                |

| 95  | 4.8. Results of Acacias seeds treated with $H_2SO_4$ |
|-----|------------------------------------------------------|
| 95  | 4.8.1. Germination experiment                        |
| 97  | 4.8.2. Seedling experiment                           |
| 105 | 5. Discussion                                        |
| 110 | Conclusion                                           |
| 111 | References                                           |
| 126 | Appendix                                             |
|     | Arabic abstract                                      |

## List of Tables

| Page | Contents                                                                 |
|------|--------------------------------------------------------------------------|
| 19   | Table (3-1): Plant species used in the study                             |
| 20   | Table (3-2): Components of simulated seawater                            |
| 21   | Table (3-3): Preparation of different concentration of seawater          |
| 21   | Table (3-4): Measurement of electro conductivity and PH                  |
| 26   | Table (4-1): Mean germination time of Lebbeck seeds treated with         |
|      | boiled water                                                             |
| 27   | Table (4-2): Germination percentage at different seawater concentrations |
|      | for Lebbeck seeds treated with boiled water                              |
| 28   | Table (4-3): Effect of different concentration of seawater on SVI.       |
| 30   | Table (4-4): The effect on Lebbeck shoots and roots lengths treated with |
| 50   | boiled water                                                             |
| 31   | Table (4-5): Effect on fresh length of Lebbeck seeds treated with boiled |
| 51   | water                                                                    |
| 32   | Table (4-6): Effect on dry length of Lebbeck seeds treated with boiled   |
|      | water                                                                    |
| 33   | Table (4-7): Effect on roots fresh length of Lebeck seedss treated with  |
| 55   | boiled water.                                                            |
| 34   | Table (4-8): Effect on roots dry length of Lebbeck seeds treated with    |
| 54   | boiled water                                                             |
| 35   | Table (4-9): Effect on roots and shoot weights of Lebbeck seeds treated  |
| 55   | with boiled water                                                        |
| 36   | Table (4-10): Effect on shoots fresh weight of Lebbeck seeds treated     |
| 50   | with boiled water                                                        |
| 30   | Table (4-11): Mean germination time of Lebbeck seeds treated with hot    |
| 57   | tap water                                                                |

| 40 | Table (4-12): Germination percentage at different seawater                |
|----|---------------------------------------------------------------------------|
|    | concentrations for Lebbeck seeds treated with hot tap water               |
| 41 | Table (4-13): Effect of sea water on SVI in Lebbeck seeds treated with    |
|    | hot tap water                                                             |
| 42 | Table (4-14): The effect on shoots and roots lengths of Lebbeck seeds     |
|    | treated with hot tap water                                                |
| 34 | Table (4-15): The effect on fresh shoots lengths of Lebbeck seeds treated |
|    | with hot tap water                                                        |
| 44 | Table (4-16): The effect on dry shoots lengths of Lebbeck seeds treated   |
|    | with hot tap water                                                        |
| 45 | Table (4-17): The effect on fresh root lengths of Lebbeck seeds treated   |
| Т  | with hot tap water                                                        |
| 46 | Table (4-18): The effect on dry root lengths of Lebbeck seeds treated     |
| 70 | with hot tap water                                                        |
| 47 | Table (4-19): The effect on shoots and roots weights of Lebbeck seeds     |
| ., | treated with hot tap water                                                |
| 48 | Table (4-20): The effect on fresh shoot weigh of Lebbeck seeds treated    |
| 10 | with hot tap water                                                        |
| 49 | Table (4-21): The effect on fresh root weigh of Lebbeck seeds treated     |
| 77 | with hot tap water                                                        |
| 51 | Table (4-22): Mean germination time for Lebbeck seeds treated with        |
| 51 | mechanical scarification                                                  |
| 52 | Table (4-23): Germination percentage of Lebbeck seeds treated with        |
| 52 | mechanical scarification                                                  |
| 53 | Table (4-24): SVI of Lebbeck seeds treated with mechanical scarification  |
| 55 | Table (4-25): Effect of seawater on shoots and roots lengths of Lebbeck   |
| 55 | seeds treated mechanical scarification                                    |
| 58 | Table (4-26): Effect of seawater on shoots and roots weights of Lebbeck   |

|     | seeds treated mechanical scarification                                                   |
|-----|------------------------------------------------------------------------------------------|
| 59  | Table (4-27): The effect on fresh shoots weight of Lebbeck seeds treated                 |
| 57  | with mechanical scarification                                                            |
| 62  | Table (4-28): Mean germination time (MGT) of Lebbeck seeds treated                       |
| 02  | with H <sub>2</sub> SO <sub>4</sub>                                                      |
| 63  | Table (4-29): Germination of Lebbeck seeds treated with H <sub>2</sub> SO <sub>4</sub>   |
| 64  | Table (4-30): Effect on SVI in Lebbeck seeds treated with H <sub>2</sub> SO <sub>4</sub> |
| 65  | Table (4-31): Effect on shoots and roots lengths of Lebbeck seeds treated                |
| 05  | $H_2SO_4$                                                                                |
| 69  | Table (4-32): Effect on shoots and roots weights of Lebbeck seeds                        |
| 07  | treated H <sub>2</sub> SO <sub>4</sub>                                                   |
| 76  | Table (4-33): Mean germination time of Acacia seeds treated with boiled                  |
| 70  | water                                                                                    |
| 77  | Table (4-34): Germination percentage at different seawater                               |
| , , | concentrations for Acacia seeds treated with boiled water                                |
| 78  | Table (4-35): Effect on SVI of Acacia seeds treated with boiled water                    |
| 80  | Table (4-36): Effect on seedling of Acacia seeds treated with boiled                     |
| 00  | water                                                                                    |
| 83  | Table (4-37): Mean germination time of Acacia seeds treated with hot                     |
| 05  | tap water                                                                                |
| 84  | Table (4-38): Germination percentage at different seawater                               |
| 01  | concentrations for Acacia seeds treated with hot tap water                               |
| 85  | Table (4-39): Effect on SVI of Acacia seeds treated with hot tap water                   |
| 86  | Table (4-40): Effect on seedling of Acacia seeds treated with tab water                  |
| 89  | Table (4-41): Mean germination time of Acacia seeds treated mechanical                   |
|     | scarification                                                                            |
| 90  | Table (4-42): Germination percentage at different seawater                               |
| 20  | concentrations for Acacia seeds treated with mechanical scarification                    |

| 01 | Table (4-43): Effect on SVI of Acacia seeds treated with mechanical                          |
|----|----------------------------------------------------------------------------------------------|
| 71 | scarification                                                                                |
|    | Table (4-44): Effect on seedling of Acacia seeds treated with mechanical                     |
| 92 | scarification                                                                                |
| 95 | Table (4-45): Mean germination time of Acacia seeds treated $H_2SO_4$ .                      |
| 06 | Table (4-46): Germination percentage at different seawater                                   |
| 96 | concentrations for Acacia seeds treated with H <sub>2</sub> SO <sub>4</sub>                  |
| 97 | Table (4-47): Effect on SVI of Acacia seeds treated with $H_2SO_4$                           |
| 99 | Table (4-48): Effect on seedling of Acacia seeds treated with H <sub>2</sub> SO <sub>4</sub> |

## List of Figures

| Page | Contents                                                                   |
|------|----------------------------------------------------------------------------|
| 12   | Fig. (2-1): Acacia cyanophyla                                              |
| 13   | Fig. (2-2): Albizia Lebbeck                                                |
| 19   | Fig. (3-1): Seeds of Albizia Lebbeck and Acacia cyanophyla                 |
| 23   | Fig. (3-2): Germination experiment for Acacia seeds                        |
| 23   | Fig. (3-3): Germination experiment for Lebbeck seeds                       |
| 24   | Fig. (3-4): Seedling development study                                     |
| 27   | Fig. (4-1): Effect of seawater on MGT of Lebbeck treated with boiled       |
|      | water                                                                      |
| 28   | Fig.(4-2): Germination percentage of Lebbeck seeds at different water      |
|      | concentration                                                              |
| 29   | Fig. (4-3): Effect on SVI of Lebbeck seeds treated with boiled water       |
| 31   | Fig. (4-4): Effect on fresh length of Lebbeck seeds treated with boiled    |
|      | water                                                                      |
| 32   | Fig. (4-5): Effect on dry length of Lebbeck seeds treated with boiled      |
|      | water                                                                      |
| 33   | Fig. (4-6): Effect on roots fresh length of Lebeck seedss treated with     |
|      | boiled water                                                               |
| 34   | Fig. (4-7): Effect on roots dry length of Lebeck seeds treated with boiled |
|      | water                                                                      |
| 36   | Fig. (4-8): Effect on shoots fresh weight of Lebbeck seeds treated with    |
|      | boiled water                                                               |
| 37   | Fig. (4-9): Effect on shoots dry weight of Lebbeck seeds treated with      |
|      | boiled water                                                               |
| 37   | Fig. (4-10): Effect on shoots dry weight of Lebbeck seeds treated with     |
| 57   | boiled water                                                               |
| 38   | Fig. (4-11): Effect on roots dry weight of Lebbeck seeds treated with      |

|            | boiled water                                                                |
|------------|-----------------------------------------------------------------------------|
| 39         | Fig. (4-12) Effect of seawater on MGT of Lebbeck plant treated with hot     |
|            | tap water                                                                   |
| 40         | Fig. (4-13): Germination percentage at different seawater concentrations    |
|            | for Lebbeck seeds treated with hot tap water                                |
| 41         | Fig. (4-14): Effect of seawater on SVI in Lebbeck seeds treated with hot    |
|            | tap water                                                                   |
| <u>4</u> 3 | Fig. (4-15): The effect on fresh shoots lengths of Lebbeck seeds treated    |
|            | with hot tap water                                                          |
| 44         | Fig. (4-16): The effect on dry shoots lengths of Lebbeck seeds treated      |
|            | with hot tap water                                                          |
| 45         | Fig. (4-17): The effect on fresh root lengths of Lebbeck seeds treated with |
| 10         | hot tap water                                                               |
| 46         | Fig. (4-18): The effect on dry root lengths of Lebbeck seeds treated with   |
|            | hot tap water                                                               |
| 48         | Fig. (4-19): The effect on fresh shoot weigh of Lebbeck seeds treated       |
|            | with hot tap water                                                          |
| 49         | Fig. (4-20): The effect on dry shoot weigh of Lebbeck seeds treated with    |
| -          | hot tap water                                                               |
| 50         | Fig. (4-21): The effect on fresh root weigh of Lebbeck seeds treated with   |
|            | hot tap water                                                               |
| 50         | Fig. (4-22): The effect on dry root weigh of Lebbeck seeds treated with     |
|            | hot tap water                                                               |
| 52         | Fig. (4-23): Mean germination time for Lebbeck seeds treated with           |
|            | mechanical scarification                                                    |
| 53         | Fig. (4-24): Germination percentage of Lebbeck seeds treated with           |
| 55         | mechanical scarification method                                             |
| 54         | Fig. (4-25): SVI of Lebbeck seeds treated with mechanical scarification     |

| 55 | Fig. (4-26): The effect on fresh shoot length of Lebbeck seeds treated                  |
|----|-----------------------------------------------------------------------------------------|
| 22 | with mechanical scarification                                                           |
| 56 | Fig. (4-27): The effect on dry shoot length of Lebbeck seeds treated with               |
| 50 | mechanical scarification method                                                         |
| 56 | Fig. (4-28): The effect on fresh root length of Lebbeck seeds treated with              |
| 30 | mechanical scarification                                                                |
| 57 | Fig. (4-29): The effect on dry root length of Lebbeck seeds treated with                |
|    | mechanical scarification                                                                |
| 50 | Fig. (4-30): The effect on fresh shoots weight of Lebbeck seeds treated                 |
| 57 | with mechanical scarification                                                           |
| 60 | Fig.(4-31): The effect on dry shoots weight of Lebbeck seeds treated with               |
| 00 | mechanical scarification                                                                |
| 60 | Fig. (4-32): The effect on fresh roots weight of Lebbeck seeds treated                  |
| 00 | with mechanical scarification                                                           |
| 61 | Fig. (4-33): The effect on dry root weight of Lebbeck seeds treated with                |
| 01 | mechanical scarification                                                                |
| 62 | Fig. (4-34): Mean germination time (MGT) of Lebbeck seeds treated with                  |
| 02 | $H_2SO_4$                                                                               |
| 63 | Fig. (4-35): Germination of Lebbeck seeds treated with H <sub>2</sub> SO <sub>4</sub>   |
| 64 | Fig. (4-36): Effect on SVI in Lebbeck seeds treated with H <sub>2</sub> SO <sub>4</sub> |
| 66 | Fig. (4-37): Effect on fresh shoots lengths of Lebbeck seeds treated                    |
| 00 | $H_2SO_4$                                                                               |
| 67 | Fig. (4-38): Effect on dry shoots lengths of Lebbeck seeds treated $H_2SO_4$ .          |
| 67 | Fig. (4-39): Effect on fresh roots lengths of Lebbeck seeds treated $H_2SO_4$           |
| 68 | Fig. (4-40): Effect on dry roots lengths of Lebbeck seeds treated $H_2SO_4$             |
| 70 | Fig. (4-41): Effect on shoots fresh weights of Lebbeck seeds treated                    |
| 70 | H <sub>2</sub> SO <sub>4</sub>                                                          |
|    |                                                                                         |

| 71 | Fig. (4-43): Effect on root fresh weights of Lebbeck seeds treated $H_2SO_4$ . |
|----|--------------------------------------------------------------------------------|
| 72 | Fig. (4-44): Effect on root dry weights of Lebbeck seeds treated $H_2SO_4$     |
| 73 | Fig. (4-45): Comparing mean germination time of all pretreatments at           |
| 15 | different water concentrations                                                 |
| 74 | Fig. (4-46): Comparing germination percentages of all pretreatments at         |
|    | different water concentrations.                                                |
| 75 | Fig. (4-47): Comparing seedling vigoros index of all pretreatments at          |
| 15 | different water concentrations                                                 |
| 76 | Fig. (4-48): Mean germination time of Acacia seeds treated with boiled         |
| 70 | water                                                                          |
| 77 | Fig. (4-49): Germination percentage at different seawater concentrations       |
| ,, | for Acacia seeds treated with boiled water                                     |
| 79 | Fig. (4-50): Effect on SVI of Acacia seeds treated with boiled water           |
| 81 | Fig. (4-51): Effect of different seawater concentration on root lengths of     |
| 01 | Acacia treated with boiled water                                               |
| 81 | Fig. (4-52): Effect of different seawater concentration on shoots lengths      |
|    | of Acacia treated with boiled water                                            |
| 82 | Fig. (4-53): Effect of different seawater concentration on root weights of     |
| 02 | Acacia treated with boiled water                                               |
| 82 | Fig. (4-54): Effect of different seawater concentration on shoot weights of    |
| 02 | Acacia treated with boiled water                                               |
| 83 | Fig. (4-55): Mean germination time of Acacia seeds treated with hot tap        |
| 05 | water .                                                                        |
| 84 | Fig. (4-56): Germination percentage at different seawater concentrations       |
| 04 | for Acacia seeds treated with hot tap water                                    |
| 85 | Fig. (4-57): Effect on SVI of Acacia seeds treated with hot tap water          |
| 07 | Fig. (4-58): Effect of different seawater concentration on root length of      |
| 07 | Acacia treated with tab water                                                  |

| 07                                                                                               | Fig. (4-59): Effect of different seawater concentration on root length of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87                                                                                               | Acacia treated with tab water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 88                                                                                               | Fig. (4-60): Effect of different seawater concentration on root weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00                                                                                               | Acacia treated with tab water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 88                                                                                               | Fig. (4-61): Effect of different seawater concentration on shoot weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                  | Acacia treated with tab water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80                                                                                               | Fig. (4-62): Mean germination time of Acacia seeds treated with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 09                                                                                               | mechanical scarification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00                                                                                               | Fig. (4-63): Germination percentage at different seawater concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 90                                                                                               | for Acacia seeds treated with mechanical scarification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 01                                                                                               | Fig. (4-64): Effect on SVI of Acacia seeds treated with mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 91                                                                                               | scarification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 02                                                                                               | Fig. (4-65): Effect of different seawater concentration on root length of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 93                                                                                               | Acacia treated with mechanical scarification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 02                                                                                               | Fig. (4-66): Effect of different seawater concentration on shoot length of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 93                                                                                               | Acacia treated with mechanical scarification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.1                                                                                              | Fig. (4-67): Effect of different seawater concentration on root weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 04                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 94                                                                                               | Acacia treated mechanical scarification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 94                                                                                               | Acacia treated mechanical scarification<br>Fig. (4-68): Effect of different seawater concentration on shoot length of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 94<br>94                                                                                         | Acacia treated mechanical scarification<br>Fig. (4-68): Effect of different seawater concentration on shoot length of<br>Acacia treated with mechanical scarification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 94<br>94<br>95                                                                                   | Acacia treated mechanical scarificationFig. (4-68): Effect of different seawater concentration on shoot length ofAcacia treated with mechanical scarificationFig. (4-69): Mean germination time of Acacia seeds treated with H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 94<br>94<br>95<br>96                                                                             | Acacia treated mechanical scarificationFig. (4-68): Effect of different seawater concentration on shoot length ofAcacia treated with mechanical scarificationFig. (4-69): Mean germination time of Acacia seeds treated with H <sub>2</sub> SO <sub>4</sub> Fig. (4-70): Germination percentage at different seawater concentrations                                                                                                                                                                                                                                                                                                                                         |
| 94<br>94<br>95<br>96                                                                             | Acacia treated mechanical scarificationFig. (4-68): Effect of different seawater concentration on shoot length of<br>Acacia treated with mechanical scarificationFig. (4-69): Mean germination time of Acacia seeds treated with H2SO4Fig. (4-70): Germination percentage at different seawater concentrations<br>for Acacia seeds treated with H2SO4                                                                                                                                                                                                                                                                                                                        |
| 94<br>94<br>95<br>96<br>98                                                                       | Acacia treated mechanical scarificationFig. (4-68): Effect of different seawater concentration on shoot length of<br>Acacia treated with mechanical scarificationFig. (4-69): Mean germination time of Acacia seeds treated with H2SO4Fig. (4-70): Germination percentage at different seawater concentrations<br>for Acacia seeds treated with H2SO4Fig. (4-71): Effect on SVI of Acacia seeds treated with H2SO4                                                                                                                                                                                                                                                           |
| 94<br>94<br>95<br>96<br>98                                                                       | Acacia treated mechanical scarificationFig. (4-68): Effect of different seawater concentration on shoot length ofAcacia treated with mechanical scarificationFig. (4-69): Mean germination time of Acacia seeds treated with H2SO4Fig. (4-70): Germination percentage at different seawater concentrationsfor Acacia seeds treated with H2SO4Fig. (4-71): Effect on SVI of Acacia seeds treated with H2SO4Fig. (4-72): Effect of different seawater concentration on root length of                                                                                                                                                                                          |
| 94<br>94<br>95<br>96<br>98<br>100                                                                | Acacia treated mechanical scarificationFig. (4-68): Effect of different seawater concentration on shoot length of<br>Acacia treated with mechanical scarificationFig. (4-69): Mean germination time of Acacia seeds treated with H2SO4Fig. (4-70): Germination percentage at different seawater concentrations<br>for Acacia seeds treated with H2SO4Fig. (4-71): Effect on SVI of Acacia seeds treated with H2SO4Fig. (4-72): Effect of different seawater concentration on root length of<br>Acacia treated with H2SO4                                                                                                                                                     |
| <ul> <li>94</li> <li>94</li> <li>95</li> <li>96</li> <li>98</li> <li>100</li> <li>100</li> </ul> | Acacia treated mechanical scarificationFig. (4-68): Effect of different seawater concentration on shoot length of<br>Acacia treated with mechanical scarificationFig. (4-69): Mean germination time of Acacia seeds treated with H2SO4Fig. (4-70): Germination percentage at different seawater concentrations<br>for Acacia seeds treated with H2SO4Fig. (4-71): Effect on SVI of Acacia seeds treated with H2SO4Fig. (4-72): Effect of different seawater concentration on root length of<br>Acacia treated with H2SO4Fig. (4-73): Effect of different seawater concentration on shoot length ofFig. (4-73): Effect of different seawater concentration on shoot length of |

| 101 | Fig. (4-74): Effect of different seawater concentration on shoot length of Acacia treated with $H_2SO_4$ |
|-----|----------------------------------------------------------------------------------------------------------|
| 101 | Fig. (4-75): Comparing mean germination time of Acacia at different water concentrations                 |
| 102 | Fig. (4-76): Effect of different seawater concentration on shoot weight of Acacia treated with $H_2SO_4$ |
| 103 | Fig. (4-77): Comparing germination percentages of Acacia at different water concentrations               |
| 104 | Fig. (4-78): Comparing seedling vigorous index of Acacia at different water concentrations               |

## The Effect of Simulated Seawater on Two Ornamental Plant Species At Benghazi City

By

Raja B. Al ferjani Supervised by Prof . Salem El shatshat

#### Abstract

Salinity affects about one third of irrigated land, causing a significant reduction in crop productivity. For this reason researchers have paid considerable attention to this important environmental problem over the last decades. Few studies, however, have dealt specifically with ornamental plants used in landscapes, despite the fact that salt stress causes serious damage in these species. This study was carried out in Benghazi/ Libya. This study was conducted during spring-summer 2020, to determine the response of different ornamental like (Albizia Lebbeck and Acacia cyanophyla) plant species to different concentrations of simulated seawater and determine the resistant of plant species for different levels of salinity, the effect of simulated seawater on the morphological characteristics and growth rate of plant species also to access to the best mixing between fresh water and sea water and used it to irrigate ornamental plants and how to take advantage of the sea water under Libyan environmental conditions, the experiments was conducted at Benghazi university laboratory, five dilutions of simulated seawater were prepared 1%, 2%, 5%, 10%, 20%, the experiment of both plants is including the same steps, with differences in number of days, both plants treated with the same procedures where seeds were surfacesterilized with 2% sodium hypochlorite solution for 12 minutes and rinsed with sterile distilled water several times then blotted using sterile paper towels. The experiment was repeated using different treatments including (potable water, sulfuric acid, boiled water and mechanical scarification method). 10 Seeds were plated on Petri dishes under aseptic conditions, incubated and maintained in the dark at 22±0.5°C, this process was in 3 replicates for each concentration, plates were watered as needed with 5 ml of each concentration, the number of germinated seeds was determined. Germinated seeds were counted daily for the calculations of daily and final germination percentages (G%), mean germination time (MGT) seedling vigor index (SVI) was calculated, Obtained data were summarized in SPSS, and analyzed by ANOVA test to estimate the differences in the response to verities of sea water dilutions, followed by post hoc multiple comparison test, significance was accepted at *P*-values below 0.05 the confidence interval was set at 95%. The results of the study revealed that, mean germination time of both plants was slightly delayed with increased seawater concentrations ranging between (7-10 days) for Lebbeck and (12-18 days) for Acaica. Germination percentage of both plants decreased with increased seawater concentrations, at concentrations of (10% and 20%) no germination percentages which revealed that both plants not tolerate seawater concentrations. Seedling vigor index showed significant reduction at increased sea water concentration in both plants. This study revealed that both fresh and dry lengths of shoot and root were negatively affected by seawater concentrations, shoot were more sensitive to seawater concentrations than roots. Both fresh and dry weights of Lebbeck shoot systems were decreased with increased seawater concentrations and this decrease was significant. Both fresh and dry weights of Acacia root systems were decreased with increased seawater concentrations level, but this reduction was not significant compared with the control treatment. Decreased dry weights of roots revealed that did not tolerate seawater concentrations. Sulfuric acid pretreatment enhance germination of seeds of both plants even at higher concentrations (10% and 20%).

#### **Chapter One**

#### **1. Introduction**

Water and water resources is very important for maintaining an adequate food supply and a productive environment for the all living organisms. As human populations and economies grow, global freshwater demand has been increasing rapidly. In addition to threatening the human food supply, water shortages severely reduce biodiversity in both aquatic and terrestrial ecosystems (Pimentel *et al.*, 2004). the negative effects of global population increase, climate change impacts, and lifestyle changes are exerting growing pressures upon our vital water resources leading to widespread water stress in many countries. As a result, there ijs growing realization of the urgent need to conserve water. Water is essential to life because it heavily influences public health and living standard. However, water is unequally distributed throughout the world. Water is a very important required substance in order to sustain vital activities of human such as nutrition, respiration, circulation, excretion and reproduction. In addition water is also a life space as well as being one of the basic substances in the formation of life environment.

#### **1.1.** Climate of Libya:

The climate of North Africa countries including Libya is predominantly arid. Coastal plains have a Mediterranean climate, with mild winters, when most of year's precipitation falls, and hot dry summers with little or no precipitation. The terrestrial biosphere is the key of the global climate system. The arid and semi-arid regions of the Mediterranean combine a low rate of rainfall and high rate of evapo-transpiration and subject to extreme recurrent drought (EUWI, 2006). North Africa is characterized by vast territories of steppe and Sahara land .The vegetation in North Africa very arid and semi-arid desert types of forests, dry bush land and grassland (Boulos, 1999). The climate of Libya is typical of the Mediterranean, characterized by the cool raining winter season and a hot dry summer. The climate over most of the country is that of the hot arid Sahara, but it is moderated along the coastal littoral by the Mediterranean Sea. The annual rainfall is extremely low, the highest rainfall occurs in the western region. An average yearly rainfall of less than 100 mm covers 93% of the country's land surface (Abdelgawad *et al.*, 1979).

#### **1.2.** Soil in Libya:

Libyan soils are slightly or moderately weathered soils typical of arid areas. The most arable land in Libya occurs at two locations: Al-Jabal al Akhdar in the northeast region, and Al Jifarah Plain in the northwest region. Almost all of the country is a desert (95%) with 1.2% (2.2 million ha) being cultivated. Yermosols and Xerosols are the major soil orders in the region. Soils in Libya are typically shallow, sandy in texture, low in organic matter content and water holding capacity (Laytimi, 2005). Soils and their characteristics in Libya are affected to the great extent by nature and conditions in which these soils were formed. Generally, aridity is the main characterizes of such soils. Most of these soils are undeveloped or partially developed (Zurqani, 2019, Zurqani *et al.*, 2021).

#### **1.3.** Salinity:

Salinity is one of the major abiotic factors that limits plant growth and productivity in many regions of the world due to increasing use of poor quality of water for irrigation and soil salinization (Chen and Jiang 2010; D'Odorico *et al.*, 2013; Shrivastava and Kumar, 2015). 20% of croplands in world contain high enough concentrations of salt to cause a salt stress for plants (Shelef *et al.*, 2012). Considerable reduction of the plant growth is generally due to salt stress, except that these reductions vary from a species to the other one. Salinity tolerance of some cultivated legumes varieties turns out thus crucial for the country's economy.

The salinization results not only from the ground but also from irrigation water. Indeed, in the arid and semi-arid lands, the agricultural production requires irrigation especially with the shortage of rain (Chen *et al.*, 2010). These water resources of irrigation come generally from groundwater and contain variable quantities of dissolved salts (Prasanth *et al.*, 2012). In the Mediterranean countries as Algeria, the legume crops are often cultivated near the coastal regions where we attend an increase of the salt stress. Therefore, a vast use of irrigation waters calls up to the intrusion of seawater. Seawater intrusion is the movement of seawater intrusion is caused by decreases in groundwater levels or by rises in seawater levels (Werner *et al.*, 2013). The use of poor quality water thus results in an increase of salinization level in the soil which can have negative effects

on yield (Arslan, 2013). On the other hand, the available fresh water resources for agriculture declined regarding quantity and quality of both surface water and groundwater systems (Liu *et al.*, 2016). Therefore, the use of lower quality water for irrigation purposes is inevitable to maintain economically viable crops. According to the dilution levels tested on some plants, seawater has proved even an excellent natural fertilizer and can contain several minerals very useful for the plant growth (Glenn *et al.*, 1998; Tawfik *et al.*, 2011; Ventura *et al.*, 2015; Kheloufi *et al.*, 2016a). The plant adaptation in salt environment is crucial at the seedling stage for best species establishment. The first stage of development is thus the most vulnerable in this salt constraint because the passage of this one will determine the evolution of the cultivated species. Indeed, the salinity can affect the seedling by creating osmotic potential which prevent the imbibition of water, or by exercising toxic effects on the viability of the embryo (Chaves *et al.*, 2009). The improvement of certain salt tolerant species is of a major importance.

#### **1.4.** Effect of salinity on plants:

Salinity which caused by increased salt concentration affects about one third of irrigated land, causing a significant reduction in crop productivity (Flowers and Yeo, 1995; Ravindran et al., 2007). For this reason researchers have paid considerable attention to this important environmental problem over the last decades. Few studies, however, have dealt specifically with ornamental plants used in landscapes, despite the fact that salt stress causes serious damage in these species (Marosz, 2004; Cassaniti et al., 2009a). Salinity is of rising importance in landscaping because of the increase of green areas in the urban environment where the scarcity of water has led to the reuse of wastewaters for irrigation (Navarro et al., 2008; McCammon et al., 2009). Salinity is also a reality in coastal gardens and landscapes, where plants are damaged by aerosols originating from the sea (Ferrante et al., 2011) and in countries where large amounts of de-icing salts are applied to roadways during the winter months (Townsend and Kwolek, 1987). Although water is used for purposes other than irrigation, "a landscape may serve as a visual indicator of water use to the general public due to its visual exposure" (Thayer, 1976). While in the past only good quality water (in some States of the USA, homeowners used approximately 60% of potable water to irrigate landscapes; Utah

Division of Water Resources, 2003) was used for landscaping and/or floriculture, nowadays the ecological sensitivity widely diffused in landscape management and planning (Botequilla and Ahern, 2002) determines the need to explore alternative water sources for irrigation. Landscape water conservation consequently requires making choices of plant species able to tolerate salt stress in order to allow the use of low quality water. Alternative water sources might be recycled water, treated municipal effluent and brackish groundwater, all of which generally have higher levels of salts compared with potable waters (Niu *et al.*, 2007b). Treated effluent may also contain nutrients essential for plant growth; if water quality is good (not too saline), treated effluent can improve plant growth and reduce fertilizer requirements (Quist *et al.*, 1999; Gori *et al.*, 2000); application of industrial and municipal wastewater to land can be an environmentally safe water management strategy (Rodriguez, 2005; Ruiz *et al.*, 2006). The potential physical, chemical or biological problems that are associated with effluent water applied to edible crops (Kirkam, 1986) are of lesser concern for landscape plant production (Gori *et al.*, 2000).

The lack of dependable supplies of good quality water in many regions has become a concern as the competition among agricultural, urban, industrial, environmental, and recreational groups continues to increase. Members of the nursery and landscape industries are increasingly turning to recycled, often saline, wastewaters as a valuable alternative to the use of fresh water for irrigation. In California, sources of degraded waters available for incorporation in reuse systems include well waters contaminated by intrusion of sea water, drainage effluents from agricultural fields, runoff from greenhouse operations, and municipal wastewater. Development of water reuse practices will benefit the floral and nursery industries in numerous ways: fresh water conservation, nutrient savings, energy conservation, protection of the environment, and a favorable public image (Skimina, 1992). Little information is available to floral and nursery producers, however, on the limits salinity places on the growth, yield, and quality of many ornamental species. Likewise, landscape designers and gardeners have few guidelines for selection of plant species suitable for sites where soils are saline and/or irrigation waters are high in salinity. Salinity is of concern because of its deleterious effect on plant growth, nutritional balance, and plant and flower marketable quality,

including visual injury, flower distortion, and reduced stem length. Plant growth is detrimentally affected by salinity as a result of the disruption of certain physiological processes that lead to reductions in yield and/or quality. Growth, yield, and quality reduction may occur through a decrease in the ability of plants to take up water from the soil solution and the destruction of soil structure (Barrett-Lennard, 2003). In addition, toxicity resulting from excessive concentration of certain ions, principally Na<sup>+</sup>, Ca<sup>2+,</sup> Mg<sup>2+,</sup> Cl<sup>-</sup>, SO4 <sup>2-</sup>, and HCO3 <sup>-</sup> as well as nutritional imbalances (Grattan and Grieve, 1999) may also play important roles in the response of plants in saline environments. Most horticultural crops are glycophytes (Greenway and Munns, 1980) and range from salt-sensitive to moderately salt-tolerant.

#### **1.5.** Ornamental plants:

Ornamental plants are mostly grown for their exquisite blooms and are a source of major attraction for many gardens. Several such ornamental gardens usually prefer a wide variety of flowering plants so that the garden is continuously in flower through the year during spring, summer, monsoon and winter. Several types of plants representing predominantly angiospermic plant families, some selected gymnosperms and pteridophytes (such as ferns) are most commonly grown that have colorful flowers, foliages, shapes, fragrance or aroma, spectacular morphological characters that are visibly attractive are usually selected (Aunu, *et al.*, 2000).

#### **1.6.** Effect of salinity on ornamental plants:

The use of saline waters is an option for the irrigation of salt tolerant ornamentals as competition for high quality water increases. However, despite the importance of ornamental shrubs in Mediterranean areas, salt tolerance of such species has received little attention. The global market of ornamental species moves 250 to 400 billion dollars every year (Chandler and Sanchez, 2012) and concentrates in the countries of the European Union, United States and Japan. In Brazil, the agribusiness of ornamental plants has potential of growth due to the diversity of climate, soil and flora, contributing to the expansion in the cultivation of native and exotic species (Ibraflor, 2020). Floriculture is inserted in the segment of irrigated agriculture, consisting in the cultivation of cut flowers, pot flowers, garden plants, among others, and has high profitability and great potential to generate jobs. However, the available quality and quantity and the inefficient use of water leads to concerns in the agricultural sector (Munns, 2002; Singh and Gupta, 2009; Niu et al., 2013). In this context, biosaline agriculture emerges as an alternative for the use of low-quality waters, proposing the utilization of salt-tolerant species, such as ornamental plants (Cassaniti et al., 2009a; Álvarez and Sánchez-Blanco, 2014; García-Caparrós et al., 2016). Besides the cultivation of tolerant species, selection of adequate irrigation methods and application of leaching fractions to remove the excess of salts in the root zone allow the use of saline and brackish waters in agriculture (Ayers and Westcot, 1999; Muyen et al., 2011). In the literature, there is little information on the irrigation management of ornamental plants with lower-quality water. Although there are species that satisfactorily develop under saline conditions, most crops are sensitive to the excess of salts in the irrigation water, requiring studies that evaluate better management strategies. Considering the importance of the cultivation of flowers and ornamental plants, it becomes necessary to identify species with potential for cultivation using moderately saline water, increasing the potentialities of this sector in the semi-arid region of Northeast Brazil. In this context, this study aimed to evaluate the growth of ornamental species as a function of irrigation with increasing levels of water salinity and two methods of water application

Producers of ornamental species are, therefore, reluctant to use water of poor quality for irrigation because they consider floricultural species to be highly sensitive. However, studies have demonstrated that moderately saline waters can be used to irrigate certain ornamental species without compromising economic value (Grieve *et al.*, 2005; Friedman *et al.*, 2007; Carter and Grieve *et al.*, 2008). However, any negative effects of salts on plant growth have to be taken into consideration mainly for their influences on aesthetic value which is an important component of ornamental plants. Salt tolerance does, however, vary considerably among the different genotypes of ornamentals used in landscaping. Ornamental plants can be considered all the species and/or varieties that provide aesthetic pleasure, improve the environment and the quality of our lives. This definition is, however, rather imprecise because these plants are used around the world and consequently the concept of 'ornamental' is ambiguous because it includes very important cultural differences (Savé, 2009).

Ornamental plants are also used to restore disturbed landscapes, control erosion and reduce energy and water consumption, to improve the aesthetic quality of urban and rural landscapes, recreational areas, interior escapes and commercial sites. So the number of plant species is very large due to the great geographical range over which they are used and their different functions. In relation to this high number of species that can potentially be utilized in the landscape, the possibility of finding genotypes able to cope with salt stress is high. Unlike in agriculture, performance of an amenity landscape is not measured with a quantifiable yield but how well it meets expectations of the user or the individual paying for installation and maintenance, who may or not be one and the same person. Expectations include aesthetic appearance and/or utility, such as shading, ground cover and recreation (Kjelgren et al., 2000). Sometimes in marginal conditions plant survival is often the only aim of cultivation. Furthermore, for landscape plants, maximum growth is not always essential and indeed excessive shoot vigor is often undesirable. To keep a compact growth habit, ornamentals often have to be pruned or treated with growth regulators (Cameron et al., 2004) so using an alternative water source may be prove advantageous where a more compact form arises as result of salt stress and where slower growth is desirable for easier landscape management (Niu et al., 2007b). Hence, the use of reclaimed water could conserve potable water and irrigation budgets (Fox et al., 2005). However, to expand the use of such waters while minimizing salt damage, the salt tolerance of ornamentals needs to be determined (Niu and Rodriguez, 2006b). Apart from plant characteristics, soil composition and drainage characteristics also need to be taken into consideration as they can influence the severity of plant damage by saline irrigation water. For example, clay soils and soils with a high percentage of organic matter exhibit faster and greater build up in concentration of sodium than sandy soils (Dirr, 1976). High concentrations of sodium can displace calcium and magnesium ions, whereas bicarbonate ions can destroy soil structure. This is especially important when irrigation water with high soluble salts is applied on a longterm basis (Fox et al., 2005). With this in mind the present chapter analyses this large environmental issue as it relates to the response of ornamental plants (herbaceous annuals and perennials, shrubs and woody trees) to salt. We look at the range of tolerance, the possible management practices that could be used to realize a sustainable

landscape in which saline water is used and the means available to reduce the effect of salt stress: we also consider the choice of plant species and tailoring plant management to the saline conditions.

#### **1.7.** Tolerance of ornamental plants to salinity:

The effects of salinity on plant growth have extensively been a focus of research because the responses in plants to salt are a complex phenomenon that involves several physiological and biochemical changes (Hasegawa et al., 2000) Salinity stress effect on plant growth performance is hard compared to other plant stresses (Van der Moezel et al., 1991, Noble and Rogers, 1994). Salt stress induces physiological and metabolic disturbances in crops affecting their development, growth, yield and quality (Pardossi et al., 1999, Mer et al., 2000). However, the severity of salt damage has been found to be dependent on the meteorological conditions, species and cultivar (Vicente et al., 2004), and growth stages of the plant (Carvajal and Alcaraz, 1998). Salt tolerance in plants is difficult to quantify because it varies appreciably with many environmental factors (soil fertility, soil physical conditions, distribution of salt in the soil profile, irrigation methods, and climate) and plant factors (stage of growth, variety, and rootstock) (Kozlowski and Pallardy, 1997a). Woody plants are relatively salt tolerant during seed germination, much more sensitive during the emergence and young seedling stages and become progressively more tolerant as the age increases through the reproductive stage (Shannon *et al.*, 1994). Several woody species showed variations to salt tolerance such as Acacia (Craig et al., 1990), Casuarina (Clemens et al., 1983), and Eucalyptus (Dunn et al., 1994). Variations in salt tolerance have also been demonstrated among proven Salinity is a major problem confronting agriculture in the arid and semi-arid region, and the research is scarce and has no or limited information about crop behaviors and responses especially the multipurpose forest trees (MPFT) adapted to this region. L. leucocephala and A. saligna are two promising MPFT that could be used as forage source for livestock feed. Lack of research on such species and the effect of both drought and salinity on growth and development of such species was the motivation to conduct such research. Thus, the purpose of this work was to study the effect of salinity on growth performance, plant water relations, and feed quality in these species under

different salinity concentrations. Also, to investigate the best level of tolerance theses species can withstand.

#### **1.8.** Mechanism of tolerance:

#### a. Ion Homeostasis and Salt Tolerance:

Maintaining ion homeostasis by ion uptake and compartmentalization is not only crucial for normal plant growth but is also an essential process for growth during salt stress (Niu *et al.*, 1995; Hasegawa, 2013). Irrespective of their nature, both glycophytes and halophytes cannot tolerate high salt concentration in their cytoplasm. Hence, the excess salt is either transported to the vacuole or sequestered in older tissues which eventually are sacrificed, thereby protecting the plant from salinity stress (Reddy *et al.*, 1992; Zhu, 2003).

#### b. Compatible Solute Accumulation and Osmotic Protection:

Compatible solutes, also known as compatible osmolytes, are a group of chemically diverse organic compounds that are uncharged, polar, and soluble in nature and do not interfere with the cellular metabolism even at high concentration. They mainly include proline (Ahmad *et al.*, 2010; Gálvez *et al.*, 2012), glycine betaine (Khan *et al.*, 2000; Wang and Nii, 2000), sugar (Bohnert *et al.*, 1995; Kerepesi and Galiba, 2000) and polyols (Ford, 1984; Dopp *et al.*, 1985; Ashraf and Foolad, 2007) Organic osmolytes are synthesised and accumulated in varying amounts amongst different plant species.

#### c. Antioxidant Regulation of Salinity Tolerance:

Abiotic and biotic stress in living organisms, including plants, can cause overflow, deregulation, or even disruption of electron transport chains (ETC) in chloroplasts and mitochondria. Under these conditions molecular oxygen ( $O_2$ ) acts as an electron acceptor, giving rise to the accumulation of ROS. Singlet oxygen ( $^1O_2$ ), the hydroxyl radical (OH<sup>-</sup>), the superoxide radical, and hydrogen peroxide ( $H_2O_2$ ) are all strongly oxidizing compounds and therefore potentially harmful for cell integrity (Groß *et al.,* 2013) Antioxidant metabolism, including antioxidant enzymes and nonenzymatic compounds, play critical parts in detoxifying ROS induced by salinity stress. Salinity

tolerance is positively correlated with the activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidise (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR).

#### d. Roles of Polyamines in Salinity Tolerance:

Polyamines (PA) are small, low molecular weight, ubiquitous, polycationic aliphatic molecules widely distributed throughout the plant kingdom. Polyamines play a variety of roles in normal growth and development such as regulation of cell proliferation, somatic embryogenesis, differentiation and morphogenesis, dormancy breaking of tubers and seed germination, development of flowers and fruit, and senescence (Galston *et al.*, 1997; Knott *et al.*, 2007; Gupta *et al.*, 2013). It also plays a crucial role in abiotic stress tolerance including salinity and increases in the level of polyamines are correlated with stress tolerance in plants (Yang *et al.*, 2007; Groppa and Benavides, 2008).

#### e. Roles of Nitric Oxide in Salinity Tolerance:

Nitric oxide (NO) is a small volatile gaseous molecule, which is involved in the regulation of various plant growth and developmental processes, such as root growth, respiration, stomata closure, flowering, cell death, seed germination and stress responses, as well as a stress signalling molecule (Delledonne *et al.*, 1998; Lamattina *et al.*, 2003; Besson *et al.*, 2008). NO directly or indirectly triggers expression of many redox-regulated genes. NO reacts with lipid radicals thus preventing lipid oxidation, exerting a protective effect by scavenging superoxide radical and formation of peroxynitrite that can be neutralised by other cellular processes. It also helps in the activation of antioxidant enzymes (SOD, CAT, GPX, APX, and GR) (Bajgu, 2014).

#### f. Hormone Regulation of Salinity Tolerance

ABA is an important phytohormone whose application to plant ameliorates the effect of stress condition(s). It has long been recognized as a hormone which is upregulated due to soil water deficit around the root. Salinity stress causes osmotic stress and water deficit, increasing the production of ABA in shoots and roots (He and Cramer, 1996; Cramer and Quarrie, 2002; Cabot *et al.*, 2009). The accumulation of ABA can mitigate the inhibitory effect of salinity on photosynthesis, growth, and translocation of assimilates

(Popova *et al.*, 1995; Jeschke *et al.*, 1997). The positive relationship between ABA accumulation and salinity tolerance has been at least partially attributed to the accumulation of  $K^+$ ,  $Ca^{2+}$  and compatible solutes, such as proline and sugars, in vacuoles of roots, which counteract with the uptake of Na<sup>+</sup> and Cl<sup>-</sup> (Chen *et al.*, 2001; Gurmani *et al.*, 2011).

### **1.9. Study objectives:**

- **1.** To determine the response of different ornamental plant species to different concentrations of simulated seawater and determine the resistant of plant species for different levels of salinity.
- **2.** To determine the effect of simulated seawater on the morphological characteristics and growth rate of plant species.
- **3.** Access to the best mixing between fresh water and sea water and used it to irrigate ornamental plants and how to take advantage of the sea water under Libyan environmental conditions.

#### Chapter two 2. Literature Review

#### 2.1. Acacia cyanophyla:

A fast-growing, drought-tolerant nitrogen-fixing tree, Family Mimosaceae from southwestern Western Australia has been widely planted through the world's dry lands, especially around the Mediterranean basin, for fodder, fuel wood, sand stabilization, as a windbreak and as an ornamental garden or street tree. Referring to invasion of threatened Cape Floristic vegetation in South Africa, it was called "one of the worst woody invaders, a plant that has run amuck in a threatened biome, rich in endemic plant species" (Cronk and Fuller, 1995). is a leguminous tree that shows a high capacity to withstand adverse environmental conditions, and has the potential to ameliorate soil conditions by fixing drifting sands and fixing atmospheric nitrogen (Koreish, 1997). This species has been extensively planted outside its original distribution area in western Australia (Hopper and Maslin, 1978). *Acacia saligna* has been naturalized in some areas, causing severe problems of habitat alteration, and disruption of the hydrological and nutrient cycles (Van Wilgen *et al.*, 2001; Le Maitre *et al.*, 2002; Yelenik *et al.*, 2004).



Fig. (2-1): Acacia cyanophyla.

#### 2.2. Albizia Lebbeck:

Family Mimosaceae, was known in 1970s and 1980s as the 'miracle tree' because of its worldwide success as a long-lived and highly nutritious forage tree, and its great variety of other uses. It originally grows in Central America and the Yucatan Peninsula of Mexico (Shelton and Brewbaker, 1994). It is one of the fastest-growing trees in arid and semi-arid area. It is a long-lived evergreen perennial legume tree and multipurpose tree, valuable for its wood that is used to make good quality charcoal, small furniture and paper pulp (Verma, 2016). *L. leucocephala* grows in climate with rainfall between 650 mm and 3000 mm in humid or sub humid atmosphere and can tolerate dry seasons of up to 6 months (Lascano *et al.*, 1995). It is intolerant to soils with low pH (below pH 5.5), low potassium, low calcium, high salinity, high aluminum and water logging (Brewbaker, 1987). It is suggested that *L. leucocephala* is very beneficial as a shade tree for many crops, for soil fertility improvement, erosion control, site preparation in reforestation (Rushkin, 1984). The protein-rich leaves and legumes are widely used as fodder for cattle, water buffalo and goats (Sethi and Kulkarni, 1995).



Fig. (2-2): Albizia Lebbeck.

#### **2.3. Review for methods for determination of salt tolerance in plants:**

Plant tolerance to salinity is a widely studied topic in the scientific community. These studies focus on the mechanisms of salt tolerance, considering physiological, biochemical and molecular analyses, as well as to evaluate the potential of halophytes and the tolerance level of glycophytes (Munns and Tester, 2008). These evaluations are frequently related to genetic improvement, both in conventional methods and in genetic engineering studies (Soares Filho et al., 2016). The methodological approaches employed to classify the tolerance of glycophytes to salinity assume that there is a wide intra- and inter specific genetic variability, which may result in species or varieties with low, intermediate or high capacity to withstand the excess of salts in the growing medium (Fageria 1985; Dantas et al., 2002; Silva et al., 2016; Soares Filho et al., 2016). In these studies, plant responses to salinity are mainly observed in terms of survival, leaf injuries, growth, crop yield and physiological variables (Noble and Rogers 1992; Miyamoto et al., 2004; Munns and Tester 2008; Barros et al., 2010; Rahnama et al., 2010). However, the traditional methods of evaluation of salt tolerance of plants are based mainly on growth and traits of agronomic interest, like grain, fruit or forage yield (Maas and Hoffman 1977; Ayers and Westcot, 1999). Among the methods to evaluate plant tolerance to salinity, the following stand out, which are based mainly on plant growth or crop yield data: (Maas and Hoffman, 1977) and Miyamoto et al., 2004. The assessment method proposed by Maas and Hoffman (1977) is widely used and based the guidelines for relative tolerance of crops published in the FAO 29 document (Ayers and Westcot, 1985). Such classifications uses relative crop yield values (grain, fruit, and forage, for example) and considers that plant response remain unchanged up to a certain level of salinity, defined as salinity threshold. From this limit on, the response decreases linearly until reaching zero value for the variable. To use this method, therefore, it is necessary to study the plant response within a wide range of salinity in order to obtain the accurate values of salinity threshold, percent reduction in yield and the limit of survival for the genotype. The assessment method proposed by (Miyamoto et al., 2004) aimed to obtain tables of tolerance to salinity for various types of crops, which can be used by horticulturists and landscape planners to identify salt-sensitive and salt-tolerant

species. This classification is based on the reduction of growth (50 or 25%) or on damages caused to the leaves (at least 25% of leaves damaged), considering the electrical conductivity of the saturation extract of the soil (ECe). According to this criterion, the plants are classified into five categories: sensitive (0–3 dS m-1), moderately sensitive (3–6 dS m-1), moderately tolerant (6–8 dS m-1), tolerant (8–10 dS m-1) and highly tolerant ([10 dS m-1]). Although there are many studies applying the above-mentioned methods, little is known in terms of comparison between them, especially in studies on salt tolerance for ornamental plants. For these species, it has been observed that, besides growth, it is also essential to evaluate the effects on their visual aspect, because this characteristic is relevant in their evaluation for the commercialization process (Bernstein *et al.*, 1972; Niu and Rodriguez 2006a, b; Cassaniti *et al.*, 2013). In this aspect, sensory analysis can be an important tool to identify effects of salinity on plant quality.

#### **2.3. Review of past studies:**

Yaseen *et al.*, (1993) in Pakistan studied the effect of salinity on three *Leucaena Leucocephala* varieties (K-28, K-67and K-743). Differences in seed germination, plant growth and ionic composition were considered to determine relative salt tolerance of these varieties. All the varieties gave 100% germination in control and at 5 dS m-1 EC. Per cent germination of K-67, K-743 and K-28 decreased with increase in salinity beyond 5 dS mol. However, the variety K-28 gave maximum germination at all the salinity levels. Its germination was 73% compared to 40% and 7% by K-67 and K-743, respectively at 20 dS mol. This variety also produced maximum dry shoot and root weights and hence showed least reduction in growth in response to salinity. It was also observed that salinity affected shoot more than root. The K:Na ratios in leaves, shoot and root also revealed the salt tolerance of K-28 which maintained high K:Na ratio in leaves and low in stem, indicating less of absorbed Na + being trans-located to leaves. Overall, results revealed that K-28 was relatively more salt tolerant than K-67 and K-743.

Rashid *et al.*, (2004) conducted a comparative study in Bangladesh to evaluate the salt tolerance of seeds of six multipurpose tree species: *Acacia auriculiformis* A. Cunn. ex. Benth, *Albizzia lebbek* (L.) Benth, *Albizzia saman* (Jacq.) *F. Muell., Dalbergia sissoo Roxb., Leucaena leucocephala* (Lam.) de Wit and *Swietenia macrophylla* (R.
Vig.) Du Puy and Labat using fresh water and salt (NaCl) solutions of 7.5, 15 and 22.5 mmhos cm<sup>-1</sup>. Effect of salt on germinative energy, germination period and the reduction of germination with increasing levels of salt have been examined. It was found that germination period and germinative energy are reduced with increasing salinity and the germination trends change. Based on the observation, salt tolerance of the species has been determined and *Al. lebbek* has shown the best capacity to germinate at different salinity condition.

Jaouadi *et al.*, (2010) conducted a study in Tunisia to evaluate the germination behavior of Acacia. Several concentrations of NaCl and PEG were applied on seeds. Parameters related to germination capacity and kinetic were assessed and analyzed. the study of the effect of salt stress on germination revealed a highly significant effect of NaCl concentrations on the germination rate and average time of germination, and a good level of salt tolerance since it succeeded to germinate under high salt concentrations (21% of germination rate under 22 g.1-1NaCl).

Tadros ., (2011) conducted a study in Jordan to evaluate the effect of salinity on growth performance, physiological responses and chemical composition were studied on two species *Leucaena leucocephala* (Lam.) de wit and *Acacia saligna* (Labill.) seedlings. Five saline concentrations mixture of sodium and calcium chloride (v/v, 1:1): control (Distilled Water), 2000, 4000, 6000, and 8000 ppm were used in watering plants for 3 months. The results showed a marked variation among species in response to salinity. *L. leucocephala* was able to withstand the highest level of salinity compared to *A. saligna* in all studied parameters except relative water content. All morphological characteristics of the two species decreased markedly under salinity, except the shoot/root ratio that showed a trend of increase. The leaf water potential was more negative with an increase in relative water content under salinity compared with the control. The crude protein and nitrogen content concentration were low at 6000 ppm and while increased at 8000 ppm in *L. Leucocephala* compared to *A. saligna*. The results showed that growing both species provide great benefits to the agricultural sector especially in the arid and

semiarid areas were these species can provide forage with high quality all year around when grown under irrigation with saline or regular water. Thus, it is recommended to utilize such species to be grown for forages under saline conditions for their productivity and quality.

El-Lamey, (2015) conducted a study in Egypt to evaluate the effect of salinity stress on morphology and anatomy of two leguminous range plants; *Leucaena leucocephala* and *Prosopis chilensis* plants. The investigated plants were irrigated with tap water (control) and two levels of salinity (3500 and 7500 ppm). Increasing salinity of irrigation water from 3500 to 7500 ppm led to reduction in plant height and stimulated the production of tannins in stems and leaflets of both investigated plants. This study demonstrated the presence of some anatomical changes induced by salinity in *Leucaena leucocephala*, and Prosopis chilensis leaflets. These anatomical changes included; presence of thick layer of cuticle, reduction in number of cortex layers and intercellular spaces between palisade cells, increase in the elongation of palisade parenchyma tissue and accumulation of tannin - filled cells in it , in cortical region of stem and also in parenchyma cells of its pith. All these anatomical modifications seemed to be crucial for their survival under salinity stress.

Kheloufi *et al.*, (2016) conducted a study in Algeria aimed for identifying the kinetics of germination in response to salinity stress on two types of Acacia species (*Acacia decurrens* and *Acacia saligna*) separately using various salinity levels of 0, 50, 100, 150, 200, 250, 300, 400 and 600 meq.L<sup>-1</sup> using NaCl and CaCl2 at the same levels. Germination of these species decreased with increasing salinity. All Acacia species showed higher tolerance to increased level of CaCl2 than to NaCl. The recovery of the seeds that did not germinate under salinity conditions using NaCl or CaCl2 at (600 meq.L<sup>-1</sup>). Furthermore, *Acacia decurrens* was more tolerant than *Acacia saligna* with a rate of considerable germination of 46% with the concentration of (300 meq.L<sup>-1</sup>) of NaCl.

Chérifi *et al.*, (2016) conducted a study to determine the germination of seeds from six Acacia species under salt stresses using five treatment levels: 0,100, 200, 300, and 400 $\mu$ m of NaCl. Corrected germination rate (GC), germination rate index (GRI) and mean germination time (MGT) were recorded during 10 days. The results indicate that germination was significantly reduced in all species with the increase in NaCl concentrations. However, significant inter-specific variation for salt tolerance was observed. The greatest variability in tolerance was observed at moderate salt stress (200  $\mu$ m of NaCl) and the decrease in germination seems to be more accentuated in A. *cyanophylla and A. cyclops. Although, A. raddiana*, remains the most interesting, it preserved the highest percentage (GC = 80%) and velocity of germination in all species studied in this work, even in the high salt levels. This species exhibits a particular adaptability to salt environment, at least at this stage in the life cycle.

Kheloufi *et al.*, (2019) conducted a study in Algeria, in this study, the salinity tolerance index, ionic homeostasis and osmo-protection were evaluated in *A. karroo* and *A. saligna* plants of 90 days old and cultured at various concentrations of NaCl for 21 days. Results showed that salt caused remarkable changes in some growth-related parameters (dry biomass) represented by the salinity tolerance index (STI). Na<sup>+</sup>, Ca<sup>2+,</sup> and Ratio Na<sup>+</sup>/K<sup>+</sup> content in the leaves increased with salinity levels, while K<sup>+</sup> contents were significantly reduced compared to the control in both acacia species. Levels of proline, total free amino acids and reducing sugars have been accumulated considerably in the leaves. *A. karroo* was more salt-tolerant than *A. saligna*. the results showed that the adaptability of a species to salinity is closely related to ion selectivity and biomass production. The seedlings also accumulated significantly a set of important osmolytes in leaves under salt stress, showing a marked increase in secondary metabolite accumulation. This adaptation proved very specific to each species for better survival in saline environments.

# Chapter Three 3. Materials and methods

## 3.1. Study location and plant materials:

This study was carried out in Benghazi city, the second largest city in Eastern Libya a part of the Mediterranean sea, about 1000 km far from the capital Tripoli. This study was conducted during spring-summer 2020 the experiments was conducted at Benghazi university laboratory. Plant materials used in this study are described in the table (3-1), The seeds of Lebbeck were collected from Salam District area eastern to Benghazi (12.5 km), while the seeds of Acacia were collected from Garyones area in the west of the city. All the seeds had similarly selected with the shape and size and collected from trees of same age and height.

| Common name | Scientific name   | Family     |
|-------------|-------------------|------------|
| Lebbeck     | Albizia Lebbeck   | Mimosaceae |
| Acacia      | Acacia cyanophyla | Mimosaceae |

Tab. (3-1): Plant species used in the study.



Fig. (3-1): Seeds of Albizia Lebbeck and Acacia cyanophyla.

#### **3.2.** Preparation of simulated water:

Simulated seawater was prepared in the by adding specific salts in laboratory as shown the following table (3-2).

| Salt                                                      | Molecular weight | g kg–1 solution |
|-----------------------------------------------------------|------------------|-----------------|
| Sodium chloride (NaCl)                                    | 58.44            | 23.926          |
| Sodium sulfate $(Na_2SO_4)$                               | 142.04           | 4.008           |
| Potassium chloride (KCl)                                  | 74.56            | 0.677           |
| Sodium bicarbonate (NaHCO <sub>3</sub> )                  | 84.00            | 0.196           |
| Potassium bromide (KBr)                                   | 119.01           | 0.098           |
| Boric acid (H <sub>3</sub> BO <sub>3</sub> )              | 61.83            | 0.026           |
| Magnesium chloride (MgCl <sub>2</sub> .6H <sub>2</sub> O) | 203.33           | 0.05327         |
| Calcium chloride (CaCl <sub>2</sub> .2H <sub>2</sub> O)   | 147.03           | 0.01033         |

Table (3-2): Components of simulated seawater.

#### 3.3. Preparation of different dilutions of simulated seawater:

Five dilutions of simulated seawater were prepared 1%, 2%, 5%, 10%, 20% (v/v, for preparation of 1% concentration in a measuring cylinder 1ml of seawater was diluted with distilled water to complete the volume to 100ml, the same procedure was performed for the other concentrations as shown in table (3-3), 0% concentration was a pure distilled water which used as a control.

| Concentration | Seawater | Distilled water      |
|---------------|----------|----------------------|
| 0% Control    | 0        | Pure distilled water |
| 1%            | 1ml      | 99 ml                |
| 2%            | 2ml      | 98 ml                |
| 5%            | 5ml      | 95ml                 |
| 10%           | 10ml     | 90ml                 |
| 20%           | 20ml     | 80 L                 |

 Table (3-3):
 Preparation of different concentration of seawater.

# 3.4. Measurements of both electro conductivity and PH:

Electrical conductivities EC and pH of each sea water concentration were measured by EC and pH meter (HANNA, Germany).

| Concentration | 0%   | 1%   | 2%   | 5%   | 10%  | 20%        |
|---------------|------|------|------|------|------|------------|
| E.C           | 2    | 775  | 1428 | 3509 | 3529 | Above 3507 |
| PH            | 7.80 | 6.19 | 6.23 | 6.27 | 7.31 | 7.50       |

Table (3-4): Measurement of electro conductivity and PH.

# **3.5.** Experimentation of salinity effect on germination parameters:

The experiment of both plants is including the same steps, with differences in number of days, since Acacia taking longer time to germinate seeds should be kept germinating for 21 days, but Lebbeck seeds should be allowed to grow upon 14 days, both plants treated with the same procedures as following:

 Seeds were surface-sterilized with 2% sodium hypochlorite solution NaOCl for 12 minutes and rinsed with sterile distilled water several times then blotted using sterile paper towels.

- 2. The experiment was repeated using different treatments including (potable water, sulfuric acid, boiling water and mechanical scarification method).
- 3. In sterile 9 cm Petri dishes lined with double layer whatmann filter paper moisten with 5 ml of each seawater concentration; Seeds were plated on Petri dishes under aseptic conditions. Each Petri dish contained 10 seeds of one inbred-line, Petri dishes were randomized in a precision incubator and maintained in the dark at 22±0.5°C, this process was in 3 replicates for each concentration, and the total number of plates was 18 plates for each treatment.
- 4. Plates were watered as needed with 5 ml of each concentration for 14 days in case of Lebbeck and 21 days for Acacia.
- 5. Every day from the beginning of germination, the number of germinated seeds was determined.
- 6. Germinated seeds were counted daily for the calculations of daily and final germination percentages (g%) and mean germination time (MGT) seeds considered germinated when the radical had protruded 2 mm according to the following formulas

A. % Germination (G%) =  $\frac{\text{No.of seeds with extend radicals}}{\text{Total number of seeds}} \times 100$ 

B. Mean germination time (MGR)=  $\sum (T1*n1 + T2*n2 + ... + Tk*nk) / \sum (n1 + n2 + ... + nk)$ .

Where:

(n)= no. of new germinated seed

T= time from the beginning of the experiment.

5%  $\odot$ 

Fig. (3-2): Germination experiment for Acacia seeds.



Fig. (3-3): Germination experiment for Lebbeck seeds.

# **3.6.** Seedling development study:

Germinated seeds of both plants were allowed to develop and grow the seedlings under the same conditions. Seedlings were daily monitored, shoot and root lengths were measured by the end of the experiment. Moreover, seed mass and seed viability were examined At the end of the growth period in this study, root length, shoot length, fresh and dry weight of the grown plant were measured. Fresh weight were measured directly by sensitive balance, dry weight were taken after drying of the plant in an oven at 65° C for 24 hours.

# Seedling Vigor Index (SVI):

The seedling vigor index was calculated by using Abdul-Baki and Anderson (1973) formulae.

 $SVI = (Shoot length + Root length) \times Germination percentage.$ 



Fig. (3-4): Seedling development study.

### 3.7. Statistical analysis:

Obtained data were summarized in SPSS (social package statistic software, version 21) and analyzed by ANOVA test to estimate the differences in the response to verities of sea water dilutions, followed by post hoc multiple comparison test (differences in means of several groups), significance was accepted at *P*-values below 0.05 the confidence interval was set at 95%.

# Chapter four 4. Results

# 4.1. Results of Lebbeck Seeds treated with boiled water:4.1.1. Germination experiment:

### 4.1.1.1. Estimation of mean germination time (MGT):

Majority of seeds showed increased mean germination time at all seawater concentration and in both treatments with boiled water especially at concentration 5% for both treatments. The increase in concentration of sea water slows the germination of the seeds as shown in the table (4-1).

| Seawater | MGT           | MGT           |
|----------|---------------|---------------|
| %        | 1st treatment | 2nd treatment |
| 0%       | 9.7           | 9             |
| 1%       | 9.09          | 9.7           |
| 2%       | 9.55          | 9.43          |
| 5%       | 12.4          | 10.7          |
| 10%      | 0             | 0             |
| 20%      | 0             | 0             |

| Table (4-1): Mean germination time of Lebb | oeck |
|--------------------------------------------|------|
| seeds treated with boiled water.           |      |



Fig. (4-1): Effect of seawater on MGT of Lebbeck treated with boiled water.

## 4.1.1.2. Estimation of germination percentage (G %):

Final seed germination of Lebbeck treated with boiled water showed significant decrease at all concentrations of sea water and control the maximum number of germinated seeds were 8 seeds from total 10 seeds; no growth had been recorded at high concentration of sea water in both treatments as shown in the table (4-2).

|                 | G% 1 <sup>st</sup> tre | G% 2 <sup>nd</sup> treatment |         |                   |
|-----------------|------------------------|------------------------------|---------|-------------------|
| Concentration % | Mean                   | Std.<br>Deviation            | Mean    | Std.<br>Deviation |
| 0%              | 50.7143                | 30.49950                     | 60.7143 | 28.67974          |
| 1%              | 52.8571                | 25.24604                     | 60.0000 | 36.58499          |
| 2%              | 54.2857                | 31.30846                     | 49.2857 | 27.58603          |
| 5%              | 10.0000                | 14.14214                     | 46.4286 | 39.92438          |
| 10%             | _                      | -                            | -       | -                 |
| 20%             | -                      | -                            | -       | -                 |

 Table (4-2): Germination percentage at different seawater concentrations for

 Lebbeck seeds treated with boiled water.



Fig. (4-2): Germination percentage of Lebbeck seeds at different water concentrations.

# 4.1.2. Seedling experiment:4.1.2.1. Seedling vigor index (SVI):

Seedling vigor index of Lebbeck showed significant decrease in the value with increased seawater concentrations, compared with the control in both treatments.

The table (4-3) shows the differences in the means of SVI.

| Concentration % | SVI      | Std.<br>deviation | SVI      | Std.<br>deviation |
|-----------------|----------|-------------------|----------|-------------------|
| 0%              | 620.719  | 228.59755         | 707.3181 | 207.82592         |
| 1%              | 394.1622 | 160.95679         | 390.0000 | 258.12206         |
| 2%              | 369.7825 | 143.41892         | 235.8639 | 148.24954         |
| 5%              | -        | -                 | -        | -                 |
| 10%             | -        | -                 | -        | _                 |
| 20%             | _        | -                 | -        | -                 |

Table (4-3): Effect of different concentration of seawater on SVI.



Fig. (4-3): Effect on SVI of Lebbeck seeds treated with boiled water.

# 4.1.2.2. Effect of seawater concentrations on Lebbeck shoots and roots lengths when treated with boiled water:

The effect of seawater at different concentrations on fresh and dry lengths of both shoot and roots showed highly significant decrease in mean of fresh and dry shoot and shoot lengths of Lebbeck in both treatments compared with the control according to one way Anova test. The table (4-4) describing the differences in mean of the lengths of dry and fresh lengths of the plant and the significances of these differences.

| watch.        |                   |         |                      |         |        |                           |         |         |         |
|---------------|-------------------|---------|----------------------|---------|--------|---------------------------|---------|---------|---------|
| Como          | ontration         |         | 1 <sup>st</sup> trea | tment   |        | 2 <sup>nd</sup> treatment |         |         |         |
| Concentration |                   | LSF     | LSD                  | LRF     | LRD    | LSF                       | LSD     | LRF     | LRD     |
|               | No.               | 8       | 8                    | 8       | 8      | 8                         | 8       | 8       | 8       |
| 0.0/          | Mean              | 6.3125  | 5.3125               | 4.8875  | 4.088  | 6.9875                    | 4.6625  | 4.7375  | 3.4500  |
| 0%            | Std.<br>Deviation | 2.3937  | 2.15369              | 1.61195 | 1.1993 | 2.42218                   | 1.35429 | 1.62035 | 1.09022 |
|               | No.               | 7       | 7                    | 7       | 7      | 9                         | 9       | 9       | 9       |
| 10/           | Mean              | 4.2286  | 3.2286               | 3.0143  | 2.100  | 3.4667                    | 3.0333  | 1.7556  | 1.1889  |
| 1%            | Std.<br>Deviation | 1.6540  | 1.42093              | 1.59836 | 1.5330 | 2.23942                   | 2.06458 | .85894  | 0.50854 |
|               | No.               | 8       | 8                    | 8       | 8      | 7                         | 7       | 7       | 7       |
| 20/           | Mean              | 3.7875  | 3.0250               | 2.5250  | 1.659  | 2.8000                    | 1.9857  | 1.4429  | 0.9714  |
| 2%            | Std.<br>Deviation | 1.37989 | 1.29035              | 0.82245 | 0.6413 | 1.80739                   | 1.32467 | 0.74354 | 0.48892 |
| Al            | NOVA              | 0.032   | 0.025                | 0.007   | 0.001  | 0.002                     | 0.016   | 0.000   | 0.000   |

 Table (4-4): The effect on Lebbeck shoots and roots lengths treated with boiled water.

# 4.1.2.3. Effect on fresh length of Lebeck (LSF):

The effect of different concentration of seawater on fresh length of Lebbeck shoots treated with boiled water was significant p-values (0.032 and 0.002) respectively. Post hock multiple comparisons (LSD) test showed theses significance in the differences in means between (0% and 1%), (0% and 2%) but not (1% and 2%) in the both treatments.

| Concentration |    | G% 1 <sup>st</sup> | treatme       | nt    | G% 2 <sup>nd</sup> treatment |               |       |  |
|---------------|----|--------------------|---------------|-------|------------------------------|---------------|-------|--|
|               |    | Mean<br>Difference | Std.<br>Error | Sig.  | Mean<br>Difference           | Std.<br>Error | Sig.  |  |
| 0.0 (         | 1% | $2.08393^{*}$      | 0.96722       | 0.044 | 3.52083*                     | 1.06452       | 0.003 |  |
| 0%            | 2% | $2.52500^{*}$      | 0.93442       | 0.014 | $4.18750^{*}$                | 1.13383       | 0.001 |  |
| 10/           | 0% | -2.08393-*         | 0.96722       | 0.044 | -3.52083-*                   | 1.06452       | 0.003 |  |
| 1%            | 2% | 0.44107            | 0.96722       | 0.653 | 0.66667                      | 1.10404       | 0.552 |  |
| 20/           | 0% | -2.52500-*         | 0.93442       | 0.014 | -4.18750-*                   | 1.13383       | 0.001 |  |
| 2%            | 1% | 44107-             | 0.96722       | 0.653 | 66667-                       | 1.10404       | 0.552 |  |

 Table (4-5): Effect on fresh length of Lebbeck seeds treated with boiled water.



Fig. (4-4): Effect on fresh length of Lebbeck seeds treated with boiled water.

#### 4.1.2.4. Effect on dry length of Lebbeck shoot (LSD):

The effect of different concentration of seawater on dry length of Lebbeck shoots treated with boiled water was significant p-values (0.025 and 0.016) respectively. Post hock multiple comparisons (LSD) test showed theses significance related to the differences in means between (0% and 1%), (0% and 2%) but not (2% and 1%) in first treatment. In the second treatment the differences between (0% and 2%) only as shown in table (4-6).

| Concentration |    | G% 1 <sup>st</sup> trea | atment        |       | G% 2 <sup>nd</sup> treatment |               |       |  |
|---------------|----|-------------------------|---------------|-------|------------------------------|---------------|-------|--|
|               |    | Mean<br>Difference      | Std.<br>Error | Sig.  | Mean<br>Difference           | Std.<br>Error | Sig.  |  |
| 0.0.(         | 1% | $2.08393^{*}$           | 0.86786       | 0.026 | 1.62917                      | 0.80382       | 0.056 |  |
| U%o           | 2% | $2.28750^{*}$           | 0.83844       | 0.013 | $2.67679^{*}$                | 0.85616       | 0.005 |  |
| 10/           | 0% | -2.08393-*              | 0.86786       | 0.026 | -1.62917-                    | 0.80382       | 0.056 |  |
| 1%            | 2% | 0.20357                 | 0.86786       | 0.817 | 1.04762                      | 0.83366       | 0.223 |  |
| 2%            | 1% | 20357-                  | 0.86786       | 0.817 | -1.04762-                    | 0.83366       | 0.223 |  |

 Table (4-6): Effect on dry length of Lebbeck seeds treated with boiled water.



Fig. (4-5): Effect on dry length of Lebbeck seeds treated with boiled water.

#### 4.1.2.5. Effect on fresh length of Lebeck roots (LRF):

The effect of different concentration of seawater on fresh length of Lebbeck roots treated with boiled water was significant p-values (0.07 and 0.00) respectively. Post hock multiple comparisons (LSD) test showed theses significance related to the differences in means between (0% and 1%), (0% and 2%) but not (2 % and 1%) in both treatments. only as shown in table (4-7).

| Concentration |    | G% 1 <sup>st</sup> t | reatment   |       | G% 2 <sup>nd</sup> treatment |            |       |  |
|---------------|----|----------------------|------------|-------|------------------------------|------------|-------|--|
|               |    | Mean<br>Difference   | Std. Error | Sig.  | Mean Difference              | Std. Error | Sig.  |  |
| 00/           | 1% | 1.87321*             | 0.71576    | 0.017 | 2.98194 <sup>*</sup>         | 0.55704    | 0.000 |  |
| 0%            | 2% | $2.36250^{*}$        | 0.69149    | 0.003 | 3.29464*                     | 0.59331    | 0.000 |  |
| 10/           | 0% | -1.87321-*           | 0.71576    | 0.017 | -2.98194-*                   | 0.55704    | 0.000 |  |
| 1%            | 2% | .48929               | 0.71576    | 0.502 | 0.31270                      | 0.57772    | 0.594 |  |
| 20/           | 0% | -2.36250-*           | 0.69149    | 0.003 | -3.29464-*                   | 0.59331    | 0.000 |  |
| 2%            | 1% | 48929-               | 0.71576    | 0.502 | 31270-                       | 0.57772    | 0.594 |  |

Table (4-7): Effect on roots fresh length of Lebeck seeds treated with boiled water.



Fig. (4-6): Effect on roots fresh length of Lebeck seeds treated with boiled water.

#### 4.1.2.6. Effect on dry length of Lebeck roots (LRD):

The effect of different concentration of seawater on dry length of Lebbeck roots treated with boiled water was significant p-values (0.01 and 0.00) respectively. Post hock multiple comparisons (LSD) test showed theses significance related to the differences in means between (0% and 1%), (0% and 2%) but not (2% and 1%) in both treatments. only as shown in table (4-8).

| Concentration |    | G% 1 <sup>st</sup> t | reatment      |       | G% 2 <sup>nd</sup> treatment |               |       |  |
|---------------|----|----------------------|---------------|-------|------------------------------|---------------|-------|--|
|               |    | Mean<br>Difference   | Std.<br>Error | Sig.  | Mean<br>Difference           | Std.<br>Error | Sig.  |  |
| 0%            | 1% | $1.9875^{*}$         | 0.6019        | 0.004 | 2.26111*                     | 0.36460       | 0.000 |  |
|               | 2% | $2.4288^{*}$         | 0.5815        | 0.000 | $2.47857^{*}$                | 0.38834       | 0.000 |  |
| 10/           | 0% | -1.9875-*            | 0.6019        | 0.004 | -2.26111-*                   | 0.36460       | 0.000 |  |
| 1%            | 2% | 0.4413               | 0.6019        | 0.472 | 0.21746                      | 0.37814       | 0.571 |  |
| 2%            | 0% | -2.4288-*            | 0.5815        | 0.000 | -2.47857-*                   | 0.38834       | 0.000 |  |
|               | 1% | 4413-                | 0.6019        | 0.472 | 21746-                       | 0.37814       | 0.571 |  |

Table (4-8): Effect on roots dry length of Lebbeck seeds treated with boiled water.



Fig. (4-7): Effect on roots dry length of Lebeck seeds treated with boiled water.

#### **4.1.3.** Effect of seawater concentrations on roots and shoot weights:

The effect of seawater at different concentrations on fresh and dry weights of both shoot and roots showed no significant differences in mean of fresh and dry shoot and shoot weights of Lebbeck in both treatments compared with the control according to one way Anova test except in fresh weight of shoot in the second treatment. The table (4-9) describing the differences in mean of the lengths of dry and fresh weights of the plant and the significances of these differences.

| Com | · · · · · · · · · · · · · · · · · · · |           | 1 <sup>st</sup> trea | atment    |           |                     | 2 <sup>nd</sup> trea | atment  |         |
|-----|---------------------------------------|-----------|----------------------|-----------|-----------|---------------------|----------------------|---------|---------|
| Con | centration                            | WSF       | WSD                  | WRF       | WRD       | WSF                 | WSD                  | WRF     | WRD     |
|     | Ν                                     | 8         | 8                    | 8         | 8         | 8                   | 8                    | 8       | 8       |
| 00/ | Mean                                  | 0.06965   | 0.011025             | 0.007138  | 0.0032    | 0.1623              | 0.0090               | 0.1131  | 0.0024  |
| 0%0 | Std.<br>Deviation                     | 0.0020459 | .0023026             | 0.0057438 | 0.0010876 | 0.05099             | 0.00204              | 0.19331 | 0.00082 |
|     | Ν                                     | 7         | 7                    | 7         | 7         | 9                   | 9                    | 9       | 9       |
| 10/ | Mean                                  | 0.04895   | 0.009600             | 0.039271  | 0.0041    | 0.0858              | 0.0083               | 0.0118  | 0.0015  |
| 1%  | Std.<br>Deviation                     | 0.0464946 | 0.0032542            | 0.0697634 | .0027869  | 0.04892             | 0.00373              | 0.01595 | 0.00087 |
|     | Ν                                     | 8         | 8                    | 8         | 8         | 7                   | 7                    | 7       | 7       |
| 20/ | Mean                                  | 0.157863  | 0.008150             | 0.016800  | 0.003987  | 0.0540              | 0.0058               | 0.0047  | 0.0020  |
| 2%  | Std.<br>Deviation                     | 0.204771  | 0.0014639            | 0.0029857 | 0.0030126 | 0.04210             | 0.00222              | 0.00316 | 0.00141 |
| A   | NOVA                                  | 0.214     | 0.081                | 0.280     | 0.733     | 3 0.001 0.105 0.123 |                      | 0.235   |         |

 Table (4-9): Effect on roots and shoot weights of Lebbeck seeds treated with boiled water.

#### 4.1.3.1. Effect on fresh weight of shoots (WSF):

The effect of different concentration of seawater on fresh weight of Lebbeck shoots treated with boiled water was insignificant p-values (0.214) in the first treatment but was significant in the second treatment (0.00) respectively. Post hock multiple comparisons (LSD) test showed theses significance related to the differences in means between (0% and 1%), (0% and 2%) but not (2% and 1%) in second treatments as shown in table (4-10).

| Concentrations |    | G% 1 <sup>st</sup> t | reatment   |       | G% 2 <sup>nd</sup> treatment |            |       |  |
|----------------|----|----------------------|------------|-------|------------------------------|------------|-------|--|
|                |    | Mean Difference      | Std. Error | Sig.  | Mean Difference              | Std. Error | Sig.  |  |
| 0.01           | 1% | 0.0207000            | 0.0643739  | 0.751 | $0.07650^{*}$                | 0.02323    | 0.003 |  |
| 0%             | 2% | -0.0882125-          | 0.0621911  | 0.171 | $0.10829^{*}$                | 0.02474    | 0.000 |  |
| 10/            | 0% | -0.0207000-          | 0.0643739  | 0.751 | -0.07650-*                   | 0.02323    | 0.003 |  |
| 1%             | 2% | -0.1089125-          | 0.0643739  | 0.106 | 0.03179                      | 0.02409    | 0.201 |  |
| 2%             | 0% | 0.0882125            | 0.0621911  | 0.171 | -0.10829-*                   | 0.02474    | 0.000 |  |
|                | 1% | 0.1089125            | 0.0643739  | 0.106 | -0.03179-                    | 0.02409    | 0.201 |  |

 Table (4-10): Effect on shoots fresh weight of Lebbeck seeds treated with boiled water.



Fig. (4-8): Effect on shoots fresh weight of Lebbeck seeds treated with boiled water.

## 4.1.3.2. Effect on dry weight of shoots (WSD):

The effect of different concentration of seawater on shoots dry weight of Lebbeck seeds treated with boiled water was insignificant p-values (0.081 and 0.105) respectively post hock multiple comparison was ignored.



Fig. (4-9): Effect on shoots dry weight of Lebbeck seeds treated with boiled water.

## 4.1.3.3. Effect on fresh weight of root (WRF):

The effect of different concentration of seawater on fresh weight of Lebbeck roots treated with boiled water was insignificant p-values (0.280 and 0.123) respectively post hock multiple comparison was ignored.



Fig. (4-10): Effect on shoots dry weight of Lebbeck seeds treated with boiled water.

#### **4.1.3.4.** Effect on dry weight of root (WRD):

The effect of different concentration of seawater on dry weight of Lebbeck roots treated with boiled water was insignificant p-values (0.733 and 0.235) respectively post hock multiple comparison was ignored.



Fig. (4-11): Effect on roots dry weight of Lebbeck seeds treated with boiled water.

# 4.2. Results of Lebbeck Seeds treated with hot tap water:

## **4.2.1. Germination experiment:**

#### **4.2.1.1.** Estimation of mean germination time (MGT):

Mean germination time was seen to be decreased at all concentration of seawater but this decrease was significant at higher concentrations of seawater resulting in delay in germination of Lebbeck seeds treated with hot tap water in both treatments. The delay in germination of seeds is shown in the table (4-11).

| Seawater % | MGT<br>1st treatment | MGT<br>2nd treatment |
|------------|----------------------|----------------------|
| 0%         | 8.7                  | 7.3                  |
| 1%         | 9.3                  | 8.56                 |
| 2%         | 8.3                  | 8.5                  |
| 5%         | 10                   | -                    |
| 10%        | -                    | -                    |
| 20%        | -                    | -                    |

Table (4-11): Mean germination time ofLebbeck seeds treated with hot tap water.



Fig. (4-12) Effect of seawater on MGT of Lebbeck plant treated with hot tap water.

### **4.2.1.2.** Estimation of mean germination percentage (G%):

Final seed germination of Lebbeck treated with hot tap water showed significant decrease at all concentrations of seawater and control the maximum number of germinated seeds were 50 seeds from total 10 seeds, no growth had been recorded at high concentration of sea water in both treatments as shown in the table (4-12).

|                 | G% 1 <sup>st</sup> t | reatment          | G% 2 <sup>nd</sup> treatment |                   |  |  |
|-----------------|----------------------|-------------------|------------------------------|-------------------|--|--|
| Concentration % | Mean                 | Std.<br>Deviation | Mean                         | Std.<br>Deviation |  |  |
| 0%              | 42.1429              | 15.28125          | 26.4286                      | 9.28783           |  |  |
| 1%              | 40.7143              | 18.59044          | 12.6923                      | 13.93667          |  |  |
| 2%              | 25.0000              | 10.91928          | 27.6923                      | 5.99145           |  |  |
| 5%              | 6.4286               | 4.97245           | -                            | -                 |  |  |
| 10%             | -                    | -                 | -                            | -                 |  |  |
| 20%             | _                    | _                 | _                            | _                 |  |  |

 Table (4-12): Germination percentage at different seawater concentrations for Lebbeck seeds treated with hot tap water.



Fig. (4-13): Germination percentage at different seawater concentrations for Lebbeck seeds treated with hot tap water.

# 4.2.2. Seedling experiment:4.2.2.1. Seedling vigorous index (SVI):

Seedling vigor index of Lebbeck seeds treated with hot tap water showed significant decrease in the value with increased seawater concentrations, compared with the control in both treatments. The table (4-13) shows the differences in the means of SVI.

| Concentration % | SVI      | Std.<br>deviation | SVI      | Std.<br>deviation |  |  |  |  |  |  |
|-----------------|----------|-------------------|----------|-------------------|--|--|--|--|--|--|
| 0%              | 494.7572 | 102.47736         | 259.8810 | 17.59701          |  |  |  |  |  |  |
| 1%              | 312.6857 | 62.04089          | 74.9673  | 24.18858          |  |  |  |  |  |  |
| 2%              | 85.0000  | 52.50000          | 229.8462 | 20.90723          |  |  |  |  |  |  |
| 5%              | -        | -                 | -        | -                 |  |  |  |  |  |  |
| 10%             | -        | -                 | -        | -                 |  |  |  |  |  |  |
| 20%             | -        | -                 | -        | -                 |  |  |  |  |  |  |

Table (4-13): Effect of sea water on SVI in Lebbeck seeds treated with hottap water.



Fig. (4-14): Effect of seawater on SVI in Lebbeck seeds treated with hot tap water.

# 4.2.2.2. Effect of seawater on shoots and roots lengths of Lebbeck seeds treated with hot tap water:

The effect of seawater at different concentrations on fresh and dry lengths of both shoot and roots showed highly significant decrease in mean of fresh and dry shoot and shoot lengths of Lebbeck in both treatments compared with the control according to one way Anova test except LSD in the second treatment the differences was insignificant. The table (4-14) describing the differences in mean of the lengths of dry and fresh lengths of the plant and the significances of these differences.

| Com   | Concentration     |         | ment    |         |         | 2 <sup>nd</sup> treat | ment    |         |         |
|-------|-------------------|---------|---------|---------|---------|-----------------------|---------|---------|---------|
| Cond  | centration        | LSF     | LSD     | LRF     | LRD     | LSF                   | LSD     | LRF     | LRD     |
|       | Ν                 | 5       | 5       | 5       | 5       | 3                     | 3       | 3       | 3       |
| 00/   | Mean              | 7.1000  | 6.0800  | 4.6400  | 3.4000  | 6.8333                | 6.0333  | 3.0     | 2.5333  |
| U%o   | Std.<br>Deviation | 1.52315 | 1.46356 | 1.10589 | 0.74162 | 0.30551               | 0.35119 | 0.5     | 0.45092 |
|       | Ν                 | 5       | 5       | 5       | 5       | 5                     | 3       | 3       | 3       |
| 10/   | Mean              | 5.7000  | 4.9400  | 1.9800  | 1.0400  | 4.4200                | 3.9000  | 2.04    | 1.6400  |
| 1%    | Std.<br>Deviation | 1.26886 | 1.30115 | 0.46583 | 0.08944 | 2.00175               | 1.90263 | 0.2881  | 0.31305 |
|       | Ν                 | 3       | 3       | 3       | 3       | 3                     | 3       | 3       | 3       |
| 20/   | Mean              | 2.3333  | 1.9667  | 1.0667  | 0.8000  | 6.3667                | 5.9000  | 1.9333  | 1.5333  |
| 270   | Std.<br>Deviation | 1.89297 | 1.77858 | 0.20817 | 0.26458 | 0.65064               | 0.85440 | 0.11547 | 0.20817 |
| ANOVA |                   | 0.005   | 0.011   | 0.000   | 0.000   | 0.100                 | 0.114   | 0.006   | 0.010   |

 Table (4-14): The effect on shoots and roots lengths of Lebbeck seeds treated with hot tap water.

#### 4.2.2.3. The effect on shoot fresh length (LSF):

The effect of different concentration of seawater on fresh length of Lebbeck shoots treated with hot tap water was significant p-values (0.005) in the first treatment but insignificant in the second one. Post hock multiple comparisons (LSD) test showed that, the significance in the first treatment was related to the differences in means between (0% and 2%), (2% and 1%) concentrations as shown in table (4-15).

| Concentration |    | G% 1 <sup>st</sup> t | reatment   |       | G% 2 <sup>nd</sup> treatment |            |       |  |
|---------------|----|----------------------|------------|-------|------------------------------|------------|-------|--|
|               |    | Mean Difference      | Std. Error | Sig.  | Mean Difference              | Std. Error | Sig.  |  |
| 00/           | 1% | 1.40000              | 0.95680    | 0.174 | 2.41333                      | 1.06650    | 0.053 |  |
| 0%            | 2% | $4.76667^{*}$        | 1.10482    | 0.002 | 0.46667                      | 1.19238    | 0.706 |  |
| 10/           | 0% | -1.40000-            | 0.95680    | 0.174 | -2.41333-                    | 1.06650    | 0.053 |  |
| 1%            | 2% | 3.36667*             | 1.10482    | 0.012 | -1.94667-                    | 1.06650    | 0.105 |  |
| 2%            | 0% | -4.76667-*           | 1.10482    | 0.002 | -0.46667-                    | 1.19238    | 0.706 |  |
|               | 1% | -3.36667-*           | 1.10482    | 0.012 | 1.94667                      | 1.06650    | 0.105 |  |

 Table (4-15): The effect on fresh shoots lengths of Lebbeck seeds treated with hot tap water.



Fig. (4-15): The effect on fresh shoots lengths of Lebbeck seeds treated with hot tap water.

#### **4.2.2.4.** The effect on shoot dry length (LSD):

The effect of different concentration of seawater on dry length of Lebbeck shoots treated with hot tap water was significant p-values (0.011) in the first treatment but insignificant in the second one. Post hock multiple comparisons (LSD) test showed that, the significance in the first treatment was related to the differences in means between (0% and 2%), (2% and 1%) concentrations as shown in table (4-16).

| Concentration |    | G% 1 <sup>st</sup> t | reatment   | G% 2 <sup>nd</sup> treatment |                 |            |       |  |
|---------------|----|----------------------|------------|------------------------------|-----------------|------------|-------|--|
|               |    | Mean Difference      | Std. Error | Sig.                         | Mean Difference | Std. Error | Sig.  |  |
| 0.07          | 1% | 1.14000              | 0.93095    | 0.249                        | 2.13333         | 1.03880    | 0.074 |  |
| U%0           | 2% | 4.11333 <sup>*</sup> | 1.07497    | 0.003                        | 0.13333         | 1.16142    | 0.911 |  |
| 10/           | 0% | -1.14000-            | 0.93095    | 0.249                        | -2.13333-       | 1.03880    | 0.074 |  |
| 1%            | 2% | $2.97333^{*}$        | 1.07497    | 0.020                        | -2.00000-       | 1.03880    | 0.090 |  |
| 2%            | 0% | -4.11333-*           | 1.07497    | 0.003                        | -0.13333-       | 1.16142    | 0.911 |  |
|               | 1% | -2.97333-*           | 1.07497    | 0.020                        | 2.00000         | 1.03880    | 0.090 |  |

 Table (4-16): The effect on dry shoots lengths of Lebbeck seeds treated with hot tap water



Fig. (4-16): The effect on dry shoots lengths of Lebbeck seeds treated with hot tap water.

#### 4.2.2.5. The effect on root fresh length (LRF):

The effect of different concentration of seawater on fresh length of Lebbeck roots treated with hot tap water was significant p-values (0.00, 0.006) in both treatments. Post hock multiple comparisons (LSD) test showed that, the statistical significance was related to the differences in means between (0% and %), (0% and 2%) concentrations in both treatment as shown in table (4-17).

| Concentration |    | G% 1 <sup>st</sup> t | reatment   |       | G% 2 <sup>nd</sup> treatment |            |       |  |
|---------------|----|----------------------|------------|-------|------------------------------|------------|-------|--|
|               |    | Mean Difference      | Std. Error | Sig.  | Mean Difference              | Std. Error | Sig.  |  |
| 0.0/          | 1% | $2.66000^{*}$        | 0.48360    | 0.000 | $0.96000^{*}$                | 0.23926    | 0.004 |  |
| 0%            | 2% | 3.57333 <sup>*</sup> | 0.55841    | 0.000 | $1.06667^{*}$                | 0.26750    | 0.004 |  |
| 10/           | 0% | -2.66000-*           | 0.48360    | 0.000 | -0.96000-*                   | 0.23926    | 0.004 |  |
| 1%            | 2% | 0.91333              | 0.55841    | 0.133 | 0.10667                      | 0.23926    | 0.668 |  |
| 2%            | 0% | -3.57333-*           | 0.55841    | 0.000 | -1.06667-*                   | 0.26750    | 0.004 |  |
|               | 1% | 091333-              | 0.55841    | 0.133 | -0.10667-                    | 0.23926    | 0.668 |  |

 Table (4-17): The effect on fresh root lengths of Lebbeck seeds treated with hot tap water



Fig. (4-17): The effect on fresh root lengths of Lebbeck seeds treated with hot tap water.

## 4.2.2.6. The effect on root dry length (LRD):

The effect of different concentration of seawater on dry length of Lebbeck roots treated with hot tap water was significant p-values (0.00, 0.001) in both treatments. Post hock

multiple comparisons (LSD) test showed that, the statistical significance was related to the differences in means between (0% and %), (0 % and 2%) concentrations in both treatment as shown in table (4-18).

| Concentration |    | G% 1 <sup>st</sup> | treatment     | ;     | G% 2 <sup>nd</sup> treatment |               |       |  |  |
|---------------|----|--------------------|---------------|-------|------------------------------|---------------|-------|--|--|
|               |    | Mean<br>Difference | Std.<br>Error | Sig.  | Mean<br>Difference           | Std.<br>Error | Sig.  |  |  |
| 0.0.(         | 1% | $2.360^{*}$        | 0.30803       | 0.000 | $0.89333^{*}$                | 0.24294       | 0.006 |  |  |
| 0%            | 2% | $2.60^{*}$         | 0.35568       | 0.000 | $1.00000^{*}$                | 0.27162       | 0.006 |  |  |
| 10/           | 0% | -2.360-*           | 0.30803       | 0.000 | -0.89333-*                   | 0.24294       | 0.006 |  |  |
| 1%            | 2% | 0.240              | 0.35568       | 0.515 | 0.10667                      | 0.24294       | 0.672 |  |  |
| 2%            | 0% | -2.60*             | 0.35568       | 0.000 | -1.00000-*                   | 0.27162       | 0.006 |  |  |
|               | 1% | 0240-              | 0.35568       | 0.515 | -0.10667-                    | 0.24294       | 0.672 |  |  |

 Table (4-18): The effect on dry root lengths of Lebbeck seeds treated with hot tap water.



Fig. (4-18): The effect on dry root lengths of Lebbeck seeds treated with hot tap water.

#### 4.2.3. Effect of seawater concentrations on roots and shoot weights

The dry and fresh weights of root and shoot of Lebbeck plant showed different responses to different concentration of seawater both treatments compared with the control according to one way Anova, the effect on fresh weight of roots in the first treatment and the effect on fresh and dry weights of roots were significant. The table (4-19) describing the differences in mean of the lengths of dry and fresh weights of the plant and the significances of these differences.

| C   | <b>4 4•</b>       |          | 1 <sup>st</sup> trea | tment   |         |         | 2 <sup>nd</sup> tre | atment  |         |
|-----|-------------------|----------|----------------------|---------|---------|---------|---------------------|---------|---------|
| Con | centration        | WSF      | WSD                  | WRF     | WRD     | WSF     | WSD                 | WRF     | WRD     |
|     | Ν                 | 5        | 5                    | 5       | 5       | 3       | 3                   | 3       | 3       |
| 00/ | Mean              | 0.1588   | 0.0099               | 0.0436  | 0.0065  | 0.1261  | 0.0753              | 0.0283  | 0.0026  |
| 0%  | Std.<br>Deviation | 0.02594  | 0.00204              | 0.00403 | 0.00962 | 0.02210 | 0.0202              | 0.00550 | 0.00139 |
|     | Ν                 | 5        | 5                    | 5       | 5       | 5       | 5                   | 5       | 5       |
| 10/ | Mean              | 0.1282   | 0.0151               | 0.0238  | 0.0047  | 0.0750  | 0.0284              | 0.0087  | 0.0045  |
| 1%  | Std.<br>Deviation | 0.01843  | 0.00668              | 0.03025 | 0.00837 | 0.04261 | 0.0323              | 0.00533 | 0.00272 |
|     | Ν                 | 3        | 3                    | 3       | 3       | 3       | 3                   | 3       | 3       |
| 20/ | Mean              | 0.0647   | 0.0062               | 0.0100  | 0.0008  | 0.1320  | .0454               | 0.0181  | 0.0058  |
| 2%  | Std.<br>Deviation | 0.003443 | 0.00231              | 0.00265 | 0.00026 | 0.01495 | .02307              | 0.00130 | 0.00231 |
| A   | NOVA              | 0.002    | 0.057                | 0.093   | 0.641   | 0.100   | 0.114               | 0.006   | 0.010   |

 Table (4-19): The effect on shoots and roots weights of Lebbeck seeds treated with hot tap water.

#### 4.2.3.1. The effect on fresh weight of shoots (WSF):

The effect of different concentration of seawater on fresh weight of Lebbeck shoots treated with hot tap water was significant p-values (0.002) in the first treatment but was insignificant in the second treatment (0.100). Post hock multiple comparisons (LSD) test showed theses significance related to the differences in means between (0%a nd 2%), (2% and 1%) in first treatments as shown in table (4-20).

| Concentration |    | G% 1 <sup>st</sup> treatment |            | G% 2 <sup>nd</sup> treatment |                 |            |       |
|---------------|----|------------------------------|------------|------------------------------|-----------------|------------|-------|
|               |    | Mean Difference              | Std. Error | Sig.                         | Mean Difference | Std. Error | Sig.  |
| 0%            | 1% | 0.03060                      | 0.01603    | 0.085                        | 0.05110         | 0.02406    | 0.066 |
|               | 2% | 0.09413*                     | 0.01850    | 0.000                        | -0.00587-       | 0.02690    | 0.833 |
| 1%            | 0% | -0.03060-                    | 0.01603    | 0.085                        | -0.05110-       | 0.02406    | 0.066 |
|               | 2% | $0.06353^{*}$                | 0.01850    | 0.006                        | -0.05697-*      | 0.02406    | 0.045 |
| 2%            | 0% | -0.09413-*                   | 0.01850    | 0.000                        | 0.00587         | 0.02690    | 0.833 |
|               | 1% | -0.06353-*                   | 0.01850    | 0.006                        | $0.05697^{*}$   | 0.02406    | 0.045 |

 Table (4-20): The effect on fresh shoot weigh of Lebbeck seeds treated with hot tap water.



Fig. (4-19): The effect on fresh shoot weigh of Lebbeck seeds treated with hot tap water.

### **4.2.3.2.** The effect on dry weight of shoots (WSD):

The effect of different concentration of seawater on dry weight of Lebbeck shoots treated with hot tap water was insignificant in the both treatments. Post hock multiple comparisons (LSD) test was ignored.



Fig. (4-20): The effect on dry shoot weigh of Lebbeck seeds treated with hot tap water.

### 4.2.3.3. The effect on fresh weight of roots (WRS):

The effect of different concentration of seawater on dry weight of Lebbeck shoots treated with hot tap water was insignificant in the first treatment, but it was significant in the second treatment p-value (0.006). Post hock multiple comparisons (LSD) for the second treatment showed that these differences in the mean of root weights were related to all concentrations (0% and 1%), (0% and 2%), (1% and 2%). The table (4-21) shows these significant differences.

| Concentration |    | G% 1 <sup>st</sup> | treatmen      | t     | G% 2 <sup>nd</sup> treatment |               |       |
|---------------|----|--------------------|---------------|-------|------------------------------|---------------|-------|
|               |    | Mean<br>Difference | Std.<br>Error | Sig.  | Mean<br>Difference           | Std.<br>Error | Sig.  |
| 0%            | 1% | 0.01982            | 0.01223       | 0.136 | $0.01957^{*}$                | 0.00344       | 0.000 |
|               | 2% | $0.03362^{*}$      | 0.01412       | 0.039 | $0.01020^{*}$                | 0.00385       | 0.029 |
| 1%            | 0% | -0.01982-          | 0.01223       | 0.136 | -0.01957-*                   | 0.00344       | 0.000 |
|               | 2% | 0.01380            | 0.01412       | 0.352 | -0.00937-*                   | 0.00344       | 0.026 |
| 2%            | 0% | -0.03362-*         | 0.01412       | 0.039 | -0.01020-*                   | 0.00385       | 0.029 |
|               | 1% | -0.01380-          | 0.01412       | 0.352 | $0.00937^{*}$                | 0.00344       | 0.026 |

Table (4-21): The effect on fresh root weigh of Lebbeck seeds treated with hot tap water.



Fig. (4-21): The effect on fresh root weigh of Lebbeck seeds treated with hot tap water.

# 4.2.3.4. The effect on dry weight of roots (WRS):

The effect of different concentration of seawater on dry weight of Lebbeck shoots treated with hot tap water was insignificant in both treatments; Post hock multiple comparisons (LSD) test was ignored.



Fig. (4-22): The effect on dry root weigh of Lebbeck seeds treated with hot tap water.

# **4.3.** Results of Lebbeck Seeds treated with mechanical scarification **4.3.1.** Germination experiment

#### **4.3.1.1.** Estimation of mean germination time (MGT):

The mean germination time was significantly increased at all concentrations at which germination occurred, no germination occurred at higher concentration, a delay in germination process was noticed at all concentrations and control, table (4-22) showed the mean germination time in the 2 treatments.

| Seawater % | MGT<br>1 <sup>st</sup> treatment | MGT<br>2 <sup>nd</sup> treatment |
|------------|----------------------------------|----------------------------------|
| 0%         | 8.46                             | 9.09                             |
| 1%         | 9.09                             | 8.74                             |
| 2%         | 9.9                              | -                                |
| 5%         | 10.23                            | 10.6                             |
| 10%        | -                                | -                                |
| 20%        | -                                | -                                |

 Table (4-22): Mean germination time for Lebbeck seeds treated with mechanical scarification


Fig. (4-23): Mean germination time for Lebbeck seeds treated with mechanical scarification

#### **4.3.1.2.** Estimation of mean germination percentage (G%):

Final seed germination of Lebbeck treated with mechanical scarification method showed significant decrease at all concentrations of seawater and control the maximum number of germinated seeds were 3 seeds from total 10 seeds; no growth had been recorded at high concentration of sea water in both treatments as shown in the table (4-23).

| Concentration % | G% 1 <sup>st</sup> t | reatment          | G% 2 <sup>nd</sup> treatment |                   |  |  |  |  |
|-----------------|----------------------|-------------------|------------------------------|-------------------|--|--|--|--|
|                 | Mean                 | Std.<br>Deviation | Mean                         | Std.<br>Deviation |  |  |  |  |
| 0%              | 17.1429              | 6.11250           | 22.8571                      | 11.38729          |  |  |  |  |
| 1%              | 22.1429              | 12.51373          | 16.4286                      | 7.44946           |  |  |  |  |
| 2%              | 12.8571              | 9.13874           | 0.0000                       | 0.00000           |  |  |  |  |
| 5%              | 12.1429              | 9.74961           | 1.0714                       | .91687            |  |  |  |  |
| 10%             | _                    | _                 | _                            | _                 |  |  |  |  |
| 20%             | -                    | _                 | -                            | _                 |  |  |  |  |

 Table (4-23): Germination percentage of Lebbeck seeds treated with mechanical scarification.



Fig. (4-24): Germination percentage of Lebbeck seeds treated with mechanical scarification method.

# 4.3.2. Seedling experiment:

#### 4.3.3. Seedling vigorous index(SVI):

Seedling vigor index of Lebbeck seeds treated with mechanical scarification showed significant decrease in the value with increased seawater concentrations, compared with the control in both treatments. The table (4-24) shows the differences in the means of SVI.

| Concentration | SVI      | Std.      | SVI      | Std.      |
|---------------|----------|-----------|----------|-----------|
| %             |          | deviation |          | deviation |
| 0%            | 245.1020 | 31.51151  | 273.5238 | 42.47576  |
| 1%            | 223.6429 | 7.98372   | 167.5714 | 25.55686  |
| 2%            | 199.6429 | 49.59849  |          |           |
| 5%            |          | -         | -        | -         |
| 10%           | -        | -         | -        | -         |
| 20%           | -        | -         | -        | -         |

Table (4-24): SVI of Lebbeck seeds treated with mechanical scarification.



Fig. (4-25): SVI of Lebbeck seeds treated with mechanical scarification

# **4.3.3.1.** Effect of seawater on shoots and roots lengths of Lebbeck seeds treated mechanical scarification:

The effect of seawater at different concentrations on fresh and dry lengths of both shoot and roots showed no significant change in mean of fresh and dry shoot and shoot lengths of Lebbeck in both treatments compared with the control according to one way Anova for the first treatment and independent T tests for the second treatment.

| C   | , , <b>.</b> |         | 1 <sup>st</sup> trea | atment  |         |                          | 2 <sup>nd</sup> tre | atment  |         |
|-----|--------------|---------|----------------------|---------|---------|--------------------------|---------------------|---------|---------|
| Con | centration   | LSF     | LSD                  | LRF     | LRD     | LSF                      | LSD                 | LRF     | LRD     |
| 0%  | Ν            | 2       | 2                    | 2       | 2       | 3                        | 3                   | 3       | 3       |
|     | Mean         | 8.0500  | 7.4500               | 6.2500  | 5.7000  | 6.5667                   | 5.7333              | 5.4000  | 4.8333  |
|     | Std.         | 1.34350 | .91924               | 3.18198 | 1.34350 | 1.25033                  | 1.30512             | 1.82483 | 1.70978 |
|     | deviation    |         |                      |         |         |                          |                     |         |         |
| 1%  | Ν            | 3       | 3                    | 3       | 3       | 2                        | 2                   | 2       | 2       |
|     | Mean         | 6.0000  | 5.4667               | 4.1000  | 3.1000  | 6.5000                   | 5.4000              | 3.7000  | 3.1000  |
|     | Std.         | .55678  | .68069               | .20000  | .55678  | 1.27279                  | .98995              | .28284  | .14142  |
|     | deviation    |         |                      |         |         |                          |                     |         |         |
| 2%  | Ν            | 2       | 2                    | 2       | 2       | -                        | -                   | -       | -       |
|     | Mean         | 7.5500  | 6.5500               | 4.1500  | 3.6500  | -                        | -                   | -       | -       |
|     | Std.         | 2.05061 | 1.20208              | .49497  | 2.05061 | Independent Samples Test |                     |         |         |
|     | deviation    |         |                      |         |         |                          |                     |         |         |
|     | Anova        | 0.284   | 0.159                | 0.381   | 0.319   | 0.957                    | 0.782               | 0.302   | 0.268   |

 Table (4-25): Effect of seawater on shoots and roots lengths of Lebbeck seeds treated mechanical scarification.

# A. The effect on shoots fresh length (LSF):

The effect on shoot length was not significant in both treatments; multiple comparison post hock (LSD) test was ignored.



Fig. (4-26): The effect on fresh shoot length of Lebbeck seeds treated with mechanical scarification.

#### **B.** The effect on shoots dry length (LD):

The effect on dry shoot length was not significant in both treatments; multiple comparison post hock (LSD) test was ignored.



Fig. (4-27): The effect on dry shoot length of Lebbeck seeds treated with mechanical scarification method.

#### C. The effect on root fresh length (LRF):

The effect on fresh root length was not significant in both treatments; multiple comparison post hock (LSD) test was ignored.



Fig. (4-28): The effect on fresh root length of Lebbeck seeds treated with mechanical scarification.

#### **D.** The effect on root dry length (LRD):

The effect on dry root length was not significant in both treatments; multiple comparison post hock (LSD) test was ignored.



Fig. (4-29): The effect on dry root length of Lebbeck seeds treated with mechanical scarification.

# 4.3.3.2. Effect of seawater on shoots and roots weights of Lebbeck seeds treated mechanical scarification.

The effect of seawater at different concentrations on fresh and dry weights of both shoot and roots showed no significant change in mean of fresh and dry shoot and shoot lengths of Lebbeck in both treatments compared with the control according to one way Anova for the first treatment and independent T tests for the second treatment except for fresh shoot weight in the first treatment.

| C                    | <b>4 4</b>        |         | 1 <sup>st</sup> trea | atment  |         |                          | 2 <sup>nd</sup> trea | atment  |         |
|----------------------|-------------------|---------|----------------------|---------|---------|--------------------------|----------------------|---------|---------|
| Con                  | centration        | WSF     | WSD                  | WRF     | WRD     | WSF                      | WSD                  | WRF     | WRD     |
|                      | Ν                 | 2       | 2                    | 2       | 2       | 3                        | 3                    | 3       | 3       |
| 0%                   | Mean              | 0.1638  | 0.0372               | 0.0137  | 0.0038  | 0.1263                   | 0.0460               | 0.0144  | 0.0039  |
|                      | Std.<br>Deviation | 0.00608 | 0.02390              | 0.00113 | 0.00141 | 0.03113                  | 0.0135               | 0.0024  | 0.00332 |
|                      | Ν                 | 3       | 3                    | 3       | 3       | 2                        | 2                    | 2       | 2       |
| 10/                  | Mean              | 0.1345  | 0.0252               | 0.0136  | 0.0028  | 0.1455                   | 0.0525               | 0.0240  | 0.0021  |
| 1%                   | Std.<br>Deviation | 0.00740 | 0.02027              | 0.00162 | 0.00044 | 0.03041                  | 0.05728              | 0.01556 | 0.00021 |
|                      | Ν                 | 2       | 2                    | 2       | 2       |                          |                      |         |         |
| 20/                  | Mean              | 0.1677  | 0.0658               | 0.0139  | 0.0023  |                          |                      |         |         |
| 2% Std.<br>Deviation |                   | 0.01202 | 0.04278              | 0.00078 | 0.00057 | Independent Samples Test |                      |         |         |
| A                    | NOVA              | 0.022   | 0.381                | 0.984   | 0.285   | 0.545                    | 0.851                | 0.337   | 0.509   |

 Table (4-26): Effect of seawater on shoots and roots weights of Lebbeck seeds treated mechanical scarification

#### A. The effect on shoots fresh weight (WSF):

The effect of different concentration of seawater on fresh weight of Lebbeck shoots treated with mechanical scarification was significant p-values (0.022) in the first treatment but insignificant in the second one. Post hock multiple comparisons (LSD) test showed that, the significance in the first treatment was related to the differences in means between (0% and 1%), (2% and 1%) concentrations as shown in table (4-27).

| Concentration |    | G% 1 <sup>st</sup> treatment |                   |       |  |  |  |  |
|---------------|----|------------------------------|-------------------|-------|--|--|--|--|
|               |    | Mean Difference              | ence Std. Error S |       |  |  |  |  |
| 00/           | 1% | $0.02927^{*}$                | 0.00778           | 0.020 |  |  |  |  |
| 0%            | 2% | -0.00390-                    | 0.00853           | 0.671 |  |  |  |  |
| 10/           | 0% | -0.02927-*                   | 0.00778           | 0.020 |  |  |  |  |
| 1%            | 2% | -0.03317-*                   | 0.00778           | 0.013 |  |  |  |  |
| 2%            | 0% | 0.00390                      | 0.00853           | 0.671 |  |  |  |  |
|               | 1% | $0.03317^{*}$                | 0.00778           | 0.013 |  |  |  |  |

 Table (4-27): The effect on fresh shoots weight of Lebbeck seeds treated with mechanical scarification.



Fig.(4-30): The effect on fresh shoots weight of Lebbeck seeds treated with mechanical scarification.

#### **B.** The effect on shoots dry weight (WSD):

The effect on dry shoot weight was not significant in both treatments; multiple comparison post hock (LSD) test was ignored.



Fig.(4-31): The effect on dry shoots weight of Lebbeck seeds treated with mechanical scarification.

#### C. The effect on roots fresh weight (WRF):

The effect on fresh root weight was not significant in both treatments; multiple comparison post hock (LSD) test was ignored.



Fig. (4-32): The effect on fresh roots weight of Lebbeck seeds treated with mechanical scarification.

#### **D.** The effect on roots dry weight (WRD):

The effect on dry shoot weight was not significant in both treatments; multiple comparison post hock (LSD) test was ignored.



Fig. (4-33): The effect on dry root weight of Lebbeck seeds treated with mechanical scarification.

# 4.4. Results of Lebbeck Seeds treated with H<sub>2</sub>SO<sub>4</sub>:

### 4.4.1. Germination experiment:

### 4.4.1.1. Estimation of mean germination time (MGT):

All seeds showed increased mean germination time at all seawater concentration and in both treatments with sulfuric acid. The increase in concentration of sea water slows the germination of the seeds as shown in the table (4-28).

| Seawater % | MGT<br>1 <sup>st</sup> treatment | MGT<br>2 <sup>nd</sup> treatment |
|------------|----------------------------------|----------------------------------|
| 0%         | 9.14                             | 8.9                              |
| 1%         | 9.94                             | 9.15                             |
| 2%         | 7.94                             | 9.5                              |
| 5%         | 9.28                             | 9.6                              |
| 10%        | 9.5                              | 9.78                             |
| 20%        | 9.14                             | 8.9                              |

Table (4-28): Mean germination time (MGT) of Lebbeck seeds treated with H<sub>2</sub>SO<sub>4</sub>.



Fig. (4-34): Mean germination time (MGT) of Lebbeck seeds treated with H<sub>2</sub>SO<sub>4</sub>.

# 4.4.1.2. Estimation of germination percentage (G %):

Final seed germination of Lebbeck treated with H2SO4 showed significant decrease at all concentrations of seawater and control the maximum number of germinated seeds were 5 seeds from total 10 seeds; growth had been recorded at even high concentration of seawater in both treatments as shown in the table (4-29).

|                 | G% 1 <sup>st</sup> t | reatment          | $G\% 2^{nd} t$ | reatment          |
|-----------------|----------------------|-------------------|----------------|-------------------|
| Concentration % | Mean                 | Std.<br>Deviation | Mean           | Std.<br>Deviation |
| 0%              | 24.29                | 9.376             | 32.14          | 11.883            |
| 1%              | 30                   | 15.191            | 31.43          | 13.506            |
| 2%              | 12.86                | 9.139             | 22.86          | 12.666            |
| 5%              | 29.29                | 13.281            | 14.29          | 9.376             |
| 10%             | 48.57                | 23.812            | 45.71          | 26.52             |
| 20%             | 33.57                | 18.649            | 20.71          | 11.411            |

Table (4-29): Germination of Lebbeck seeds treated with H<sub>2</sub>SO<sub>4</sub>.



Fig. (4-35): Germination of Lebbeck seeds treated with H<sub>2</sub>SO<sub>4</sub>.

# 4.4.2. Seedling experiment:4.4.2.1. Seedling vigorous index(SVI):

Seedling vigor index of Lebbeck seeds treated with  $H_2SO_4$  showed variety of responses to irrigation with seawater, compared with the control in both treatments the SVI had increased at 1%, 5% and 10% in the first treatment and increased at1%, 2% and 10% in the second treatment. The table (4-30) shows the differences in the means of SVI.

| Concentration % | SVI      | Std.<br>deviation | SVI      | Std.<br>deviation |
|-----------------|----------|-------------------|----------|-------------------|
| 0%              | 121.8930 | 80.69940          | 209.7321 | 22.17236          |
| 1%              | 146.2500 | 49.37864          | 220.0000 | 31.32363          |
| 2%              | 63.0000  | 5.45482           | 147.8095 | 22.20008          |
| 5%              | 164.9722 | 4.47336           | 86.4285  | 3.03046           |
| 10%             | 354.5708 | 53.28108          | 322.6123 | 42.62778          |
| 20%             | 70.4900  | 13.13613          | 91.1429  | 4.14286           |

Table (4-30): Effect on SVI in Lebbeck seeds treated with H<sub>2</sub>SO<sub>4</sub>.



Fig. (4-36): Effect on SVI in Lebbeck seeds treated with H<sub>2</sub>SO<sub>4</sub>.

# 4.4.2.2. Effect of seawater on shoots and roots lengths of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>.

The effect of seawater on fresh and dry lengths of Lebbeck shoots and roots treated with sulfuric acid, showed variable responses according to one way anova test, the effect on shoot length (LSF, LSD) were not significant in the first treatment. Other lengths showed significant response when compared to control.

| Con | centration     |         | 1st tre | atment  |         | 2nd treatment |        |        |        |
|-----|----------------|---------|---------|---------|---------|---------------|--------|--------|--------|
|     |                | LSF     | LSD     | LRF     | LRD     | LSF           | LSD    | LRF    | LRD    |
|     | Ν              | 3       | 3       | 3       | 3       | 4             | 4      | 4      | 4      |
| 0%  | Mean           | 3.93    | 5.0000  | 2.1333  | 1.4333  | 3.9750        | 3.5000 | 2.5500 | 2.1000 |
|     | Std. Deviation | 0.493   | 2.70740 | 1.53080 | 1.44684 | 0.41130       | .49666 | .50000 | .45461 |
|     | Ν              | 4       | 4       | 4       | 4       | 4             | 4      | 4      | 4      |
| 1%  | Mean           | 3.175   | 2.6000  | 1.7000  | 1.3750  | 3.9500        | 3.3750 | 3.0500 | 2.5500 |
|     | Std. Deviation | 0.9979  | 0.90185 | 1.05515 | 1.08743 | 0.77244       | .73655 | .53229 | .53229 |
|     | Ν              | 2       | 2       | 2       | 2       | 3             | 3      | 3      | 3      |
| 2%  | Mean           | 2.9000  | 2.3500  | 2.0000  | 1.5500  | 4.1000        | 3.6000 | 2.3667 | 1.6667 |
|     | Std. Deviation | 0.283   | 0.35355 | 0.14142 | .35355  | 0.40000       | .36056 | .58595 | .37859 |
|     | Ν              | 4       | 4       | 4       | 4       | 2             | 2      | 2      | 2      |
| 5%  | Mean           | 3.7     | 3.0750  | 2.0750  | 1.9500  | 3.4500        | 3.0000 | 2.6000 | 2.1000 |
|     | Std. Deviation | 0.29439 | 0.46458 | 0.41932 | 1.12101 | 0.35355       | .28284 | .14142 | .00000 |
|     | Ν              | 7       | 7       | 7       | 7       | 7             | 7      | 7      | 7      |
| 10% | Mean           | 4.0000  | 3.4000  | 3.3000  | 2.7429  | 4.2286        | 3.7571 | 2.8286 | 2.39   |
|     | Std. Deviation | 0.59442 | 0.57735 | .96782  | 1.00806 | 0.55592       | .62944 | .46803 | 0.49   |
| 20% | Ν              | 5       | 5       | 5       | 5       | 3             | 3      | 3      | 3      |
|     | Mean           | 3.2400  | 2.6600  | 4.1800  | 3.6800  | 2.7667        | 2.3667 | 1.6333 | 1.2    |
|     | Std. Deviation | 0.95289 | 0.84439 | 0.62610 | 0.72250 | .30551        | .28868 | .11547 | 0.1    |
| Α   | NOVA           | 0.231   | 0.075   | 0.004   | 0.021   | 0.020         | 0.042  | 0.016  | 0.008  |

Table (4-31): Effect on shoots and roots lengths of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>.

# A. The effect on shoots fresh length (LSF):

The effect on shoot length for Lebbeck seeds treated with  $H_2SO_4$  was significant only in the second treatment according to one way anova test p-value (0.020). Multiple comparasion Post hock (appendix) revealed that these differences related to effect of 20% concentration compared to other concentrations.



Fig. (4-37): Effect on fresh shoots lengths of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>.

# **B.** The effect on shoots dry Length (LSD):

The effect on shoot dry length for Lebbeck seeds treated with  $H_2SO_4$  was significant only in the second treatment according to one way anova test p-value (0.042). Multiple comparisons Post hock (appendix) revealed that these differences related to effect of 20% concentration compared to other concentrations.



Fig. (4-38): Effect on dry shoots lengths of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>.

#### C. The effect on roots fresh Length (LRF):

The effect on root fresh lengths for Lebbeck seeds treated with  $H_2SO_4$ was significant in both treatments according to one way anova test p-value (0.004 and 0.016) respectively. Multiple comparison Post hock (appendix) revealed that these differences related to effect of 10 and 20% concentrations in the first treatment and of 20% concentration in the second treatment.



Fig. (4-39): Effect on fresh roots lengths of Lebbeck seeds treated H2SO4.

#### **D.** The effect on roots dry Length (LRF):

The effect on root fresh lengths for Lebbeck seeds treated with  $H_2SO_4$  was significant in both treatments according to one way anova test p-value (0.021 and 0.008) respectively. Multiple comparison Post hock (appendix) revealed that these differences related to effect of 10 and 20% concentrations in the both treatments.



Fig. (4-40): Effect on dry roots lengths of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>.

# 4.4.2.3. Effect of seawater on shoots and roots weights of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>:

The effect of seawater on fresh and dry weights of Lebbeck shoots and roots treated with sulfuric acid, showed variable responses according to one way anova test, the effect on shoot and root weights (WSF, WRD) were significant only in the second treatment.

| Concentration |                   |         | 1 <sup>st</sup> trea | tment   |         |         | 2 <sup>nd</sup> trea | tment   |        |
|---------------|-------------------|---------|----------------------|---------|---------|---------|----------------------|---------|--------|
| Cond          | centration        | WSF     | WSD                  | WRF     | WRD     | WSF     | WSD                  | WRF     | WRD    |
|               | Ν                 | 3       | 3                    | 3       | 3       | 4       | 4                    | 4       | 4      |
| 00/           | Mean              | 0.1248  | 0.0070               | 0.0252  | 0.0054  | 0.1382  | 0.0713               | 0.0246  | 0.0052 |
| 070           | Std.<br>Deviation | 0.00261 | 0.00241              | 0.02213 | 0.00450 | 0.00833 | 0.00384              | 0.02100 | 0.0040 |
|               | Ν                 | 4       | 4                    | 4       | 4       | 4       | 4                    | 4       | 4      |
| 10/           | Mean              | 0.0907  | 0.0084               | 0.0210  | 0.0068  | 0.0995  | 0.0350               | 0.1844  | 0.0070 |
| 1 70          | Std.<br>Deviation | 0.03161 | 0.00125              | 0.00591 | 0.00127 | 0.03571 | 0.03386              | 0.06437 | 0.0023 |
|               | Ν                 | 2       | 2                    | 2       | 2       | 3       | 3                    | 3       | 3      |
| 20/           | Mean              | 0.1213  | 0.0079               | 0.0524  | 0.0081  | 0.1133  | 0.2937               | 0.1087  | 0.0052 |
| 2%            | Std.<br>Deviation | 0.00361 | 0.00092              | 0.06576 | 0.00141 | 0.02994 | 0.41065              | 0.05869 | 0.0017 |
|               | Ν                 | 4       | 4                    | 4       | 4       | 2       | 2                    | 2       | 2      |
| 50/           | Mean              | 0.1400  | 0.0072               | 0.0268  | 0.0064  | 0.1550  | 0.0755               | 0.0417  | 0.0039 |
| 5%            | Std.<br>Deviation | 0.02244 | 0.00141              | 0.03179 | 0.00077 | 0.01131 | 0.01202              | 0.01315 | 0.0012 |
|               | Ν                 | 7       | 7                    | 7       | 7       | 7       | 7                    | 7       | 7      |
| 100/          | Mean              | 0.1034  | 0.0085               | 0.0316  | 0.0076  | 0.1753  | 0.0898               | 0.0993  | 0.0071 |
| 10%           | Std.<br>Deviation | 0.01902 | 0.00130              | 0.01261 | 0.00098 | 0.04488 | 0.04567              | 0.03824 | 0.0020 |
|               | Ν                 | 5       | 5                    | 5       | 5       | 3       | 3                    | 3       | 3      |
| 200/          | Mean              | 0.0758  | 0.0086               | 0.0274  | 0.0057  | 0.1010  | 0.0152               | 0.0327  | 0.0059 |
| 20%           | Std.<br>Deviation | 0.06135 | 0.00147              | 0.00976 | 0.00147 | 0.05484 | 0.01631              | 0.01888 | 0.0007 |
| A             | NOVA              | 0.119   | 0.497                | 0.720   | 0.325   | 0.035   | 0.245                | 0.001   | 0.522  |

Table (4-32): Effect on shoots and roots weights of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>.

#### A. The effect on shoots fresh weight (WSF):

The effect on shoot fresh weights for Lebbeck seeds treated with H2SO4 was significant in the second treatment only according to one way anova test p-value (0.035). Multiple comparison Post hock (appendix) revealed that these differences related to effect of 10 and 20% concentrations in the both treatments.



Fig. (4-41): Effect on shoots fresh weights of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>.

# **B.** The effect on shoots dry weight (WSD):

The effect on shoot dry weights for Lebbeck seeds treated with  $H_2SO_4$  was insignificant in both treatments, multiple comparison post hock were ignored.



Fig. (4-42): Effect on shoots dry weights of Lebbeck seeds treated H<sub>2</sub>SO<sub>4</sub>.

#### C. The effect on roots fresh weight (WRF):

The effect on root fresh weights for Lebbeck seeds treated with  $H_2SO_4$  was significant only in the second treatments according to one way anova test p-value (0.001), Multiple comparison Post hock (appendix) revealed that these differences related to effect of 10 and 20% concentrations in the both treatments.



Fig. (4-43): Effect on root fresh weights of Lebbeck seeds treated H2SO4.

### **D.** The effect on roots dry weight (WRD):

The effect on shoot dry weights for Lebbeck seeds treated with H2SO4 was insignificant in both treatments, multiple comparison post hock were ignored.



Fig. (4-44): Effect on root dry weights of Lebbeck seeds treated H2SO4.

# 4.5. Comparisons:

### A. Mean germination time:

Comparing mean germination time of Lebbeck seeds pretreated with different methods and water with different concentration of seawater we found that the shortest mean germination time (8 days) was found in both tab water and boiled water at low sea water concentrations (1%), apparently mean germination time show increase as sea water concentration increased at all pretreatments, mean germination time show increase at all seawater concentration in seeds pretreated with sulfuric acid as shown in the figure (4-45).



Fig. (4-45): Comparing mean germination time of all pretreatments at different water concentrations.

#### **B.** Germination percentages:

Higher germination percentages were noticed at low seawater concentrations of Lebbeck seeds pretreated with boiled water, followed by seeds pretreated with hot water, seeds pretreated with sulfuric acid showed increased in germination by increase seawater concentration as shown in the figure (4-46).



Fig. (4-46): Comparing germination percentages of all pretreatments at different water concentrations.

# C. Seedling vigoros index (SVI):

Seedling vigoros index of Lebbeck seeds pretreated with boiled water show increased value at all seawater concentrations compared to other treatments followed with seeds that treated with hot water as shown in the figure (4-47).



Fig. (4-47): Comparing seedling vigoros index of all pretreatments at different water concentration

# 4.5. Results of Acacias seeds treated with boiled water:4.5.1.Germination experiment:

# 4.5.1.1. Estimation of mean germination time (MGT):

Majority of Acacias seeds showed increased mean germination time at all seawater concentration in all treatments with boiled water, the minimum mean germination time was recorded in the control (0%) compared with other groups. The increase in concentration of sea water slows the germination of the seeds as shown in the table (4-33).

| Seawater % | MGT<br>1 <sup>st</sup> treatment | MGT<br>2 <sup>nd</sup> treatment | MGT<br>3 <sup>rd</sup> treatment |
|------------|----------------------------------|----------------------------------|----------------------------------|
| 0%         | 13                               | 13.4                             | 14.4                             |
| 1%         | 14.2                             | 14.5                             | 14.38                            |
| 2%         | 15.3                             | 14.4                             | 14.28                            |
| 5%         | 15.8                             | 15                               | 15.6                             |
| 10%        | 16.45                            | 17                               | 16.7                             |
| 20%        |                                  |                                  |                                  |

Table (4-33): Mean germination time of Acaciaseeds treated with boiled water.



Fig. (4-48): Mean germination time of Acacia seeds treated with boiled water.

# **4.5.1.2.** Estimation of germination percentage (G%):

Final seed germination of Acacia treated with boiled water showed significant decrease at all concentrations of sea water and control the maximum number of germinated seeds were 7 seeds from total 10 seeds; no growth had been recorded at 20% concentration of seawater in all treatments as shown in the table (4-34).

| Concentration | <b>G%</b> 1 <sup>s</sup> | <sup>t</sup> treatment | G% 2 <sup>n</sup> | <sup>d</sup> treatment | G% 3r   | <sup>d</sup> treatment |  |  |
|---------------|--------------------------|------------------------|-------------------|------------------------|---------|------------------------|--|--|
| %             | Mean                     | Std.<br>Deviation      | Mean              | Std.<br>Deviation      | Mean    | Std.<br>Deviation      |  |  |
| 0%            | 69.5238                  | 37.61332               | 49.0476           | 27.55082               | 64.7619 | 39.32163               |  |  |
| 1%            | 33.8095                  | 21.32515               | 39.0476           | 25.47641               | 40.0000 | 25.88436               |  |  |
| 2%            | 47.6190                  | 38.45839               | 44.7619           | 28.56905               | 33.8095 | 21.32515               |  |  |
| 5%            | 26.1905                  | 23.12492               | 35.2381           | 26.76174               | 21.9048 | 18.33550               |  |  |
| 10%           | 9.5238                   | 9.73457                | 7.6190            | 9.43650                | 13.3333 | 13.90444               |  |  |
| 20%           | -                        | -                      | -                 | -                      | -       | -                      |  |  |

 Table (4-34): Germination percentage at different seawater concentrations for

 Acacia seeds treated with boiled water.



Fig. (4-49): Germination percentage at different seawater concentrations for Acacia seeds treated with boiled water.

# 4.5.2. Seedling experiment:

### 4.5.2.1. Seedling vigorous index (SVI):

The mean of seedling vigor index of Acacia seeds treated with boiled water showed significant decrease in the value with increased seawater concentrations, compared with the control in both treatments. The table (4-35) shows the differences in the means of SVI.

| Concentration | G% 1 <sup>st</sup> t | reatment          | G% 2 <sup>nd</sup> t | reatment          | G% 3 <sup>rd</sup> treatment |                   |  |
|---------------|----------------------|-------------------|----------------------|-------------------|------------------------------|-------------------|--|
| <b>%</b> 0    | SVI                  | Std.<br>deviation | SVI                  | Std.<br>deviation | SVI                          | Std.<br>deviation |  |
| 0%            | 1414.8095            | 226.59033         | 1121.8280            | 174.08057         | 1322.1141                    | 272.1886          |  |
| 1%            | 655.6836             | 141.68345         | 735.7222             | 123.80876         | 797.6000                     | 55.07086          |  |
| 2%            | 485.9971             | 244.13399         | 519.2380             | 200.80173         | 380.7328                     | 138.3114          |  |
| 5%            | 78.8889              | 30.71830          | 361.4842             | 192.13787         | 232.8476                     | 131.5667          |  |
| 10%           | 78.8889              | 30.71830          | 58.0952              | 21.81929          | 105.0000                     | 43.84063          |  |

Table (4-35): Effect on SVI of Acacia seeds treated with boiled water.



Fig. (4-50): Effect on SVI of Acacia seeds treated with boiled water.

#### 4.5.2.2. Effect on seedling of Acacia seeds treated with boiled water:

Roots and shoots length of Acacia showed higher lengths in both first and second treatment, especially at low water concentrations, there was no statistical significances in the mean of root lengths among different seawater concentrations at the three treatments, while shoot lengths showed highly statistical differences among different sea water concentrations at the three treatments. Roots weight showed increased in third treatment, while the shoots lengths showed increased in the first treatment at low seawater concentration, there was no significant of roots weight at different seawater concentrations, Shoots lengths showed also statistical significant at different seawater concentration in the second and third treatments.

| Concentration |           |        | 1 <sup>st</sup> tre | eatment | t       | 2 <sup>nd</sup> treatment |         |         |         | 3rd treatment |         |         |         |
|---------------|-----------|--------|---------------------|---------|---------|---------------------------|---------|---------|---------|---------------|---------|---------|---------|
|               |           | RL     | RW                  | SL      | SW      | RL                        | RW      | SL      | SW      | RL            | RW      | SL      | SW      |
| 0%            | N         | 10     | 10                  | 10      | 10      | 9                         | 9       | 9       | 9       | 10            | 10      | 10      | 9       |
|               | Mean      | 0.9700 | 0.0069              | 19.380  | 0.1696  | 1.0278                    | 0.0067  | 21.844  | 0.0985  | 0.9350        | 0.0064  | 19.480  | 0.0690  |
|               | Std. Dev. | 0.761  | 0.005               | 3.1039  | 0.1802  | 0.7863                    | 0.0031  | 3.4409  | 0.0096  | 0.7004        | 0.0034  | 3.9999  | 0.0285  |
|               | N         | 7      | 7                   | 7       | 7       | 6                         | 6       | 6       | 6       | 5             | 5       | 5       | 5       |
| 1%            | Mean      | 0.5214 | 0.0054              | 18.429  | 0.0943  | 1.0000                    | 0.0063  | 17.842  | 0.0772  | 0.5700        | 0.0058  | 19.370  | 0.0985  |
|               | Std. Dev. | 0.2564 | 0.0063              | 5.2367  | 0.0178  | 0.5177                    | 0.0027  | 2.7938  | 0.0225  | 0.2334        | 0.0023  | 1.4580  | 0.0211  |
|               | N         | 8      | 8                   | 8       | 8       | 7                         | 7       | 7       | 7       | 9             | 9       | 9       | 9       |
| 2%            | Mean      | 0.4625 | 0.0057              | 12.300  | 0.0599  | 0.5000                    | 0.0036  | 11.10   | 0.0376  | 0.3611        | 0.0049  | 10.900  | 0.0639  |
|               | Std. Dev. | 0.0791 | 0.0028              | 3.969   | 0.0274  | 0.1732                    | 0.0012  | 4.5294  | 0.0341  | 0.0697        | 0.0025  | 4.1319  | 0.0273  |
|               | Ν         | 3      | 3                   | 3       | 3       | 6                         | 6       | 6       | 6       | 5             | 5       | 5       | 5       |
| 5%            | Mean      | 0.4667 | 0.0060              | 7.8167  | 0.0424  | 0.4583                    | 0.0038  | 9.8000  | 0.0447  | 0.4800        | 0.0074  | 10.150  | 0.0491  |
|               | Std. Dev. | 0.1041 | 0.0036              | 3.32127 | 0.02142 | 0.16253                   | 0.00145 | 5.46836 | 0.03213 | 0.14405       | 0.00502 | 6.12046 | 0.01821 |
| 10%           | Ν         | -      | -                   | -       | -       | 2                         | 2       | 2       | 2       | 2             | 2       | 2       | 2       |
|               | Mean      | -      | -                   | -       | -       | 0.3750                    | 0.0033  | 7.2500  | 0.0262  | 0             | 0       | 0       | 0       |
|               | Std. Dev. | -      | -                   | -       | -       | 0.0354                    | 0.0006  | 2.8284  | 0.0310  | 0.4250        | 0.0076  | 7.4500  | 0.0419  |
| Anova         |           | 0.121  | 0.926               | 0.000   | 0.160   | 0.101                     | 0.036   | 0.000   | 0.000   | 0.074         | 0.705   | 0.000   | 0.031   |

 Table (4-36): Effect on seedling of Acacia seeds treated with boiled water.



Fig. (4-51): Effect of different seawater concentration on root lengths of Acacia treated with boiled water.



Fig. (4-52): Effect of different seawater concentration on shoots lengths of Acacia treated with boiled water.



Fig. (4-53): Effect of different seawater concentration on root weights of Acacia treated with boiled water.



Fig. (4-54): Effect of different seawater concentration on shoot weights of Acacia treated with boiled water.

#### 4.6. Results of Acacias seeds treated with hot tap water:

#### 4.6.1. Germination experiment:

#### **4.6.1.1.** Estimation of mean germination time (MGT):

Majority of Acacia seeds showed increased mean germination time at all seawater concentration in all treatments with boiled water. The increase in concentration of seawater slows the germination of the seeds as shown in the table (4-37).

| Seawater % | MGT<br>1 <sup>st</sup> treatment | MGT<br>2 <sup>nd</sup> treatment | MGT<br>3 <sup>rd</sup> treatment |  |  |
|------------|----------------------------------|----------------------------------|----------------------------------|--|--|
| 0%         | 15.45                            | 15.9                             | 17.75                            |  |  |
| 1%         | 17.4                             | 17.9                             | 16                               |  |  |
| 2%         | 16.45                            | 16.9                             | 17.5                             |  |  |
| 5%         | 17                               | 17.44                            | 17                               |  |  |
| 10%        | -                                | -                                | -                                |  |  |
| 20%        | -                                | -                                | -                                |  |  |

Table (4-37): Mean germination time of Acaciaseeds treated with hot tap water.



Fig. (4-55): Mean germination time of Acacia seeds treated with hot tap water.

#### **4.6.1.2.** Estimation of germination percentage (G%):

Final seed germination of Acacia treated with boiled water showed significant decrease at all concentrations of sea water and control the maximum number of germinated seeds were 5 seeds from total 10 seeds; no growth had been recorded at 10% and 20% concentrations of seawater in all treatments as shown in the table (4-38).

G% 2<sup>nd</sup> treatment G% 3rd treatment G% 1<sup>st</sup> treatment Concentration Std. Std. Std. % Mean Mean Mean Deviation **Deviation** Deviation 0% 42.3810 32.84886 43.70355 45.12417 50.0000 54.7619 1% 10.9524 13.00183 7.6190 9.43650 5.2381 5.11766 2% 9.5238 9.73457 8.5714 3.8095 4.97613 9.63624 5.07093 5% 5.07093 4.2857 7.6190 9.43650 4.2857 10% 20%

 Table (4-38): Germination percentage at different seawater concentrations for

 Acacia seeds treated with hot tap water.



Fig. (4-56): Germination percentage at different seawater concentrations for Acacia seeds treated with hot tap water.

### 4.6.2. Seedling experiment:

# 4.6.2.1. Seedling vigorous index(SVI):

The mean of seedling vigor index of Acacia seeds treated with hot tap water showed significant decrease in the value with increased seawater concentrations, compared with the control in both treatments. The table (4-39) shows the differences in the means of SVI.

| Concentration | G% 1 <sup>st</sup> 1 | treatment         | G% 2 <sup>nd</sup> | treatment         | G% 3 <sup>rd</sup> treatment |                   |  |
|---------------|----------------------|-------------------|--------------------|-------------------|------------------------------|-------------------|--|
| <b>%</b> 0    | SVI                  | Std.<br>deviation | SVI                | Std.<br>deviation | SVI                          | Std.<br>deviation |  |
| 0%            | 909.0715             | 129.23479         | 912.5000           | 261.66401         | 1036.6427                    | 313.80412         |  |
| 1%            | 197.5079             | 24.83279          | 132.1905           | 10.77496          | 93.7619                      | -                 |  |
| 2%            | 160.0000             | 8.75469           | 136.7143           | 17.57669          | 58.6667                      | -                 |  |
| 5%            | 78.8571              | -                 | 107.6191           | 16.97060          | 73.9286                      | -                 |  |
| 10%           | -                    | _                 | -                  | _                 | _                            | -                 |  |
| 20%           | -                    | -                 | -                  | -                 | -                            | -                 |  |

Table (4-39): Effect on SVI of Acacia seeds treated with hot tap water.



Fig. (4-57): Effect on SVI of Acacia seeds treated with hot tap water.

### 4.6.2.2. Effect on seedling of Acacia seeds treated with tab water:

All seedlings parameter of Acacia seeds treated with tab water showed no significant differences in their means at all seawater concentrations according to one way anova test recorded in the table (4-40).

| Concentration |      | 1 <sup>st</sup> treatment |          |         |         | 2 <sup>nd</sup> treatment |         |         |          | 3rd treatment |         |         |         |
|---------------|------|---------------------------|----------|---------|---------|---------------------------|---------|---------|----------|---------------|---------|---------|---------|
|               |      | RL                        | RW       | SL      | SW      | RL                        | RW      | SL      | SW       | RL            | RW      | SL      | SW      |
| 0%            | Ν    | 8                         | 8        | 8       | 8       | 10                        | 10      | 10      | 10       | 10            | 10      | 10      | 10      |
|               | Mean | 0.6438                    | 0.1499   | 20.8063 | 0.0591  | 0.5800                    | 0.2653  | 17.6700 | 0.0576   | 0.5350        | 0.0050  | 18.3950 | 0.0599  |
|               | Std. |                           |          |         |         |                           |         |         |          |               |         |         |         |
|               | Dev. | 0.17410                   | 0.10971  | 3.09648 | 0.01124 | 0.19322                   | 0.21815 | 5.24088 | 0.02454  | 0.11068       | 0.00000 | 5.72006 | 0.02299 |
|               | Ν    | 3                         | 3        | 3       | 3       | 2                         | 2       | 2       | 2        | 1             | 1       | 1       | 1       |
| 1%            | Mean | 0.6500                    | 0.0293   | 17.3833 | 0.0509  | 0.6500                    | 0.0249  | 16.7000 | 0.0645   | 0.3500        | 0.0025  | 17.5500 | 0.0658  |
|               | Std. | 0.10020                   | 0.00100  | 0.04000 | 0.00462 | 0.01010                   | 0.00011 | 1 20200 | 0.00001  |               |         |         |         |
|               | Dev. | 0.18028                   | 0.02182  | 2.36238 | 0.00462 | 0.21213                   | 0.02811 | 1.20208 | 0.03981  |               |         |         |         |
|               | Ν    | 2                         | 2        | 2       | 2       | 2                         | 2       | 2       | 2        | 1             | 1       | 1       | 1       |
| 20/           | Mean | 0.6250                    | 0.0059   | 16.1750 | 0.0772  | 0.5000                    | 0.0050  | 15.4500 | 0.0419   | 0.5000        | 0.0050  | 14.9000 | 0.0545  |
| 270           | Std. | 0.01000                   | 0.000.42 | 1.00744 | 0.04601 | 0.00000                   | 0.00000 | 0.05061 | 0.021.47 |               |         |         |         |
|               | Dev. | 0.31820                   | 0.00042  | 1.23744 | 0.04681 | 0.00000                   | 0.00000 | 2.05061 | 0.03147  |               |         |         |         |
|               | Ν    | 1                         | 1        | 1       | 1       | 2                         | 2       | 2       | 2        | 1             | 1       | 1       | 1       |
| 50/           | Mean | 0.6000                    | 0.0059   | 17.8000 | 0.0384  | 0.5000                    | 0.0050  | 13.6250 | 0.0314   | 0.5000        | 0.0050  | 16.7500 | 0.0712  |
| 570           | Std. |                           |          |         |         | 0.00000                   | 0.00000 | 0.00700 | 0.01055  |               |         |         |         |
|               | Dev. |                           |          |         |         | 0.00000                   | 0.00000 | 2.22739 | 0.01255  |               |         |         |         |
| Anova         | 1    | 0.790                     | 0.134    | 0.698   | 0.512   | 0.790                     | 0.134   | 0.512   | 0.698    | 0.495         | 0.064   | 0.572   | 0.780   |

 Table (4-40): Effect on seedling of Acacia seeds treated with tab water.



Fig. (4-58): Effect of different seawater concentration on root length of Acacia treated with tab water.



Fig. (4-59): Effect of different seawater concentration on root length of Acacia treated with tab water.


Fig. (4-60): Effect of different seawater concentration on root weight of Acacia treated with tab water.



Fig. (4-61): Effect of different seawater concentration on shoot weight of Acacia treated with tab water.

# 4.7. Results of Acacias seeds treated with mechanical scarification:

# **4.7.1. Germination experiment:**

#### 4.7.1.1. Estimation of mean germination time (MGT):

Majority of Acacia seeds showed increased mean germination time at all seawater concentration in all treatments with mechanical scarification. The increase in concentration of seawater slows the germination of the seeds as shown in the table (4-41).

| Seawater<br>% | MGT<br>1 <sup>st</sup> treatment | MGT<br>2 <sup>nd</sup> treatment | MGT<br>3 <sup>rd</sup> treatment |  |  |
|---------------|----------------------------------|----------------------------------|----------------------------------|--|--|
| 0%            | 15.85                            | 16.12                            | 16.7                             |  |  |
| 1%            | 16.52                            | 17.21                            | 17.32                            |  |  |
| 2%            | 18.5                             | 17.16                            | 17.16                            |  |  |
| 5%            | 15.76                            | 18.5                             | 18.75                            |  |  |

Table (4-41): Mean germination time of Acaciaseeds treated mechanical scarification.



Fig. (4-62): Mean germination time of Acacia seeds treated with mechanical scarification.

#### **4.7.1.2.** Estimation of germination percentage:

Final seed germination of Acacia treated with mechanical scarification showed significant decrease at all concentrations of sea water and control the maximum number of germinated seeds were 4 seeds from total 10 seeds; no growth had been recorded at 10% and 20% concentrations of seawater in all treatments as shown in the table (4-42).

 Table (4-42): Germination percentage at different seawater concentrations for

 Acacia seeds treated with mechanical scarification.

| Concentration | G% 1 <sup>s</sup> | <sup>t</sup> treatment | G% 2 <sup>n</sup> | <sup>d</sup> treatment | G% 3 <sup>rd</sup> treatment |                                                                |  |
|---------------|-------------------|------------------------|-------------------|------------------------|------------------------------|----------------------------------------------------------------|--|
| %             | Mean              | Std.<br>Deviation      | Mean              | Std.<br>Deviation      | Mean                         | Std.           Deviation           25.61622           17.21019 |  |
| 0%            | 33.8095           | 28.54403               | 23.8095           | 21.55834               | 28.0952                      | 25.61622                                                       |  |
| 1%            | 12.8571           | 12.70545               | 15.2381           | 17.49830               | 14.7619                      | 17.21019                                                       |  |
| 2%            | 5.7143            | 9.25820                | 11.9048           | 13.64516               | 11.9048                      | 13.64516                                                       |  |
| 5%            | 10.0000           | 16.43168               | 2.8571            | 4.62910                | 8.0000                       | 13.21881                                                       |  |



Fig. (4-63): Germination percentage at different seawater concentrations for Acacia seeds treated with mechanical scarification.

#### 4.7.2. Seedling experiment:

## 4.7.2.1. Seedling vigorous index(SVI):

The mean of seedling vigor index of Acacia seeds treated with mechanical scarification showed significant decrease in the value with increased seawater concentrations, compared with the control in both treatments. The table (4-43) shows the differences in the means of SVI.

| Stat intention. |                         |                   |                         |                   |                              |                                              |  |  |  |  |
|-----------------|-------------------------|-------------------|-------------------------|-------------------|------------------------------|----------------------------------------------|--|--|--|--|
|                 | G% 1 <sup>st</sup> trea | tment             | G% 2 <sup>nd</sup> trea | atment            | G% 3 <sup>rd</sup> treatment |                                              |  |  |  |  |
| %               | SVI                     | Std.<br>deviation | SVI                     | Std.<br>deviation | SVI                          | <b>Std.</b><br><b>deviation</b><br>2 167.256 |  |  |  |  |
| 0%              | 411.9931                | 142.24030         | 258.7301                | 137.82949         | 324.22                       | 167.256                                      |  |  |  |  |
| 1%              | 129.0000 40.26117       |                   | 151.8086 68.88176       |                   | 147.42                       | 45.078                                       |  |  |  |  |
| 2%              | 96.5000                 | 96.5000 12.72792  |                         | 45.15812          | 92.85                        | 29.503                                       |  |  |  |  |
| 5%              | 35.0697                 | 12.96372          | 19.6181                 | 5.30920           | 57.60                        | -                                            |  |  |  |  |

 Table (4-43): Effect on SVI of Acacia seeds treated with mechanical scarification.



Fig. (4-64): Effect on SVI of Acacia seeds treated with mechanical scarification.

# **4.7.2.2.** Effect on seedling of Acacia seeds treated with mechanical scarification:

Generally all the seedling parameters of Acacia seeds pretreated with mechanical scarification showed reduction as the concentration of seawater increased compared to the control treatment, no significant differences in means of all seedlings parameters at all seawater concentration was recorded as shown in the table (4-44).

| Componention |              | 1 <sup>st</sup> treatment |         |         |        | 2 <sup>nd</sup> treatment |        |        |         | 3rd treatment |          |         |           |
|--------------|--------------|---------------------------|---------|---------|--------|---------------------------|--------|--------|---------|---------------|----------|---------|-----------|
| Concen       | itration     | RL                        | RW      | SL      | SW     | RL                        | RW     | SL     | SW      | RL            | RW       | SL      | SW        |
|              | Ν            | 7                         | 7       | 7       | 7      | 7                         | 6      | 6      | 6       | 6             | 6        | 6       | 6         |
| 00/          | Mean         | 0.5357                    | 0.0099  | 11.6500 | 0.0359 | 0.5357                    | 0.6500 | 0.0045 | 10.2167 | 0.491667      | 0.004365 | 10.3250 | 0.0134502 |
| U%o          | Std.<br>Dev. | 0.14351                   | 0.01279 | 4.12068 | 0.0158 | 0.1435                    | 0.1549 | 0.0006 | 5.91056 | 0.049159      | 0.00099  | 5.59453 | 0.0152427 |
|              | Ν            | 3                         | 3       | 3       | 3      | 3                         | 4      | 4      | 4       | 4             | 4        | 4       | 4         |
| 10/          | Mean         | 0.4667                    | 0.0042  | 9.5667  | 0.0203 | 0.4667                    | 0.600  | 0.0046 | 9.3625  | 0.50          | 0.005    | 9.4875  | 0.01633   |
| 1%           | Std.<br>Dev. | 0.0577                    | 0.0013  | 3.0880  | 0.0200 | 0.0577                    | 0.1414 | 0.0007 | 4.42914 | 0.000         | 0.000    | 3.05406 | 0.012801  |
|              | Ν            | 2                         | 2       | 2       | 2      | 2                         | 3      | 3      | 3       | 3             | 3        | 3       | 3         |
| 20/          | Mean         | 0.6250                    | 0.0234  | 9.0250  | 0.0146 | 0.6250                    | 0.5500 | 0.0043 | 8.2167  | 0.500         | 0.005    | 7.3000  | 0.007421  |
| 2%           | Std.<br>Dev. | 0.17678                   | 0.02606 | 1.09602 | 0.0184 | 0.1768                    | 0.050  | 0.0006 | 3.74477 | 0.000         | 0.000    | 2.47841 | 0.00607   |
|              | Ν            | 4                         | 4       | 4       | 4      | 4                         | 3      | 3      | 3       |               |          |         |           |
| 50/          | Mean         | 0.5000                    | 0.0050  | 5.6375  | 0.0084 | 0.5000                    | 0.500  | 0.0050 | 6.3667  |               |          |         |           |
| 5%           | Std.<br>Dev. | 0.00                      | 0.000   | 2.26876 | 0.0108 | 0.000                     | 0.0000 | 0.0000 | 1.85831 |               |          |         |           |
| ANOV         | A            | 0.503                     | 0.311   | 0.094   | 0.078  | 0.385                     | 0.515  | 0.705  | 0.866   | 0.912         | 0.314    | 0.640   | 0.679     |

 Table (4-44): Effect on seedling of Acacia seeds treated with mechanical scarification.



Fig. (4-65): Effect of different seawater concentration on root length of Acacia treated with mechanical scarification.



Fig. (4-66): Effect of different seawater concentration on shoot length of Acacia treated with mechanical scarification.



Fig. (4-67): Effect of different seawater concentration on root weight of Acacia treated mechanical scarification.



Fig. (4-68): Effect of different seawater concentration on shoot length of Acacia treated with mechanical scarification.

# 4.8. Results of Acacias seeds treated with H<sub>2</sub>SO<sub>4</sub>:

# **4.8.1.** Germination experiment:

# 4.8.1.1. Estimation of mean germination time (MGT):

Generally the germination of Acacia seeds pretreated with sulfuric acid started from 12-18 days, the time prolonged as the concentration of seawater increases, the control treatments showed shorter time for germination.

| Seawater | MGT                       | MGT                       | MGT                       |
|----------|---------------------------|---------------------------|---------------------------|
| %        | 1 <sup>st</sup> treatment | 2 <sup>nd</sup> treatment | 3 <sup>rd</sup> treatment |
| 0%       | 13.5                      | 12.9                      | 13.9                      |
| 1%       | 14.08                     | 13.5                      | 13.19                     |
| 2%       | 14.125                    | 15.2                      | 14.3                      |
| 5%       | 14.22                     | 15.6                      | 16.1                      |
| 10%      | 18.2                      | 16.9                      | 16.5                      |
| 20%      | 16.54                     | 18                        | 18.55                     |

Table (4-45): Mean germination time of Acacia seeds treated H<sub>2</sub>SO<sub>4</sub>.



Fig. (4-69): Mean germination time of Acacia seeds treated with H<sub>2</sub>SO<sub>4</sub>.

### **4.8.1.2.** Estimation of germination percentage:

The germination percentage Acacia seeds pretreated with seawater showed decreased germination percentage by increasing seawater concentration when compared to control treatment which showed higher germination percentage at all treatments.

 Table (4-46): Germination percentage at different seawater concentrations for Acacia seeds treated with H<sub>2</sub>SO<sub>4</sub> acid.

| Concentration | G% 1    | <sup>st</sup> treatment | G% 2    | <sup>nd</sup> treatment | G% 3 <sup>rd</sup> treatment |                   |  |
|---------------|---------|-------------------------|---------|-------------------------|------------------------------|-------------------|--|
| %             | Mean    | Std.<br>Deviation       | Mean    | Std.<br>Deviation       | Mean                         | Std.<br>Deviation |  |
| 0%            | 66.1905 | 30.89922                | 64.7619 | 29.76895                | 48.0952                      | 25.61622          |  |
| 1%            | 47.6190 | 27.18543                | 43.8095 | 21.32515                | 48.5714                      | 30.70598          |  |
| 2%            | 34.2857 | 20.38907                | 31.9048 | 20.40075                | 39.5238                      | 24.18185          |  |
| 5%            | 27.6190 | 18.13967                | 21.9048 | 18.87301                | 19.0476                      | 17.00140          |  |
| 10%           | 21.4286 | 21.28044                | 16.1905 | 17.45743                | 20.4762                      | 20.36570          |  |
| 20%           | 13.3333 | 13.54006                | 12.8571 | 17.36170                | 5.2381                       | 8.13575           |  |



Fig. (4-70): Germination percentage at different seawater concentrations for Acacia seeds treated with H<sub>2</sub>SO<sub>4</sub>.

#### 4.7.2. Seedling experiment:

### 4.7.2.1. Seedling vigoros index(SVI):

The seedling vigorous index of Acacia seeds pretreated with sulfuric acid showed significant differences at all treatments compared to control rapid seedling was recorded at the control treatment, reduced seedling speed was recorded as the seawater concentration increased.

|     | G% 1 <sup>st</sup> trea | tment             | G% 2 <sup>nd</sup> trea | atment            | G% 3 <sup>rd</sup> treatment |                   |  |
|-----|-------------------------|-------------------|-------------------------|-------------------|------------------------------|-------------------|--|
| %   | SVI                     | Std.<br>deviation | SVI                     | Std.<br>deviation | SVI                          | Std.<br>deviation |  |
| 0%  | 1650.349                | 326.022           | 1463.5133               | 221.08184         | 1288.9526                    | 295.67171         |  |
| 1%  | 839.318                 | 267.1929          | 990.4421                | 166.26168         | 1150.7959                    | 253.05137         |  |
| 2%  | 653.41                  | 348.786           | 732.6992                | 196.71305         | 746.0000                     | 190.51121         |  |
| 5%  | 329.393                 | 78.8              | 267.1963                | 44.56924          | 205.0000                     | 95.37250          |  |
| 10% | 171.46                  | 68.36             | 230.5990                | 22.09708          | 289.7381                     | 85.32702          |  |
| 20% | 102.696                 | 38.09             | 92.5725                 | 38.25190          | 49.5000                      | 11.85245          |  |

Table (4-47): Effect on SVI of Acacia seeds treated with H<sub>2</sub>SO<sub>4</sub>.



Fig. (4-71): Effect on SVI of Acacia seeds treated with H<sub>2</sub>SO<sub>4</sub>.

#### 4.8.2.2. Effect on seedling of Acacia seeds treated with H<sub>2</sub>SO<sub>4</sub>:

Generally all the seedling parameters of Acacia seeds pretreated with  $H_2SO_4$  showed reduction as the concentration of seawater increased compared to the control treatment, highly significant differences in means of all seedlings parameters at all seawater concentration was recorded as shown in the table (4-48), a significant reduction in the means of theses parameters was recorded as the seawater concentration increased.

| Concentration |           | 1 <sup>st</sup> treatment |         |         |         | 2 <sup>nd</sup> treatment |         |         |         | 3rd treatment |         |         |         |
|---------------|-----------|---------------------------|---------|---------|---------|---------------------------|---------|---------|---------|---------------|---------|---------|---------|
| Conc          |           | RL                        | RW      | SL      | SW      | RL                        | RW      | SL      | SW      | RL            | RW      | SL      | SW      |
|               | N         | 9                         | 9       | 9       | 9       | 7                         | 7       | 7       | 7       | 9             | 9       | 9       | 9       |
| 0%            | Mean      | 3.3444                    | 0.0610  | 22.1389 | 0.0685  | 2.9143                    | 0.0384  | 23.8857 | 0.0607  | 3.1222        | 0.0489  | 22.1583 | 0.0628  |
|               | Std. Dev. | 0.55025                   | 0.06010 | 4.56712 | 0.01698 | 0.89940                   | 0.01503 | 5.35247 | 0.02457 | 0.53582       | 0.03120 | 4.40527 | 0.01372 |
|               | N         | 6                         | 6       | 6       | 6       | 7                         | 7       | 7       | 7       | 7             | 7       | 7       | 7       |
| 1%            | Mean      | 2.7500                    | 0.0327  | 16.4083 | 0.0499  | 2.6500                    | 0.0388  | 21.0429 | 0.0562  | 2.7571        | 0.0364  | 19.4571 | 0.0550  |
|               | Std. Dev. | 0.88713                   | 0.01478 | 5.28918 | 0.02994 | 0.82462                   | 0.01327 | 4.61532 | 0.02340 | 0.67681       | 0.00988 | 4.37994 | 0.02550 |
|               | Ν         | 5                         | 5       | 5       | 5       | 6                         | 6       | 6       | 6       | 6             | 6       | 6       | 6       |
| 2%            | Mean      | 2.3200                    | 0.0270  | 18.1600 | 0.0143  | 2.2583                    | 0.0310  | 16.6167 | 0.0472  | 2.3250        | 0.0292  | 17.2542 | 0.0342  |
|               | Std. Dev. | 1.24780                   | 0.02158 | 9.73405 | 0.00416 | 0.99419                   | 0.01404 | 4.05607 | 0.02008 | 0.73739       | 0.01463 | 5.52366 | 0.01201 |
|               | N         | 4                         | 4       | 4       | 4       | 4                         | 4       | 4       | 4       | 4             | 4       | 4       | 4       |
| 5%            | Mean      | 1.7000                    | 0.0225  | 13.3375 | 0.0191  | 1.3000                    | 0.0103  | 9.4625  | 0.0166  | 1.5000        | .0150   | 11.4000 | 0.0163  |
|               | Std. Dev. | 0.40620                   | 0.00954 | 3.21776 | 0.01255 | .75166                    | 0.00686 | 4.26739 | 0.00694 | 0.29368       | 0.00000 | 1.96352 | 0.00479 |
|               | N         | 5                         | 5       | 5       | 5       | 5                         | 5       | 5       | 5       | 5             | 5       | 5       | 5       |
| 10%           | Mean      | 1.5000                    | 0.0161  | 9.0900  | 0.0508  | 1.7800                    | 0.0191  | 12.3700 | 0.0360  | 1.6400        | 0.0160  | 10.7300 | 0.0440  |
|               | Std. Dev. | 0.55340                   | 0.00766 | 3.93754 | 0.06895 | .81899                    | 0.01050 | 3.56592 | 0.01003 | 0.37980       | 0.00418 | 1.46814 | 0.03471 |
|               | Ν         | 4                         | 4       | 4       | 4       | 2                         | 2       | 2       | 2       | 4             | 4       | 4       | 4       |
| 20%           | Mean      | 0.7250                    | 0.0088  | 7.2625  | 0.0087  | .6250                     | 0.0083  | 8.8250  | 0.0247  | .6313         | 0.0100  | 7.4750  | 0.0138  |
|               | Std. Dev. | 0.38622                   | 0.00367 | 2.76658 | 0.00330 | .24749                    | 0.00163 | 2.01525 | 0.00219 | .28385        | 0.00000 | 2.63613 | 0.00479 |
| ANO           | VA        | 0.00                      | 0.125   | 0.001   | 0.013   | 0.01                      | 0.002   | 0.00    | 0.011   | 0.00          | 0.005   | 0.00    | 0.001   |

Table (4-48): Effect on seedling of Acacia seeds treated with  $H_2SO_4$ .



Fig. (4-72): Effect of different seawater concentration on root length of Acacia treated with  $H_2SO_4$ .



Fig. (4-73): Effect of different seawater concentration on shoot length of Acacia treated with H<sub>2</sub>SO<sub>4</sub>.



Fig. (4-74): Effect of different seawater concentration on shoot length of Acacia treated with H<sub>2</sub>SO<sub>4</sub>.



Fig. (4-75): Effect of different seawater concentration on shoot weight of Acacia treated with H<sub>2</sub>SO<sub>4</sub>.

#### **4.9.** Comparisons:

#### A. Mean germination time:

The figure (4-76) comparing the mean germination time of Acacia seeds at different water concentrations of pretreatments, the shortest mean germination time were noticed in boiled water and hot water pretreatments, longer mean germination times were found in both mechanical scarification especially at higher concentrations of seawater.



Fig. (4-76): Comparing mean germination time of Acacia at different water concentrations.

#### **B.** Germination percentages:

The figure (4-77), comparing germination percentages of Acacia seeds treated with different concentration of seawater for all pretreatments, generally higher percentages of germination were shown in boiled water and tab water pretreatments at all seawater concentrations, whereas mechanical scarification and sulfuric acid pretreatments showed reduced germination percentages especially at higher seawater concentrations.



Fig. (4-77): Comparing germination percentages of Acacia at different water concentrations.

### C. Seedling vigorus index:

The figure (4-78) describes comparison of seedling vigorus index of Acacia seedlings at different seawater concentrations for all pretreatments, generally higher seedling vigorous index were noticed in both boiling water and tab water at all seawater concentrations, lower seedling vigoros index were shown in both mechanical scarification and sulfuric acid pretreatments especially at higher seawater concentrations



Fig. (4-78): Comparing seedling vigorous index of Acacia at different water concentrations.

#### **Chapter Five**

#### **5.** Discussion

Salinity inhibits plant growth in many ways. Possible causes for reduction in growth may be water stress, specific ion stress or ion toxicity and induced nutrient deficiency (Wyn Jones, 1981). Plant species and even the varieties of species vary in their salt tolerance at various growth stages. It is, therefore, necessary to identify the differences in salt tolerance among the varieties. Some studies have revealed that a number of ornamental plants can grow at high levels of salinity (Grieve *et al.*, 2005; Shillo *et al.*, 2002) without substantial loss of quality.

Seed germination, as a critical stage in plant life is the most vulnerable to such stresses (Catalan *et al.*, 1994). Successful seedling establishment depends on the frequency and the amount of precipitation as well as the species and the ability of seeds to germinate and grow while soil moisture and osmotic potentials decrease (Roundy, 1987). Germination and seedling characteristics are the most viable criteria used for selecting salt tolerance in plants (Boubaker 1996). It was also reported that *A. Lebbeck* has reasonably good tolerance to drought and salinity (Prinsen ,1986), Hussein S. and Ibrahim (1999) reported that certain Acacia species are tolerant to moderate salinity, Generally the seedling height decrease with increase in. salinity which affects growth and seedling establishment adversely.

The results exhibited that increasing salt concentration interfered with the mean germination potential of *A. Lebbeck* seeds. Final seed germination of Lebbeck pretreated with boiling water showed no significant effect at all concentrations of seawater compared to control which itself showed only 50.7 % and 60.7% germination respectively, higher concentration of seawater irrigation showed no germination 10% and 20%, (Yaseen *et al.*, 1990 and 1993) reported similar conclusion in *Sesballia aculeata* varieties and three *Leucaena ieucocephala* varieties respectively. Sudden dip of dry seeds in boiling water may lead to the rapture of the coat wall allowing water to permeate the seed tissues causing physiological changes and subsequent germination of the embryo (Agboola and Etejere, 1991; Agboola and Adedire, 1998; Sabongari, 2001).

Plants that pass through their rest period at low temperature may have their rest broken by warm water baths (Leopold and Kreidman, 1975). Germination decreases when seeds were allowed in water for more than 4 secs, suggesting that embryo may get destroyed on contact with boiling water for a prolonged period.

The seeds of Lebbeck plant pretreated with hot tap water showed significant reduced germination percentage even in the control treatment 42% and 26.4% respectively, which mean hot water treatment reduces the germination percentage. Higher level of salinity showed no germination.

Leebeck seeds subjected to mechanical scarification showed reduced final germination percentage even in the control treatment 17% and 22.8% respectively, which indicated that mechanical scarification of seeds reduces the germination of Lebbeck seeds. Higher level of salinity showed no germination. Seed dormancy resulting from an impermeable seed coat may be overcome by peeling off the coat (Nikoleave, 1977). Germination of seeds whose coat was mechanically scarified is therefore not surprising. Where seed coat is softened, the process of hydrolysis could commence to release simple sugars that could be readily utilized in protein synthesis. Release of hormones such as auxins and ethylene which could increase nucleic acid metabolism and protein synthesis (Irwin, 1982 and Jackson, 1994).

Leebeck seeds pretreated with H2S04 recorded significant increase in the final germination percentage in both treatments at all concentrations compared to the control treatment 24.28% and 32% respectively, but in this treatment germination was noticed in all concentrations of seawater. This indicates that sulfuric acid enhance the germination of Leebeck seeds subjected to salt stress.

Immersion of seed in highest concentrated sulphuric acid disrupts the seed coat. The fact that 98% concentrated sulfuric acid gave the highest percentage of germination and within the shortest period as compared to other pretreatments, indicate that the more rapidly the seed coat is ruptured the faster the rate of germination, however, prolonged Emerson may be injurious to the seeds as the acid may rapture vital parts of the embryo. Sulfuric acid is thought to disrupt the seed coat and expose the lumens of the macrosclereids cells, permitting imbibition of water (Nikoleave, 1977) which triggers germination. In the untreated seeds water may not be available to the embryo. Salts can affect seed germination either by restricting the supply of water (osmotic effect) or causing specific injury through ions to the metabolic machinery (ionic effect) (Zekri 1993) The major effects of salinity on seed germination could be attributed to decreasing rate and total amount of water absorbed and increasing the entry of certain ions into the seed, which are toxic in high concentration.

Lebbeck showed slight salinity tolerance at germination where less than 50% total germination in most treatments except in case of pretreatment with boiled water sulfuric acid. These results are in disagreement with (Ramoliya and Pandey , 2002 and 2006) and (Hardikar and Pandey 2008) who reported that *A. Lebbeck* are salt tolerant at the seed germination phase of plant growth. High concentration of NaCl causes an osmotic barrier and delays the imbibition stage of germination. Many studies have reported that NaCl can inhibit growth by reducing cell proliferation and cell elongation (Abbasi *et al.*, 2015; Zorb *et al.* 2015; Valenzuela *et al.* 2016)

Mean germination time (MGT) describes the time spread of germination in unit of days. A low value of MGT indicates that the germination is faster when compared to a high value of MGT. Generally, MGT was longer when salinity levels increased because high salinity results in the lowering of water potential during seed imbibition (Cokkizgin 2012; Aamir *et al.*, 2019). Under the control, most seeds germinated between 7-10 days in all the study, no significant differences between the control and the other concentrations in all pretreatments. Mean germination time (MGT), was no affected by salt stress compared to control. This study is in disagreement with (KU-OR *et al*, .2020 which stated that mean germination time increases with higher salinity levels.

Vigor testing does not only measure the percentage of viable seed in a sample, it also reflects the ability of those seeds to produce normal seedlings under less than optimum or adverse growing conditions similar to those which may occur in the field. Seedling vigor index of Lebbeck showed significant decrease in the value with increased seawater concentrations, compared with the control in all pretreatments except in pretreatment with sulfuric acid SVI was not affected by salinity a variety of responses to different sea water concentrations was observed.

107

The effect of different concentration of seawater on fresh and dry length of Lebbeck shoots and roots in all pretreatments was significant in most treatments Many workers have reported decrease in tree height due to water stress in seedlings

#### (Metcalfe et al., 1990; Steinberg et al., 1990; Muhiuddin 1992; Ibrahim

1995; Ibrahim *et al.*, 1997- 1998; Srinivasan *et al.*, 1989 and Omari 1994). By contrast, Osonubi *et al.*, (1992) found that *Faidherbia albida* (*A. albida*) tolerated the drought stress by producing long taproots whereas *A. nilotica* tolerated the drought stress by developing larger root systems able to explore a greater volume of soil. Seiler and Gazell (1990) concluded that extreme soil drying ultimately reduced root growth. This was supported by the results of the present study. Others obtained similar results with acacia species like Pokhriyal *et al.* (1997) working with *A. nilotica;* Awodola (1991) with *A. albida* and *A. seyal.* 

The effect of different concentration of seawater on fresh and dry weights of Lebbeck shoots and roots in all pretreatments was significant in most treatments These result were in agreement with (Khalil and Grace ,1992; Pallardy and Rhods, 1993; Ibrahim, 1995; Aref and El-Juhany, 2001). Such reduction in root fresh and dry weight might be due to a decrease in water uptake and osmotic potential under salt stress, which directly affects the growth and development of plants (Terry and Waldron, 1984; Riaz *et al.*, 2010).

Mean germination time of acacia seeds at different pretreatments and different seawater concentration showed that no significant differences in mean germination time when seeds pretreated with boiled water at al seawater concentration when compared to control, generally mean germination time delayed as seawater concentration had increased, no growth was recorded at higher seawater concentration 20% except in seeds pretreated with sulfuric acid, at 10% seawater concentration only seeds pretreated with boiled water and sulfuric acid, generally the sulfuric acid enhances the germination time better than boiled water.

Germination percentages of acacia seeds pretreated with boiled water showed higher percentages of germination compared with the other pretreatments followed by sulfuric acid pretreatment, generally the germination percentages were drastically reduced as seawater concentration increased in all pretreatments, seeds pretreated with sulfuric acid showed some seed germination at high concentration 20% .This result is in agreement with (Unger, 1991; Zekri, 1993; Hussein and Ibrahim, 1999) who reported that salinization results in delayed seed germination; the activity of solution constituents including water is reduced by the increase of ionic strength (salt concentration), the results was in disagreement with (Nasreldin *et al.*, 2013) who reported that higher seeds germination were recorded in seeds pretreated with fresh water. The effect of the external salinity on the seed germination may be partially osmotic or ion toxicity which can alter physiological processes such as enzyme activation (El-Keblawy, 2004; Chinnusamy *et al.*, 2005; Nichols *et al.*, 2009). This toxic effect can lead to metabolic processes changes in seedlings and at the extreme case in the death of embryo by ion accumulation (El-Keblawy, 2004). The osmotic or toxic effect can be verified by salinity recovery test (Khelouf *et al.*, 2016b).

in Acacia, faster seedlings vigorous indexes were recorded in seeds pretreated with sulfuric acid, followed by boiled water, slower seedlings were recorded in mechanical scarification. Seedling development parameters generally affected by the concentration of seawater applied to seeds from the start of the study. In all pretreatments, reduced root and shoot length, seeds dry and fresh weights were recorded as seawater concentration had increased drastically with significant differences in the means of theses parameters recorded only in boiled water and sulfuric acid pretreatments. This results were in agreement with (Ragab, 1996) who reported that salinity does not affect the crop performance significantly until the threshold salinity is reduced, beyond this the growth decreased linearly as the salinity increased. The reduction of the dry weights due to increased salinity may be a result of a combination of osmotic and specific ion effects (Khan et al., 2015). One of the initial effects of salinity on plants is the reduction of growth rate (Munns et al., 1995). These results are in agreement with the findings of (Hirich et al., 2014) who reported a significant decline in shoot length at high salinity levels. Huffaker and Rains (1989) reported that, the salinity problems inhibit the uptake of eventual macronutrients such as nitrate and ammonium and inorganic phosphorus needed for seedlings.

#### Conclusion

- Mean germination time of both plants was slightly delayed with increased seawater concentrations ranging between (7-10 days) for Lebbeck and (12-18 days) for Acaica.
- 2. Germination percentage of both plants decreased with increased seawater concentrations, at concentrations of (10% and 20%), no germination percentages which revealed that both plants not tolerate seawater concentrations.
- 3. Seedling vigor index showed significant reduction at increased sea water concentration in both plants.
- 4. This study revealed that both fresh and dry lengths of shoot and root were negatively affected by seawater concentrations, shoot were more sensitive to seawater concentrations than roots.
- 5. Both fresh and dry weights of *Lebbeck* shoot systems were decreased with increased seawater concentrations and this decrease was significant.
- 6. Both fresh and dry weights of *Acacia* root systems were decreased with increased seawater concentrations level, but this reduction was not significant compared with the control treatment. Decreased dry weights of roots revealed that did not tolerate seawater concentrations.
- Sulfuric acid pretreatment enhance germination of seeds of both plants even at higher concentrations (10% and 20%).

#### References

Abdelgawad G., Mahmoud K., El-Bakhbakhi M. and El-Salawi M. (1979): "Water Resources Quality for Irrigation in Libya. 3rd CIEC Symposium, Water and Fertilizer Use for Food Production in Arid and Semiarid Zones". *November 26th- December 1st, Garyounis University- Benghazi, Libya.* 

Abdul-Baki A. and Anderson J. (1973): "Vigor Determination in Soybean Seed by Multiple Criteria". *Crop Science*, 13, 630-633.

Abbasi M., Musa N. and Manzoor M. (2015): "Phosphorus release capacity of soluble P fertilizers and insoluble rock phosphate in response to phosphate solubilizing bacteria and poultry manure and their effect on plant growth promotion and P utilization efficiency of chilli (Capsicum annuum L.)" *Biogeosciences Discussion* 12: 1839–1873.

Agboola D. and Etejere E. (1991): "Studies on seed dormancy of selected economic tropical forest species". *Nig. J. Bot.* 4:115 – 125.

Agboola D. and Adedire M. (1998): "Response of treated dormant seeds of three species to germination promoters". *Nig. J. Bot.* 11:103 – 109

Ahmad P., Jaleel C., Salem M., Nabi G., Sharma S. (2010): "Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress". *Critical Reviews in Biotechnology*.30(3):161–17.

Álvarez S. and Sánchez-Blanco MJ. (2014): "Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in *Callistemon citrinus*". *Plant Biology*, 16:757-764, 2014.

Aamir M., Khan E., Baloch M. and Aslam M. (2019): "Germination ecology of Lathyrus aphaca, a prolematic weed of wheat crop under semi-arid conditions of Pakistan". *Planta Daninha* 37:1-10.

Aref I. and El-Juhany L. (2001): "Impact of sudden water stress on the growth of eight Acacia species". Plant Production Department, College of Agriculture, King Saud University 1-11.

Arslan H. (2013): "Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey". *Environmental Monitoring and Assessment*, 185'(3):2439-2452.

Ashraf M. and Foolad M. (2007): "Roles of glycine betaine and proline in improving plant abiotic stress resistance". *Environmental and Experimental Botany*. 59(2):206–216.

Aunu RB., Shepard M. and Johnson M. (2000): "Leafminers in vegetables, ornamental plants and weeds in Indonesia: surveys of host crops, species composition and parasitoids". *Int Journal Pest Mgmt* 46(4): 257-266.

Ayers R. and Westcot D. (1999): "A qualidade da a'gua na agricultura", 2nd edn. UFPB, Campina Grande.

Ayers R. and Westcot D. (1985): "Water quality for agriculture FAO Irrigation and Drainage" Paper 29 Rev. 1. Food and Agriculture Organization of the United Nations Rome, Italy.

Bajgu A. (2014): "Nitric oxide: role in plants under abiotic stress". *in Physiological mechanisms and adaptation strategies in plants under changing environment*, pp. 137–159.

Barrett-Lennard E. (2003): "The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications" *Plant Soil* 253: 35- 54.

Barros H., Gheyi H., Loges V., Santos MS. and Soares F. (2010): "Influe<sup>^</sup>ncia da salinidade da a<sup>'</sup>gua no crescimento de seis geno<sup>'</sup>tipos de Helico<sup>^</sup>nias. Rev Bras" *Hortic Ornam* 16:139–145.

Bernstein L., Franc, ois L. and Clark R. (1972): "Salt tolerance of ornamental shrubs and ground covers". *J Am Soc Hortic Sci* 97:550–556.

Besson-Bard A., Pugin A. and Wendehenne D. (2008): "New insights into nitric oxide signaling in plants". *Annual Review of Plant Biology*. 59:21–39.

Bohnert H., Nelson D. and Jensen R. (1995): "Adaptations to environmental stresses". *Plant Cell*. 7(7):1099–1111.

Botequilla L. and Ahern A. (2002): "Applying landscape ecological concepts and metrics in sustainable landscape planning", *Landscape and Urban Planning* 59: 65-93.

Boulos L. (1999): "Flora of Egypt", vol. 1. Al Hadara Publishing. Cairo.

Brewbaker J.(1987): "Leucaena: A multipurpose tree genus for tropical agroforestry". In: Steppler H.A. &Nair, P.K.R. (eds.) Agro forestry: A decade of Development .Nairobi, Kenya, ICRAF. pp. 289-323.

Boubakar M. (1996): "Salt tolerance of durum wheat cultivars during germination and early seedling growth". *Agric. Medit.* 126: 32-39.

Cabot C., Sibole J., Barceló J. and Poschenrieder C. (2009): "Abscisic acid decreases leaf Na<sup>+</sup> exclusion in salt-treated *Phaseolus vulgaris* L". *Journal of Plant Growth Regulation*. 28(2):187–192.

Cameron R., Wilkinson S., Davies W., Harrison Murray R., Dunstan D. and Burgess C. (2004): "Regulation of plant growth in container-grown ornamentals through the use of controlled irrigation", *HortScienc* 630: 305-312.

Carter C. and Grieve C. (2008): "Mineral nutrition, growth, and germination of Antirrhinum majus L. (snapdragon) when produced under increasingly saline conditions" *HortScience*. 43: 710-718.

Carvajal M. and Alcaraz C. (1998): "Why titanium is a beneficial element for plants", *Journal of Plant Nutrition*, 21(4): 655-664.

Cassaniti C., Leonardi C. and Flowers T. (2009a): "The effect of sodium chloride on ornamental shrubs" *HortScienc*.122: 586-593.

Cassaniti C., Romano D., Hop M. and Flowers T. (2013): "Growing floricultural crops with brackish water". *Environ Exp Bot* 92:65–175.

Catalan L., Balzarini M., Taleisnik E., Sereno R. and Karlin U. (1994): "Effects of salinity on germination and seedling growth of *Prosopis flexuosa* (D.C.)". *Forest Ecology and Management* 63: 347-357.

Chandler S. and Sanchez C. (2012): "Genetic modification; the development of transgenic ornamental plant varieties". *Plant Biotechnology Journal*, 10:891-903.

Chaves M., Flexas J. and Pinheiro C. (2009): "Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell". *Annals of botany*, 103(4):551-560.

Chen H. and Jiang JG. (2010): "Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity". *Environmental Reviews*, 18:309"-319.

Chen S., Li J., Wang S., Hüttermann A. and Altman A. (2001): "Salt, nutrient uptake and transport, and ABA of *Populus euphratica*; a hybrid in response to increasing soil NaCl". *Trees—Structure and Function*. 15(3):186–194.

Chen W., Hou Z., Wu L., Liang Y. and Wei C. (2010): "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China". *Agricultural water management*, 97(12):2001-2008.

Chérifi K., El Houssein B., Boubaker H., Msanda F., El Mousadik A. (2016): "Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germination Stage", *International Journal of Environmental & Agriculture Research*. 2 (6):110.

Chinnusamy V., Jagendorf A. and Zhu JK. (2005): "Understanding and improving salt tolerance in plants". *Crop Science*, 45(2):437-448.

Clemens J., Campbell L. and Nurisjah C. (1983): "Germination, growth and mineral ion concentration of Casuarina species under saline conditions". *Aust. J. Bot.* 31:1-9.

Cokkizgin A. (2012): "Salinity stress in common bean (Phaseolus vulgaris L.) seed germination". *Not Bot Horti Agrobo* 40: 177-182.

Craig G., Bell D. and Alkins C. (1990): "Response to salt and water logging stress of ten taxa of Acacia selected from naturally saline areas of western Australia". *Aust. J. Bot.* 38:619-630.

Cramer G. and Quarrie S. (2002): "Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity". *Functional Plant Biology*. 29(1):111–115.

Cronk Q. and Fuller J. (1995): "Plant invaders: the threat to natural ecosystems". London, UK; Chapman & Hall Ltd, xiv + 241 pp

D'Odorico P., Bhattachan A., Davis KF., Ravi S. and Runyan CW. (2013): "Global desertification: drivers and feedbacks". *Advances in Water Resources*, 51:326-344.

Dantas J., Marinho F., Ferreira M., Amorim M., Andrade S. and Sales A. (2002): "Avaliac,a"o de geno'tipos de caupi sob salinidade." Rev Bras Eng Agri'c Ambient 6:425–430.

Delledonne M., Xia Y., Dixon RA., Lamb C. (1998): "Nitric oxide functions as a signal in plant disease resistance". *Nature*. 394(6693):585–588.

Dirr M. (1976): "Selection of trees for tolerance to salt damage" *Journal of Arboriculture* 2: 209-216.

Dopp M., Larher F., Weigel P. (1985): "Osmotic adaption in Australian mangroves". *Vegetatio*. 61(1–3):247–253.

Dunn G., Taylor D., Nester M. and Beetson T. (1994): "Performance of twelve selected Australian tree species on a saline site in southeast Queensland". *For. Ecol. Manag.* 70:255-261.

El-Keblawy A. (2004): "Salinity effects on seed germination of the common desert range grass, *Panicum turgidum*". *Seed Science and Technology*, 32(3):873-878.

El-Lamey T. (2015): "Morphological and Anatomical Responses of *Leucaena leucocephala* (Lam.) de Wit. and *Prosopis chilensis* (Molina) Stuntz to RasSudr Conditions" *J. Appl. Environ. Biol. Sci.*, 5(7)43-51, 2015.

EUWI (2006): Mediterranean Groundwater Report. "Technical report groundwater Management in the Mediterranean and the Water Framework Directive". Mediterranean groundwater working group (MED-EUWI WG on Groundwater).

Fageria N. (1985): "Salt tolerance of rice cultivars". *Plant Soil* 88:237–243.

Ferrante A., Trivellini A., Malorgio F., Carmassi G., Vernieri P. and Serra G. (2011): "Effect of seawater aerosol on leaves of six plant species potentially useful for ornamental purposes in coastal areas", *HortScienc*. 128: 332–341.

Flowers T. and Yeo A. (1995): "Breeding for salinity resistance in crop plants: where next?", *Australian Journal of Plant Physiology* 22: 875-884.

Ford C. (1984): "Accumulation of low molecular weight solutes in water-stressed tropical legumes". *Phytochemistry*, 23(5):1007–1015.

Fox L., Grose N., Appleton B. and Donohue S. (2005): "Evaluation of treated effluent as an irrigation source for landscape plants", *Journal of Environmental Horticulture* 23: 174-178.

Friedman H., Bernstein N., Bruner M., Rot I., BenNoon Z., Zuriel A., Zuriel R., Finkelst ein S., Umiel N. and Hagiladi A. (2007): "Application of secondary-treated effluents for cultivation of sunflower (*Helianthus annuus L.*) and celosia (*Celosia argentea* L.) as cut flowers" *Scientia Hort*. 115: 62-69.

Galston A., Kaur-Sawhney R., Altabella T. and Tiburcio A. (1997): "Plant polyamines in reproductive activity and response to abiotic stress". *Botanica Acta*.110(3):197–220.

Gálvez F., Baghour M., Hao G., Cagnac O., Rodríguez-Rosales M. and Venema K. (2012): "Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. *Plant Physiology and Biochemistry*". 51:109–115.

García-Caparrós P., Llanderal A., Pestana M., Correia P. and Lao M. (2016): "Tolerance mechanisms of three potted ornamental plants grown under moderate salinity". *Scientia Horticulturae*, 201:84-91.

Glenn E., Brown J. and O'Leary J. (1998): "Irrigating Crops with Seawater". *Scientific American*, 76-81.

Gori R., Ferrini F., Nicese FP. and Lubello C. (2000): "Effect of reclaimed wastewater on the growth and nutrient content of three landscape shrubs", *Journal of Environmental Horticulture*, 18: 108-114.

Grattan S. and Grieve C. (1999): "Salinity-mineral nutrient relations in horticultural crops" *HortScienc*. 78: 127-157.

Greenway H. and Munns R. (1980): "Mechanisms of salt tolerance in nonhalophytes" *Annu. Rev. Plant Physiol.* 31 149 -190.

Grieve C., Poss J., Grattan S., Shouse P., Lieth J. and Zeng L. (2005): "Productivity and mineral nutrition of Limonium species irrigated with saline wastewaters" *HortScience* 40: 654- 658.

Groppa M and Benavides M. (2008): "Polyamines and abiotic stress: recent advances". *Amino Acids*. 34(1):35–64.

Groß F., Durner J, and Gaupels F. (2013) "Nitric oxide, antioxidants and prooxidants in plant defence responses". *Frontiers in Plant Science*. 4:419.

Gupta K., Dey A., Gupta B. (2013): "Plant polyamines in abiotic stress responses". *Acta Physiologiae Plantarum*. 35(7):2015–2036.

Gurmani A., Bano A., Khan SU., Din J., Zhang J. (2011): "Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (*Oryza sativa* L.)" *Australian Journal of Crop Science*. 5(10):1278–1285.

Hardikar S. and Pandey A. (2008): "Growth, water status and nutrient accumulation of seedlings of *Acacia senegal* (L.) Willd in response to soil salinity". *Anal. Biol.* 30.

Hasegawa P. (2013): "Sodium (Na<sup>+</sup>) homeostasis and salt tolerance of plants". *Environmental and Experimental Botany*. 92:19–23.

Hasegawa P., Bressan R., Zhu J. and Bohnert H. (2000): "Plant cellular and molecular responses ro high salinity". *Annual Review of Plant Physiology and Plant Molecular Biology*. 51. 493-499.

He T. and Cramer G. (1996): "Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling *Brassica* species". *Plant and Soil*. 179(1):25–33.

Hirich A., Jelloul A., Choukr-Allah R. and Jacobsen S. (2014): "Saline water irrigation of quinoa and chickpea: seedling rate, stomatal conductance and yield responses". *Journal of Agronomy and Crop Science*, 200(5):378-389.

Hopper S. and Maslin BA. (1978): "Phytogeography of Acacia in Western Australia". *Austral Journal of Botany* 26:63–78.

Huffaker R . and Rains D. (1989): N –use efficiency as influenced by S-assimilation in barley exposed to salinity . ,P33-38 . In letey ,J (Editor) Soil and plant interactions with salinity . kerney Foundation Five year Report : 1980-1985 Agricultural Experimental station". University of California – special publication . 3315.

Hussein S. and Ibrahim A. (1999): "The effect of saline soil conditions on survival and seedling growth of Acacia nilotica (L.) Willd and Acacia trotilis (forstk) Haynes". *Sudan Sylva*, 28.

Ibraflor (2020) "Instituto Brasileiro de Floricultura. O mercado de flores no Brasil. Disponível em: <<u>http://www.ibraflor.com/publicacoes</u>>. Acesso em: 04 Jul. 2020.

Ibrahim L. (1995): "Effects of nitrogen supply, water stress and interaction between water and nitrogen on assimilate partitioning in poplar". A PhD thesis, University of Aberdeen, UK. 334 pp.

Ibrahim L., Proe M. and Cameron A. (1997): "Main effects of nitrogen supply and drought stress upon whole plant carbon allocation in poplar". *Canadian Journal of Forest Research* 27(9): 1413-1419.

Ibrahim L., Proe M. and Cameron A. (1998): "Interactive effects of nitrogen and water availability on gas exchange and whole-plant carbon allocation in poplar". *Tree Physiology* 18: 481-487.

Irwin P. (1982): "Plant Physiology". Addision-Wesley Pub. Co. Inc. U.S.A, pp. 501 – 540.

Jackson M. (1994): "Root-to-shoot communication in flooded plants". Involvement of Abscisic acid, ethylene and 1-aminocy clopropane-1- carboxylic acid". *Agron. J.* 86(5): 775-781.

Jaouadi W., Hamrouni L., Souayeh N.and Khouja M. (2010): "Study of Acacia tortilis seed germination under different abiotic constraints". *Biotechnology, Agronomy, Society and Environment*, 14: 643-652.

Jeschke W., Peuke AD., Pate JS., Hartung W. (1997): "Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (*Ricinus communis* L.) under phosphate deficiency and moderate salinity". *Journal of Experimental Botany*. 48(314):1737–1747.

Kerepesi I. and Galiba G. (2000): "Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings". *Crop Science*. 40(2):482–487.

Khalil A. and Grace (1992): :"Acclimation to drought in Acer pseudoplatanus L. (Sycamore) seedlings". . *Journal of Experimental Botany* 43 (257): 1591-1602.

Khan M., Ungar I. and Showalter A. (2000): "Effects of sodium chloride treatments on growth and ion accumulation of the halophyte haloxylon recurvum". *Communications in Soil Science and Plant Analysis*. 31(17-18): 2763–2774.

Khan M., Karim M. and Haque M. (2015): "Genotypic differences in growth and ions accumulation in soybean under NaCl salinity and water stress conditions". *Bangladesh Agronomy Journal*, 17(1):47-58.

Kheloufi A., Chorfi A. and Mansouri L. (2016): "Comparative effect of NaCl and CaCl2 on seed germination of *Acacia saligna* L. and *Acacia decurrens*" *Willd Int. J. Biosci.* 8(6): 1-13.

Kheloufi A., Chorfi A. and Mansouri L. (2016a): "The Mediterranean seawater: the impact on the germination and the seedlings emergence in three Acacia species". *Journal of Biodiversity and Environmental Sciences*, 8(6):238-249.

Kheloufi A., Chorfi A. and Mansouri L. (2016b): "Comparative effect of NaCl and CaCl<sub>2</sub> on seed germination of *Acacia saligna* L. and *Acacia decurrens* Willd". *International Journal of Biosciences*, 8:1-13.

Kirkam M. (1986): "Problems of using wastewater on vegetable crops", *HortScience* 21: 24-27.

Kjelgren R., Rupp L. and Kilgren D. (2000): "Water conservation in urban landscapes", *HortScience* 35: 1037-1040.

Knott J., Römer P. and Sumper M. (2007): "Putative spermine synthases from *Thalassiosira pseudonana* and *Arabidopsis thaliana* synthesize thermospermine rather than spermine". *FEBS Letters*. 581(16):3081–3086.

Koreish E. (1997): "Nodulation and dinitrogen fixation by Acacia saligna seedlings as influenced by soil type and salinity". *Egyptian Journal of Soil Science* 37:437–450.

Kozlowski T. and Pallardy S. (1997a): "Physiology of woody plants". 2nd Edn. Academic Press, San Diego.

Ku-Or Y. Leksungnoen N., Onwimon D. and Doomnil P. (2020): "Germination and salinity tolerance of seeds of sixteen Fabaceae species in Thailand for reclamation of salt-affected lands Biodiversitas" *Journal of Biological Diversity*. 21. 10.13057.

Lamattina L, García-Mata C, Graziano M and Pagnussat G.(2003): "Nitric oxide: the versatility of an extensive signal molecule". *Annual Review of Plant Biology*. 54:109–136.

Lascano C., Maass B., Argel P. And Viquez E.(1995): "Leucaena in northwest region of Corrientes Province, Argentina. In: Shelton, H.M., Piggin, C.M. &Brewbaker, J.L. (eds.) Leucaena: Opportunities and Limitations". *ACIAR Proceedings*, 57. pp. 152-158.

Laytimi, A. (2005): "Market and Trade Policies for Mediterranean Agriculture: The case of Fruit/Vegetable and Olive". Available online: https://cordis.europa.eu/publication/rcn/11916\_en.html (accessed on 28 December 2020).

Le Maitre D., Van WilgenB., Gelderblom C., Bailey C., Chapman R. and Nel J. (2002): "Invasive alien trees and water resources in South Africa: Case studies of costs and benefits of management". *Forest Ecology and Management* 160:143–159.

Leopold A. and Kreidemann P. (1975): "Plant growth and Development". Mc Graw Hill Ind, New York, pp. 223-247.

Liu J., Liu Q. and Yang H. (2016): "Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality". *Ecological Indicators*, 60:434-441.

Maas EV. and Hoffman GH. (1977): "Crop salt tolerance—current assessment". *J Irrig Drain Div ASCE* 103:115–134.

Marosz A. (2004): "Effect of soil salinity on nutrient uptake, growth and decorative value of four ground cover shrubs", *Journal of Plant Nutrition* 27: 977-989.

McCammon T., Marquart-Pyatt S. and Kopp K. (2009): "Water-conserving landscapes: an evaluation of homeowner preference", Journal *of Extension* 47(2): 1-10.

Mer R., Prajith P., Pandya D. and Pandya N. (2000): "Effect of salts on germination of seeds and growth of young plants of *Hordeum vulgare*, *Triticumae stivum*, *Cicer arietinum* and *Brassica juncea*" J. Agron. Crop Science 185:209-217.

Metcalfe J., Davies W. and Pereira J. (1990): "Leaf growth of Eucalyptus seedlings under water deficit". *Tree Physiology* 6: 221-227

Miyamoto S., Martinez I., Padilla M., Portillo A and Ornelas D. (2004): "Landscape plant lists for salt tolerance assessment". USDI Bureau of Reclamation, Texas Agricultural Experiment Station, El Paso.

Muhiuddin M. (1992): "Plant water relation in a model agroforestry system". A Ph.D thesis, University of Edinburgh, Edinburgh, UK.

Munns R. (2002). "Comparative physiology of salt and water stress". *Plant Cell Environ*. 25:239-250.

Munns R, Schachtman D. and Condon A. (1995) "The significance of a two-phase growth response to salinity in wheat and barley". *Functional Plant Biology*, 22(4):561-569.

Munns R. and Tester M. (2008): Mechanisms of salinity tolerance. Annu. *Rev. Plant Biol.* 59:651-681.

Muyen Z., Moore G. And Wrigley R. (2011): "Soil salinity and sodicity effects of wastewater irrigation in South East Australia". *Agricultural Water Management*, 99:33-41.

Navarro A., Bañón S., Conejero W. and Sánchez-Blanco MJ. (2008): 'Ornamental characters, ion accumulation and water status in Arbutus unedo seedlings irrigated with saline water and subsequent relief and transplanting'', *Environmental and Experimental Botany* 62: 364-370.

Nichols P., Malik A., Stockdale M. and Colmer T. (2009): "Salt tolerance and avoidance mechanisms at germination of annual pasture legumes: importance for adaptation to saline environments". *Plant and Soil*, 315(1-2):241.

Nikoleave M. (1977): "Factors controlling seed dormancy pattern". North Holland publishing Co, Amsterdam, pp. 51-74.

Niu G. and Rodriguez D. (2006a): "Relative salt tolerance of five herbaceous perennials", *HortScience* 41: 1493-1497.

Niu G. and Rodriguez D. (2006b): "Relative salt tolerance of selected herbaceous perennials and groundcovers". *HortScience*, 110: 352-358.

Niu G., Rodriguez D., Aguiniga L. and Mackay W. (2007b): "Salinity tolerance of *Lupinus havardii* and *Lupinus texenis*", *HortScience* 42: 526-528.

Niu G., Starman T. and Byrne D. (2013): "Responses of growth and mineral nutrition of garden roses to saline water irrigation". *Hort Science*, 48:756-761.

Niu Xiaomu N., Bressan R., Hasegawa P. and Pardo J.(1995): "Ion homeostasis in NaCl stress environments". *Plant Physiology*. 109(3):735–742.

Noble C. and Rogers M. (1994): "Response of temperate forest legumes to waterlogging and salinity". *In Handbook of Plant and Crop Stress*.

Noble C. and Rogers M. (1992): "Arguments for the use of physiological criteria for improving the salt tolerance in crops". *Plant Soil* 146:99–107.

Omari M. (1994): "Growth of four acacia species as affected by different irrigation regimes. Dirsat Series (B)", *Pure and Applied Sciences* 21(4): 225-236.

Osonubi O., Bakare O. and Mulongoy K. (1992): "Interactions between drought stress and vesicular-arbuscular mycorrhiza on the growth of *Faidherbia albida* (syn. *Acacia albida*) and Acacia nilotica in sterile and non-sterile soils". *Biology and Fertility of Soils* 14(3), 159-165.

Pallardy S. and Rhods J. (1993): "Morphological adaptations to drought in seedlings of deciduous angiosperms". *Canadian Journal of Forest Research* 23: 1766-1773.

Pardossi A., Bagnoli G., Malorgio F., Campiotti C., Tognoni F. (1999) NaCl effects on celery (*Apium graveolens* L.) grown in NFT. *Scientia Horticulturae* 81:229-242.

Pimentel D., Berger B., Filiberto D., *et al.*, (2004): "Water Resources, Agriculture, and the Environment". Ithaca (NY): New York State College of Agriculture and Life Sciences, Cornell University. *Environmental Biology Report*. 1–46.

Prinsen J. (1986): "Potential of *Albizia Lebbeck* as a tropical fodder tree - a review of literature". *Tropical Grasslands* 29, 78-83.

Popova L., Stoinova Z. and Maslenkova L. (1995): "Involvement of abscisic acid in photosynthetic process in *Hordeum vulgare* L. during salinity stress". *Journal of Plant Growth Regulation*.14(4):211–218.

Prasanth S., Magesh N., Jitheshlal K., Chandrasekar N. and Gangadhar K.(2012): "Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India". *Applied Water Science*, 2(3):165-175.

Quist T., Williams C. and Robinson M. (1999): "Effects of varying water quality on growth and appearance of landscape plants", *Journal of Environmental Horticulture* 17: 88-91.

Ragab R. (1996): "Constraints and applicability of irrigation scheduling under limited water resource, variable rain fall and saline conditions. In Irrigation scheduling : from theory to Practice, Proceedings of ICID, FAO Work shop, sept. 1995", *Water Reports*, FAO, Rome.

Rahnama A., James R., Poustini K and Munns R. (2010): "Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil". *Funct Plant Biol* 37:255–269.

Rashid M., Hoque A. and Iftekhar M. (2004): "Salt Tolerances of Some Multipurpose Tree Species as Determined by Seed Germination". *Journal of Biological Sciences*. 4: 288-292.

Rauf B,. Merle S. and Marshall W. (2000): "Leaf miners in vegetables, ornamental plants and weeds in Indonesia: surveys of host crops, species composition and parasitoids". *Int Journal Pest Mgmt* 46.4: 257-266.

Ravindran K., Venkatesan K., Balakrishnan V., Chellappan K. and Balasubramanian T. (2007): "Restoration of saline land by halophytes for Indian soils", *Soil Biology and Biochemistry* 39: 2661-2664.

Ramoliya P. and Pandey A. (2002): "Effect of increasing salt concentration on emergence, growth and survival of seedlings of Salvadora oleoides (Salvadoraceae)". *J. Arid Environment*, 51: 121-132.

Ramoliya P., Patel H., Joshi J. and Pandey A. (2006): "Effect of salinization of soil on growth and nutrient accumulation in seedlings of *Prosopis cineraria*". *J. Plant Nutr.*, 29 (2): 283-303.

Riaz U., Abbas Z., Zaman Q., Mubashir M., Jabeen M., Zulqadar S., Javeed Z., Rehman S., Ashraf M. and Qamar M. (2018): "Evaluation of ground water quality for irrigation

purposes and effect on crop yields: A GIS based study of Bahawalpur Pakistan" J. Agric. Res., 31 (1).

Reddy M., Sanish S. and Iyengar E. (1992): "Photosynthetic studies and compartmentation of ions in different tissues of *Salicornia brachiata* Roxb. under saline conditions". *Photosynthetica*. 26:173–179.

Richards L. (1954): "Origin and nature of saline and alkali soils" *Diagnosis and Improvement of Saline and Alkali Soils. Washington.* 60:1-6.

Rodriguez D. (2005): "Developing a scientific basics for wastewater application in the Chihuahuan desert", MS thesis, New Mexico State University, Las Cruces.

Roundy B. (1987): "Seedbed salinity and the establishment of range plants." In: Frasier, G.W., Evans, R.A. Proc. Sympos. *Seed and Seedbed Ecology of Rangeland Plants*, Washington, D.C.: USDA-ARS, pp. 68-71.

Ruiz A., Sammis T.W., Picchioni G.A., Mexal J.G., Mackay W.A. (2006): "An irrigation scheduling protocol for treated industrial effluent in the Chihuahua Desert". *J. Amer. Water Works* Assoc., 98: 122-133.

Rushkin F. (1984): "Leucaena: Promising Forage and Tree Crops for the Tropics".2nd ed. National Research Council. Washington, DC: National Academy Press. Sabongari S. (2001): "Effect of Soaking duration on germination and seedling establishment of selected varieties of Tomato (Lycopersicum esculentum Mill)". M.Sc. Thesis, Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.

Savè R. (2009): "What is stress and how to deal with it in ornamental plants?" Acta Horticulturae 81: 241-254.

Sethi P. and Kulkarni PR. (1995): "Leucaena leucocephala: A nutrition profile. Food and Nutrition Bulletin" .16(3). The United Nations University Press.

Shahriari, A. and A. Davari (2015): "The Effect of drought and salinity stresses on seed germination of Alyssum hamalocarpum in Iran's arid lands". *International Journal of Agricultural Technology*, 11(7): 1625-1639.

Shannon MC., Grieve CM. and Francois LE. (1994): "Whole-plant response to salinity. In Plant--Environment Interactions". Ed. R.E. Wilkinson. Marcel Dekker, New York, pp 199--244.

Shelef O., Gross A. and Rachmilevitch S. (2012): "The use of *Bassia indica* for salt phytoremediation in constructed wetlands". *Water Research*, 46(13):3967-3976.

Shelton HM. and Brewbaker JL. (1994): "Leucaena leucocephala - the most widely used forage tree legume. In: Gutteridge, R.C. & Shelton, H.M. (eds.), Forage Trees as Legumes in Tropical Agriculture". *CAB International, Wallingford*, pp. 15-29.

Sheng M., Tang M., Chen H., Yang B., Zhang F. and Huang Y (2008). "Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress". *Mycorrhiza*. 18: 287-296.

Shrivastava P. and Kumar R. (2015): "Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation". *Saudi journal of biological sciences*, 22(2): 123–131.

Silva A., Bezerra F., Lacerda C., Lima R., Araujo M. and Sousa C. (2016): "Establishment of young dwarf green coconut plants in soil affected by salts and under water deficit". *Rev Bras Frutic* 38:1–12.

Singh AK. And Gupta SK. (2009): "Walter management in salt affected soils: Issues and strategies". *Journal Soil Salinity & Walter Quality*, 1:14-24.

Skimina C.A. (1992): "Recycling water, nutrients and waste in the nursery industry" *HortScience* 27: 968-971.

Soares Filho WS, Gheyi HR, Brito MEB, Nobre RG, Fernandes PD, Miranda RS (2016): "Melhoramento gene'tico vegetal e selec a o de cultivares tolerantes a salinidade. In: Gheyi HR, Dias NS, Lacerda CF, Gomes Filho E (eds) Manejo da salinidade na agricultura: estudos ba'sicos e aplicados, 2nd edn. Instituto Nacional de Cie^ncia e Tecnologia em Salinidade, Fortaleza, pp 259–274.

Srinivasan P., Rai R. and Jambulingam R. (1989): "Acacia: variation between species in early growth and a few drought adaptive attributes". *Journal of Tropical Forest Science* 2(2): 129-134.

Steinberg S., Miller J. and Mcfrland M. (1990): "Dry matter partitioning and vegetative growth of young peach trees under water stress". *Australian Journal of Plant Physiology* 17, 23-36.

Tadros M. (2011): "Growth, Plant Water Relations, and Forage Quality in *Leucaena leucocephala* (Lam.) de wit and *Acacia saligna* (Labill.) in Response to Salinity Stress". *Jordan Journal of Agricultural Sciences*. 7(3).

Tawfik M., El Lateef E., Amany A. and Hozayen M. (2011): "Prospect of biofertilizer inoculation for increasing saline irrigation efficiency". *Research Journal of Agriculture and Biological Sciences*, 7(2):182-189.

Terry N. and Waldron L. (1984): "Salinity, photosynthesis, and leaf growth". *Calif. Agr.* 38(10):38-39.
Thayer R. (1976): "Visual ecology: revitalizing the esthetics of landscape architecture", *Landscape* 20: 37-43.

Townsend A. and Kwolek W. (1987): "Relative susceptibility of thirteen pine species to sodium chloride sprays", *Journal of Arboriculture* 13: 225-227.

Utah Division of Water Resources (2003): "Identifying Residential Water Use - Survey Results and Analysis of Residential Water Use for Thirteen Communities in Utah", Salt Lake City, Utah.

Valenzuela C., Acevedo-Acevedo O., Miranda G., Vergara-Barrors P., Holuigue L., Figueroa C., et al. (2016): "Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in arabidopsis primary root" *J. Exp. Bot.* 14, 4209–4220.

Van der Moezel P., Pierce-Pinto G. and Bell D. (1991): "Screening for salinity and waterlogging tolerance in Eucalyptus and Melaleuca species". *For. Ecol. Manag.* 40:27-37.

Van Wilgen BW., Richardson D, Le Maitre D., Marais C., and Magadlela D. (2001): "The economic consequences of alien plant invasions: Examples of impacts and approaches to sustainable management in South Africa". *Environment, Development and Sustainability* 3:145–168.

Ventura Y, Eshel A, Pasternak D and Sagi M. (2015): "The development of halophyte-based agriculture: past and present". *Annals of botany*, 115(3):529-54.

Verma S. (2016): "A review study on Leucaena leucocephala: a multipurpose tree". *International Journal of scientific Research in Science, Engineering and Technology*.2:103-105.

Vicente O., Boscaiu M., Naranjo M.A., Estrelles E., Belles J.M., Soriano P. (2004): "Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae)" *J. Arid Environ* 58: 463-481.

Wang Y. and Nii N. (2000): "Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress". *HortScienc*. 75(6):623–627.

Werner A., Bakker M., Post VE., Vandenbohede A., Lu C., Ataie-Ashtiani B., Simmons CT. and Barry DA. (2013): "Seawater intrusion processes, investigation and management: recent advances and future challenges". *Advances in Water Resources*, 51:3-26.

Wyn Jones R. (1981): "Salt tolerance", p. 271–292. In: C.B. Johnson (ed.). Physiological processes limiting plant productivity. Butterworths, London.

Yang J., Zhang J., Liu K., Wang Z. and Liu L. (2007): "Involvement of polyamines in the drought resistance of rice". *Journal of Experimental Botany*. 58(6):1545–1555.

Yaseen M., Oureshi R., Ghafoor A. and Aslam M. (1990): "Salt tolerance studies on dhancha (*Sesbania aeuleata*)". *Pak. J. Agri. Sci.* 27: 283-290.

Yaseen M., Hassan A. and Qureshi R. (1993): "salt tolerance of three leucaena leucocephala varieties" Pak. J. Agri. Ss. 3 (4).

Yelenik S., Stock W. and Richardson M. (2004): "Ecosystem level impacts of invasive *Acacia saligna* in the South African fynbos". *Restoration Ecology* 12:44–51.

Zekri M. (1993): "Osmotic and toxic ion effects on seedling emergence and nutrition of citrus rootstocks". *J. Plant Nutr.* 16 (10), 2013–2028.

Zhu J. (2003): "Regulation of ion homeostasis under salt stress". *Current Opinion in Plant Biology*. 6(5):441–445.

Zorb C., Muhling K., Kutschera U. and Geilfus C. (2015) "Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: is the epidermis growth-restricting?". *PLoS One* 10 (3). e0118406.

Zurqani A., Mikhailova A., Post J., Mark J. and Elhawej R. (2019). "A Review of Libyan Soil Databases for Use within an Ecosystem Services Framework". *Land.* 8 (5): 82.

Zurqani A. and Hamdi A. (2021). "The Soils of Libya, World Soils Book Series". Switzerland: *Springer International Publishing* AG. p. 250.

#### Appendix

#### 1. Lebbeck: Boiled water

#### A. Germination %

#### 1<sup>st</sup> treatment: boiled water G%

| Statistics |           |          |          |          |          |        |        |  |  |  |  |
|------------|-----------|----------|----------|----------|----------|--------|--------|--|--|--|--|
|            | Treatment | 0%       | 1%       | 2%       | 5%       | 10%    | 20%    |  |  |  |  |
| N/T1       | Valid     | 14       | 14       | 14       | 14       | 14     | 14     |  |  |  |  |
| 1/11       | Missing   | 0        | 0        | 0        | 0        | 0      | 0      |  |  |  |  |
| Mean       |           | 50.7143  | 52.8571  | 54.2857  | 10.0000  | .0000  | .0000  |  |  |  |  |
| Std. D     | eviation  | 30.49950 | 25.24604 | 31.30846 | 14.14214 | .00000 | .00000 |  |  |  |  |

### 2<sup>nd</sup> treatment: boiled water G%

|      | Statistics |                |         |          |          |          |        |        |  |  |  |  |
|------|------------|----------------|---------|----------|----------|----------|--------|--------|--|--|--|--|
|      | Treat      | ment           | 0%      | 1%       | 2%       | 5%       | 10%    | 20%    |  |  |  |  |
| N    | N          | Valid          | 14      | 14       | 14       | 14       | 14     | 14     |  |  |  |  |
| 140  | IN         | Missing        | 0       | 0        | 0        | 0        | 0      | 0      |  |  |  |  |
| IVIZ | Mean       |                | 60.7143 | 60.0000  | 49.2857  | 46.4286  | .0000  | .0000  |  |  |  |  |
|      | Std. De    | Std. Deviation |         | 36.58499 | 27.58603 | 39.92438 | .00000 | .00000 |  |  |  |  |

#### **B.** Seedling 1<sup>st</sup> treatment:

|               | Statistics: |           |        |         |        |        |         |         |         |         |  |  |
|---------------|-------------|-----------|--------|---------|--------|--------|---------|---------|---------|---------|--|--|
| Concentration |             |           | LSF    | LSD     | LRF    | LRD    | WSF     | WSD     | WRF     | WRD     |  |  |
|               |             |           | 8      | 8       | 8      | 8      | 8       | 8       | 8       | 8       |  |  |
|               |             |           | 0      | 0       | 0      | 0      | 0       | 0       | 0       | 0       |  |  |
| 0%            |             | Mean      | 6.3125 | 5.3125  | 4.8875 | 4.088  | .069650 | .011025 | .007138 | .003200 |  |  |
|               | Std         | Deviation | 2.3937 | 2.1536  | 1.6119 | 1 1002 | .020459 | .002302 | .005743 | .001087 |  |  |
|               | Siu.        | Deviation | 0      | 9       | 5      | 1.1995 | 9       | 6       | 8       | 6       |  |  |
|               | N           | Valid     | 7      | 7       | 7      | 7      | 7       | 7       | 7       | 7       |  |  |
|               | IN          | Missing   | 0      | 0       | 0      | 0      | 0       | 0       | 0       | 0       |  |  |
| 1%            |             | Mean      | 4.2286 | 3.2286  | 3.0143 | 2.100  | .048950 | .009600 | .039271 | .004100 |  |  |
|               | Std         | Deviation | 1.6540 | 1.4209  | 1.5983 | 1 5220 | .046494 | .003254 | .069763 | .002786 |  |  |
|               | Siu.        | Deviation | 0      | 3       | 6      | 1.3330 | 6       | 2       | 4       | 9       |  |  |
|               | N           | Valid     | 8      | 8       | 8      | 8      | 8       | 8       | 8       | 8       |  |  |
|               | 1           | Missing   | 0      | 0 0 0 0 |        | 0      | 0       | 0       | 0       |         |  |  |
| 2%            | Mean        |           | 3.7875 | 3.0250  | 2.5250 | 1.659  | .157863 | .008150 | .016800 | .003987 |  |  |
|               | Std         | Doviation | 1.3798 | 1.2903  | 82245  | 6/12   | .204771 | .001463 | .002985 | .003012 |  |  |
|               | Slu.        | Deviation | 9      | 5       | .02243 | .0413  | 0       | 9       | 7       | 6       |  |  |

#### a. Effect on shoot fresh length: 1<sup>st</sup> treatment

| ANOVA                               |        |    |        |       |      |  |  |  |  |  |  |
|-------------------------------------|--------|----|--------|-------|------|--|--|--|--|--|--|
| LSF                                 |        |    |        |       |      |  |  |  |  |  |  |
| Sum of<br>SquaresdfMean SquareFSig. |        |    |        |       |      |  |  |  |  |  |  |
| Between Groups                      | 28.788 | 2  | 14.394 | 4.121 | .032 |  |  |  |  |  |  |
| Within Groups                       | 69.852 | 20 | 3.493  |       |      |  |  |  |  |  |  |
| Total                               | 98.640 | 22 |        |       |      |  |  |  |  |  |  |

|                                    |      |               | Μ        | ultiple Compa     | risons      |            |              |              |  |  |  |
|------------------------------------|------|---------------|----------|-------------------|-------------|------------|--------------|--------------|--|--|--|
| LSF                                |      |               |          |                   |             |            |              |              |  |  |  |
| LSD                                |      |               |          |                   |             |            |              |              |  |  |  |
|                                    |      |               |          | Mean              |             |            | 95% Confider | nce Interval |  |  |  |
| (I) Concentrat                     | ion  | (J)           | otion    | Difference (I-    | Std. Error  | Sig.       | Lower        | Upper        |  |  |  |
|                                    |      | Concentration |          | J)                |             |            | Bound        | Bound        |  |  |  |
|                                    | 004  | dimensio      | 1%       | $2.08393^{*}$     | .96722      | .044       | .0663        | 4.1015       |  |  |  |
|                                    | 070  | n3            | 2%       | $2.52500^{*}$     | .93442      | .014       | .5758        | 4.4742       |  |  |  |
| dimension?                         | 1.04 | dimensio      | 0%       | -2.08393-*        | .96722      | .044       | -4.1015-     | 0663-        |  |  |  |
| unnension2                         | 1 %0 | n3            | 2%       | .44107            | .96722      | .653       | -1.5765-     | 2.4587       |  |  |  |
|                                    | 20/  | dimensio      | 0%       | -2.52500-*        | .93442      | .014       | -4.4742-     | 5758-        |  |  |  |
| n3 1%4410796722 .653 -2.4587- 1.57 |      |               |          |                   |             |            |              |              |  |  |  |
|                                    |      | *. The mea    | an diffe | erence is signifi | cant at the | 0.05 level | •            |              |  |  |  |

# **b.** Effect on shoot dry length: 1<sup>st</sup> treatment

|                                     | ANOVA  |    |        |       |      |  |  |  |  |  |  |  |
|-------------------------------------|--------|----|--------|-------|------|--|--|--|--|--|--|--|
|                                     | LSD    |    |        |       |      |  |  |  |  |  |  |  |
| Sum of<br>SquaresdfMean SquareFSig. |        |    |        |       |      |  |  |  |  |  |  |  |
| Between Groups                      | 25.235 | 2  | 12.618 | 4.487 | .025 |  |  |  |  |  |  |  |
| Within Groups                       | 56.238 | 20 | 2.812  |       |      |  |  |  |  |  |  |  |
| Total                               | 81.473 | 22 |        |       |      |  |  |  |  |  |  |  |

|                |                                                      |                |        | Multiple Co     | omparison     | IS          |          |        |  |  |  |  |
|----------------|------------------------------------------------------|----------------|--------|-----------------|---------------|-------------|----------|--------|--|--|--|--|
| LSD            |                                                      |                |        |                 |               |             |          |        |  |  |  |  |
|                | (D) Mean 95% Confidence Interval                     |                |        |                 |               |             |          |        |  |  |  |  |
| (I)<br>Concent | rotion                                               | (J)<br>Concent | rotion | Difference      | Sid.<br>Error | Sig.        | Lower    | Upper  |  |  |  |  |
| Concent        | ration                                               | Concentration  |        | (I-J)           | EII0I         |             | Bound    | Bound  |  |  |  |  |
|                | 00/                                                  | dimensi        | 1%     | $2.08393^{*}$   | .86786        | .026        | .2736    | 3.8943 |  |  |  |  |
|                | 0%                                                   | on3            | 2%     | $2.28750^{*}$   | .83844        | .013        | .5386    | 4.0364 |  |  |  |  |
| dimensi        | 1.0/                                                 | dimensi        | 0%     | -2.08393-*      | .86786        | .026        | -3.8943- | 2736-  |  |  |  |  |
| on2            | 1 %0                                                 | on3            | 2%     | .20357          | .86786        | .817        | -1.6068- | 2.0139 |  |  |  |  |
|                | 20/                                                  | dimensi        | 0%     | -2.28750-*      | .83844        | .013        | -4.0364- | 5386-  |  |  |  |  |
|                | <sup>2</sup> % on3 1%2035786786 .817 -2.0139- 1.6068 |                |        |                 |               |             |          |        |  |  |  |  |
|                |                                                      | *. Th          | e mean | difference is s | ignificant a  | at the 0.05 | level.   |        |  |  |  |  |

# c. Effect on root fresh length: 1<sup>st</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| LRF            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
|                | Squares |    |             |       |      |  |  |  |  |  |  |
| Between Groups | 24.657  | 2  | 12.329      | 6.446 | .007 |  |  |  |  |  |  |
| Within Groups  | 38.252  | 20 | 1.913       |       |      |  |  |  |  |  |  |
| Total          | 62.910  | 22 |             |       |      |  |  |  |  |  |  |

|               |       |          | N       | Iultiple Com   | parisons    |            |          |          |  |  |  |  |
|---------------|-------|----------|---------|----------------|-------------|------------|----------|----------|--|--|--|--|
| LSD           |       |          |         |                |             |            |          |          |  |  |  |  |
|               |       |          |         | Mean           |             |            | 95% Coi  | nfidence |  |  |  |  |
| (I) Concentre | otion | (J)      |         | Difforance     | Std.        | Sig        | Inte     | rval     |  |  |  |  |
|               | ation | Concent  | ration  |                | Error       | Sig.       | Lower    | Upper    |  |  |  |  |
|               |       |          |         | (1-3)          |             |            | Bound    | Bound    |  |  |  |  |
|               | 00/   | dimensi  | 1%      | 1.87321*       | .71576      | .017       | .3802    | 3.3663   |  |  |  |  |
|               | 0%    | on3      | 2%      | $2.36250^{*}$  | .69149      | .003       | .9201    | 3.8049   |  |  |  |  |
| dimension?    | 1.0/  | dimensi  | 0%      | -1.87321-*     | .71576      | .017       | -3.3663- | 3802-    |  |  |  |  |
| unnension2    | 1 %0  | on3      | 2%      | .48929         | .71576      | .502       | -1.0038- | 1.9823   |  |  |  |  |
|               | 204   | dimensi  | 0%      | -2.36250-*     | .69149      | .003       | -3.8049- | 9201-    |  |  |  |  |
|               | 270   | on3      | 1%      | 48929-         | .71576      | .502       | -1.9823- | 1.0038   |  |  |  |  |
|               | *     | . The me | an diff | erence is sign | nificant at | the $0.05$ | evel.    |          |  |  |  |  |

| ANOVA          |                   |    |             |       |      |  |  |  |  |  |  |
|----------------|-------------------|----|-------------|-------|------|--|--|--|--|--|--|
| LRD            |                   |    |             |       |      |  |  |  |  |  |  |
|                | Sum of<br>Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | 26.506            | 2  | 13.253      | 9.800 | .001 |  |  |  |  |  |  |
| Within Groups  | 27.048            | 20 | 1.352       |       |      |  |  |  |  |  |  |
| Total          | 53.554            | 22 |             |       |      |  |  |  |  |  |  |

# d. Effect on root dry length: 1<sup>st</sup> treatment

| Multiple Comparisons                      |      |             |         |                 |               |            |             |               |  |  |  |
|-------------------------------------------|------|-------------|---------|-----------------|---------------|------------|-------------|---------------|--|--|--|
| LSD                                       |      |             |         |                 |               |            |             |               |  |  |  |
|                                           |      |             |         | Mean            | Std           |            | 95% Confide | ence Interval |  |  |  |
| (I) Concentrat                            | ion  | (J) Concent | ration  | Difference      | Siu.<br>Error | Sig.       | Lower       | Upper         |  |  |  |
|                                           |      |             |         | (I-J)           | LIIOI         |            | Bound       | Bound         |  |  |  |
|                                           | 00/  | dimension   | 1%      | $1.9875^{*}$    | .6019         | .004       | .732        | 3.243         |  |  |  |
|                                           | 0%   | 3           | 2%      | $2.4288^{*}$    | .5815         | .000       | 1.216       | 3.642         |  |  |  |
| dimonsion?                                | 1.0/ | dimension   | 0%      | -1.9875-*       | .6019         | .004       | -3.243-     | 732-          |  |  |  |
| unnension2                                | 1 %0 | 3           | 2%      | .4413           | .6019         | .472       | 814-        | 1.697         |  |  |  |
|                                           | 20/  | dimension   | 0%      | -2.4288-*       | .5815         | .000       | -3.642-     | -1.216-       |  |  |  |
| <sup>2%</sup> 3 1%44136019 .472 -1.697814 |      |             |         |                 |               |            |             |               |  |  |  |
|                                           |      | *. The me   | an diff | erence is signi | ficant at tl  | he 0.05 le | vel.        |               |  |  |  |

# e. Effect on fresh shoot weight: 1<sup>st</sup> treatment

| ANOVA          |                   |    |             |       |      |  |  |  |  |  |  |
|----------------|-------------------|----|-------------|-------|------|--|--|--|--|--|--|
| WSF            |                   |    |             |       |      |  |  |  |  |  |  |
|                | Sum of<br>Squares | Df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .052              | 2  | .026        | 1.667 | .214 |  |  |  |  |  |  |
| Within Groups  | .309              | 20 | .015        |       |      |  |  |  |  |  |  |
| Total          | .361              | 22 |             |       |      |  |  |  |  |  |  |

| Multiple Comparisons |      |         |        |            |          |      |             |               |  |
|----------------------|------|---------|--------|------------|----------|------|-------------|---------------|--|
| LSD                  |      |         |        |            |          |      |             |               |  |
| (I) Concentra        | tion | (J)     |        | Mean       |          |      | 95% Confide | ence Interval |  |
|                      |      | Concent | ration | Difference | Std.     |      | Lower       | Upper         |  |
|                      |      |         |        | (I-J)      | Error    | Sig. | Bound       | Bound         |  |
|                      | 0%   | dimensi | 1%     | .0207000   | .0643739 | .751 | 113582-     | .154982       |  |
|                      |      | on3     | 2%     | 0882125-   | .0621911 | .171 | 217941-     | .041516       |  |
| dimension?           | 1%   | dimensi | 0%     | 0207000-   | .0643739 | .751 | 154982-     | .113582       |  |
| unnension2           |      | on3     | 2%     | 1089125-   | .0643739 | .106 | 243194-     | .025369       |  |
|                      | 2%   | dimensi | 0%     | .0882125   | .0621911 | .171 | 041516-     | .217941       |  |
|                      |      | on3     | 1%     | .1089125   | .0643739 | .106 | 025369-     | .243194       |  |

# f. Effect of dry shoot weight: 1<sup>st</sup> treatment

| ANOVA          |                   |    |             |       |      |  |  |  |  |  |  |
|----------------|-------------------|----|-------------|-------|------|--|--|--|--|--|--|
| WSD            |                   |    |             |       |      |  |  |  |  |  |  |
|                | Sum of<br>Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .000              | 2  | .000        | 2.859 | .081 |  |  |  |  |  |  |
| Within Groups  | .000              | 20 | .000        |       |      |  |  |  |  |  |  |
| Total          | .000              | 22 |             |       |      |  |  |  |  |  |  |

# g. Effect on fresh root weigh: 1<sup>st</sup> treatment

|                | ANOVA   |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| WRF            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |
|                | Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .004    | 2  | .002        | 1.357 | .280 |  |  |  |  |  |  |
| Within Groups  | .029    | 20 | .001        |       |      |  |  |  |  |  |  |
| Total          | .033    | 22 |             |       |      |  |  |  |  |  |  |

|               | Multiple Comparisons |         |        |            |          |      |             |               |  |  |  |
|---------------|----------------------|---------|--------|------------|----------|------|-------------|---------------|--|--|--|
| WRF           |                      |         |        |            |          |      |             |               |  |  |  |
| LSD           |                      |         |        |            |          |      |             |               |  |  |  |
| (I) Concentra | tion                 | (J)     |        | Mean       |          |      | 95% Confide | ence Interval |  |  |  |
|               |                      | Concent | ration | Difference | Std.     |      | Lower       | Upper         |  |  |  |
|               |                      |         |        | (I-J)      | Error    | Sig. | Bound       | Bound         |  |  |  |
|               | 0%                   | dimensi | 1%     | 0321339-   | .0198751 | .122 | 073593-     | .009325       |  |  |  |
|               |                      | on3     | 2%     | 0096625-   | .0192012 | .620 | 049716-     | .030391       |  |  |  |
| dimension?    | 1%                   | dimensi | 0%     | .0321339   | .0198751 | .122 | 009325-     | .073593       |  |  |  |
| unnension2    |                      | on3     | 2%     | .0224714   | .0198751 | .272 | 018987-     | .063930       |  |  |  |
|               | 2%                   | dimensi | 0%     | .0096625   | .0192012 | .620 | 030391-     | .049716       |  |  |  |
|               |                      | on3     | 1%     | 0224714-   | .0198751 | .272 | 063930-     | .018987       |  |  |  |

# h. Effect on dry root weight: 1<sup>st</sup> treatment

| ANOVA          |         |    |             |      |      |  |  |  |  |  |
|----------------|---------|----|-------------|------|------|--|--|--|--|--|
| WRD            |         |    |             |      |      |  |  |  |  |  |
|                | Sum of  |    |             |      |      |  |  |  |  |  |
|                | Squares | Df | Mean Square | F    | Sig. |  |  |  |  |  |
| Between Groups | .000    | 2  | .000        | .315 | .733 |  |  |  |  |  |
| Within Groups  | .000    | 20 | .000        |      |      |  |  |  |  |  |
| Total          | .000    | 22 |             |      |      |  |  |  |  |  |

|         | Multiple Comparisons |         |        |            |          |       |             |               |  |  |  |
|---------|----------------------|---------|--------|------------|----------|-------|-------------|---------------|--|--|--|
|         | WRD                  |         |        |            |          |       |             |               |  |  |  |
|         |                      |         |        | L          | SD       |       |             |               |  |  |  |
| (I)     |                      | (J)     |        | Mean       |          |       | 95% Confide | ence Interval |  |  |  |
| Concent | ration               | Concent | ration | Difference | Std.     |       | Lower       | Upper         |  |  |  |
|         |                      | (I-J)   | Error  | Sig.       | Bound    | Bound |             |               |  |  |  |
|         | 0%                   | dimensi | 1%     | 0009000-   | .0012593 | .483  | 003527-     | .001727       |  |  |  |
|         |                      | on3     | 2%     | 0007875-   | .0012166 | .525  | 003325-     | .001750       |  |  |  |
| dimensi | 1%                   | dimensi | 0%     | .0009000   | .0012593 | .483  | 001727-     | .003527       |  |  |  |
| on2     |                      | on3     | 2%     | .0001125   | .0012593 | .930  | 002514-     | .002739       |  |  |  |
|         | 2%                   | dimensi | 0%     | .0007875   | .0012166 | .525  | 001750-     | .003325       |  |  |  |
|         |                      | on3     | 1%     | 0001125-   | .0012593 | .930  | 002739-     | .002514       |  |  |  |

#### Seedling: 2<sup>nd</sup> treatment

|      |        |           |         |         | Statistic | s       |        |        |        |        |
|------|--------|-----------|---------|---------|-----------|---------|--------|--------|--------|--------|
| (    | Concen | tration   | LSF     | LSD     | LRF       | LRD     | WSF    | WSD    | WRF    | WRD    |
| 0%   | Ν      | Valid     | 8       | 8       | 8         | 8       | 8      | 8      | 8      | 8      |
|      |        | Missing   | 0       | 0       | 0         | 0       | 0      | 0      | 0      | 0      |
|      |        | Mean      | 6.9875  | 4.6625  | 4.7375    | 3.4500  | .1623  | .0090  | .1131  | .0024  |
|      | Std.   | Deviation | 2.42218 | 1.35429 | 1.62035   | 1.09022 | .05099 | .00204 | .19331 | .00082 |
| 1%   | Ν      | Valid     | 9       | 9       | 9         | 9       | 9      | 9      | 9      | 9      |
|      |        | Missing   | 0       | 0       | 0         | 0       | 0      | 0      | 0      | 0      |
|      |        | Mean      | 3.4667  | 3.0333  | 1.7556    | 1.1889  | .0858  | .0083  | .0118  | .0015  |
|      | Std.   | Deviation | 2.23942 | 2.06458 | .85894    | .50854  | .04892 | .00373 | .01595 | .00087 |
| 2%   | Ν      | Valid     | 7       | 7       | 7         | 7       | 7      | 7      | 7      | 7      |
|      |        | Missing   | 0       | 0       | 0         | 0       | 0      | 0      | 0      | 0      |
| Mean |        | 2.8000    | 1.9857  | 1.4429  | .9714     | .0540   | .0058  | .0047  | .0020  |        |
|      | Std.   | Deviation | 1.80739 | 1.32467 | .74354    | .48892  | .04210 | .00222 | .00316 | .00141 |

# a. Effect on shoot fresh length: 2<sup>nd</sup> treatment

LSF

| ANOVA          |         |    |             |       |      |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|
| LSF            |         |    |             |       |      |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |
|                | Squares | Df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | 79.271  | 2  | 39.635      | 8.258 | .002 |  |  |  |  |  |
| Within Groups  | 100.789 | 21 | 4.799       |       |      |  |  |  |  |  |
| Total          | 180.060 | 23 |             |       |      |  |  |  |  |  |

|               | Multiple Comparisons |             |         |                 |               |          |             |               |  |  |  |
|---------------|----------------------|-------------|---------|-----------------|---------------|----------|-------------|---------------|--|--|--|
| LSD           |                      |             |         |                 |               |          |             |               |  |  |  |
|               |                      |             |         | Mean            | Std           |          | 95% Confide | ence Interval |  |  |  |
| (I) concentra | tion                 | (J) concent | ration  | Difference      | Siu.<br>Error | Sig.     | Lower       | Upper         |  |  |  |
|               |                      |             |         | (I-J)           | EII0I         |          | Bound       | Bound         |  |  |  |
|               | 004                  | dimension   | 1%      | 3.52083*        | 1.06452       | .003     | 1.3070      | 5.7346        |  |  |  |
|               | 070                  | 3           | 2%      | $4.18750^{*}$   | 1.13383       | .001     | 1.8296      | 6.5454        |  |  |  |
| dimension?    | 1.0/                 | dimension   | 0%      | -3.52083-*      | 1.06452       | .003     | -5.7346-    | -1.3070-      |  |  |  |
| dimension2    | 1 %0                 | 3           | 2%      | .66667          | 1.10404       | .552     | -1.6293-    | 2.9627        |  |  |  |
|               | 20/                  | dimension   | 0%      | -4.18750-*      | 1.13383       | .001     | -6.5454-    | -1.8296-      |  |  |  |
|               | 270                  | 3           | 1%      | 66667-          | 1.10404       | .552     | -2.9627-    | 1.6293        |  |  |  |
|               |                      | *. The n    | nean di | fference is sig | gnificant at  | the 0.05 | level.      |               |  |  |  |

# **b.** Effect on shoot dry length: 2<sup>nd</sup> treatment

| ANOVA          |                   |    |             |       |      |  |  |  |  |  |
|----------------|-------------------|----|-------------|-------|------|--|--|--|--|--|
| LSD            |                   |    |             |       |      |  |  |  |  |  |
|                | Sum of<br>Squares | Df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | 27.562            | 2  | 13.781      | 5.036 | .016 |  |  |  |  |  |
| Within Groups  | 57.467            | 21 | 2.737       |       |      |  |  |  |  |  |
| Total          | 85.030            | 23 |             |       |      |  |  |  |  |  |

|               |      |             | N       | Iultiple Com   | parisons    |          |                |        |  |  |
|---------------|------|-------------|---------|----------------|-------------|----------|----------------|--------|--|--|
| LSD           |      |             |         |                |             |          |                |        |  |  |
|               |      |             |         | Mean           |             |          | 95% Confidence |        |  |  |
| (I)           |      | (I) concent | otion   | Difforma       | Std.        | C:a      | Inter          | rval   |  |  |
| concentration |      | (J) concent | ation   |                | Error       | Sig.     | Lower          | Upper  |  |  |
|               |      |             |         | (1-3)          |             |          | Bound          | Bound  |  |  |
|               | 00/  | dimension   | 1%      | 1.62917        | .80382      | .056     | 0425-          | 3.3008 |  |  |
|               | 0%   | 3           | 2%      | $2.67679^{*}$  | .85616      | .005     | .8963          | 4.4573 |  |  |
| dimension     | 104  | dimension   | 0%      | -1.62917-      | .80382      | .056     | -3.3008-       | .0425  |  |  |
| 2             | 1 70 | 3           | 2%      | 1.04762        | .83366      | .223     | 6861-          | 2.7813 |  |  |
|               | 204  | dimension   | 0%      | -2.67679-*     | .85616      | .005     | -4.4573-       | 8963-  |  |  |
|               | 270  | 3           | 1%      | -1.04762-      | .83366      | .223     | -2.7813-       | .6861  |  |  |
|               |      | *. The me   | an diff | erence is sign | nificant at | the 0.05 | level.         |        |  |  |

#### c. Effect on root fresh length: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |        |      |  |  |  |  |  |
|----------------|---------|----|-------------|--------|------|--|--|--|--|--|
| LRF            |         |    |             |        |      |  |  |  |  |  |
|                | Sum of  | Df | Mean Square | F      | Sig. |  |  |  |  |  |
|                | Squares |    | _           |        | _    |  |  |  |  |  |
| Between Groups | 52.260  | 2  | 26.130      | 19.883 | .000 |  |  |  |  |  |
| Within Groups  | 27.598  | 21 | 1.314       |        |      |  |  |  |  |  |
| Total          | 79.858  | 23 |             |        |      |  |  |  |  |  |

|         |        |         |        | Multiple C      | ompariso    | ns         |           |          |  |  |  |
|---------|--------|---------|--------|-----------------|-------------|------------|-----------|----------|--|--|--|
| LSD     |        |         |        |                 |             |            |           |          |  |  |  |
|         |        |         |        | Mean            |             | Sig.       | 95% Coi   | nfidence |  |  |  |
| (I)     | )      | (J)     |        | Difference      | Std.        |            | Inte      | rval     |  |  |  |
| concent | ration | concent | ration |                 | Error       |            | Lower     | Upper    |  |  |  |
|         |        |         |        | (1-5)           |             |            | Bound     | Bound    |  |  |  |
|         | 0%     | dimens  | 1%     | $2.98194^{*}$   | .55704      | .000       | 1.8235    | 4.1404   |  |  |  |
|         |        | ion3    | 2%     | 3.29464*        | .59331      | .000       | 2.0608    | 4.5285   |  |  |  |
| dimens  | 1.04   | dimens  | 0%     | -2.98194-*      | .55704      | .000       | -4.1404-  | -1.8235- |  |  |  |
| ion2    | 1 70   | ion3    | 2%     | .31270          | .57772      | .594       | 8887-     | 1.5141   |  |  |  |
|         | 20/    | dimens  | 0%     | -3.29464-*      | .59331      | .000       | -4.5285-  | -2.0608- |  |  |  |
|         | ∠%     | ion3    | 1%     | 31270-          | .57772      | .594       | -1.5141-  | .8887    |  |  |  |
|         |        | *. The  | mean   | difference is s | significant | at the 0.0 | 05 level. |          |  |  |  |

# d. Effect on root dry length: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |        |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|--------|------|--|--|--|--|--|--|
| LRD            |         |    |             |        |      |  |  |  |  |  |  |
|                | Sum of  |    |             |        |      |  |  |  |  |  |  |
|                | Squares | df | Mean Square | F      | Sig. |  |  |  |  |  |  |
| Between Groups | 29.796  | 2  | 14.898      | 26.462 | .000 |  |  |  |  |  |  |
| Within Groups  | 11.823  | 21 | .563        |        |      |  |  |  |  |  |  |
| Total          | 41.620  | 23 |             |        |      |  |  |  |  |  |  |

|                   |             |         |        | Multiple C      | ompariso    | ns         |           |          |  |  |  |
|-------------------|-------------|---------|--------|-----------------|-------------|------------|-----------|----------|--|--|--|
| LSD               |             |         |        |                 |             |            |           |          |  |  |  |
| Mean 95% Confiden |             |         |        |                 |             |            |           |          |  |  |  |
| (I)               |             | (J)     |        | Difference      | Std.        | Sig.       | Inte      | rval     |  |  |  |
| concent           | ration      | concent | ration |                 | Error       |            | Lower     | Upper    |  |  |  |
|                   |             |         |        | (I-J)           |             |            | Bound     | Bound    |  |  |  |
|                   | 0%          | dimens  | 1%     | $2.26111^{*}$   | .36460      | .000       | 1.5029    | 3.0193   |  |  |  |
|                   |             | ion3    | 2%     | $2.47857^{*}$   | .38834      | .000       | 1.6710    | 3.2862   |  |  |  |
| dimens            | 1.0/        | dimens  | 0%     | -2.26111-*      | .36460      | .000       | -3.0193-  | -1.5029- |  |  |  |
| ion2              | 1 70        | ion3    | 2%     | .21746          | .37814      | .571       | 5689-     | 1.0038   |  |  |  |
|                   | 20/         | dimens  | 0%     | -2.47857-*      | .38834      | .000       | -3.2862-  | -1.6710- |  |  |  |
|                   | <i>2</i> %0 | ion3    | 1%     | 21746-          | .37814      | .571       | -1.0038-  | .5689    |  |  |  |
|                   |             | *. The  | mean   | difference is s | significant | at the 0.0 | 05 level. |          |  |  |  |

# e. Effect on shoot fresh weight: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |        |      |  |  |  |  |  |
|----------------|---------|----|-------------|--------|------|--|--|--|--|--|
| WSF            |         |    |             |        |      |  |  |  |  |  |
|                | Sum of  |    |             |        |      |  |  |  |  |  |
|                | Squares | df | Mean Square | F      | Sig. |  |  |  |  |  |
| Between Groups | .048    | 2  | .024        | 10.411 | .001 |  |  |  |  |  |
| Within Groups  | .048    | 21 | .002        |        |      |  |  |  |  |  |
| Total          | .096    | 23 |             |        |      |  |  |  |  |  |
|                |         |    |             |        |      |  |  |  |  |  |

|         |        |          |        | Multiple C      | ompariso    | ns         |             |               |  |  |
|---------|--------|----------|--------|-----------------|-------------|------------|-------------|---------------|--|--|
| LSD     |        |          |        |                 |             |            |             |               |  |  |
| (I)     |        | (J)      |        | Mean            |             |            | 95% Confide | ence Interval |  |  |
| concent | ration | concentr | ration | Difference      | Std.        |            | Lower       | Upper         |  |  |
|         |        |          |        | (I-J)           | Error       | Sig.       | Bound       | Bound         |  |  |
|         | 0%     | dimensi  | 1%     | $.07650^{*}$    | .02323      | .003       | .0282       | .1248         |  |  |
|         |        | on3      | 2%     | $.10829^{*}$    | .02474      | .000       | .0568       | .1597         |  |  |
| dimens  | 1%     | dimensi  | 0%     | 07650-*         | .02323      | .003       | 1248-       | 0282-         |  |  |
| ion2    |        | on3      | 2%     | .03179          | .02409      | .201       | 0183-       | .0819         |  |  |
|         | 2%     | dimensi  | 0%     | 10829-*         | .02474      | .000       | 1597-       | 0568-         |  |  |
|         |        | on3      | 1%     | 03179-          | .02409      | .201       | 0819-       | .0183         |  |  |
|         |        | *. The   | mean   | difference is a | significant | at the 0.0 | )5 level.   |               |  |  |

### f. Effect on shoot dry weight: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| WSD            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |
|                | Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .000    | 2  | .000        | 2.517 | .105 |  |  |  |  |  |  |
| Within Groups  | .000    | 21 | .000        |       |      |  |  |  |  |  |  |
| Total          | .000    | 23 |             |       |      |  |  |  |  |  |  |

|         |        |          |         | Multiple C      | omparison   | IS          |             |               |  |  |  |  |  |
|---------|--------|----------|---------|-----------------|-------------|-------------|-------------|---------------|--|--|--|--|--|
|         | WSD    |          |         |                 |             |             |             |               |  |  |  |  |  |
|         | LSD    |          |         |                 |             |             |             |               |  |  |  |  |  |
| (I)     |        | (J)      |         | Mean            |             |             | 95% Confide | ence Interval |  |  |  |  |  |
| concent | ration | concenti | ation   | Difference (I-  |             |             | Lower       | Upper         |  |  |  |  |  |
|         |        |          |         | J)              | Std. Error  | Sig.        | Bound       | Bound         |  |  |  |  |  |
|         | 0%     | dimensi  | 1%      | .00065          | .00138      | .643        | 0022-       | .0035         |  |  |  |  |  |
|         |        | on3      | 2%      | .00315*         | .00147      | .044        | .0001       | .0062         |  |  |  |  |  |
| dimensi | 1%     | dimensi  | 0%      | 00065-          | .00138      | .643        | 0035-       | .0022         |  |  |  |  |  |
| on2     |        | on3      | 2%      | .00250          | .00144      | .096        | 0005-       | .0055         |  |  |  |  |  |
|         | 2%     | dimensi  | 0%      | 00315-*         | .00147      | .044        | 0062-       | 0001-         |  |  |  |  |  |
|         |        | on3      | 1%      | 00250-          | .00144      | .096        | 0055-       | .0005         |  |  |  |  |  |
|         |        | *. Tł    | ne mear | n difference is | significant | at the 0.05 | level.      |               |  |  |  |  |  |

# g. Effect on root fresh weight: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| WRF            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |
|                | Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .058    | 2  | .029        | 2.324 | .123 |  |  |  |  |  |  |
| Within Groups  | .264    | 21 | .013        |       |      |  |  |  |  |  |  |
| Total          | .322    | 23 |             |       |      |  |  |  |  |  |  |

|         | Multiple Comparisons |          |       |            |        |       |             |               |  |  |  |  |
|---------|----------------------|----------|-------|------------|--------|-------|-------------|---------------|--|--|--|--|
| LSD     |                      |          |       |            |        |       |             |               |  |  |  |  |
| (I)     |                      | (J)      |       | Mean       |        |       | 95% Confide | ence Interval |  |  |  |  |
| concent | ration               | concenti | ation | Difference | Std.   |       | Lower       | Upper         |  |  |  |  |
|         |                      |          | (I-J) | Error      | Sig.   | Bound | Bound       |               |  |  |  |  |
|         | 0%                   | dimensi  | 1%    | .10132     | .05445 | .077  | 0119-       | .2146         |  |  |  |  |
|         |                      | on3      | 2%    | .10843     | .05799 | .076  | 0122-       | .2290         |  |  |  |  |
| dimensi | 1%                   | dimensi  | 0%    | 10132-     | .05445 | .077  | 2146-       | .0119         |  |  |  |  |
| on2     |                      | on3      | 2%    | .00711     | .05647 | .901  | 1103-       | .1245         |  |  |  |  |
|         | 2%                   | dimensi  | 0%    | 10843-     | .05799 | .076  | 2290-       | .0122         |  |  |  |  |
|         |                      | on3      | 1%    | 00711-     | .05647 | .901  | 1245-       | .1103         |  |  |  |  |

# h. Effect on root dry weight: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| WRD            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |
|                | Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .000    | 2  | .000        | 1.551 | .235 |  |  |  |  |  |  |
| Within Groups  | .000    | 21 | .000        |       |      |  |  |  |  |  |  |
| Total          | .000    | 23 |             |       |      |  |  |  |  |  |  |
|                |         |    |             |       |      |  |  |  |  |  |  |
|                |         |    |             |       |      |  |  |  |  |  |  |

|         | Multiple Comparisons |         |        |                |            |      |             |               |  |  |  |  |
|---------|----------------------|---------|--------|----------------|------------|------|-------------|---------------|--|--|--|--|
| LSD     |                      |         |        |                |            |      |             |               |  |  |  |  |
| (I)     |                      | (J)     |        | Mean           |            |      | 95% Confide | ence Interval |  |  |  |  |
| concent | ration               | concent | ration | Difference (I- |            |      | Lower       | Upper         |  |  |  |  |
|         |                      |         |        | J)             | Std. Error | Sig. | Bound       | Bound         |  |  |  |  |
|         | 0%                   | dimensi | 1%     | .00089         | .00051     | .093 | 0002-       | .0019         |  |  |  |  |
|         |                      | on3     | 2%     | .00043         | .00054     | .437 | 0007-       | .0015         |  |  |  |  |
| dimensi | 1%                   | dimensi | 0%     | 00089-         | .00051     | .093 | 0019-       | .0002         |  |  |  |  |
| on2     |                      | on3     | 2%     | 00046-         | .00053     | .387 | 0016-       | .0006         |  |  |  |  |
|         | 2%                   | dimensi | 0%     | 00043-         | .00054     | .437 | 0015-       | .0007         |  |  |  |  |
|         |                      | on3     | 1%     | .00046         | .00053     | .387 | 0006-       | .0016         |  |  |  |  |

# 2. Hot tap water A. Germination %:

#### 1<sup>st</sup> treatment:

|      | Statistics <sup>a</sup> |          |            |            |         |        |        |  |  |  |  |  |  |
|------|-------------------------|----------|------------|------------|---------|--------|--------|--|--|--|--|--|--|
|      |                         | 0%       | 1%         | 2%         | 5%      | 10%    | 20%    |  |  |  |  |  |  |
| Ν    | Valid                   | 14       | 14         | 14         | 14      | 14     | 14     |  |  |  |  |  |  |
|      | Missing                 | 0        | 0          | 0          | 0       | 0      | 0      |  |  |  |  |  |  |
|      | Mean                    | 42.1429  | 40.7143    | 25.0000    | 6.4286  | .0000  | .0000  |  |  |  |  |  |  |
| Std. | Deviation               | 15.28125 | 18.59044   | 10.91928   | 4.97245 | .00000 | .00000 |  |  |  |  |  |  |
|      |                         | a. Ti    | reatment = | treatment1 |         |        |        |  |  |  |  |  |  |

#### 2<sup>nd</sup> treatment:

|                     | Statistics <sup>a</sup> |         |          |         |        |        |        |  |  |  |  |
|---------------------|-------------------------|---------|----------|---------|--------|--------|--------|--|--|--|--|
| 0% 1% 2% 5% 10% 20% |                         |         |          |         |        |        |        |  |  |  |  |
| N Valid             |                         | 14      | 13       | 13      | 14     | 14     | 14     |  |  |  |  |
|                     | Missing                 | 0       | 1        | 1       | 0      | 0      | 0      |  |  |  |  |
|                     | Mean                    | 26.4286 | 12.6923  | 27.6923 | .0000  | .0000  | .0000  |  |  |  |  |
| Std                 | . Deviation             | 9.28783 | 13.93667 | 5.99145 | .00000 | .00000 | .00000 |  |  |  |  |

# **B.** Seedling: 1<sup>st</sup> treatment

|     |      |              |         |         | Statistics | 3      |        |        |        |        |
|-----|------|--------------|---------|---------|------------|--------|--------|--------|--------|--------|
| Con | icen | tration      | LSF     | LSD     | LRF        | LRD    | WSF    | WSD    | WRF    | WRD    |
| 1   | Ν    | Valid        | 5       | 5       | 5          | 5      | 5      | 5      | 5      | 5      |
|     |      | Missing      | 0       | 0       | 0          | 0      | 0      | 0      | 0      | 0      |
|     |      | Mean         | 7.1000  | 6.0800  | 4.6400     | 3.4000 | .1588  | .0099  | .0436  | .0065  |
|     | Sto  | d. Deviation | 1.52315 | 1.46356 | 1.10589    | .74162 | .02594 | .00204 | .00403 | .00962 |
| 2   | Ν    | Valid        | 5       | 5       | 5          | 5      | 5      | 5      | 5      | 5      |
|     |      | Missing      | 0       | 0       | 0          | 0      | 0      | 0      | 0      | 0      |
|     |      | Mean         | 5.7000  | 4.9400  | 1.9800     | 1.0400 | .1282  | .0151  | .0238  | .0047  |
|     | Sto  | d. Deviation | 1.26886 | 1.30115 | .46583     | .08944 | .01843 | .00668 | .03025 | .00837 |
| 3   | Ν    | Valid        | 3       | 3       | 3          | 3      | 3      | 3      | 3      | 3      |
|     |      | Missing      | 0       | 0       | 0          | 0      | 0      | 0      | 0      | 0      |
|     | Mean |              | 2.3333  | 1.9667  | 1.0667     | .8000  | .0647  | .0062  | .0100  | .0008  |
|     | Sto  | d. Deviation | 1.89297 | 1.77858 | .20817     | .26458 | .03443 | .00231 | .00265 | .00026 |

|               | ANOVA   |    |             |       |      |  |  |  |  |  |  |
|---------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
|               | LSF     |    |             |       |      |  |  |  |  |  |  |
|               | Sum of  |    |             |       |      |  |  |  |  |  |  |
|               | Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between       | 43.064  | 2  | 21.532      | 9.408 | .005 |  |  |  |  |  |  |
| Groups        |         |    |             |       |      |  |  |  |  |  |  |
| Within Groups | 22.887  | 10 | 2.289       |       |      |  |  |  |  |  |  |
| Total         | 65.951  | 12 |             |       |      |  |  |  |  |  |  |

#### a. Effect on shoot fresh length: 1<sup>st</sup> treatment

|         | Multiple Comparisons                                    |         |         |                 |             |             |             |               |  |  |  |
|---------|---------------------------------------------------------|---------|---------|-----------------|-------------|-------------|-------------|---------------|--|--|--|
|         | LSD                                                     |         |         |                 |             |             |             |               |  |  |  |
| (I)     | )                                                       | (J)     |         | Mean            |             |             | 95% Confide | ence Interval |  |  |  |
| Concent | tration                                                 | Concent | ration  | Difference (I-  |             |             | Lower       | Upper         |  |  |  |
|         |                                                         |         |         | J)              | Std. Error  | Sig.        | Bound       | Bound         |  |  |  |
|         | 0%                                                      | dimensi | 1%      | 1.40000         | .95680      | .174        | 7319-       | 3.5319        |  |  |  |
|         |                                                         | on3     | 2%      | $4.76667^{*}$   | 1.10482     | .002        | 2.3050      | 7.2284        |  |  |  |
| dimen   | 1%                                                      | dimensi | 0%      | -1.40000-       | .95680      | .174        | -3.5319-    | .7319         |  |  |  |
| sion2   |                                                         | on3     | 2%      | 3.36667*        | 1.10482     | .012        | .9050       | 5.8284        |  |  |  |
|         | 2%                                                      | dimensi | 0%      | -4.76667-*      | 1.10482     | .002        | -7.2284-    | -2.3050-      |  |  |  |
|         | on3 1% -3.36667- <sup>*</sup> 1.10482 .012 -5.82849050- |         |         |                 |             |             |             |               |  |  |  |
|         |                                                         | *. Tł   | ne mear | n difference is | significant | at the 0.03 | 5 level.    |               |  |  |  |

# **b.** Effect on shoot dry length: 1<sup>st</sup> treatment

| ANOVA         |         |    |             |       |      |  |  |  |  |  |  |
|---------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
|               | LSD     |    |             |       |      |  |  |  |  |  |  |
|               | Sum of  |    |             |       |      |  |  |  |  |  |  |
|               | Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between       | 32.223  | 2  | 16.111      | 7.436 | .011 |  |  |  |  |  |  |
| Groups        |         |    |             |       |      |  |  |  |  |  |  |
| Within Groups | 21.667  | 10 | 2.167       |       |      |  |  |  |  |  |  |
| Total         | 53.889  | 12 |             |       |      |  |  |  |  |  |  |

|             | Multiple Comparisons             |                 |         |                      |              |              |           |          |  |  |  |
|-------------|----------------------------------|-----------------|---------|----------------------|--------------|--------------|-----------|----------|--|--|--|
|             | LSD                              |                 |         |                      |              |              |           |          |  |  |  |
| (           | (I) Mean 95% Confidence Interval |                 |         |                      |              |              |           |          |  |  |  |
| Conc        | entrati                          | (J)<br>Concenti | rotion  | Difference (I-       | Std. Error   | Sig.         | Lower     | Upper    |  |  |  |
| on          |                                  | Concentration   |         | J)                   |              |              | Bound     | Bound    |  |  |  |
|             | 004                              | dimensio        | 1%      | 1.14000              | .93095       | .249         | 9343-     | 3.2143   |  |  |  |
| dim         | 070                              | n3              | 2%      | 4.11333 <sup>*</sup> | 1.07497      | .003         | 1.7182    | 6.5085   |  |  |  |
| anni        | 1.0/                             | dimensio        | 0%      | -1.14000-            | .93095       | .249         | -3.2143-  | .9343    |  |  |  |
| ensi<br>on2 | 1 %0                             | n3              | 2%      | $2.97333^{*}$        | 1.07497      | .020         | .5782     | 5.3685   |  |  |  |
| 0112        | 20/                              | dimensio        | 0%      | -4.11333-*           | 1.07497      | .003         | -6.5085-  | -1.7182- |  |  |  |
|             | 270                              | n3              | 1%      | -2.97333-*           | 1.07497      | .020         | -5.3685-  | 5782-    |  |  |  |
|             |                                  | *.]             | The mea | an difference is     | s significan | t at the 0.0 | )5 level. |          |  |  |  |

# c. Effect on root fresh length: 1<sup>st</sup> treatment

| ANOVA         |                             |    |             |        |      |  |  |  |  |  |  |
|---------------|-----------------------------|----|-------------|--------|------|--|--|--|--|--|--|
|               | LRF                         |    |             |        |      |  |  |  |  |  |  |
|               | Sum of                      |    |             |        |      |  |  |  |  |  |  |
|               | Squares                     | df | Mean Square | F      | Sig. |  |  |  |  |  |  |
| Between       | 29.303                      | 2  | 14.651      | 25.059 | .000 |  |  |  |  |  |  |
| Groups        |                             |    |             |        |      |  |  |  |  |  |  |
| Within Groups | Within Groups 5.847 10 .585 |    |             |        |      |  |  |  |  |  |  |
| Total         | 35.149                      | 12 |             |        |      |  |  |  |  |  |  |

|                                   | Multiple Comparisons |         |        |                      |             |            |             |               |  |  |  |
|-----------------------------------|----------------------|---------|--------|----------------------|-------------|------------|-------------|---------------|--|--|--|
|                                   | LSD                  |         |        |                      |             |            |             |               |  |  |  |
| (I                                | )                    | (J)     |        | Mean                 |             |            | 95% Confide | ence Interval |  |  |  |
| Concer                            | ntratio              | Concent | ration | Difference           | Std.        |            | Lower       | Upper         |  |  |  |
| n                                 |                      |         |        | (I-J)                | Error       | Sig.       | Bound       | Bound         |  |  |  |
|                                   | 0%                   | dimensi | 1%     | $2.66000^{*}$        | .48360      | .000       | 1.5825      | 3.7375        |  |  |  |
|                                   |                      | on3     | 2%     | 3.57333 <sup>*</sup> | .55841      | .000       | 2.3291      | 4.8175        |  |  |  |
| dimen                             | 1%                   | dimensi | 0%     | -2.66000-*           | .48360      | .000       | -3.7375-    | -1.5825-      |  |  |  |
| sion2                             |                      | on3     | 2%     | .91333               | .55841      | .133       | 3309-       | 2.1575        |  |  |  |
|                                   | 2%                   | dimensi | 0%     | -3.57333-*           | .55841      | .000       | -4.8175-    | -2.3291-      |  |  |  |
| on3 1%9133355841 .133 -2.15753309 |                      |         |        |                      |             |            |             |               |  |  |  |
|                                   |                      | *. Th   | e mean | difference is        | significant | at the 0.0 | )5 level.   |               |  |  |  |

### d. Effect on root dry length: 1<sup>st</sup> treatment

| ANOVA                               |        |    |       |        |      |  |  |  |  |  |  |
|-------------------------------------|--------|----|-------|--------|------|--|--|--|--|--|--|
|                                     | LRD    |    |       |        |      |  |  |  |  |  |  |
| Sum of<br>SquaresDfMean SquareFSig. |        |    |       |        |      |  |  |  |  |  |  |
| Between<br>Groups                   | 18.577 | 2  | 9.289 | 39.159 | .000 |  |  |  |  |  |  |
| Within Groups                       | 2.372  | 10 | .237  |        |      |  |  |  |  |  |  |
| Total                               | 20.949 | 12 |       |        |      |  |  |  |  |  |  |

|                                   | Multiple Comparisons |          |        |               |             |            |             |               |  |  |  |
|-----------------------------------|----------------------|----------|--------|---------------|-------------|------------|-------------|---------------|--|--|--|
|                                   | LSD                  |          |        |               |             |            |             |               |  |  |  |
| (I                                | )                    | (J)      |        | Mean          |             |            | 95% Confide | ence Interval |  |  |  |
| Concer                            | ntratio              | Concenti | ration | Difference    | Std.        |            | Lower       | Upper         |  |  |  |
| n                                 |                      |          |        | (I-J)         | Error       | Sig.       | Bound       | Bound         |  |  |  |
|                                   | 0%                   | dimensi  | 1%     | $2.36000^{*}$ | .30803      | .000       | 1.6737      | 3.0463        |  |  |  |
|                                   |                      | on3      | 2%     | $2.60000^{*}$ | .35568      | .000       | 1.8075      | 3.3925        |  |  |  |
| dimen                             | 1%                   | dimensi  | 0%     | -2.36000-*    | .30803      | .000       | -3.0463-    | -1.6737-      |  |  |  |
| sion2                             |                      | on3      | 2%     | .24000        | .35568      | .515       | 5525-       | 1.0325        |  |  |  |
|                                   | 2%                   | dimensi  | 0%     | -2.60000-*    | .35568      | .000       | -3.3925-    | -1.8075-      |  |  |  |
| on3 1%2400035568 .515 -1.03255525 |                      |          |        |               |             |            |             |               |  |  |  |
|                                   |                      | *. The   | e mean | difference is | significant | at the 0.0 | )5 level.   |               |  |  |  |

### e. Effect on shoot fresh weight: 1<sup>st</sup> treatment

| ANOVA         |                               |    |      |        |      |  |  |  |  |  |  |
|---------------|-------------------------------|----|------|--------|------|--|--|--|--|--|--|
|               | WSF                           |    |      |        |      |  |  |  |  |  |  |
|               | Sum of                        |    |      |        |      |  |  |  |  |  |  |
|               | Squares Df Mean Square F Sig. |    |      |        |      |  |  |  |  |  |  |
| Between       | .017                          | 2  | .008 | 12.992 | .002 |  |  |  |  |  |  |
| Groups        |                               |    |      |        |      |  |  |  |  |  |  |
| Within Groups | .006                          | 10 | .001 |        |      |  |  |  |  |  |  |
| Total         | .023                          | 12 |      |        |      |  |  |  |  |  |  |

|                                                | Multiple Comparisons |         |        |               |             |            |             |               |  |  |  |
|------------------------------------------------|----------------------|---------|--------|---------------|-------------|------------|-------------|---------------|--|--|--|
|                                                | LSD                  |         |        |               |             |            |             |               |  |  |  |
| (I                                             | )                    | (J)     |        | Mean          |             |            | 95% Confide | ence Interval |  |  |  |
| Concer                                         | ntratio              | Concent | ration | Difference    | Std.        |            | Lower       | Upper         |  |  |  |
| n                                              |                      |         |        | (I-J)         | Error       | Sig.       | Bound       | Bound         |  |  |  |
|                                                | 0%                   | dimensi | 1%     | .03060        | .01603      | .085       | 0051-       | .0663         |  |  |  |
|                                                |                      | on3     | 2%     | .09413*       | .01850      | .000       | .0529       | .1354         |  |  |  |
| dimen                                          | 1%                   | dimensi | 0%     | 03060-        | .01603      | .085       | 0663-       | .0051         |  |  |  |
| sion2                                          |                      | on3     | 2%     | .06353*       | .01850      | .006       | .0223       | .1048         |  |  |  |
|                                                | 2%                   | dimensi | 0%     | 09413-*       | .01850      | .000       | 1354-       | 0529-         |  |  |  |
| on3 1%06353- <sup>*</sup> .01850 .00610480223- |                      |         |        |               |             |            |             |               |  |  |  |
|                                                |                      | *. Th   | e mean | difference is | significant | at the 0.0 | 5 level.    |               |  |  |  |

# f. Effect on shoot dry weight: 1<sup>st</sup> treatment

| ANOVA         |                               |    |      |       |      |  |  |  |  |  |
|---------------|-------------------------------|----|------|-------|------|--|--|--|--|--|
| WSD           |                               |    |      |       |      |  |  |  |  |  |
|               | Sum of                        |    |      |       |      |  |  |  |  |  |
|               | Squares Df Mean Square F Sig. |    |      |       |      |  |  |  |  |  |
| Between       | .000                          | 2  | .000 | 3.853 | .057 |  |  |  |  |  |
| Groups        |                               |    |      |       |      |  |  |  |  |  |
| Within Groups | .000                          | 10 | .000 |       |      |  |  |  |  |  |
| Total         | .000                          | 12 |      |       |      |  |  |  |  |  |

|        | Multiple Comparisons |         |         |               |             |            |             |               |  |  |  |
|--------|----------------------|---------|---------|---------------|-------------|------------|-------------|---------------|--|--|--|
|        | LSD                  |         |         |               |             |            |             |               |  |  |  |
| (I)    | )                    | (J)     |         | Mean          |             |            | 95% Confide | ence Interval |  |  |  |
| Concen | tration              | Concent | ration  | Difference    | Std.        |            | Lower       | Upper         |  |  |  |
|        |                      |         |         | (I-J)         | Error       | Sig.       | Bound       | Bound         |  |  |  |
|        | 0%                   | dimensi | 1%      | 00516-        | .00287      | .102       | 0116-       | .0012         |  |  |  |
|        |                      | on3     | 2%      | .00373        | .00331      | .286       | 0036-       | .0111         |  |  |  |
| dimen  | 1%                   | dimensi | 0%      | .00516        | .00287      | .102       | 0012-       | .0116         |  |  |  |
| sion2  |                      | on3     | 2%      | $.00889^{*}$  | .00331      | .023       | .0015       | .0163         |  |  |  |
|        | 2%                   | dimensi | 0%      | 00373-        | .00331      | .286       | 0111-       | .0036         |  |  |  |
|        |                      | on3     | 1%      | 00889-*       | .00331      | .023       | 0163-       | 0015-         |  |  |  |
|        |                      | *. Th   | ne mear | difference is | significant | at the 0.0 | 5 level.    |               |  |  |  |

|                | ANOVA   |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| WRF            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |
|                | Squares | Df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .002    | 2  | .001        | 3.048 | .093 |  |  |  |  |  |  |
| Within Groups  | .004    | 10 | .000        |       |      |  |  |  |  |  |  |
| Total          | .006    | 12 |             |       |      |  |  |  |  |  |  |

### g. Effect on root fresh weight: 1<sup>st</sup> treatment

|              | Multiple Comparisons |             |         |                 |               |            |             |               |  |  |  |
|--------------|----------------------|-------------|---------|-----------------|---------------|------------|-------------|---------------|--|--|--|
| LSD          |                      |             |         |                 |               |            |             |               |  |  |  |
|              |                      |             |         | Mean            | Std           |            | 95% Confide | ence Interval |  |  |  |
| (I) Concentr | ation                | (J) Concent | ration  | Difference      | Slu.<br>Error | Sig.       | Lower       | Upper         |  |  |  |
|              |                      |             |         | (I-J)           | EIIOI         |            | Bound       | Bound         |  |  |  |
|              | 00/                  | dimension3  | 1%      | .01982          | .01223        | .136       | 0074-       | .0471         |  |  |  |
|              | 0%                   |             | 2%      | .03362*         | .01412        | .039       | .0022       | .0651         |  |  |  |
| dimension?   | 1.0/                 | 1           | 0%      | 01982-          | .01223        | .136       | 0471-       | .0074         |  |  |  |
| unnension2   | 1 %0                 | unnensions  | 2%      | .01380          | .01412        | .352       | 0177-       | .0453         |  |  |  |
|              | 20/                  | dimension?  | 0%      | 03362-*         | .01412        | .039       | 0651-       | 0022-         |  |  |  |
|              | 2%                   | annensions  | 1%      | 01380-          | .01412        | .352       | 0453-       | .0177         |  |  |  |
|              |                      | *. The m    | ean dif | ference is sign | ificant at t  | he 0.05 le | evel.       |               |  |  |  |

### h. Effect on root dry weight: 1<sup>st</sup> treatment

| ANOVA          |         |    |             |      |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|------|------|--|--|--|--|--|--|
| WRD            |         |    |             |      |      |  |  |  |  |  |  |
|                | Sum of  |    |             |      |      |  |  |  |  |  |  |
|                | Squares | df | Mean Square | F    | Sig. |  |  |  |  |  |  |
| Between Groups | .000    | 2  | .000        | .465 | .641 |  |  |  |  |  |  |
| Within Groups  | .001    | 10 | .000        |      |      |  |  |  |  |  |  |
| Total          | .001    | 12 |             |      |      |  |  |  |  |  |  |
|                |         |    |             |      |      |  |  |  |  |  |  |

|               | Multiple Comparisons |             |         |            |               |      |             |               |  |  |  |  |
|---------------|----------------------|-------------|---------|------------|---------------|------|-------------|---------------|--|--|--|--|
| LSD           |                      |             |         |            |               |      |             |               |  |  |  |  |
|               |                      |             |         | Moon       | Std           |      | 95% Confide | ence Interval |  |  |  |  |
| (I) Concentra | ation                | (J) Concent | tration | Difference | Siu.<br>Error | Sig. | Lower       | Upper         |  |  |  |  |
|               |                      |             |         | Difference | LIIOI         |      | Bound       | Bound         |  |  |  |  |
|               | 0%                   | dimension   | 1%      | .00174     | .00510        | .740 | 0096-       | .0131         |  |  |  |  |
|               | 0%                   | 3           | 2%      | .00566     | .00589        | .359 | 0075-       | .0188         |  |  |  |  |
| dimension?    | 1.04                 | dimension   | 0%      | 00174-     | .00510        | .740 | 0131-       | .0096         |  |  |  |  |
| dimension2    | 1 %0                 | 3           | 2%      | .00392     | .00589        | .521 | 0092-       | .0170         |  |  |  |  |
|               | 204                  | dimension   | 0%      | 00566-     | .00589        | .359 | 0188-       | .0075         |  |  |  |  |
|               | 2%                   | 3           | 1%      | 00392-     | .00589        | .521 | 0170-       | .0092         |  |  |  |  |

### C. Seedling 2<sup>nd</sup> treatment

|    | Statistics |             |         |         |        |        |        |        |        |        |  |  |
|----|------------|-------------|---------|---------|--------|--------|--------|--------|--------|--------|--|--|
| C  | once       | entration   | LSF     | LSD     | LRF    | LRD    | WSF    | WSD    | WRF    | WRD    |  |  |
| 0% | Ν          | Valid       | 3       | 3       | 3      | 3      | 3      | 3      | 3      | 3      |  |  |
|    |            | Missing     | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      |  |  |
|    |            | Mean        | 6.8333  | 6.0333  | 3.0000 | 2.5333 | .1261  | .0753  | .0283  | .0026  |  |  |
|    | Std        | . Deviation | .30551  | .35119  | .50000 | .45092 | .02210 | .02021 | .00550 | .00139 |  |  |
| 1% | Ν          | Valid       | 5       | 5       | 5      | 5      | 5      | 5      | 5      | 5      |  |  |
|    |            | Missing     | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      |  |  |
|    |            | Mean        | 4.4200  | 3.9000  | 2.0400 | 1.6400 | .0750  | .0284  | .0087  | .0045  |  |  |
|    | Std        | . Deviation | 2.00175 | 1.90263 | .28810 | .31305 | .04261 | .03232 | .00533 | .00272 |  |  |
| 2% | Ν          | Valid       | 3       | 3       | 3      | 3      | 3      | 3      | 3      | 3      |  |  |
|    |            | Missing     | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      |  |  |
|    |            | Mean        | 6.3667  | 5.9000  | 1.9333 | 1.5333 | .1320  | .0454  | .0181  | .0058  |  |  |
|    | Std        | . Deviation | .65064  | .85440  | .11547 | .20817 | .01495 | .02307 | .00130 | .00231 |  |  |

# a. Effect on shoot fresh length: 2<sup>nd</sup> treatment

|                | ANOVA   |    |             |       |      |  |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|--|
| LSF            |         |    |             |       |      |  |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |  |
|                | Squares | Df | Mean Square | F     | Sig. |  |  |  |  |  |  |  |
| Between Groups | 13.288  | 2  | 6.644       | 3.115 | .100 |  |  |  |  |  |  |  |
| Within Groups  | 17.061  | 8  | 2.133       |       |      |  |  |  |  |  |  |  |
| Total          | 30.349  | 10 |             |       |      |  |  |  |  |  |  |  |

|                   | Multiple Comparisons |             |        |            |               |      |             |               |  |  |  |
|-------------------|----------------------|-------------|--------|------------|---------------|------|-------------|---------------|--|--|--|
| LSD               |                      |             |        |            |               |      |             |               |  |  |  |
|                   |                      |             |        | Mean       | Std           |      | 95% Confide | ence Interval |  |  |  |
| (I) Concentration |                      | (J) Concent | ration | Difference | Siu.<br>Error | Sig. | Lower       | Upper         |  |  |  |
|                   |                      |             |        | (I-J)      | LIIOI         |      | Bound       | Bound         |  |  |  |
|                   | 00/                  | dimension3  | 1%     | 2.41333    | 1.06650       | .053 | 0460-       | 4.8727        |  |  |  |
|                   | 0%                   |             | 2%     | .46667     | 1.19238       | .706 | -2.2830-    | 3.2163        |  |  |  |
| dimension?        | 1.0/                 | 1           | 0%     | -2.41333-  | 1.06650       | .053 | -4.8727-    | .0460         |  |  |  |
| dimension2        | 1 %0                 | unnensions  | 2%     | -1.94667-  | 1.06650       | .105 | -4.4060-    | .5127         |  |  |  |
|                   | 204                  | dimonsion?  | 0%     | 46667-     | 1.19238       | .706 | -3.2163-    | 2.2830        |  |  |  |
|                   | 270                  | unnensions  | 1%     | 1.94667    | 1.06650       | .105 | 5127-       | 4.4060        |  |  |  |

# **b.** Effect on shoot dry length: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|
| LSD            |         |    |             |       |      |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |
|                | Squares | Df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | 11.675  | 2  | 5.838       | 2.885 | .114 |  |  |  |  |  |
| Within Groups  | 16.187  | 8  | 2.023       |       |      |  |  |  |  |  |
| Total          | 27.862  | 10 |             |       |      |  |  |  |  |  |

|                              | Multiple Comparisons |              |          |                 |               |            |          |        |  |  |  |
|------------------------------|----------------------|--------------|----------|-----------------|---------------|------------|----------|--------|--|--|--|
| LSD                          |                      |              |          |                 |               |            |          |        |  |  |  |
| Mean 95% Confidence Interval |                      |              |          |                 |               |            |          |        |  |  |  |
| (I) Concentr                 | ation                | (J) Concentr | ation    | Difference      | Std. Error    | Sig.       | Lower    | Upper  |  |  |  |
|                              |                      |              |          | Difference      |               |            | Bound    | Bound  |  |  |  |
|                              | 00/                  | dimension3   | 1%       | 2.13333         | 1.03880       | .074       | 2622-    | 4.5288 |  |  |  |
|                              | 070                  |              | 2%       | .13333          | 1.16142       | .911       | -2.5449- | 2.8116 |  |  |  |
| dimension?                   | 104                  | dimension?   | 0%       | -2.13333-       | 1.03880       | .074       | -4.5288- | .2622  |  |  |  |
| unnension2                   | 1 %0                 | unnensions   | 2%       | -2.00000-       | 1.03880       | .090       | -4.3955- | .3955  |  |  |  |
|                              | 20/                  | dimension?   | 0%       | 13333-          | 1.16142       | .911       | -2.8116- | 2.5449 |  |  |  |
|                              | 2%                   | unnension 5  | 1%       | 2.00000         | 1.03880       | .090       | 3955-    | 4.3955 |  |  |  |
|                              |                      | *. The m     | nean dif | ference is sign | ificant at th | e 0.05 lev | el       |        |  |  |  |

| ANOVA          |         |    |             |        |      |  |  |  |  |  |
|----------------|---------|----|-------------|--------|------|--|--|--|--|--|
| LRF            |         |    |             |        |      |  |  |  |  |  |
|                | Sum of  |    |             |        |      |  |  |  |  |  |
|                | Squares | df | Mean Square | F      | Sig. |  |  |  |  |  |
| Between Groups | 2.203   | 2  | 1.102       | 10.263 | .006 |  |  |  |  |  |
| Within Groups  | .859    | 8  | .107        |        |      |  |  |  |  |  |
| Total          | 3.062   | 10 |             |        |      |  |  |  |  |  |
|                |         |    |             |        |      |  |  |  |  |  |

# c. Effect on root fresh length: 2<sup>nd</sup> treatment

|                    |       |                | l        | Multiple Com    | parisons      |            |          |               |  |  |  |  |
|--------------------|-------|----------------|----------|-----------------|---------------|------------|----------|---------------|--|--|--|--|
|                    | LRF   |                |          |                 |               |            |          |               |  |  |  |  |
| LSD                |       |                |          |                 |               |            |          |               |  |  |  |  |
| Mean 95% Confidenc |       |                |          |                 |               |            |          | ence Interval |  |  |  |  |
| (I) Concentra      | ation | (J)<br>Concent | rotion   | Difference      | Siu.<br>Error | Sig.       | Lower    | Upper         |  |  |  |  |
|                    |       | Concentration  |          | (I-J)           | LIIUI         |            | Bound    | Bound         |  |  |  |  |
|                    | 0%    | dimensi        | 1%       | $.96000^{*}$    | .23926        | .004       | .4083    | 1.5117        |  |  |  |  |
|                    |       | on3            | 2%       | $1.06667^{*}$   | .26750        | .004       | .4498    | 1.6835        |  |  |  |  |
| dimension?         | 1.04  | dimensi        | 0%       | 96000-*         | .23926        | .004       | -1.5117- | 4083-         |  |  |  |  |
| unnension2         | 1 70  | on3            | 2%       | .10667          | .23926        | .668       | 4451-    | .6584         |  |  |  |  |
|                    | 204   | dimensi        | 0%       | -1.06667-*      | .26750        | .004       | -1.6835- | 4498-         |  |  |  |  |
|                    | 2%    | on3            | 1%       | 10667-          | .23926        | .668       | 6584-    | .4451         |  |  |  |  |
|                    |       | *. The m       | nean dif | ference is sign | ificant at t  | he 0.05 le | vel.     |               |  |  |  |  |

# d. Effect on root dry length: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|
| LRD            |         |    |             |       |      |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |
|                | Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | 1.922   | 2  | .961        | 8.683 | .010 |  |  |  |  |  |
| Within Groups  | .885    | 8  | .111        |       |      |  |  |  |  |  |
| Total          | 2.807   | 10 |             |       |      |  |  |  |  |  |

|               | Multiple Comparisons |           |          |                 |               |             |             |               |  |  |  |
|---------------|----------------------|-----------|----------|-----------------|---------------|-------------|-------------|---------------|--|--|--|
| LRD           |                      |           |          |                 |               |             |             |               |  |  |  |
| LSD           |                      |           |          |                 |               |             |             |               |  |  |  |
| (I) Concentra | tion                 | (J)       |          | Mean            |               |             | 95% Confide | ence Interval |  |  |  |
|               |                      | Concent   | ration   | Difference      | Std.          |             | Lower       | Upper         |  |  |  |
|               |                      |           | (I-J)    | Error           | Sig.          | Bound       | Bound       |               |  |  |  |
|               | 0%                   | dimensi   | 1%       | .89333*         | .24294        | .006        | .3331       | 1.4536        |  |  |  |
|               |                      | on3       | 2%       | $1.00000^{*}$   | .27162        | .006        | .3736       | 1.6264        |  |  |  |
| dimension?    | 1%                   | dimensi   | 0%       | 89333-*         | .24294        | .006        | -1.4536-    | 3331-         |  |  |  |
| unnension2    |                      | on3       | 2%       | .10667          | .24294        | .672        | 4536-       | .6669         |  |  |  |
|               | 2%                   | dimensi   | 0%       | -1.00000-*      | .27162        | .006        | -1.6264-    | 3736-         |  |  |  |
|               |                      | on3       | 1%       | 10667-          | .24294        | .672        | 6669-       | .4536         |  |  |  |
|               |                      | *. The me | ean diff | erence is signi | ificant at th | ne 0.05 lev | vel.        |               |  |  |  |

# e. Effect on shoot fresh weight: 2<sup>nd</sup> treatment

|                | ANOVA   |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| WSF            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |
|                | Squares | Df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .008    | 2  | .004        | 3.691 | .073 |  |  |  |  |  |  |
| Within Groups  | .009    | 8  | .001        |       |      |  |  |  |  |  |  |
| Total          | .017    | 10 |             |       |      |  |  |  |  |  |  |

|               |      |         | M       | ultiple Comp   | oarisons     |           |         |          |  |  |  |
|---------------|------|---------|---------|----------------|--------------|-----------|---------|----------|--|--|--|
| WSF           |      |         |         |                |              |           |         |          |  |  |  |
| LSD           |      |         |         |                |              |           |         |          |  |  |  |
| (I) Concentra | tion | (J)     |         |                |              |           | 95% Coi | nfidence |  |  |  |
|               |      | Concent | ration  | Mean           |              |           | Inter   | rval     |  |  |  |
|               |      |         |         | Difference     | Std.         |           | Lower   | Upper    |  |  |  |
|               |      |         | (I-J)   | Error          | Sig.         | Bound     | Bound   |          |  |  |  |
|               | 0%   | dimensi | 1%      | .05110         | .02406       | .066      | 0044-   | .1066    |  |  |  |
|               |      | on3     | 2%      | 00587-         | .02690       | .833      | 0679-   | .0562    |  |  |  |
| dimension?    | 1%   | dimensi | 0%      | 05110-         | .02406       | .066      | 1066-   | .0044    |  |  |  |
| unnension2    |      | on3     | 2%      | 05697-*        | .02406       | .045      | 1125-   | 0015-    |  |  |  |
|               | 2%   | dimensi | 0%      | .00587         | .02690       | .833      | 0562-   | .0679    |  |  |  |
|               |      | on3     | 1%      | $.05697^{*}$   | .02406       | .045      | .0015   | .1125    |  |  |  |
|               | *.   | The mea | n diffe | rence is signi | ificant at t | he 0.05 l | evel.   |          |  |  |  |

# f. Effect on shoot dry weight: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| WSD            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |
|                | Squares | Df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .004    | 2  | .002        | 2.732 | .125 |  |  |  |  |  |  |
| Within Groups  | .006    | 8  | .001        |       |      |  |  |  |  |  |  |
| Total          | .010    | 10 |             |       |      |  |  |  |  |  |  |

|                   | Multiple Comparisons |             |          |                   |               |            |                |       |  |  |  |  |
|-------------------|----------------------|-------------|----------|-------------------|---------------|------------|----------------|-------|--|--|--|--|
|                   | LSD                  |             |          |                   |               |            |                |       |  |  |  |  |
|                   |                      |             |          |                   |               |            | 95% Confidence |       |  |  |  |  |
| (I) Concent       | otion                | (I) Concont | tration  | Mean              | Std Error     | Sig        | Inte           | erval |  |  |  |  |
| (I) Concentration |                      | (J) Concent | lation   | Difference        | Std. Ellor    | Sig.       | Lower          | Upper |  |  |  |  |
|                   |                      |             |          |                   |               |            | Bound          | Bound |  |  |  |  |
|                   | 0%                   | dimension   | 1%       | $.04697^{*}$      | .02010        | .048       | .0006          | .0933 |  |  |  |  |
|                   |                      | 3           | 2%       | .02997            | .02247        | .219       | 0219-          | .0818 |  |  |  |  |
| dimension?        | 1%                   | dimension   | 0%       | 04697-*           | .02010        | .048       | 0933-          | 0006- |  |  |  |  |
| unnension2        |                      | 3           | 2%       | 01701-            | .02010        | .422       | 0634-          | .0293 |  |  |  |  |
|                   | 2%                   | dimension   | 0%       | 02997-            | .02247        | .219       | 0818-          | .0219 |  |  |  |  |
|                   |                      | 3           | 1%       | .01701            | .02010        | .422       | 0293-          | .0634 |  |  |  |  |
|                   |                      | *. The mea  | an diffe | rence is signific | cant at the 0 | .05 level. |                |       |  |  |  |  |

# g. effect on root fresh weight: 2<sup>nd</sup> treatment

|                | ANOVA   |    |             |        |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|--------|------|--|--|--|--|--|--|
| WRF            |         |    |             |        |      |  |  |  |  |  |  |
|                | Sum of  |    |             |        |      |  |  |  |  |  |  |
|                | Squares | df | Mean Square | F      | Sig. |  |  |  |  |  |  |
| Between Groups | .001    | 2  | .000        | 16.380 | .001 |  |  |  |  |  |  |
| Within Groups  | .000    | 8  | .000        |        |      |  |  |  |  |  |  |
| Total          | .001    | 10 |             |        |      |  |  |  |  |  |  |

|                   |     |             | N        | Iultiple Comp   | arisons       |            |        |          |  |  |  |  |
|-------------------|-----|-------------|----------|-----------------|---------------|------------|--------|----------|--|--|--|--|
|                   | WRF |             |          |                 |               |            |        |          |  |  |  |  |
|                   | LSD |             |          |                 |               |            |        |          |  |  |  |  |
|                   |     |             |          |                 |               |            | 95% Co | nfidence |  |  |  |  |
| (I) Concentration |     | (I) Concon  | tration  | Mean            | Std. Error    | Sig.       | Inte   | rval     |  |  |  |  |
|                   |     | (J) Concent | uation   | Difference      |               |            | Lower  | Upper    |  |  |  |  |
|                   |     |             |          |                 |               |            | Bound  | Bound    |  |  |  |  |
|                   | 0%  | dimension   | 1%       | $.01957^{*}$    | .00344        | .000       | .0116  | .0275    |  |  |  |  |
|                   |     | 3           | 2%       | $.01020^{*}$    | .00385        | .029       | .0013  | .0191    |  |  |  |  |
| dimension?        | 1%  | dimension   | 0%       | 01957-*         | .00344        | .000       | 0275-  | 0116-    |  |  |  |  |
| dimension2        |     | 3           | 2%       | 00937-*         | .00344        | .026       | 0173-  | 0014-    |  |  |  |  |
|                   | 2%  | dimension   | 0%       | 01020-*         | .00385        | .029       | 0191-  | 0013-    |  |  |  |  |
|                   |     | 3           | 1%       | .00937*         | .00344        | .026       | .0014  | .0173    |  |  |  |  |
|                   |     | *. The m    | ean diff | erence is signi | ficant at the | 0.05 level |        |          |  |  |  |  |

# h. Effect on root dry weight: 2<sup>nd</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|--|--|
| WRD            |         |    |             |       |      |  |  |  |  |  |  |
|                | Sum of  |    |             |       |      |  |  |  |  |  |  |
|                | Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .000    | 2  | .000        | 1.381 | .305 |  |  |  |  |  |  |
| Within Groups  | .000    | 8  | .000        |       |      |  |  |  |  |  |  |
| Total          | .000    | 10 |             |       |      |  |  |  |  |  |  |

|                  | Multiple Comparisons |             |        |                |            |      |             |               |  |  |  |  |
|------------------|----------------------|-------------|--------|----------------|------------|------|-------------|---------------|--|--|--|--|
| WRD              |                      |             |        |                |            |      |             |               |  |  |  |  |
|                  | LSD                  |             |        |                |            |      |             |               |  |  |  |  |
|                  |                      |             |        | Mean           |            |      | 95% Confide | ence Interval |  |  |  |  |
| (I)<br>Concentre | tion                 | (J) Concent | ration | Difference (I- | Std. Error | Sig. | Lower       | Upper         |  |  |  |  |
| Concentration    |                      |             |        | J)             |            |      | Bound       | Bound         |  |  |  |  |
|                  | 004                  | dimension   | 1%     | 00186-         | .00172     | .310 | 0058-       | .0021         |  |  |  |  |
|                  | 070                  | 3           | 2%     | 00317-         | .00192     | .137 | 0076-       | .0013         |  |  |  |  |
| dimension        | 1.0/                 | dimension   | 0%     | .00186         | .00172     | .310 | 0021-       | .0058         |  |  |  |  |
| 2                | 1 %0                 | 3           | 2%     | 00131-         | .00172     | .468 | 0053-       | .0026         |  |  |  |  |
|                  | 20/                  | dimension   | 0%     | .00317         | .00192     | .137 | 0013-       | .0076         |  |  |  |  |
|                  | 2%                   | 3           | 1%     | .00131         | .00172     | .468 | 0026-       | .0053         |  |  |  |  |

#### Mechanical scarification: Germination percentage 1st treatment:

|    | Statistics   |         |          |         |         |        |        |  |  |  |  |  |
|----|--------------|---------|----------|---------|---------|--------|--------|--|--|--|--|--|
|    |              | 0%      | 1%       | 2%      | 5%      | 10%    | 20%    |  |  |  |  |  |
| Ν  | Valid        | 14      | 14       | 14      | 14      | 14     | 14     |  |  |  |  |  |
|    | Missing      | 0       | 0        | 0       | 0       | 0      | 0      |  |  |  |  |  |
|    | Mean         | 17.1429 | 22.1429  | 12.8571 | 12.1429 | .0000  | .0000  |  |  |  |  |  |
| St | d. Deviation | 6.11250 | 12.51373 | 9.13874 | 9.74961 | .00000 | .00000 |  |  |  |  |  |

#### 2nd treatment

|         | Statistics <sup>a</sup>                                     |         |          |           |        |       |       |  |  |  |  |
|---------|-------------------------------------------------------------|---------|----------|-----------|--------|-------|-------|--|--|--|--|
|         | 0% 1% 2% 5% 10% 20%                                         |         |          |           |        |       |       |  |  |  |  |
| Ν       | Valid                                                       | 14      | 14       | 14        | 14     | 14    | 14    |  |  |  |  |
| Missing |                                                             | 0       | 0        | 0         | 0      | 0     | 0     |  |  |  |  |
|         | Mean                                                        | 22.8571 | 16.4286  | .0000     | 1.0714 | .0000 | .0000 |  |  |  |  |
| St      | Std. Deviation 11.38729 7.44946 .00000 .91687 .00000 .00000 |         |          |           |        |       |       |  |  |  |  |
|         |                                                             |         | a. VAR00 | 0011 = M2 |        |       |       |  |  |  |  |

#### Seedling 1<sup>st</sup> treatment:

|     | Statistics                      |         |         |         |         |        |        |        |        |  |  |
|-----|---------------------------------|---------|---------|---------|---------|--------|--------|--------|--------|--|--|
|     | LSF LSD LRF LRD WSF WSD WRF WRD |         |         |         |         |        |        |        |        |  |  |
| Ν   | Valid                           | 7       | 7       | 7       | 7       | 7      | 7      | 7      | 7      |  |  |
|     | Missing                         | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      |  |  |
|     | Mean                            | 7.0286  | 6.3429  | 4.7286  | 4.0000  | .1524  | .0402  | .0137  | .0029  |  |  |
| Ste | d. Deviation                    | 1.43958 | 1.15882 | 1.67999 | 1.79907 | .01815 | .02951 | .00109 | .00092 |  |  |

#### a. Effect on shoot fresh length: 1<sup>st</sup> treatment

| ANOVA          |         |    |             |       |      |  |  |  |  |
|----------------|---------|----|-------------|-------|------|--|--|--|--|
| Sum of         |         |    |             |       |      |  |  |  |  |
|                | Squares | Df | Mean Square | F     | Sig. |  |  |  |  |
| Between Groups | 5.804   | 2  | 2.902       | 1.751 | .284 |  |  |  |  |
| Within Groups  | 6.630   | 4  | 1.658       |       |      |  |  |  |  |
| Total          | 12.434  | 6  |             |       |      |  |  |  |  |

|                  | Multiple Comparisons |             |        |            |         |      |             |                         |  |  |  |  |
|------------------|----------------------|-------------|--------|------------|---------|------|-------------|-------------------------|--|--|--|--|
| $(\mathbf{I})$   |                      |             |        | Moon       | Std     |      | 95% Confide | 95% Confidence Interval |  |  |  |  |
| (1)<br>Concentra | tion                 | (J) Concent | ration | Difference | Error   | Sig. | Lower       | Upper                   |  |  |  |  |
| Concentration    |                      |             |        | Difference | LIIOI   |      | Bound       | Bound                   |  |  |  |  |
|                  | 0%                   | dimension   | 1%     | 2.05000    | 1.17527 | .156 | -1.2131-    | 5.3131                  |  |  |  |  |
|                  |                      | 3           | 2%     | .50000     | 1.28744 | .718 | -3.0745-    | 4.0745                  |  |  |  |  |
| dimension        | 1%                   | dimension   | 0%     | -2.05000-  | 1.17527 | .156 | -5.3131-    | 1.2131                  |  |  |  |  |
| 2                |                      | 3           | 2%     | -1.55000-  | 1.17527 | .258 | -4.8131-    | 1.7131                  |  |  |  |  |
|                  | 2%                   | dimension   | 0%     | 50000-     | 1.28744 | .718 | -4.0745-    | 3.0745                  |  |  |  |  |
|                  |                      | 3           | 1%     | 1.55000    | 1.17527 | .258 | -1.7131-    | 4.8131                  |  |  |  |  |

# **b.** Effect on shoot dry length: 1<sup>st</sup> treatment

|                                      | ANOVA |   |       |       |      |  |  |  |  |  |  |
|--------------------------------------|-------|---|-------|-------|------|--|--|--|--|--|--|
|                                      | LSD   |   |       |       |      |  |  |  |  |  |  |
| Sum of Squares Df Mean Square F Sig. |       |   |       |       |      |  |  |  |  |  |  |
| Between Groups                       | 4.840 | 2 | 2.420 | 3.010 | .159 |  |  |  |  |  |  |
| Within Groups                        | 3.217 | 4 | .804  |       |      |  |  |  |  |  |  |
| Total                                | 8.057 | 6 |       |       |      |  |  |  |  |  |  |

|               | Multiple Comparisons |             |        |            |               |      |             |               |  |  |  |  |
|---------------|----------------------|-------------|--------|------------|---------------|------|-------------|---------------|--|--|--|--|
| LSD           |                      |             |        |            |               |      |             |               |  |  |  |  |
|               |                      |             |        | Mean       | Std           |      | 95% Confide | ence Interval |  |  |  |  |
| (I) Concentra | tion                 | (J) Concent | ration | Difference | Siu.<br>Error | Sig. | Lower       | Upper         |  |  |  |  |
|               |                      |             |        | (I-J)      | LIIUI         |      | Bound       | Bound         |  |  |  |  |
|               | 0%                   | dimension   | 1%     | 1.98333    | .81862        | .073 | 2895-       | 4.2562        |  |  |  |  |
|               |                      | 3           | 2%     | .90000     | .89675        | .372 | -1.5898-    | 3.3898        |  |  |  |  |
| dimension?    | 1.0/                 | dimension   | 0%     | -1.98333-  | .81862        | .073 | -4.2562-    | .2895         |  |  |  |  |
| dimension2    | 1%                   | 3           | 2%     | -1.08333-  | .81862        | .256 | -3.3562-    | 1.1895        |  |  |  |  |
|               | 2%                   | dimension   | 0%     | 90000-     | .89675        | .372 | -3.3898-    | 1.5898        |  |  |  |  |
|               |                      | 3           | 1%     | 1.08333    | .81862        | .256 | -1.1895-    | 3.3562        |  |  |  |  |

| ANOVA                               |        |   |       |       |      |  |  |  |  |  |
|-------------------------------------|--------|---|-------|-------|------|--|--|--|--|--|
| LRF                                 |        |   |       |       |      |  |  |  |  |  |
| Sum of<br>SquaresdfMean SquareFSig. |        |   |       |       |      |  |  |  |  |  |
| Between Groups                      | 6.484  | 2 | 3.242 | 1.241 | .381 |  |  |  |  |  |
| Within Groups                       | 10.450 | 4 | 2.613 |       |      |  |  |  |  |  |
| Total                               | 16.934 | 6 |       |       |      |  |  |  |  |  |

### c. Effect on root fresh length: 1<sup>st</sup> treatment

|                           | Multiple Comparisons |                 |        |            |            |      |          |        |  |  |  |  |
|---------------------------|----------------------|-----------------|--------|------------|------------|------|----------|--------|--|--|--|--|
|                           | LSD                  |                 |        |            |            |      |          |        |  |  |  |  |
| (I) 95% Confidence Interv |                      |                 |        |            |            |      |          |        |  |  |  |  |
| (I) Concent               | tration              | (J)<br>Concentr | rotion | Difference | Std. Error | Sig. | Lower    | Upper  |  |  |  |  |
|                           |                      | Concentration   |        | Difference |            |      | Bound    | Bound  |  |  |  |  |
|                           | 0%                   | dimensi         | 1%     | 2.15000    | 1.47549    | .219 | -1.9466- | 6.2466 |  |  |  |  |
|                           |                      | on3             | 2%     | 2.10000    | 1.61632    | .264 | -2.3876- | 6.5876 |  |  |  |  |
| dimension                 | 1.0/                 | dimensi         | 0%     | -2.15000-  | 1.47549    | .219 | -6.2466- | 1.9466 |  |  |  |  |
| 2                         | 1 %0                 | on3             | 2%     | 05000-     | 1.47549    | .975 | -4.1466- | 4.0466 |  |  |  |  |
|                           | 2%                   | dimensi         | 0%     | -2.10000-  | 1.61632    | .264 | -6.5876- | 2.3876 |  |  |  |  |
|                           |                      | on3             | 1%     | .05000     | 1.47549    | .975 | -4.0466- | 4.1466 |  |  |  |  |

### d. Effect on root dry length: 1<sup>st</sup> treatment

| ANOVA          |                   |    |             |       |      |  |  |  |  |  |
|----------------|-------------------|----|-------------|-------|------|--|--|--|--|--|
| LRD            |                   |    |             |       |      |  |  |  |  |  |
|                | Sum of<br>Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | 8.455             | 2  | 4.228       | 1.542 | .319 |  |  |  |  |  |
| Within Groups  | 10.965            | 4  | 2.741       |       |      |  |  |  |  |  |
| Total          | 19.420            | 6  |             |       |      |  |  |  |  |  |

|                | Multiple Comparisons         |             |        |                |              |      |          |        |  |  |  |
|----------------|------------------------------|-------------|--------|----------------|--------------|------|----------|--------|--|--|--|
| LSD            |                              |             |        |                |              |      |          |        |  |  |  |
|                | Mean 95% Confidence Interval |             |        |                |              |      |          |        |  |  |  |
| (I) Concentrat | ion                          | (J) Concent | ration | Difference (I- | - Std. Error | Sig. | Lower    | Upper  |  |  |  |
|                |                              |             |        | J)             |              |      | Bound    | Bound  |  |  |  |
|                | 0%                           | dimension   | 1%     | 2.60000        | 1.51141      | .161 | -1.5964- | 6.7964 |  |  |  |
|                |                              | 3           | 2%     | 2.05000        | 1.65567      | .283 | -2.5469- | 6.6469 |  |  |  |
| dimension?     | 1.0/                         | dimension   | 0%     | -2.60000-      | 1.51141      | .161 | -6.7964- | 1.5964 |  |  |  |
| dimension2     | 1%                           | 3           | 2%     | 55000-         | 1.51141      | .734 | -4.7464- | 3.6464 |  |  |  |
|                | 2%                           | dimension   | 0%     | -2.05000-      | 1.65567      | .283 | -6.6469- | 2.5469 |  |  |  |
|                |                              | 3           | 1%     | .55000         | 1.51141      | .734 | -3.6464- | 4.7464 |  |  |  |

#### e. Effect on shoot fresh weight: 1<sup>st</sup> treatment

| ANOVA          |                   |    |             |        |      |  |  |  |  |  |
|----------------|-------------------|----|-------------|--------|------|--|--|--|--|--|
| WSF            |                   |    |             |        |      |  |  |  |  |  |
|                | Sum of<br>Squares | Df | Mean Square | F      | Sig. |  |  |  |  |  |
| Between Groups | .002              | 2  | .001        | 11.590 | .022 |  |  |  |  |  |
| Within Groups  | .000              | 4  | .000        |        |      |  |  |  |  |  |
| Total          | .002              | 6  |             |        |      |  |  |  |  |  |

|                | Multiple Comparisons |          |        |                   |                |             |       |       |  |  |  |
|----------------|----------------------|----------|--------|-------------------|----------------|-------------|-------|-------|--|--|--|
| LSD            |                      |          |        |                   |                |             |       |       |  |  |  |
| 95% Confidence |                      |          |        |                   |                |             |       |       |  |  |  |
| (I)            |                      | (J)      |        | Mean              | Std Error      | C:~         | Inter | rval  |  |  |  |
| Concentration  |                      | Concenti | ation  | Difference        | Sta. Elloi     | Sig.        | Lower | Upper |  |  |  |
|                |                      |          |        |                   |                |             | Bound | Bound |  |  |  |
|                | 0%                   | dimensio | 1%     | $.02927^{*}$      | .00778         | .020        | .0077 | .0509 |  |  |  |
|                |                      | n3       | 2%     | 00390-            | .00853         | .671        | 0276- | .0198 |  |  |  |
| dimensio       | 1.0/                 | dimensio | 0%     | 02927-*           | .00778         | .020        | 0509- | 0077- |  |  |  |
| n2             | 1 %0                 | n3       | 2%     | 03317-*           | .00778         | .013        | 0548- | 0116- |  |  |  |
|                | 20/                  | dimensio | 0%     | .00390            | .00853         | .671        | 0198- | .0276 |  |  |  |
|                | 2%                   | n3       | 1%     | .03317*           | .00778         | .013        | .0116 | .0548 |  |  |  |
|                |                      | *. The   | mean c | lifference is sig | gnificant at t | he 0.05 lev | vel.  |       |  |  |  |

# f. Effect on shoot dry weight: 1<sup>st</sup> treatment

| ANOVA                                |      |   |      |       |      |  |  |  |  |  |  |
|--------------------------------------|------|---|------|-------|------|--|--|--|--|--|--|
|                                      | WSD  |   |      |       |      |  |  |  |  |  |  |
| Sum of Squares Df Mean Square F Sig. |      |   |      |       |      |  |  |  |  |  |  |
| Between Groups                       | .002 | 2 | .001 | 1.242 | .381 |  |  |  |  |  |  |
| Within Groups .003 4 .001            |      |   |      |       |      |  |  |  |  |  |  |
| Total                                | .005 | 6 |      |       |      |  |  |  |  |  |  |

|                             | Multiple Comparisons |             |         |            |            |      |       |       |  |  |  |  |
|-----------------------------|----------------------|-------------|---------|------------|------------|------|-------|-------|--|--|--|--|
| LSD                         |                      |             |         |            |            |      |       |       |  |  |  |  |
| (D) 95% Confidence Interval |                      |             |         |            |            |      |       |       |  |  |  |  |
| (1)<br>Concentration        |                      | (J) Concent | tration | Difference | Std. Error | Sig. | Lower | Upper |  |  |  |  |
|                             |                      |             |         | Difference |            |      | Bound | Bound |  |  |  |  |
|                             | 00/                  | dimension   | 1%      | .01203     | .02591     | .667 | 0599- | .0840 |  |  |  |  |
|                             | 0%                   | 3           | 2%      | 02855-     | .02839     | .371 | 1074- | .0503 |  |  |  |  |
| dimension                   | 1.0/                 | dimension   | 0%      | 01203-     | .02591     | .667 | 0840- | .0599 |  |  |  |  |
| 2                           | 1 %0                 | 3           | 2%      | 04058-     | .02591     | .192 | 1125- | .0314 |  |  |  |  |
|                             | 204                  | dimension   | 0%      | .02855     | .02839     | .371 | 0503- | .1074 |  |  |  |  |
|                             | ∠70                  | 3           | 1%      | .04058     | .02591     | .192 | 0314- | .1125 |  |  |  |  |

# g. Effect on root fresh weight: 1<sup>st</sup> treatment

| ANOVA                                |      |   |      |      |      |  |  |  |  |  |
|--------------------------------------|------|---|------|------|------|--|--|--|--|--|
| WRF                                  |      |   |      |      |      |  |  |  |  |  |
| Sum of Squares Df Mean Square F Sig. |      |   |      |      |      |  |  |  |  |  |
| Between Groups                       | .000 | 2 | .000 | .016 | .984 |  |  |  |  |  |
| Within Groups .000 4 .000            |      |   |      |      |      |  |  |  |  |  |
| Total                                | .000 | 6 |      |      |      |  |  |  |  |  |

|                | Multiple Comparisons         |             |        |            |            |      |       |       |  |  |  |  |  |
|----------------|------------------------------|-------------|--------|------------|------------|------|-------|-------|--|--|--|--|--|
| LSD            |                              |             |        |            |            |      |       |       |  |  |  |  |  |
|                | Maan 95% Confidence Interval |             |        |            |            |      |       |       |  |  |  |  |  |
| (I) Concentrat | ion                          | (J) Concent | ration | Difference | Std. Error | Sig. | Lower | Upper |  |  |  |  |  |
|                |                              |             |        | Difference |            |      | Bound | Bound |  |  |  |  |  |
|                | 004                          | dimension   | 1%     | .00007     | .00122     | .959 | 0033- | .0035 |  |  |  |  |  |
|                | 070                          | 3           | 2%     | 00015-     | .00134     | .916 | 0039- | .0036 |  |  |  |  |  |
| dimension?     | 10/                          | dimension   | 0%     | 00007-     | .00122     | .959 | 0035- | .0033 |  |  |  |  |  |
| dimension2     | 1 70                         | 3           | 2%     | 00022-     | .00122     | .868 | 0036- | .0032 |  |  |  |  |  |
|                | 204                          | dimension   | 0%     | .00015     | .00134     | .916 | 0036- | .0039 |  |  |  |  |  |
|                | <i>2</i> 70                  | 3           | 1%     | .00022     | .00122     | .868 | 0032- | .0036 |  |  |  |  |  |

# h. Effect on shoot fresh weight: 1<sup>st</sup> treatment

|                | ANOVA          |    |             |       |      |  |  |  |  |  |  |
|----------------|----------------|----|-------------|-------|------|--|--|--|--|--|--|
|                | WRD            |    |             |       |      |  |  |  |  |  |  |
|                | Sum of Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .000           | 2  | .000        | 1.746 | .285 |  |  |  |  |  |  |
| Within Groups  | .000           | 4  | .000        |       |      |  |  |  |  |  |  |
| Total          | .000           | 6  |             |       |      |  |  |  |  |  |  |

| Multiple Comparisons |                              |             |        |            |            |      |       |       |  |  |  |  |
|----------------------|------------------------------|-------------|--------|------------|------------|------|-------|-------|--|--|--|--|
| LSD                  |                              |             |        |            |            |      |       |       |  |  |  |  |
|                      | Maar 95% Confidence Interval |             |        |            |            |      |       |       |  |  |  |  |
| (I) Concentra        | ation                        | (J) Concent | ration | Difference | Std. Error | Sig. | Lower | Upper |  |  |  |  |
|                      |                              |             |        | Difference |            |      | Bound | Bound |  |  |  |  |
|                      | 00/                          | dimension   | 1%     | .00100     | .00075     | .253 | 0011- | .0031 |  |  |  |  |
|                      | 0%                           | 3           | 2%     | .00150     | .00082     | .142 | 0008- | .0038 |  |  |  |  |
| dimension?           | 1.0/                         | dimension   | 0%     | 00100-     | .00075     | .253 | 0031- | .0011 |  |  |  |  |
| dimension2           | 1 %0                         | 3           | 2%     | .00050     | .00075     | .541 | 0016- | .0026 |  |  |  |  |
|                      | 204                          | dimension   | 0%     | 00150-     | .00082     | .142 | 0038- | .0008 |  |  |  |  |
|                      | 270                          | 3           | 1%     | 00050-     | .00075     | .541 | 0026- | .0016 |  |  |  |  |

### C. Seedling 2<sup>nd</sup> treatment

|    | Statistics                      |         |         |         |         |        |        |        |        |  |  |  |  |
|----|---------------------------------|---------|---------|---------|---------|--------|--------|--------|--------|--|--|--|--|
|    | LSF LSD LRF LRD WSF WSD WRF WRD |         |         |         |         |        |        |        |        |  |  |  |  |
| N  | Valid                           | 5       | 5       | 5       | 5       | 5      | 5      | 5      | 5      |  |  |  |  |
| IN | Missing                         | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      |  |  |  |  |
|    | Mean                            | 6.5400  | 5.6000  | 4.7200  | 4.1400  | .1340  | .0486  | .0183  | .0032  |  |  |  |  |
| St | d. Deviation                    | 1.08995 | 1.06301 | 1.59750 | 1.53883 | .02874 | .03040 | .00953 | .00256 |  |  |  |  |

# a. Effect on shoot fresh length: 2<sup>nd</sup> treatment

| Group Statistics |           |       |   |         |           |            |  |  |  |  |  |
|------------------|-----------|-------|---|---------|-----------|------------|--|--|--|--|--|
|                  | Concentry | otion | N | Moon    | Std.      | Std. Error |  |  |  |  |  |
|                  | Concentra | ation | 1 | Ivicali | Deviation | Mean       |  |  |  |  |  |
| LCE              | dimension | 0%    | 3 | 6.5667  | 1.25033   | .72188     |  |  |  |  |  |
| LSF              | 1         | 1%    | 2 | 6.5000  | 1.27279   | .90000     |  |  |  |  |  |

|                                | Independent Samples Test    |                                    |                          |      |                        |                    |                                          |         |               |         |  |  |
|--------------------------------|-----------------------------|------------------------------------|--------------------------|------|------------------------|--------------------|------------------------------------------|---------|---------------|---------|--|--|
|                                | Lev<br>Tes<br>Equa<br>Varia | ene's<br>t for<br>lity of<br>ances | e's<br>or<br>y of<br>ces |      |                        |                    |                                          |         |               |         |  |  |
|                                | F                           | Sig.                               | Т                        | df   | Sig.<br>(2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference<br>Lower<br>Upp |         |               |         |  |  |
| Equal variances<br>assumed     | .029                        | .876                               | •                        | .058 | 3                      | .957               | .06667                                   | 1.14827 | -<br>3.58763- | 3.72097 |  |  |
| Equal variances not<br>assumed |                             |                                    |                          | .058 | 2.238                  | .959               | .06667                                   | 1.15374 | -<br>4.42513- | 4.55846 |  |  |

# **b.** Effect on shoot dry length: 2<sup>nd</sup> treatment

| Group Statistics |            |       |   |        |                   |                    |  |  |  |  |  |
|------------------|------------|-------|---|--------|-------------------|--------------------|--|--|--|--|--|
|                  | Concentra  | ntion | Ν | Mean   | Std.<br>Deviation | Std. Error<br>Mean |  |  |  |  |  |
| ISD              | dimension1 | 0%    | 3 | 5.7333 | 1.30512           | .75351             |  |  |  |  |  |
| LSD unitension   |            | 1%    | 2 | 5.4000 | .98995            | .70000             |  |  |  |  |  |

|     |                                   |            | Inde  | epend | lent S                       | amples      | s Test             |                          |                               |              |
|-----|-----------------------------------|------------|-------|-------|------------------------------|-------------|--------------------|--------------------------|-------------------------------|--------------|
|     |                                   | Levene's   | Test  |       |                              |             |                    |                          |                               |              |
|     |                                   | for Equali | ty of |       | t-test for Equality of Means |             |                    |                          |                               |              |
|     |                                   | Varianc    | es    |       |                              |             |                    |                          |                               |              |
|     |                                   | F          | Sig.  | t     | df                           | Sig.<br>(2- | Mean<br>Difference | Std. Error<br>Difference | 95% Cor<br>Interval<br>Differ | of the rence |
|     |                                   |            |       |       |                              | tailed)     |                    |                          | Lower                         | Upper        |
|     | Equal<br>variances<br>assumed     | .175       | .704  | .302  | 3                            | .782        | .33333             | 1.10387                  | -<br>3.17966-                 | 3.84633      |
| LSD | Equal<br>variances<br>not assumed |            |       | .324  | 2.788                        | .769        | .33333             | 1.02848                  | -<br>3.08496-                 | 3.75163      |

# c. Effect on root fresh length: 2<sup>nd</sup> treatment

|     | Group Statistics |       |    |        |           |            |  |  |  |  |  |  |
|-----|------------------|-------|----|--------|-----------|------------|--|--|--|--|--|--|
|     | Concentra        | ntion | N  | Mean   | Std.      | Std. Error |  |  |  |  |  |  |
|     | Concentre        |       | 11 | wieun  | Deviation | Mean       |  |  |  |  |  |  |
| IDE | dimension1       | 0%    | 3  | 5.4000 | 1.82483   | 1.05357    |  |  |  |  |  |  |
| LKF | unnension        | 1%    | 2  | 3.7000 | .28284    | .20000     |  |  |  |  |  |  |

| Independent Samples Test |           |        |      |                              |         |        |            |                          |                 |         |  |  |  |  |
|--------------------------|-----------|--------|------|------------------------------|---------|--------|------------|--------------------------|-----------------|---------|--|--|--|--|
|                          |           | Leve   | ne's |                              |         |        |            |                          |                 |         |  |  |  |  |
|                          |           | Test   | for  |                              |         |        |            |                          |                 |         |  |  |  |  |
|                          |           | Equa   | lity | t-test for Equality of Means |         |        |            |                          |                 |         |  |  |  |  |
|                          |           | of     | 2    |                              |         |        |            |                          |                 |         |  |  |  |  |
|                          |           | Varia  | nces |                              |         |        |            |                          |                 |         |  |  |  |  |
|                          |           |        |      |                              |         | Sia    |            |                          | 95% Cor         | fidence |  |  |  |  |
|                          |           | F Sig. | Sig  | t                            | df      | (2-    | Mean       | Std. Error<br>Difference | Interval of the |         |  |  |  |  |
|                          |           |        | Sig. |                              |         |        | Difference |                          | Difference      |         |  |  |  |  |
|                          |           |        |      |                              |         | taneu) |            |                          | Lower           | Upper   |  |  |  |  |
|                          | Equal     |        |      |                              |         |        |            |                          |                 |         |  |  |  |  |
|                          | variances | 6.646  | .082 | 1.242                        | 3       | .302   | 1.70000    | 1.36829                  | -               | 6.05451 |  |  |  |  |
|                          | assumed   |        |      |                              |         |        |            |                          | 2.03431-        |         |  |  |  |  |
| LRF                      | Equal     |        |      |                              |         |        |            |                          |                 |         |  |  |  |  |
|                          | variances |        |      | 1 5 9 5                      | 0 1 4 1 | .246   | 1.70000    | 1.07238                  | -               | 6 03//6 |  |  |  |  |
|                          | not       |        |      | 1.505                        | 2.141   |        |            |                          | 2.63446-        | 0.03440 |  |  |  |  |
|                          | assumed   |        |      |                              |         |        |            |                          |                 |         |  |  |  |  |

# d. Effect on root dry length: 2<sup>nd</sup> treatment

| Group Statistics |           |       |   |         |           |            |  |  |  |  |  |
|------------------|-----------|-------|---|---------|-----------|------------|--|--|--|--|--|
|                  | Concentr  | otion | Ν | Moon    | Std.      | Std. Error |  |  |  |  |  |
|                  | Concentra | ation |   | Ivicali | Deviation | Mean       |  |  |  |  |  |
|                  | dimension | 0%    | 3 | 4.8333  | 1.70978   | .98714     |  |  |  |  |  |
| LKD              | 1         | 1%    | 2 | 3.1000  | .14142    | .10000     |  |  |  |  |  |

| Independent Samples Test |                                   |          |           |                              |       |             |            |            |                     |         |  |  |  |  |
|--------------------------|-----------------------------------|----------|-----------|------------------------------|-------|-------------|------------|------------|---------------------|---------|--|--|--|--|
|                          |                                   | Levene's |           |                              |       |             |            |            |                     |         |  |  |  |  |
|                          |                                   | Test     | for       |                              |       |             |            |            |                     |         |  |  |  |  |
|                          |                                   | Equality |           | t-test for Equality of Means |       |             |            |            |                     |         |  |  |  |  |
|                          |                                   | of       |           |                              |       |             |            |            |                     |         |  |  |  |  |
|                          |                                   | Varia    | Variances |                              |       |             |            |            |                     |         |  |  |  |  |
|                          |                                   | F        | Sig.      | t                            | Df    | Sig.<br>(2- | Mean       | Std. Error | 95% Cor<br>Interval | of the  |  |  |  |  |
|                          |                                   |          |           |                              |       | tailed)     | Difference | Difference | Lower               | Upper   |  |  |  |  |
|                          | Equal<br>variances<br>assumed     | 7.657    | .070      | 1.358                        | 3     | .268        | 1.73333    | 1.27657    | -<br>2.32928-       | 5.79595 |  |  |  |  |
| LKD                      | Equal<br>variances not<br>assumed |          |           | 1.747                        | 2.041 | .220        | 1.73333    | .99219     | -<br>2.45491-       | 5.92158 |  |  |  |  |

| Group Statistics |           |       |   |         |           |            |  |  |  |  |  |
|------------------|-----------|-------|---|---------|-----------|------------|--|--|--|--|--|
|                  | Concentre | otion | N | Moon    | Std.      | Std. Error |  |  |  |  |  |
|                  | Concentra | ation | 1 | Ivicali | Deviation | Mean       |  |  |  |  |  |
| WSE              | dimension | 0%    | 3 | .1263   | .03113    | .01798     |  |  |  |  |  |
| WSF              | 1         | 1%    | 2 | .1455   | .03041    | .02150     |  |  |  |  |  |

# e. Effect on shoot fresh weigth: 2<sup>nd</sup> treatment

| Independent Samples Test |                                      |                                 |                        |            |                              |                        |                    |                          |                                             |                                        |  |  |
|--------------------------|--------------------------------------|---------------------------------|------------------------|------------|------------------------------|------------------------|--------------------|--------------------------|---------------------------------------------|----------------------------------------|--|--|
|                          |                                      | Levene's<br>for Equ<br>of Varia | Test<br>ality<br>inces |            | t-test for Equality of Means |                        |                    |                          |                                             |                                        |  |  |
|                          |                                      | F                               | Sig.                   | t          | Df                           | Sig.<br>(2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | 95<br>Confid<br>Interval<br>Differ<br>Lower | %<br>dence<br>of the<br>rence<br>Upper |  |  |
|                          | Equal<br>variances<br>assumed        | .001                            | .983                   | -<br>.680- | 3                            | .545                   | 01917-             | .02820                   | -<br>.10892-                                | .07058                                 |  |  |
| WSF                      | Equal<br>variances<br>not<br>assumed |                                 |                        | -<br>.684- | 2.320                        | .556                   | 01917-             | .02802                   | .12513-                                     | .08680                                 |  |  |

# f. Effect on shoot dry weight: 2<sup>nd</sup> treatment

| Group Statistics |             |       |   |       |                   |                    |  |  |  |  |  |
|------------------|-------------|-------|---|-------|-------------------|--------------------|--|--|--|--|--|
|                  | Concentra   | ation | Ν | Mean  | Std.<br>Deviation | Std. Error<br>Mean |  |  |  |  |  |
| WSD              | dimension1  | 0%    | 3 | .0460 | .01353            | .00781             |  |  |  |  |  |
|                  | annension i | 1%    | 2 | .0525 | .05728            | .04050             |  |  |  |  |  |
|                             |        | In        | deper      | ndent S                      | Sample          | es Test    |            |              |             |  |  |
|-----------------------------|--------|-----------|------------|------------------------------|-----------------|------------|------------|--------------|-------------|--|--|
|                             | Lever  | ne's      |            |                              |                 |            |            |              |             |  |  |
|                             | Test   | for       |            | t toot for Equality of Moone |                 |            |            |              |             |  |  |
|                             | Equali | ty of     |            | t-test for Equality of Means |                 |            |            |              |             |  |  |
|                             | Variar | Jariances |            |                              |                 |            |            |              |             |  |  |
|                             |        |           |            |                              | Sig             |            |            | 95%          | Confidence  |  |  |
|                             | F      | Sig       | +          | df                           | $\frac{31g}{2}$ | Mean       | Std. Error | Inte         | rval of the |  |  |
|                             | 1.     | Sig.      | ι          | u                            | (2-<br>tailed)  | Difference | Difference | Di           | fference    |  |  |
|                             |        |           |            |                              | taneu)          |            |            | Lower        | Upper       |  |  |
| Equal variances<br>assumed  | 33.410 | .010      | -<br>.204- | 3                            | .851            | 00650-     | .03183     | -<br>.10779- | .09479      |  |  |
| Equal variances not assumed |        |           | -<br>.158- | 1.075                        | .899            | 00650-     | .04125     | -<br>.45159- | .43859      |  |  |

# g. Effect on root fresh weight: 2<sup>nd</sup> treatment

|     | Group Statistics                      |        |   |        |           |        |  |  |  |  |  |
|-----|---------------------------------------|--------|---|--------|-----------|--------|--|--|--|--|--|
|     | Concentration N. Maan Std. Std. Error |        |   |        |           |        |  |  |  |  |  |
|     | Concen                                | uation | 1 | Iviean | Deviation | Mean   |  |  |  |  |  |
| WDE | dimen                                 | 0%     | 3 | .0144  | .00238    | .00137 |  |  |  |  |  |
| WKF | sion1                                 | 1%     | 2 | .0240  | .01556    | .01100 |  |  |  |  |  |

|     |                                      |                                       | Ir                       | ndepen                       | dent S | ample                  | s Test             |                          |                                                    |        |
|-----|--------------------------------------|---------------------------------------|--------------------------|------------------------------|--------|------------------------|--------------------|--------------------------|----------------------------------------------------|--------|
|     |                                      | Leven<br>Test f<br>Equality<br>Varian | e's<br>or<br>y of<br>ces | t-test for Equality of Means |        |                        |                    |                          |                                                    |        |
|     |                                      | F                                     | Sig.                     | Т                            | Df     | Sig.<br>(2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | 95%<br>Confidence<br>Interval of the<br>Difference |        |
|     | Equal<br>variances<br>assumed        | 122.149                               | .002                     | -<br>1.140-                  | 3      | .337                   | 00957-             | .00839                   | -<br>.03626-                                       | .01713 |
| WRF | Equal<br>variances<br>not<br>assumed |                                       |                          | 863-                         | 1.031  | .543                   | 00957-             | .01109                   | -<br>.14070-                                       | .12157 |

| Group Statistics |             |       |    |       |           |            |  |  |  |  |  |
|------------------|-------------|-------|----|-------|-----------|------------|--|--|--|--|--|
|                  | Concentra   | otion | N  | Moon  | Std.      | Std. Error |  |  |  |  |  |
|                  | Concentra   | uion  | 11 | Wiean | Deviation | Mean       |  |  |  |  |  |
| WDD              | dimension 1 | 0%    | 3  | .0039 | .00332    | .00191     |  |  |  |  |  |
| WKD              | unnensioni  | 1%    | 2  | .0021 | .00021    | .00015     |  |  |  |  |  |

# h. Effect on root dry weight: 2<sup>nd</sup> treatment

|     |                                      |                                 |                              | Inde                         | pende | ent Sam                | ples Test          |                          |                                     |                               |
|-----|--------------------------------------|---------------------------------|------------------------------|------------------------------|-------|------------------------|--------------------|--------------------------|-------------------------------------|-------------------------------|
|     |                                      | Leve<br>Test<br>Equali<br>Varia | ne's<br>for<br>ty of<br>nces | t-test for Equality of Means |       |                        |                    |                          |                                     |                               |
|     |                                      | F                               | Sig.                         | t                            | df    | Sig.<br>(2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | 95°<br>Confic<br>Interval<br>Differ | %<br>lence<br>of the<br>rence |
|     | Equal<br>variances<br>assumed        | 5.185                           | .107                         | .748                         | 3     | .509                   | .00185             | .00247                   | -<br>.00602-                        | .00972                        |
| WRD | Equal<br>variances<br>not<br>assumed |                                 |                              | .964                         | 2.024 | .436                   | .00185             | .00192                   | .00632-                             | .01002                        |

#### <u>H<sub>2</sub>SO<sub>4</sub></u>

#### Germination 1<sup>st</sup> treatment

|                |         |       | Statis | tics <sup>a</sup> |        |        |        |
|----------------|---------|-------|--------|-------------------|--------|--------|--------|
|                |         | 0%    | 1%     | 2%                | 5%     | 10%    | 20%    |
| N              | Valid   | 14    | 14     | 14                | 14     | 14     | 14     |
| IN             | Missing | 0     | 0      | 0                 | 0      | 0      | 0      |
|                | Mean    | 24.29 | 30.00  | 12.86             | 29.29  | 48.57  | 33.57  |
| Std. Deviation |         | 9.376 | 15.191 | 9.139             | 13.281 | 23.812 | 18.649 |

## Germination 2<sup>nd</sup> treatment

|      | Statistics <sup>a</sup> |        |        |        |       |        |        |  |  |  |  |
|------|-------------------------|--------|--------|--------|-------|--------|--------|--|--|--|--|
|      | 0% 1% 2% 5% 10% 20%     |        |        |        |       |        |        |  |  |  |  |
| NI   | Valid                   | 14     | 14     | 14     | 14    | 14     | 14     |  |  |  |  |
| IN   | Missing                 | 0      | 0      | 0      | 0     | 0      | 0      |  |  |  |  |
| Mean |                         | 32.14  | 31.43  | 22.86  | 14.29 | 45.71  | 20.71  |  |  |  |  |
| Std  | . Deviation             | 11.883 | 13.506 | 12.666 | 9.376 | 26.520 | 11.411 |  |  |  |  |

## Seedling 1<sup>st</sup> treatment

## a. Effect on shoot fresh length 1<sup>st</sup> treatment

| ANOVA          |                |    |             |       |      |  |  |  |  |  |
|----------------|----------------|----|-------------|-------|------|--|--|--|--|--|
|                | Sum of Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | 3.824          | 5  | .765        | 1.519 | .231 |  |  |  |  |  |
| Within Groups  | 9.566          | 19 | .503        |       |      |  |  |  |  |  |
| Total          | 13.390         | 24 |             |       |      |  |  |  |  |  |

|               |      |            | Mı  | iltiple Comparis | ons    |      |          |         |
|---------------|------|------------|-----|------------------|--------|------|----------|---------|
|               |      |            |     |                  |        |      | 95% Cor  | fidence |
| (I)           |      | (J)        |     | Mean             | Std.   | Sig  | Inter    | val     |
| Concentration |      | Concentrat | ion | Difference (I-J) | Error  | Sig. | Lower    | Upper   |
|               |      |            |     |                  |        |      | Bound    | Bound   |
|               |      |            | 1%  | .75833           | .54194 | .178 | 3760-    | 1.8926  |
|               |      |            | 2%  | 1.03333          | .64774 | .127 | 3224-    | 2.3891  |
|               | 0%   | dimension3 | 5%  | .23333           | .54194 | .672 | 9010-    | 1.3676  |
|               |      |            | 10% | 06667-           | .48965 | .893 | -1.0915- | .9582   |
|               |      |            | 20% | .69333           | .51819 | .197 | 3913-    | 1.7779  |
|               | 1%   |            | 0%  | 75833-           | .54194 | .178 | -1.8926- | .3760   |
|               |      |            | 2%  | .27500           | .61450 | .660 | -1.0112- | 1.5612  |
|               |      | dimension3 | 5%  | 52500-           | .50174 | .309 | -1.5752- | .5252   |
|               |      |            | 10% | 82500-           | .44474 | .079 | -1.7559- | .1059   |
|               |      |            | 20% | 06500-           | .47599 | .893 | -1.0613- | .9313   |
|               |      |            | 0%  | -1.03333-        | .64774 | .127 | -2.3891- | .3224   |
|               |      |            | 1%  | 27500-           | .61450 | .660 | -1.5612- | 1.0112  |
|               | 2%   | dimension3 | 5%  | 80000-           | .61450 | .209 | -2.0862- | .4862   |
|               |      |            | 10% | -1.10000-        | .56892 | .068 | -2.2908- | .0908   |
| dimension2    |      |            | 20% | 34000-           | .59366 | .574 | -1.5826- | .9026   |
|               |      |            | 0%  | 23333-           | .54194 | .672 | -1.3676- | .9010   |
|               |      |            | 1%  | .52500           | .50174 | .309 | 5252-    | 1.5752  |
|               | 5%   | dimension3 | 2%  | .80000           | .61450 | .209 | 4862-    | 2.0862  |
|               |      |            | 10% | 30000-           | .44474 | .508 | -1.2309- | .6309   |
|               |      |            | 20% | .46000           | .47599 | .346 | 5363-    | 1.4563  |
|               |      |            | 0%  | .06667           | .48965 | .893 | 9582-    | 1.0915  |
|               |      |            | 1%  | .82500           | .44474 | .079 | 1059-    | 1.7559  |
|               | 10%  | dimension3 | 2%  | 1.10000          | .56892 | .068 | 0908-    | 2.2908  |
|               |      |            | 5%  | .30000           | .44474 | .508 | 6309-    | 1.2309  |
|               |      |            | 20% | .76000           | .41548 | .083 | 1096-    | 1.6296  |
|               |      |            | 0%  | 69333-           | .51819 | .197 | -1.7779- | .3913   |
|               | 2004 | dimension? | 1%  | .06500           | .47599 | .893 | 9313-    | 1.0613  |
|               | 2070 | unnensions | 2%  | .34000           | .59366 | .574 | 9026-    | 1.5826  |
|               |      |            | 5%  | 46000-           | .47599 | .346 | -1.4563- | .5363   |

| Multiple Comparisons |      |            |     |                  |        |      |          |         |  |  |
|----------------------|------|------------|-----|------------------|--------|------|----------|---------|--|--|
|                      |      |            |     |                  |        |      | 95% Cor  | fidence |  |  |
| (I)                  |      | (J)        |     | Mean             | Std.   | Sig  | Inter    | val     |  |  |
| Concentration        |      | Concentrat | ion | Difference (I-J) | Error  | Sig. | Lower    | Upper   |  |  |
|                      |      |            |     |                  |        |      | Bound    | Bound   |  |  |
|                      |      |            | 1%  | .75833           | .54194 | .178 | 3760-    | 1.8926  |  |  |
|                      |      |            | 2%  | 1.03333          | .64774 | .127 | 3224-    | 2.3891  |  |  |
|                      | 0%   | dimension3 | 5%  | .23333           | .54194 | .672 | 9010-    | 1.3676  |  |  |
|                      |      |            | 10% | 06667-           | .48965 | .893 | -1.0915- | .9582   |  |  |
|                      |      |            | 20% | .69333           | .51819 | .197 | 3913-    | 1.7779  |  |  |
|                      |      |            | 0%  | 75833-           | .54194 | .178 | -1.8926- | .3760   |  |  |
|                      | 1%   | dimension3 | 2%  | .27500           | .61450 | .660 | -1.0112- | 1.5612  |  |  |
|                      |      |            | 5%  | 52500-           | .50174 | .309 | -1.5752- | .5252   |  |  |
|                      |      |            | 10% | 82500-           | .44474 | .079 | -1.7559- | .1059   |  |  |
|                      |      |            | 20% | 06500-           | .47599 | .893 | -1.0613- | .9313   |  |  |
|                      |      |            | 0%  | -1.03333-        | .64774 | .127 | -2.3891- | .3224   |  |  |
|                      |      |            | 1%  | 27500-           | .61450 | .660 | -1.5612- | 1.0112  |  |  |
|                      | 2%   | dimension3 | 5%  | 80000-           | .61450 | .209 | -2.0862- | .4862   |  |  |
|                      |      |            | 10% | -1.10000-        | .56892 | .068 | -2.2908- | .0908   |  |  |
| dimension2           |      |            | 20% | 34000-           | .59366 | .574 | -1.5826- | .9026   |  |  |
|                      |      |            | 0%  | 23333-           | .54194 | .672 | -1.3676- | .9010   |  |  |
|                      |      |            | 1%  | .52500           | .50174 | .309 | 5252-    | 1.5752  |  |  |
|                      | 5%   | dimension3 | 2%  | .80000           | .61450 | .209 | 4862-    | 2.0862  |  |  |
|                      |      |            | 10% | 30000-           | .44474 | .508 | -1.2309- | .6309   |  |  |
|                      |      |            | 20% | .46000           | .47599 | .346 | 5363-    | 1.4563  |  |  |
|                      |      |            | 0%  | .06667           | .48965 | .893 | 9582-    | 1.0915  |  |  |
|                      |      |            | 1%  | .82500           | .44474 | .079 | 1059-    | 1.7559  |  |  |
|                      | 10%  | dimension3 | 2%  | 1.10000          | .56892 | .068 | 0908-    | 2.2908  |  |  |
|                      |      |            | 5%  | .30000           | .44474 | .508 | 6309-    | 1.2309  |  |  |
|                      |      |            | 20% | .76000           | .41548 | .083 | 1096-    | 1.6296  |  |  |
|                      |      |            | 0%  | 69333-           | .51819 | .197 | -1.7779- | .3913   |  |  |
|                      | 20%  | dimension? | 1%  | .06500           | .47599 | .893 | 9313-    | 1.0613  |  |  |
|                      | 2070 |            | 2%  | .34000           | .59366 | .574 | 9026-    | 1.5826  |  |  |
|                      |      |            | 5%  | 46000-           | .47599 | .346 | -1.4563- | .5363   |  |  |
|                      |      |            | 10% | 76000-           | .41548 | .083 | -1.6296- | .1096   |  |  |

|                |                | ANOVA |             |       |      |
|----------------|----------------|-------|-------------|-------|------|
|                | Sum of Squares | df    | Mean Square | F     | Sig. |
| Between Groups | 14.396         | 5     | 2.879       | 2.407 | .075 |
| Within Groups  | 22.725         | 19    | 1.196       |       |      |
| Total          | 37.120         | 24    |             |       |      |

## **b.** Effect on shoot dry length 1<sup>st</sup> treatment

| Multiple Comparisons |     |             |       |                     |             |         |                          |         |  |  |
|----------------------|-----|-------------|-------|---------------------|-------------|---------|--------------------------|---------|--|--|
|                      |     |             |       |                     |             |         | 95% Cor                  | fidence |  |  |
| (I)                  |     | (J)         |       | Mean                | Std.        | Sig     | Inter                    | val     |  |  |
| Concentrat           | ion | Concentrat  | ion   | Difference (I-J)    | Error       | Sig.    | Lower                    | Upper   |  |  |
|                      |     |             |       |                     |             |         | Bound                    | Bound   |  |  |
|                      |     |             | 1%    | $2.40000^{*}$       | .83527      | .010    | .6518                    | 4.1482  |  |  |
|                      |     |             | 2%    | $2.65000^{*}$       | .99834      | .016    | .5604                    | 4.7396  |  |  |
|                      | 0%  | dimension3  | 5%    | $1.92500^{*}$       | .83527      | .033    | .1768                    | 3.6732  |  |  |
|                      |     |             | 10%   | 1.60000*            | .75468      | .047    | .0204                    | 3.1796  |  |  |
|                      |     |             | 20%   | $2.34000^{*}$       | .79867      | .009    | .6684                    | 4.0116  |  |  |
|                      |     |             | 0%    | -2.40000-*          | .83527      | .010    | -4.1482-                 | 6518-   |  |  |
|                      |     |             | 2%    | .25000              | .94711      | .795    | -1.7323-                 | 2.2323  |  |  |
|                      | 1%  | dimension3  | 5%    | 47500-              | .77331      | .546    | -2.0936-                 | 1.1436  |  |  |
|                      |     |             | 10%   | 80000-              | .68547      | .258    | -2.2347-                 | .6347   |  |  |
|                      |     |             | 20%   | 06000-              | .73363      | .936    | -1.5955-                 | 1.4755  |  |  |
|                      |     |             | 0%    | -2.65000-*          | .99834      | .016    | -4.7396-                 | 5604-   |  |  |
|                      | 2%  |             | 1%    | 25000-              | .94711      | .795    | -2.2323-                 | 1.7323  |  |  |
|                      |     | dimension3  | 5%    | 72500-              | .94711      | .453    | -2.7073-                 | 1.2573  |  |  |
|                      |     |             | 10%   | -1.05000-           | .87685      | .246    | -2.8853-                 | .7853   |  |  |
| dimension?           |     |             | 20%   | 31000-              | .91500      | .738    | 3 -2.2251-<br>3 -3.6732- | 1.6051  |  |  |
| unnension2           | 2   |             | 0%    | -1.92500-*          | .83527      | .033    | -3.6732-                 | 1768-   |  |  |
|                      |     |             | 1%    | .47500              | .77331      | .546    | -1.1436-                 | 2.0936  |  |  |
|                      | 5%  | dimension3  | 2%    | .72500              | .94711      | .453    | -1.2573-                 | 2.7073  |  |  |
|                      |     |             | 10%   | 32500-              | .68547      | .641    | -1.7597-                 | 1.1097  |  |  |
|                      |     |             | 20%   | .41500              | .73363      | .578    | -1.1205-                 | 1.9505  |  |  |
|                      |     |             | 0%    | -1.60000-*          | .75468      | .047    | -3.1796-                 | 0204-   |  |  |
|                      |     |             | 1%    | .80000              | .68547      | .258    | 6347-                    | 2.2347  |  |  |
|                      | 10% | dimension3  | 2%    | 1.05000             | .87685      | .246    | 7853-                    | 2.8853  |  |  |
|                      |     |             | 5%    | .32500              | .68547      | .641    | -1.1097-                 | 1.7597  |  |  |
|                      |     |             | 20%   | .74000              | .64036      | .262    | 6003-                    | 2.0803  |  |  |
|                      |     |             | 0%    | -2.34000-*          | .79867      | .009    | -4.0116-                 | 6684-   |  |  |
|                      |     |             | 1%    | .06000              | .73363      | .936    | -1.4755-                 | 1.5955  |  |  |
|                      | 20% | dimension3  | 2%    | .31000              | .91500      | .738    | -1.6051-                 | 2.2251  |  |  |
|                      |     |             | 5%    | 41500-              | .73363      | .578    | -1.9505-                 | 1.1205  |  |  |
|                      |     |             | 10%   | 74000-              | .64036      | .262    | -2.0803-                 | .6003   |  |  |
|                      |     | *. The mean | diffe | rence is significar | nt at the ( | ).05 le | evel.                    |         |  |  |

|                | 8              |    |             |       |       |
|----------------|----------------|----|-------------|-------|-------|
|                |                |    |             |       |       |
|                | Sum of Squares | Df | Mean Square | F     | Sig.  |
| Between Groups | 20.818         | 5  | 4.164       |       |       |
| Within Groups  | 15.762         | 19 | 0.830       | 5.019 | 0.004 |
| Total          | 36.580         | 24 |             |       |       |

## c. Effect on root fresh length 1<sup>st</sup> treatment

|            |     |               | Mı    | iltiple Comparis    | ons         |                      |          |          |
|------------|-----|---------------|-------|---------------------|-------------|----------------------|----------|----------|
|            |     |               |       |                     |             |                      | 95% Cor  | nfidence |
| (I)        |     | (J)           |       | Mean                | Std.        | <b>C</b> :~          | Inter    | rval     |
| Concentrat | ion | Concentration |       | Difference (I-J)    | Error       | Sig.                 | Lower    | Upper    |
|            |     |               |       |                     |             |                      | Bound    | Bound    |
|            |     |               | 1%    | .43333              | .69565      | .541                 | -1.0227- | 1.8893   |
|            |     |               | 2%    | .13333              | .83146      | .874                 | -1.6069- | 1.8736   |
|            | 0%  | dimension3    | 5%    | .05833              | .69565      | .934                 | -1.3977- | 1.5143   |
|            |     |               | 10%   | -1.16667-           | .62852      | .079                 | -2.4822- | .1488    |
|            |     |               | 20%   | -2.04667-*          | .66517      | .006                 | -3.4389- | 6545-    |
|            |     |               | 0%    | 43333-              | .69565      | .541                 | -1.8893- | 1.0227   |
|            |     |               | 2%    | 30000-              | .78879      | .708                 | -1.9510- | 1.3510   |
|            | 1%  | dimension3    | 5%    | 37500-              | .64404      | .567                 | -1.7230- | .9730    |
|            |     |               | 10%   | -1.60000-*          | .57088      | .011                 | -2.7949- | 4051-    |
|            |     |               | 20%   | -2.48000-*          | .61099      | .001                 | -3.7588- | -1.2012- |
|            |     |               | 0%    | 13333-              | .83146      | .874                 | -1.8736- | 1.6069   |
|            |     |               | 1%    | .30000              | .78879      | .708                 | -1.3510- | 1.9510   |
|            | 2%  | dimension3    | 5%    | 07500-              | .78879      | .925                 | -1.7260- | 1.5760   |
|            |     |               | 10%   | -1.30000-           | .73028      | .091                 | -2.8285- | .2285    |
| dimension? |     |               | 20%   | -2.18000-*          | .76204      | .010                 | -3.7750- | 5850-    |
| unnension2 |     |               | 0%    | 05833-              | .69565      | .934                 | -1.5143- | 1.3977   |
|            |     |               | 1%    | .37500              | .64404      | .567                 | 9730-    | 1.7230   |
|            | 5%  | dimension3    | 2%    | .07500              | .78879      | .925                 | -1.5760- | 1.7260   |
|            |     |               | 10%   | -1.22500-*          | .57088      | .045                 | -2.4199- | 0301-    |
|            |     |               | 20%   | -2.10500-*          | .61099      | .003                 | -3.3838- | 8262-    |
|            |     |               | 0%    | 1.16667             | .62852      | .079                 | 1488-    | 2.4822   |
|            |     |               | 1%    | $1.60000^{*}$       | .57088      | .011                 | .4051    | 2.7949   |
|            | 10% | dimension3    | 2%    | 1.30000             | .73028      | .091                 | 2285-    | 2.8285   |
|            |     |               | 5%    | $1.22500^{*}$       | .57088      | .045                 | .0301    | 2.4199   |
|            |     |               | 20%   | 88000-              | .53332      | .115                 | -1.9963- | .2363    |
|            |     |               | 0%    | $2.04667^{*}$       | .66517      | .006                 | .6545    | 3.4389   |
|            |     |               | 1%    | $2.48000^{*}$       | .61099      | .001                 | 1.2012   | 3.7588   |
|            | 20% | dimension3    | 2%    | $2.18000^{*}$       | .76204      | .010                 | .5850    | 3.7750   |
|            |     |               | 5%    | $2.10500^{*}$       | .61099      | .003                 | .8262    | 3.3838   |
|            |     |               | 10%   | .88000              | .53332      | .115                 | 2363-    | 1.9963   |
|            |     | *. The mean   | diffe | rence is significar | nt at the ( | $0.05  \overline{1}$ | evel.    |          |

|                |                |    | -           |       |       |  |  |  |  |
|----------------|----------------|----|-------------|-------|-------|--|--|--|--|
| ANOVA          |                |    |             |       |       |  |  |  |  |
|                | Sum of Squares | df | Mean Square | F     | Sig.  |  |  |  |  |
| Between Groups | 18.160         | 5  | 3.632       |       |       |  |  |  |  |
| Within Groups  | 19.814         | 19 | 1.043       | 3.483 | 0.021 |  |  |  |  |
| Total          | 37.974         | 24 |             |       |       |  |  |  |  |

## d. Effect on root f dry length 1<sup>st</sup> treatment

|            | Multiple Comparisons |             |       |                     |              |         |          |          |  |  |
|------------|----------------------|-------------|-------|---------------------|--------------|---------|----------|----------|--|--|
|            |                      |             |       |                     |              |         | 95% Con  | ifidence |  |  |
| (I)        |                      | (J)         |       | Mean                | Std.         | Sig     | Inter    | val      |  |  |
| Concentrat | ion                  | Concentrat  | ion   | Difference (I-J)    | Error        | Sig.    | Lower    | Upper    |  |  |
|            |                      |             |       |                     |              |         | Bound    | Bound    |  |  |
|            |                      |             | 1%    | .05833              | .77996       | .941    | -1.5741- | 1.6908   |  |  |
|            |                      |             | 2%    | 11667-              | .93223       | .902    | -2.0678- | 1.8345   |  |  |
|            | 0%                   | dimension3  | 5%    | 51667-              | .77996       | .516    | -2.1491- | 1.1158   |  |  |
|            |                      |             | 10%   | -1.30952-           | .70470       | .079    | -2.7845- | .1654    |  |  |
|            |                      |             | 20%   | -2.24667-*          | .74578       | .007    | -3.8076- | 6857-    |  |  |
|            |                      |             | 0%    | 05833-              | .77996       | .941    | -1.6908- | 1.5741   |  |  |
|            |                      |             | 2%    | 17500-              | .88439       | .845    | -2.0260- | 1.6760   |  |  |
|            | 1%                   | dimension3  | 5%    | 57500-              | .72210       | .436    | -2.0864- | .9364    |  |  |
|            |                      |             | 10%   | -1.36786-*          | .64007       | .046    | -2.7075- | 0282-    |  |  |
|            |                      |             | 20%   | -2.30500-*          | .68504       | .003    | -3.7388- | 8712-    |  |  |
|            |                      | dimension3  | 0%    | .11667              | .93223       | .902    | -1.8345- | 2.0678   |  |  |
|            |                      |             | 1%    | .17500              | .88439       | .845    | -1.6760- | 2.0260   |  |  |
|            | 2%                   |             | 5%    | 40000-              | .88439       | .656    | -2.2510- | 1.4510   |  |  |
|            |                      |             | 10%   | -1.19286-           | .81879       | .161    | -2.9066- | .5209    |  |  |
| dimension? |                      |             | 20%   | -2.13000-*          | .85440       | .022    | -3.9183- | 3417-    |  |  |
| unnension2 |                      |             | 0%    | .51667              | .77996       | .516    | -1.1158- | 2.1491   |  |  |
|            |                      |             | 1%    | .57500              | .72210       | .436    | 9364-    | 2.0864   |  |  |
|            | 5%                   | dimension3  | 2%    | .40000              | .88439       | .656    | -1.4510- | 2.2510   |  |  |
|            |                      |             | 10%   | 79286-              | .64007       | .231    | -2.1325- | .5468    |  |  |
|            |                      |             | 20%   | -1.73000-*          | .68504       | .021    | -3.1638- | 2962-    |  |  |
|            |                      |             | 0%    | 1.30952             | .70470       | .079    | 1654-    | 2.7845   |  |  |
|            |                      |             | 1%    | $1.36786^{*}$       | .64007       | .046    | .0282    | 2.7075   |  |  |
|            | 10%                  | dimension3  | 2%    | 1.19286             | .81879       | .161    | 5209-    | 2.9066   |  |  |
|            |                      |             | 5%    | .79286              | .64007       | .231    | 5468-    | 2.1325   |  |  |
|            |                      |             | 20%   | 93714-              | .59796       | .134    | -2.1887- | .3144    |  |  |
|            |                      |             | 0%    | $2.24667^{*}$       | .74578       | .007    | .6857    | 3.8076   |  |  |
|            |                      |             | 1%    | $2.30500^{*}$       | .68504       | .003    | .8712    | 3.7388   |  |  |
|            | 20%                  | dimension3  | 2%    | $2.13000^{*}$       | .85440       | .022    | .3417    | 3.9183   |  |  |
|            |                      |             | 5%    | $1.73000^{*}$       | .68504       | .021    | .2962    | 3.1638   |  |  |
|            |                      |             | 10%   | .93714              | .59796       | .134    | 3144-    | 2.1887   |  |  |
|            |                      | *. The mean | diffe | rence is significar | t at the $($ | ).05 le | evel.    |          |  |  |

|                | 0              |    |             |       |       |  |  |  |  |
|----------------|----------------|----|-------------|-------|-------|--|--|--|--|
| ANOVA          |                |    |             |       |       |  |  |  |  |
|                | Sum of Squares | df | Mean Square | F     | Sig.  |  |  |  |  |
| Between Groups | .012           | 5  | 0.002       |       |       |  |  |  |  |
| Within Groups  | .022           | 19 | 0.001       | 2.041 | 0.119 |  |  |  |  |
| Total          | .033           | 24 |             |       |       |  |  |  |  |

## e. Effect on shoot fresh weight 1<sup>st</sup> treatment

|               |     |               | Multiple Comparisons |                     |             |        |         |          |  |  |  |  |
|---------------|-----|---------------|----------------------|---------------------|-------------|--------|---------|----------|--|--|--|--|
|               |     |               |                      |                     |             |        | 95% Cor | nfidence |  |  |  |  |
| (I)           |     | (J)           |                      | Mean                | Std.        | Sig    | Inter   | rval     |  |  |  |  |
| Concentration |     | Concentration |                      | Difference (I-J)    | Error       | Sig.   | Lower   | Upper    |  |  |  |  |
|               |     |               |                      |                     |             |        | Bound   | Bound    |  |  |  |  |
|               |     |               | 1%                   | .03418              | .02585      | .202   | 0199-   | .0883    |  |  |  |  |
|               |     |               | 2%                   | .00358              | .03089      | .909   | 0611-   | .0682    |  |  |  |  |
|               | 0%  | dimension3    | 5%                   | 01517-              | .02585      | .564   | 0693-   | .0389    |  |  |  |  |
|               |     |               | 10%                  | .02140              | .02335      | .371   | 0275-   | .0703    |  |  |  |  |
|               |     |               | 20%                  | .04899              | .02471      | .062   | 0027-   | .1007    |  |  |  |  |
|               |     |               | 0%                   | 03418-              | .02585      | .202   | 0883-   | .0199    |  |  |  |  |
|               |     |               | 2%                   | 03060-              | .02931      | .310   | 0919-   | .0307    |  |  |  |  |
|               | 1%  | dimension3    | 5%                   | 04935-              | .02393      | .053   | 0994-   | .0007    |  |  |  |  |
|               |     |               | 10%                  | 01278-              | .02121      | .554   | 0572-   | .0316    |  |  |  |  |
|               |     |               | 20%                  | .01481              | .02270      | .522   | 0327-   | .0623    |  |  |  |  |
|               |     |               | 0%                   | 00358-              | .03089      | .909   | 0682-   | .0611    |  |  |  |  |
|               |     |               | 1%                   | .03060              | .02931      | .310   | 0307-   | .0919    |  |  |  |  |
|               | 2%  | dimension3    | 5%                   | 01875-              | .02931      | .530   | 0801-   | .0426    |  |  |  |  |
|               |     |               | 10%                  | .01782              | .02713      | .519   | 0390-   | .0746    |  |  |  |  |
| dimension?    |     |               | 20%                  | .04541              | .02831      | .125   | 0139-   | .1047    |  |  |  |  |
| unnension2    |     | dimension3    | 0%                   | .01517              | .02585      | .564   | 0389-   | .0693    |  |  |  |  |
|               |     |               | 1%                   | .04935              | .02393      | .053   | 0007-   | .0994    |  |  |  |  |
|               | 5%  |               | 2%                   | .01875              | .02931      | .530   | 0426-   | .0801    |  |  |  |  |
|               |     |               | 10%                  | .03657              | .02121      | .101   | 0078-   | .0810    |  |  |  |  |
|               |     |               | 20%                  | .06416 <sup>*</sup> | .02270      | .011   | .0166   | .1117    |  |  |  |  |
|               |     |               | 0%                   | 02140-              | .02335      | .371   | 0703-   | .0275    |  |  |  |  |
|               |     |               | 1%                   | .01278              | .02121      | .554   | 0316-   | .0572    |  |  |  |  |
|               | 10% | dimension3    | 2%                   | 01782-              | .02713      | .519   | 0746-   | .0390    |  |  |  |  |
|               |     |               | 5%                   | 03657-              | .02121      | .101   | 0810-   | .0078    |  |  |  |  |
|               |     |               | 20%                  | .02759              | .01982      | .180   | 0139-   | .0691    |  |  |  |  |
|               |     |               | 0%                   | 04899-              | .02471      | .062   | 1007-   | .0027    |  |  |  |  |
|               |     |               | 1%                   | 01481-              | .02270      | .522   | 0623-   | .0327    |  |  |  |  |
|               | 20% | dimension3    | 2%                   | 04541-              | .02831      | .125   | 1047-   | .0139    |  |  |  |  |
|               |     |               | 5%                   | 06416-*             | .02270      | .011   | 1117-   | 0166-    |  |  |  |  |
|               |     |               | 10%                  | 02759-              | .01982      | .180   | 0691-   | .0139    |  |  |  |  |
|               |     | *. The mean   | diffe                | rence is significan | nt at the 0 | .05 le | vel.    |          |  |  |  |  |

|                |                | 010001110 |             |      |      |  |  |  |  |
|----------------|----------------|-----------|-------------|------|------|--|--|--|--|
| ANOVA          |                |           |             |      |      |  |  |  |  |
|                | Sum of Squares | df        | Mean Square | F    | Sig. |  |  |  |  |
| Between Groups | .000           | 5         | .000        |      |      |  |  |  |  |
| Within Groups  | .000           | 19        | .000        | .908 | .497 |  |  |  |  |
| Total          | .000           | 24        |             |      |      |  |  |  |  |

#### f. Effect on shoot dry weight 1<sup>st</sup> treatment

|         | Multiple Comparisons |                             |       |                      |        |      |             |               |  |  |  |  |  |
|---------|----------------------|-----------------------------|-------|----------------------|--------|------|-------------|---------------|--|--|--|--|--|
|         |                      |                             |       | LS                   | SD     |      |             |               |  |  |  |  |  |
|         |                      |                             |       | Mean                 |        |      | 95% Confide | ence Interval |  |  |  |  |  |
| Concent | Concentration        |                             | ation | Difference (I-<br>J) |        | Sig. | Lower Bound | Upper Bound   |  |  |  |  |  |
|         |                      |                             | 1%    | 00139-               | .00114 | .235 | 0038-       | .0010         |  |  |  |  |  |
|         |                      | dimensio                    | 2%    | 00082-               | .00136 | .555 | 0037-       | .0020         |  |  |  |  |  |
|         | 0%                   | annensio<br>n <sup>2</sup>  | 5%    | 00014-               | .00114 | .902 | 0025-       | .0022         |  |  |  |  |  |
|         |                      | 115                         | 10%   | 00148-               | .00103 | .165 | 0036-       | .0007         |  |  |  |  |  |
|         |                      |                             | 20%   | 00161-               | .00109 | .155 | 0039-       | .0007         |  |  |  |  |  |
|         |                      |                             | 0%    | .00139               | .00114 | .235 | 0010-       | .0038         |  |  |  |  |  |
|         |                      | dimonsio                    | 2%    | .00058               | .00129 | .660 | 0021-       | .0033         |  |  |  |  |  |
|         | 1%                   | uninensio<br>n <sup>2</sup> | 5%    | .00125               | .00105 | .249 | 0010-       | .0035         |  |  |  |  |  |
|         |                      | n3                          | 10%   | 00009-               | .00093 | .925 | 0020-       | .0019         |  |  |  |  |  |
|         |                      |                             | 20%   | 00021-               | .00100 | .832 | 0023-       | .0019         |  |  |  |  |  |
|         |                      | dimensio                    | 0%    | .00082               | .00136 | .555 | 0020-       | .0037         |  |  |  |  |  |
|         |                      |                             | 1%    | 00058-               | .00129 | .660 | 0033-       | .0021         |  |  |  |  |  |
|         | 2%                   | annensio<br>n <sup>2</sup>  | 5%    | .00067               | .00129 | .606 | 0020-       | .0034         |  |  |  |  |  |
|         |                      | 115                         | 10%   | 00066-               | .00119 | .584 | 0032-       | .0018         |  |  |  |  |  |
| dimensi |                      |                             | 20%   | 00079-               | .00124 | .533 | 0034-       | .0018         |  |  |  |  |  |
| on2     |                      | dimensio                    | 0%    | .00014               | .00114 | .902 | 0022-       | .0025         |  |  |  |  |  |
|         |                      |                             | 1%    | 00125-               | .00105 | .249 | 0035-       | .0010         |  |  |  |  |  |
|         | 5%                   |                             | 2%    | 00067-               | .00129 | .606 | 0034-       | .0020         |  |  |  |  |  |
|         |                      | 115                         | 10%   | 00134-               | .00093 | .167 | 0033-       | .0006         |  |  |  |  |  |
|         |                      |                             | 20%   | 00146-               | .00100 | .158 | 0036-       | .0006         |  |  |  |  |  |
|         |                      |                             | 0%    | .00148               | .00103 | .165 | 0007-       | .0036         |  |  |  |  |  |
|         |                      | dimonsio                    | 1%    | .00009               | .00093 | .925 | 0019-       | .0020         |  |  |  |  |  |
|         | 10%                  | n3                          | 2%    | .00066               | .00119 | .584 | 0018-       | .0032         |  |  |  |  |  |
|         |                      | 11.5                        | 5%    | .00134               | .00093 | .167 | 0006-       | .0033         |  |  |  |  |  |
|         |                      |                             | 20%   | 00013-               | .00087 | .887 | 0019-       | .0017         |  |  |  |  |  |
|         |                      |                             | 0%    | .00161               | .00109 | .155 | 0007-       | .0039         |  |  |  |  |  |
|         |                      | dimonsio                    | 1%    | .00021               | .00100 | .832 | 0019-       | .0023         |  |  |  |  |  |
|         | 20%                  | n3                          | 2%    | .00079               | .00124 | .533 | 0018-       | .0034         |  |  |  |  |  |
|         |                      | 113                         | 5%    | .00146               | .00100 | .158 | 0006-       | .0036         |  |  |  |  |  |
|         |                      |                             | 10%   | .00013               | .00087 | .887 | 0017-       | .0019         |  |  |  |  |  |

|                | 0              |    |             |      |      |  |  |  |  |
|----------------|----------------|----|-------------|------|------|--|--|--|--|
| ANOVA          |                |    |             |      |      |  |  |  |  |
|                | Sum of Squares | df | Mean Square | F    | Sig. |  |  |  |  |
| Between Groups | .001           | 5  | .000        | .573 | .720 |  |  |  |  |
| Within Groups  | .010           | 19 | .001        |      |      |  |  |  |  |
| Total          | .011           | 24 |             |      |      |  |  |  |  |

## g. Effect on root fresh weight 1<sup>st</sup> treatment

|            | Multiple Comparisons |                             |     |                      |            |      |             |               |  |  |  |  |
|------------|----------------------|-----------------------------|-----|----------------------|------------|------|-------------|---------------|--|--|--|--|
|            |                      |                             |     | LS                   | D          |      |             |               |  |  |  |  |
|            |                      | $(\mathbf{I})$              |     | Mean                 |            |      | 95% Confide | ence Interval |  |  |  |  |
| (I) Concen | tration              | Concentration               |     | Difference (I-<br>J) | Std. Error | Sig. | Lower Bound | Upper Bound   |  |  |  |  |
|            |                      |                             | 1%  | .00414               | .01732     | .814 | 0321-       | .0404         |  |  |  |  |
|            |                      | dimensio                    | 2%  | 02723-               | .02071     | .204 | 0706-       | .0161         |  |  |  |  |
|            | 0%                   | unnensio<br>n <sup>2</sup>  | 5%  | 00161-               | .01732     | .927 | 0379-       | .0347         |  |  |  |  |
|            |                      | 115                         | 10% | 00648-               | .01565     | .684 | 0392-       | .0263         |  |  |  |  |
|            |                      |                             | 20% | 00225-               | .01657     | .893 | 0369-       | .0324         |  |  |  |  |
|            |                      |                             | 0%  | 00414-               | .01732     | .814 | 0404-       | .0321         |  |  |  |  |
|            |                      | dimonsio                    | 2%  | 03138-               | .01964     | .127 | 0725-       | .0097         |  |  |  |  |
|            | 1%                   | uninensio<br>n <sup>2</sup> | 5%  | 00575-               | .01604     | .724 | 0393-       | .0278         |  |  |  |  |
|            |                      | 115                         | 10% | 01062-               | .01422     | .464 | 0404-       | .0191         |  |  |  |  |
|            |                      |                             | 20% | 00640-               | .01522     | .679 | 0382-       | .0255         |  |  |  |  |
|            |                      |                             | 0%  | .02723               | .02071     | .204 | 0161-       | .0706         |  |  |  |  |
|            |                      | dimensio                    | 1%  | .03138               | .01964     | .127 | 0097-       | .0725         |  |  |  |  |
|            | 2%                   |                             | 5%  | .02562               | .01964     | .208 | 0155-       | .0667         |  |  |  |  |
|            |                      | 115                         | 10% | .02076               | .01819     | .268 | 0173-       | .0588         |  |  |  |  |
| dimension  |                      |                             | 20% | .02498               | .01898     | .204 | 0147-       | .0647         |  |  |  |  |
| 2          |                      | dimensio<br>n3              | 0%  | .00161               | .01732     | .927 | 0347-       | .0379         |  |  |  |  |
|            |                      |                             | 1%  | .00575               | .01604     | .724 | 0278-       | .0393         |  |  |  |  |
|            | 5%                   |                             | 2%  | 02562-               | .01964     | .208 | 0667-       | .0155         |  |  |  |  |
|            |                      |                             | 10% | 00487-               | .01422     | .736 | 0346-       | .0249         |  |  |  |  |
|            |                      |                             | 20% | 00064-               | .01522     | .967 | 0325-       | .0312         |  |  |  |  |
|            |                      |                             | 0%  | .00648               | .01565     | .684 | 0263-       | .0392         |  |  |  |  |
|            |                      | dimonsio                    | 1%  | .01062               | .01422     | .464 | 0191-       | .0404         |  |  |  |  |
|            | 10%                  | uninensio<br>n3             | 2%  | 02076-               | .01819     | .268 | 0588-       | .0173         |  |  |  |  |
|            |                      | 115                         | 5%  | .00487               | .01422     | .736 | 0249-       | .0346         |  |  |  |  |
|            |                      |                             | 20% | .00422               | .01328     | .754 | 0236-       | .0320         |  |  |  |  |
|            |                      |                             | 0%  | .00225               | .01657     | .893 | 0324-       | .0369         |  |  |  |  |
|            |                      | dimonsio                    | 1%  | .00640               | .01522     | .679 | 0255-       | .0382         |  |  |  |  |
|            | 20%                  | n3                          | 2%  | 02498-               | .01898     | .204 | 0647-       | .0147         |  |  |  |  |
|            |                      | 115                         | 5%  | .00064               | .01522     | .967 | 0312-       | .0325         |  |  |  |  |
|            |                      |                             | 10% | 00422-               | .01328     | .754 | 0320-       | .0236         |  |  |  |  |

|                | • •               | ANOVA |             |       |      |  |
|----------------|-------------------|-------|-------------|-------|------|--|
|                | Sum of<br>Squares | df    | Mean Square | F     | Sig. |  |
| Between Groups | .000              | 5     | .000        | 1.250 | .325 |  |
| Within Groups  | .000              | 19    | .000        |       |      |  |
| Total          | .000              | 24    |             |       |      |  |

## h. Effect on root dry weight 1<sup>st</sup> treatment

| LSD Multiple Comparisons |      |            |     |                  |        |      |         |          |  |
|--------------------------|------|------------|-----|------------------|--------|------|---------|----------|--|
|                          |      |            |     |                  |        |      | 95% Cor | nfidence |  |
| (I)                      |      | (J)        |     | Mean             | Std.   | Sig  | Inter   | rval     |  |
| Concentrat               | tion | Concentrat | ion | Difference (I-J) | Error  | Sig. | Lower   | Upper    |  |
|                          |      |            |     |                  |        |      | Bound   | Bound    |  |
|                          |      |            | 1%  | 00143-           | .00140 | .319 | 0044-   | .0015    |  |
|                          |      |            | 2%  | 00273-           | .00167 | .119 | 0062-   | .0008    |  |
|                          | 0%   | dimension3 | 5%  | 00101-           | .00140 | .481 | 0039-   | .0019    |  |
|                          |      |            | 10% | 00226-           | .00126 | .089 | 0049-   | .0004    |  |
|                          |      |            | 20% | 00031-           | .00134 | .819 | 0031-   | .0025    |  |
|                          |      |            | 0%  | .00143           | .00140 | .319 | 0015-   | .0044    |  |
|                          |      |            | 2%  | 00130-           | .00158 | .422 | 0046-   | .0020    |  |
|                          | 1%   | dimension3 | 5%  | .00043           | .00129 | .746 | 0023-   | .0031    |  |
|                          |      |            | 10% | 00083-           | .00115 | .479 | 0032-   | .0016    |  |
|                          |      |            | 20% | .00112           | .00123 | .373 | 0014-   | .0037    |  |
|                          |      |            | 0%  | .00273           | .00167 | .119 | 0008-   | .0062    |  |
|                          |      |            | 1%  | .00130           | .00158 | .422 | 0020-   | .0046    |  |
|                          | 2%   | dimension3 | 5%  | .00172           | .00158 | .290 | 0016-   | .0050    |  |
|                          |      |            | 10% | .00047           | .00147 | .751 | 0026-   | .0035    |  |
| dimension?               |      |            | 20% | .00242           | .00153 | .130 | 0008-   | .0056    |  |
| dimension2               |      | dimension3 | 0%  | .00101           | .00140 | .481 | 0019-   | .0039    |  |
|                          |      |            | 1%  | 00043-           | .00129 | .746 | 0031-   | .0023    |  |
|                          | 5%   |            | 2%  | 00172-           | .00158 | .290 | 0050-   | .0016    |  |
|                          |      |            | 10% | 00125-           | .00115 | .288 | 0037-   | .0011    |  |
|                          |      |            | 20% | .00070           | .00123 | .578 | 0019-   | .0033    |  |
|                          |      |            | 0%  | .00226           | .00126 | .089 | 0004-   | .0049    |  |
|                          |      |            | 1%  | .00083           | .00115 | .479 | 0016-   | .0032    |  |
|                          | 10%  | dimension3 | 2%  | 00047-           | .00147 | .751 | 0035-   | .0026    |  |
|                          |      |            | 5%  | .00125           | .00115 | .288 | 0011-   | .0037    |  |
|                          |      |            | 20% | .00195           | .00107 | .085 | 0003-   | .0042    |  |
|                          |      |            | 0%  | .00031           | .00134 | .819 | 0025-   | .0031    |  |
|                          |      |            | 1%  | 00112-           | .00123 | .373 | 0037-   | .0014    |  |
|                          | 20%  | dimension3 | 2%  | 00242-           | .00153 | .130 | 0056-   | .0008    |  |
|                          |      |            | 5%  | 00070-           | .00123 | .578 | 0033-   | .0019    |  |
|                          |      |            | 10% | 00195-           | .00107 | .085 | 0042-   | .0003    |  |

| ANOVA          |                |    |             |       |      |  |  |  |  |  |
|----------------|----------------|----|-------------|-------|------|--|--|--|--|--|
|                | Sum of Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | 5.131          | 5  | 1.026       | 3.647 | .020 |  |  |  |  |  |
| Within Groups  | 4.783          | 17 | .281        |       |      |  |  |  |  |  |
| Total          | 9.915          | 22 |             |       |      |  |  |  |  |  |

#### Seedling 2<sup>nd</sup> treatment a. Effect on shoot fresh length 2<sup>nd</sup> treatment

|         |        |                 |        | Multiple C        | omparisons    | 5                       |             |               |
|---------|--------|-----------------|--------|-------------------|---------------|-------------------------|-------------|---------------|
|         |        |                 |        | LS                | SD            |                         |             |               |
|         |        |                 |        | Mean              |               |                         | 95% Confide | ence Interval |
| Concent | ration | Concenti        | ation  | Difference (I-    | Std. Error    | Sig.                    | Lower Bound | Upper Bound   |
|         |        |                 | 1%     | .02500            | .37509        | .948                    | 7664-       | .8164         |
|         |        |                 | 2%     | 12500-            | .40514        | .761                    | 9798-       | .7298         |
|         | 0%     | dimensio        | 5%     | .52500            | .45939        | .269                    | 4442-       | 1.4942        |
|         |        | n3              | 10%    | 25357-            | .33248        | .456                    | 9550-       | .4479         |
|         |        |                 | 20%    | 1.20833*          | .40514        | .008                    | .3536       | 2.0631        |
|         |        |                 | 0%     | 02500-            | .37509        | .948                    | 8164-       | .7664         |
|         |        | 1               | 2%     | 15000-            | .40514        | .716                    | -1.0048-    | .7048         |
|         | 1%     | dimensio        | 5%     | .50000            | .45939        | .292                    | 4692-       | 1.4692        |
|         |        | ns              | 10%    | 27857-            | .33248        | .414                    | 9800-       | .4229         |
|         |        |                 | 20%    | 1.18333*          | .40514        | .010                    | .3286       | 2.0381        |
|         |        | dimancia        | 0%     | .12500            | .40514        | .761                    | 7298-       | .9798         |
|         |        |                 | 1%     | .15000            | .40514        | .716                    | 7048-       | 1.0048        |
|         | 2%     | aimensio        | 5%     | .65000            | .48423        | .197                    | 3716-       | 1.6716        |
|         |        | 115             | 10%    | 12857-            | .36605        | .730                    | 9009-       | .6437         |
| dimensi |        |                 | 20%    | 1.33333*          | .43311        | .007                    | .4195       | 2.2471        |
| on2     |        | dimensio<br>n3  | 0%     | 52500-            | .45939        | .269                    | -1.4942-    | .4442         |
|         |        |                 | 1%     | 50000-            | .45939        | .292                    | -1.4692-    | .4692         |
|         | 5%     |                 | 2%     | 65000-            | .48423        | .197                    | -1.6716-    | .3716         |
|         |        |                 | 10%    | 77857-            | .42531        | .085                    | -1.6759-    | .1187         |
|         |        |                 | 20%    | .68333            | .48423        | .176                    | 3383-       | 1.7050        |
|         |        |                 | 0%     | .25357            | .33248        | .456                    | 4479-       | .9550         |
|         |        | dimonsio        | 1%     | .27857            | .33248        | .414                    | 4229-       | .9800         |
|         | 10%    | uninensio<br>n3 | 2%     | .12857            | .36605        | .730                    | 6437-       | .9009         |
|         |        | 115             | 5%     | .77857            | .42531        | .085                    | 1187-       | 1.6759        |
|         |        |                 | 20%    | $1.46190^{*}$     | .36605        | .001                    | .6896       | 2.2342        |
|         |        |                 | 0%     | -1.20833-*        | .40514        | .008                    | -2.0631-    | 3536-         |
|         |        | dimonsio        | 1%     | -1.18333-*        | .40514        | .010                    | -2.0381-    | 3286-         |
|         | 20%    | n3              | 2%     | -1.33333-*        | .43311        | .007                    | -2.2471-    | 4195-         |
|         |        | 113             | 5%     | 68333-            | .48423        | .176                    | -1.7050-    | .3383         |
|         |        |                 | 10%    | -1.46190-*        | .36605        | .001                    | -2.2342-    | 6896-         |
|         |        | *. T            | he mea | n difference is s | significant a | t the $0.0\overline{5}$ | level.      |               |

| ANOVA          |                |    |             |       |      |  |  |  |  |  |
|----------------|----------------|----|-------------|-------|------|--|--|--|--|--|
|                | Sum of Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | 4.568          | 5  | .914        | 2.957 | .042 |  |  |  |  |  |
| Within Groups  | 5.251          | 17 | .309        |       |      |  |  |  |  |  |
| Total          | 9.819          | 22 |             |       |      |  |  |  |  |  |

## b. Effect on shoot dry length 2<sup>nd</sup> treatment

|             |         |                             |         | Multiple Co          | omparisons   |            |             |               |
|-------------|---------|-----------------------------|---------|----------------------|--------------|------------|-------------|---------------|
|             |         |                             |         | LS                   | D            |            |             |               |
|             |         |                             |         | Mean                 |              |            | 95% Confide | ence Interval |
| (I) Concent | tration | (J) Concen                  | tration | Difference (I-<br>J) | Std. Error   | Sig.       | Lower Bound | Upper Bound   |
|             |         |                             | 1%      | .12500               | .39300       | .754       | 7042-       | .9542         |
|             |         | dimensio                    | 2%      | 10000-               | .42449       | .817       | 9956-       | .7956         |
|             | 0%      | unnensio<br>n <sup>2</sup>  | 5%      | .50000               | .48133       | .313       | 5155-       | 1.5155        |
|             |         | 115                         | 10%     | 25714-               | .34836       | .470       | 9921-       | .4778         |
|             |         |                             | 20%     | 1.13333*             | .42449       | .016       | .2377       | 2.0289        |
|             |         |                             | 0%      | 12500-               | .39300       | .754       | 9542-       | .7042         |
|             |         | dimonsio                    | 2%      | 22500-               | .42449       | .603       | -1.1206-    | .6706         |
|             | 1%      | unitensio<br>n3             | 5%      | .37500               | .48133       | .447       | 6405-       | 1.3905        |
|             |         | 115                         | 10%     | 38214-               | .34836       | .288       | -1.1171-    | .3528         |
|             |         |                             | 20%     | 1.00833*             | .42449       | .030       | .1127       | 1.9039        |
|             |         | dimensio                    | 0%      | .10000               | .42449       | .817       | 7956-       | .9956         |
|             |         |                             | 1%      | .22500               | .42449       | .603       | 6706-       | 1.1206        |
|             | 2%      | unnensio<br>n <sup>2</sup>  | 5%      | .60000               | .50736       | .253       | 4704-       | 1.6704        |
|             |         | 115                         | 10%     | 15714-               | .38353       | .687       | 9663-       | .6520         |
| dimension   |         |                             | 20%     | 1.23333*             | .45380       | .015       | .2759       | 2.1908        |
| 2           |         |                             | 0%      | 50000-               | .48133       | .313       | -1.5155-    | .5155         |
|             |         | dimonsio                    | 1%      | 37500-               | .48133       | .447       | -1.3905-    | .6405         |
|             | 5%      | n3                          | 2%      | 60000-               | .50736       | .253       | -1.6704-    | .4704         |
|             |         | 115                         | 10%     | 75714-               | .44562       | .108       | -1.6973-    | .1830         |
|             |         |                             | 20%     | .63333               | .50736       | .229       | 4371-       | 1.7038        |
|             |         |                             | 0%      | .25714               | .34836       | .470       | 4778-       | .9921         |
|             |         | dimonsio                    | 1%      | .38214               | .34836       | .288       | 3528-       | 1.1171        |
|             | 10%     | unitensio<br>n3             | 2%      | .15714               | .38353       | .687       | 6520-       | .9663         |
|             |         | 115                         | 5%      | .75714               | .44562       | .108       | 1830-       | 1.6973        |
|             |         |                             | 20%     | 1.39048*             | .38353       | .002       | .5813       | 2.1997        |
|             |         |                             | 0%      | -1.13333-*           | .42449       | .016       | -2.0289-    | 2377-         |
|             |         | dimonsio                    | 1%      | -1.00833-*           | .42449       | .030       | -1.9039-    | 1127-         |
|             | 20%     | unitensio<br>n <sup>2</sup> | 2%      | -1.23333-*           | .45380       | .015       | -2.1908-    | 2759-         |
|             |         | 115                         | 5%      | 63333-               | .50736       | .229       | -1.7038-    | .4371         |
|             |         |                             | 10%     | -1.39048-*           | .38353       | .002       | -2.1997-    | 5813-         |
|             |         | *. Th                       | e mean  | difference is si     | gnificant at | the 0.05 l | evel.       |               |

|                                      | ANOVA |    |      |       |      |  |  |  |  |  |  |
|--------------------------------------|-------|----|------|-------|------|--|--|--|--|--|--|
| Sum of Squares df Mean Square F Sig. |       |    |      |       |      |  |  |  |  |  |  |
| Between Groups                       | 4.145 | 5  | .829 | 3.864 | .016 |  |  |  |  |  |  |
| Within Groups                        | 3.648 | 17 | .215 |       |      |  |  |  |  |  |  |
| Total                                | 7.793 | 22 |      |       |      |  |  |  |  |  |  |

c. Effect on root fresh length 2<sup>nd</sup> treatment

|         |        |                |        | Multiple Co       | omparisons    | S           |             |               |
|---------|--------|----------------|--------|-------------------|---------------|-------------|-------------|---------------|
|         |        |                |        | Mean              |               |             | 95% Confide | ence Interval |
| Concent | ration | Concenti       | ration | Difference (I-    | Std. Error    | Sig.        | Lower Bound | Upper Bound   |
|         |        |                | 1.07   | J)                | 22754         |             | 1 1011      | 1011          |
|         |        |                | 1%     | 50000-            | .32754        | .145        | -1.1911-    | .1911         |
|         |        | dimensio       | 2%     | .18333            | .35378        | .611        | 5631-       | .9298         |
|         | 0%     | n3             | 5%     | 05000-            | .40115        | .902        | 8964-       | .7964         |
|         |        |                | 10%    | 27857-            | .29033        | .351        | 8911-       | .3340         |
|         |        |                | 20%    | .91667            | .35378        | .019        | .1702       | 1.6631        |
|         |        |                | 0%     | .50000            | .32754        | .145        | 1911-       | 1.1911        |
|         |        | dimensio       | 2%     | .68333            | .35378        | .070        | 0631-       | 1.4298        |
|         | 1%     | n3             | 5%     | .45000            | .40115        | .278        | 3964-       | 1.2964        |
|         |        | 11.5           | 10%    | .22143            | .29033        | .456        | 3911-       | .8340         |
|         |        |                | 20%    | $1.41667^{*}$     | .35378        | .001        | .6702       | 2.1631        |
|         |        | dimensio       | 0%     | 18333-            | .35378        | .611        | 9298-       | .5631         |
|         | 2%     |                | 1%     | 68333-            | .35378        | .070        | -1.4298-    | .0631         |
|         |        |                | 5%     | 23333-            | .42285        | .588        | -1.1255-    | .6588         |
|         |        | ns             | 10%    | 46190-            | .31965        | .167        | -1.1363-    | .2125         |
| dimensi |        |                | 20%    | .73333            | .37821        | .069        | 0646-       | 1.5313        |
| on2     |        | dimensio<br>n3 | 0%     | .05000            | .40115        | .902        | 7964-       | .8964         |
|         |        |                | 1%     | 45000-            | .40115        | .278        | -1.2964-    | .3964         |
|         | 5%     |                | 2%     | .23333            | .42285        | .588        | 6588-       | 1.1255        |
|         |        |                | 10%    | 22857-            | .37140        | .546        | -1.0121-    | .5550         |
|         |        |                | 20%    | .96667*           | .42285        | .035        | .0745       | 1.8588        |
|         |        |                | 0%     | .27857            | .29033        | .351        | 3340-       | .8911         |
|         |        | 1              | 1%     | 22143-            | .29033        | .456        | 8340-       | .3911         |
|         | 10%    | dimensio       | 2%     | .46190            | .31965        | .167        | 2125-       | 1.1363        |
|         |        | n3             | 5%     | .22857            | .37140        | .546        | 5550-       | 1.0121        |
|         |        |                | 20%    | 1.19524*          | .31965        | .002        | .5208       | 1.8696        |
|         |        |                | 0%     | 91667-*           | .35378        | .019        | -1.6631-    | 1702-         |
|         |        |                | 1%     | -1.41667-*        | .35378        | .001        | -2.1631-    | 6702-         |
|         | 20%    | dimensio       | 2%     | 73333-            | .37821        | .069        | -1.5313-    | .0646         |
|         |        | n3             | 5%     | 96667-*           | .42285        | .035        | -1.8588-    | 0745-         |
|         |        |                | 10%    | -1.19524-*        | .31965        | .002        | -1.8696-    | 5208-         |
|         |        | *. T           | he mea | n difference is s | significant a | at the 0.05 | level       |               |
|         |        |                |        |                   | 0             |             |             |               |

|                |                | ANOVA |             |       |      |
|----------------|----------------|-------|-------------|-------|------|
|                | Sum of Squares | df    | Mean Square | F     | Sig. |
| Between Groups | 4.373          | 5     | .875        | 4.610 | .008 |
| Within Groups  | 3.225          | 17    | .190        |       |      |
| Total          | 7.598          | 22    |             |       |      |

## d. Effect on root dry length 2<sup>nd</sup> treatment

|         | Multiple Comparisons |                |        |                      |               |            |             |               |  |  |  |
|---------|----------------------|----------------|--------|----------------------|---------------|------------|-------------|---------------|--|--|--|
|         |                      |                |        |                      | SD            |            |             |               |  |  |  |
|         |                      |                |        | Mean                 |               |            | 95% Confide | ence Interval |  |  |  |
| Concent | ration               | Concent        | ration | Difference (I-<br>J) | Std. Error    | Sig.       | Lower Bound | Upper Bound   |  |  |  |
|         |                      |                | 1%     | 45000-               | .30799        | .162       | -1.0998-    | .1998         |  |  |  |
|         |                      | dimensio       | 2%     | .43333               | .33267        | .210       | 2685-       | 1.1352        |  |  |  |
|         | 0%                   |                | 5%     | .00000               | .37721        | 1.000      | 7959-       | .7959         |  |  |  |
|         |                      | 115            | 10%    | 28571-               | .27301        | .310       | 8617-       | .2903         |  |  |  |
|         |                      |                | 20%    | $.90000^{*}$         | .33267        | .015       | .1981       | 1.6019        |  |  |  |
|         |                      |                | 0%     | .45000               | .30799        | .162       | 1998-       | 1.0998        |  |  |  |
|         |                      | dimonsio       | 2%     | .88333*              | .33267        | .017       | .1815       | 1.5852        |  |  |  |
|         | 1%                   | n3             | 5%     | .45000               | .37721        | .249       | 3459-       | 1.2459        |  |  |  |
|         |                      | 115            | 10%    | .16429               | .27301        | .555       | 4117-       | .7403         |  |  |  |
|         |                      |                | 20%    | $1.35000^{*}$        | .33267        | .001       | .6481       | 2.0519        |  |  |  |
|         |                      |                | 0%     | 43333-               | .33267        | .210       | -1.1352-    | .2685         |  |  |  |
|         |                      | dimonsio       | 1%     | 88333-*              | .33267        | .017       | -1.5852-    | 1815-         |  |  |  |
|         | 2%                   | n3             | 5%     | 43333-               | .39762        | .291       | -1.2722-    | .4056         |  |  |  |
|         |                      | 11.5           | 10%    | 71905-*              | .30057        | .029       | -1.3532-    | 0849-         |  |  |  |
| dimensi |                      |                | 20%    | .46667               | .35564        | .207       | 2837-       | 1.2170        |  |  |  |
| on2     |                      | dimensio<br>n3 | 0%     | .00000               | .37721        | 1.000      | 7959-       | .7959         |  |  |  |
|         |                      |                | 1%     | 45000-               | .37721        | .249       | -1.2459-    | .3459         |  |  |  |
|         | 5%                   |                | 2%     | .43333               | .39762        | .291       | 4056-       | 1.2722        |  |  |  |
|         |                      |                | 10%    | 28571-               | .34923        | .425       | -1.0225-    | .4511         |  |  |  |
|         |                      |                | 20%    | .90000*              | .39762        | .037       | .0611       | 1.7389        |  |  |  |
|         |                      |                | 0%     | .28571               | .27301        | .310       | 2903-       | .8617         |  |  |  |
|         |                      | dimensio       | 1%     | 16429-               | .27301        | .555       | 7403-       | .4117         |  |  |  |
|         | 10%                  | n3             | 2%     | .71905*              | .30057        | .029       | .0849       | 1.3532        |  |  |  |
|         |                      | 11.5           | 5%     | .28571               | .34923        | .425       | 4511-       | 1.0225        |  |  |  |
|         |                      |                | 20%    | 1.18571*             | .30057        | .001       | .5516       | 1.8199        |  |  |  |
|         |                      |                | 0%     | 90000-*              | .33267        | .015       | -1.6019-    | 1981-         |  |  |  |
|         |                      | dimensio       | 1%     | -1.35000-*           | .33267        | .001       | -2.0519-    | 6481-         |  |  |  |
|         | 20%                  | n3             | 2%     | 46667-               | .35564        | .207       | -1.2170-    | .2837         |  |  |  |
|         |                      | 115            | 5%     | 90000-*              | .39762        | .037       | -1.7389-    | 0611-         |  |  |  |
|         |                      |                | 10%    | -1.18571-*           | .30057        | .001       | -1.8199-    | 5516-         |  |  |  |
|         |                      | *. T           | he mea | n difference is s    | significant a | t the 0.05 | level.      |               |  |  |  |

| ANOVA          |                   |    |             |       |      |  |  |  |  |  |
|----------------|-------------------|----|-------------|-------|------|--|--|--|--|--|
|                | Sum of<br>Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |
| Between Groups | .022              | 5  | .004        | 3.124 | .035 |  |  |  |  |  |
| Within Groups  | .024              | 17 | .001        |       |      |  |  |  |  |  |
| Total          | .046              | 22 |             |       |      |  |  |  |  |  |

## e. Effect on shoot fresh weight 2<sup>nd</sup> treatment

|         |        |                |             | Multiple C        | omparison     | <b>S</b>   |             |               |
|---------|--------|----------------|-------------|-------------------|---------------|------------|-------------|---------------|
|         |        |                |             | LS                | SD            |            |             |               |
|         |        |                |             | Mean              |               |            | 95% Confide | ence Interval |
| Concent | ration | Concentration  |             | Difference (I-    | Std. Error    | Sig.       | Lower Bound | Upper Bound   |
|         |        |                | 10/2        | J)                | 02660         | 16/        | 0174        | 0048          |
|         |        |                | 1 70<br>204 | .03808            | .02000        | 400        | 0174-       | .0940         |
|         | 0%     | dimensio       | 270<br>5%   | .02482            | 03257         | .400       | 0338-       | .0834         |
|         | 070    | n3             | 10%         | 01085-            | 02358         | 134        | 0850-       | 0126          |
|         |        |                | 2004        | 03714-            | 02338         | .134       | 0809-       | .0120         |
|         |        |                | 2070        | .03713            | .02673        | .213       | 0233-       | .0978         |
|         |        |                | 204         | 03808-            | .02000        | .104       | 0948-       | .0174         |
|         | 1.0/   | dimensio       | 2%<br>50/   | 01360-            | .02873        | .030       | 0743-       | .0408         |
|         | 1%     | n3             | 5%<br>10%   | 05555-            | .03257        | .100       | 1243-       | .0132         |
|         |        |                | 10%         | 0/581-            | .02358        | .005       | 1256-       | 0261-         |
|         |        |                | 20%         | 00152-            | .02873        | .958       | 0621-       | .0591         |
|         |        |                | 0%          | 02482-            | .02873        | .400       | 0854-       | .0358         |
|         |        | dimensio       | 1%          | .01386            | .02873        | .636       | 0468-       | .0745         |
|         | 2%     | n3             | 5%          | 04167-            | .03434        | .242       | 1141-       | .0308         |
|         |        | 110            | 10%         | 06195-            | .02596        | .029       | 1167-       | 0072-         |
| dimensi |        |                | 20%         | .01233            | .03071        | .693       | 0525-       | .0771         |
| on2     |        | dimensio<br>n3 | 0%          | .01685            | .03257        | .612       | 0519-       | .0856         |
|         |        |                | 1%          | .05553            | .03257        | .106       | 0132-       | .1243         |
|         | 5%     |                | 2%          | .04167            | .03434        | .242       | 0308-       | .1141         |
|         |        |                | 10%         | 02029-            | .03016        | .510       | 0839-       | .0433         |
|         |        |                | 20%         | .05400            | .03434        | .134       | 0184-       | .1264         |
|         |        |                | 0%          | .03714            | .02358        | .134       | 0126-       | .0869         |
|         |        | 1:             | 1%          | .07581*           | .02358        | .005       | .0261       | .1256         |
|         | 10%    | dimensio       | 2%          | .06195*           | .02596        | .029       | .0072       | .1167         |
|         |        | n3             | 5%          | .02029            | .03016        | .510       | 0433-       | .0839         |
|         |        |                | 20%         | .07429*           | .02596        | .011       | .0195       | .1290         |
|         |        |                | 0%          | 03715-            | .02873        | .213       | 0978-       | .0235         |
|         |        |                | 1%          | .00152            | .02873        | .958       | 0591-       | .0621         |
|         | 20%    | dimensio       | 2%          | 01233-            | .03071        | .693       | 0771-       | .0525         |
|         |        | n3             | 5%          | 05400-            | .03434        | .134       | 1264-       | .0184         |
|         |        |                | 10%         | 07429-*           | .02596        | .011       | 1290-       | 0195-         |
|         |        | *. T           | he mea      | n difference is s | significant a | t the 0.05 | level.      |               |

| f. | Effect | on | shoot | dry | weight | $2^{nd}$ | treatment |
|----|--------|----|-------|-----|--------|----------|-----------|
|----|--------|----|-------|-----|--------|----------|-----------|

| ANOVA          |                |    |             |       |      |  |  |  |  |  |  |
|----------------|----------------|----|-------------|-------|------|--|--|--|--|--|--|
|                | Sum of Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |
| Between Groups | .155           | 5  | .031        | 1.489 | .245 |  |  |  |  |  |  |
| Within Groups  | .354           | 17 | .021        |       |      |  |  |  |  |  |  |
| Total          | .509           | 22 |             |       |      |  |  |  |  |  |  |

| Multiple Comparisons                                    |     |                |     |                      |            |      |                         |             |  |
|---------------------------------------------------------|-----|----------------|-----|----------------------|------------|------|-------------------------|-------------|--|
|                                                         |     |                |     | Mean                 | Iean       |      | 95% Confidence Interval |             |  |
| Concentration                                           |     | Concentration  |     | Difference (I-<br>J) | Std. Error | Sig. | Lower Bound             | Upper Bound |  |
|                                                         |     | dimensio<br>n3 | 1%  | .03630               | .10203     | .726 | 1790-                   | .2516       |  |
|                                                         | 0%  |                | 2%  | 22238-               | .11020     | .060 | 4549-                   | .0101       |  |
|                                                         |     |                | 5%  | 00418-               | .12496     | .974 | 2678-                   | .2595       |  |
|                                                         |     |                | 10% | 01845-               | .09044     | .841 | 2093-                   | .1724       |  |
|                                                         |     |                | 20% | .05616               | .11020     | .617 | 1764-                   | .2887       |  |
|                                                         |     |                | 0%  | 03630-               | .10203     | .726 | 2516-                   | .1790       |  |
|                                                         |     | dimensio       | 2%  | 25868-*              | .11020     | .031 | 4912-                   | 0262-       |  |
|                                                         | 1%  | n3             | 5%  | 04048-               | .12496     | .750 | 3041-                   | .2232       |  |
|                                                         |     |                | 10% | 05475-               | .09044     | .553 | 2456-                   | .1361       |  |
|                                                         |     |                | 20% | .01986               | .11020     | .859 | 2127-                   | .2524       |  |
|                                                         | 2%  | dimensio<br>n3 | 0%  | .22238               | .11020     | .060 | 0101-                   | .4549       |  |
|                                                         |     |                | 1%  | $.25868^{*}$         | .11020     | .031 | .0262                   | .4912       |  |
|                                                         |     |                | 5%  | .21820               | .13172     | .116 | 0597-                   | .4961       |  |
|                                                         |     |                | 10% | .20393               | .09957     | .056 | 0061-                   | .4140       |  |
| dimensi                                                 |     |                | 20% | .27853*              | .11781     | .030 | .0300                   | .5271       |  |
| on2                                                     | 5%  | dimensio<br>n3 | 0%  | .00418               | .12496     | .974 | 2595-                   | .2678       |  |
|                                                         |     |                | 1%  | .04048               | .12496     | .750 | 2232-                   | .3041       |  |
|                                                         |     |                | 2%  | 21820-               | .13172     | .116 | 4961-                   | .0597       |  |
|                                                         |     |                | 10% | 01427-               | .11569     | .903 | 2584-                   | .2298       |  |
|                                                         |     |                | 20% | .06033               | .13172     | .653 | 2176-                   | .3382       |  |
|                                                         | 10% | dimensio<br>n3 | 0%  | .01845               | .09044     | .841 | 1724-                   | .2093       |  |
|                                                         |     |                | 1%  | .05475               | .09044     | .553 | 1361-                   | .2456       |  |
|                                                         |     |                | 2%  | 20393-               | .09957     | .056 | 4140-                   | .0061       |  |
|                                                         |     |                | 5%  | .01427               | .11569     | .903 | 2298-                   | .2584       |  |
|                                                         |     |                | 20% | .07460               | .09957     | .464 | 1355-                   | .2847       |  |
|                                                         | 20% | dimensio<br>n3 | 0%  | 05616-               | .11020     | .617 | 2887-                   | .1764       |  |
|                                                         |     |                | 1%  | 01986-               | .11020     | .859 | 2524-                   | .2127       |  |
|                                                         |     |                | 2%  | 27853-*              | .11781     | .030 | 5271-                   | 0300-       |  |
|                                                         |     |                | 5%  | 06033-               | .13172     | .653 | 3382-                   | .2176       |  |
|                                                         |     |                | 10% | 07460-               | .09957     | .464 | 2847-                   | .1355       |  |
| *. The mean difference is significant at the 0.05 level |     |                |     |                      |            |      |                         |             |  |

| ANOVA          |                   |    |             |       |      |  |  |  |
|----------------|-------------------|----|-------------|-------|------|--|--|--|
|                | Sum of<br>Squares | Df | Mean Square | F     | Sig. |  |  |  |
| Between Groups | .069              | 5  | .014        | 7.731 | .001 |  |  |  |
| Within Groups  | .030              | 17 | .002        |       |      |  |  |  |
| Total          | .099              | 22 |             |       |      |  |  |  |

# g. Effect on root fresh weight 2<sup>nd</sup> treatment

| Multiple Comparisons                                     |     |                |     |                      |            |      |                         |             |  |
|----------------------------------------------------------|-----|----------------|-----|----------------------|------------|------|-------------------------|-------------|--|
|                                                          |     |                |     | Mean                 |            |      | 95% Confidence Interval |             |  |
| Concentration                                            |     | Concentration  |     | Difference (I-<br>J) | Std. Error | Sig. | Lower Bound             | Upper Bound |  |
|                                                          |     | dimensio<br>n3 | 1%  | 15983-*              | .02985     | .000 | 2228-                   | 0968-       |  |
|                                                          | 0%  |                | 2%  | 08409-*              | .03225     | .018 | 1521-                   | 0161-       |  |
|                                                          |     |                | 5%  | 01713-               | .03656     | .645 | 0943-                   | .0600       |  |
|                                                          |     |                | 10% | 07471-*              | .02646     | .012 | 1305-                   | 0189-       |  |
|                                                          |     |                | 20% | 00809-               | .03225     | .805 | 0761-                   | .0599       |  |
|                                                          |     |                | 0%  | .15983*              | .02985     | .000 | .0968                   | .2228       |  |
|                                                          |     | dimonsio       | 2%  | .07573*              | .03225     | .031 | .0077                   | .1438       |  |
|                                                          | 1%  | n3             | 5%  | .14270*              | .03656     | .001 | .0656                   | .2198       |  |
|                                                          |     |                | 10% | .08511*              | .02646     | .005 | .0293                   | .1409       |  |
|                                                          |     |                | 20% | .15173*              | .03225     | .000 | .0837                   | .2198       |  |
|                                                          | 2%  | dimensio<br>n3 | 0%  | .08409*              | .03225     | .018 | .0161                   | .1521       |  |
|                                                          |     |                | 1%  | 07573-*              | .03225     | .031 | 1438-                   | 0077-       |  |
|                                                          |     |                | 5%  | .06697               | .03854     | .100 | 0143-                   | .1483       |  |
|                                                          |     |                | 10% | .00938               | .02913     | .751 | 0521-                   | .0708       |  |
| dimensi                                                  |     |                | 20% | $.07600^{*}$         | .03447     | .042 | .0033                   | .1487       |  |
| on2                                                      | 5%  | dimensio<br>n3 | 0%  | .01713               | .03656     | .645 | 0600-                   | .0943       |  |
|                                                          |     |                | 1%  | 14270-*              | .03656     | .001 | 2198-                   | 0656-       |  |
|                                                          |     |                | 2%  | 06697-               | .03854     | .100 | 1483-                   | .0143       |  |
|                                                          |     |                | 10% | 05759-               | .03385     | .107 | 1290-                   | .0138       |  |
|                                                          |     |                | 20% | .00903               | .03854     | .817 | 0723-                   | .0903       |  |
|                                                          | 10% | dimensio<br>n3 | 0%  | .07471*              | .02646     | .012 | .0189                   | .1305       |  |
|                                                          |     |                | 1%  | 08511-*              | .02646     | .005 | 1409-                   | 0293-       |  |
|                                                          |     |                | 2%  | 00938-               | .02913     | .751 | 0708-                   | .0521       |  |
|                                                          |     |                | 5%  | .05759               | .03385     | .107 | 0138-                   | .1290       |  |
|                                                          |     |                | 20% | .06662*              | .02913     | .035 | .0052                   | .1281       |  |
|                                                          | 20% | dimensio<br>n3 | 0%  | .00809               | .03225     | .805 | 0599-                   | .0761       |  |
|                                                          |     |                | 1%  | 15173-*              | .03225     | .000 | 2198-                   | 0837-       |  |
|                                                          |     |                | 2%  | 07600-*              | .03447     | .042 | 1487-                   | 0033-       |  |
|                                                          |     |                | 5%  | 00903-               | .03854     | .817 | 0903-                   | .0723       |  |
|                                                          |     |                | 10% | 06662-*              | .02913     | .035 | 1281-                   | 0052-       |  |
| *. The mean difference is significant at the 0.05 level. |     |                |     |                      |            |      |                         |             |  |

## h. Effect on root dry weight 2<sup>nd</sup> treatment

| ANOVA          |                   |    |             |      |      |  |  |  |  |
|----------------|-------------------|----|-------------|------|------|--|--|--|--|
|                | Sum of<br>Squares | df | Mean Square | F    | Sig. |  |  |  |  |
| Between Groups | .000              | 5  | .000        | .869 | .522 |  |  |  |  |
| Within Groups  | .000              | 17 | .000        |      |      |  |  |  |  |
| Total          | .000              | 22 |             |      |      |  |  |  |  |

| Multiple Comparisons |     |                |     |                      |            |      |                         |             |  |
|----------------------|-----|----------------|-----|----------------------|------------|------|-------------------------|-------------|--|
|                      |     |                |     | Mean                 |            | Sig. | 95% Confidence Interval |             |  |
| Concentration        |     | Concentration  |     | Difference (I-<br>J) | Std. Error |      | Lower Bound             | Upper Bound |  |
|                      |     |                | 1%  | 00175-               | .00168     | .314 | 0053-                   | .0018       |  |
|                      | 0%  | dimonsio       | 2%  | .00003               | .00182     | .986 | 0038-                   | .0039       |  |
|                      |     | dimensio       | 5%  | .00125               | .00206     | .553 | 0031-                   | .0056       |  |
|                      |     | 115            | 10% | 00187-               | .00149     | .227 | 0050-                   | .0013       |  |
|                      |     |                | 20% | 00070-               | .00182     | .705 | 0045-                   | .0031       |  |
|                      |     | dimensio<br>n3 | 0%  | .00175               | .00168     | .314 | 0018-                   | .0053       |  |
|                      |     |                | 2%  | .00178               | .00182     | .341 | 0021-                   | .0056       |  |
|                      | 1%  |                | 5%  | .00300               | .00206     | .164 | 0014-                   | .0074       |  |
|                      |     |                | 10% | 00012-               | .00149     | .936 | 0033-                   | .0030       |  |
|                      |     |                | 20% | .00105               | .00182     | .572 | 0028-                   | .0049       |  |
|                      |     | dimensio<br>n3 | 0%  | 00003-               | .00182     | .986 | 0039-                   | .0038       |  |
|                      | 2%  |                | 1%  | 00178-               | .00182     | .341 | 0056-                   | .0021       |  |
|                      |     |                | 5%  | .00122               | .00218     | .583 | 0034-                   | .0058       |  |
|                      |     |                | 10% | 00190-               | .00164     | .263 | 0054-                   | .0016       |  |
| dimensi              |     |                | 20% | 00073-               | .00195     | .711 | 0048-                   | .0034       |  |
| on2                  | 5%  | dimensio<br>n3 | 0%  | 00125-               | .00206     | .553 | 0056-                   | .0031       |  |
|                      |     |                | 1%  | 00300-               | .00206     | .164 | 0074-                   | .0014       |  |
|                      |     |                | 2%  | 00122-               | .00218     | .583 | 0058-                   | .0034       |  |
|                      |     |                | 10% | 00312-               | .00191     | .121 | 0072-                   | .0009       |  |
|                      |     |                | 20% | 00195-               | .00218     | .383 | 0065-                   | .0026       |  |
|                      | 10% | dimensio<br>n3 | 0%  | .00187               | .00149     | .227 | 0013-                   | .0050       |  |
|                      |     |                | 1%  | .00012               | .00149     | .936 | 0030-                   | .0033       |  |
|                      |     |                | 2%  | .00190               | .00164     | .263 | 0016-                   | .0054       |  |
|                      |     |                | 5%  | .00312               | .00191     | .121 | 0009-                   | .0072       |  |
|                      |     |                | 20% | .00117               | .00164     | .486 | 0023-                   | .0046       |  |
|                      | 20% | dimancia       | 0%  | .00070               | .00182     | .705 | 0031-                   | .0045       |  |
|                      |     |                | 1%  | 00105-               | .00182     | .572 | 0049-                   | .0028       |  |
|                      |     | n3             | 2%  | .00073               | .00195     | .711 | 0034-                   | .0048       |  |
|                      |     | 115            | 5%  | .00195               | .00218     | .383 | 0026-                   | .0065       |  |
|                      |     |                | 10% | 00117-               | .00164     | .486 | 0046-                   | .0023       |  |

تأثير ماء البحر المنمذج علي نوعين من نباتات الزينة في مدينة بنغازي قدمت من قبل: رجاء بالعيد علي الفرجاني تحت اشراف: أ.د.سالم الشطشاط ملخص الدراسة

كلا النباتين تمت معاملتهما بنفس الطريقة. حيث تم تعقيم البذور السطحي بمحلول هيبوكلوريت الصوديوم بنسبة 2٪ لمدة 12 دقيقة وشطفها بمياه مقطرة معقمة ثم جففت. تم معاملة البذور باستخدام معاملات مختلفة منها (مياه الشرب ، حامض الكبريتيك ، طريقة الخدش الميكانيكي و الماء المغلى) وضعت 10 بذور على أطباق خاصة تحت ظروف معقمة ، وحفظت في الظلام عند درجة حرارة 22 ± 0.5 درجة مئوية ، مع تكرار التجربة 3 مرات لكل تركيز وتم تسقى الأطباق حسب الحاجة من كل تركيز . تمت مراقبة الاطباق يوميا و تسجيل عدد البذور المنبته في كل يوم لحساب نسب الإنبات اليومية والنهائية (G٪) ، ومتوسط وقت الإنبات (MGT) تم حساب مؤشر قوة الشتلات (SVI) ، وتم تسجيل البيانات التي تم الحصول عليها ، وتحليلها بواسطة اختبار التباين لتقدير الفروق. في الاستجابة لتركيزات مياه البحر، متبوعًا باختبار المقارنة المتعدد ، (تعتبر النتائج ذات دلالة احصائية معنوية عند قيم P أقل من 0.05 ، و فترة الثقة عند 95 ٪) . أوضحت نتائج الدراسة أن متوسط وقت الانبات لكلا النباتين قد تأخر بشكل طفيف مع زيادة تركيزات مياه البحر تتراوح بين (7–10 أيام) في نبات اللبخ و (12–18 يوم) في نبات الاكاسيا. انخفضت نسبة إنبات كلا النباتين مع زيادة تركيزات مياه البحر بتركيزات مع عدم وجود انبات عند النسب (10٪ و 20٪) ما عدا معاملات حمض الكبريتيك و قد تبين أن كلا النباتين لا يتحملان تركيزات مياه البحر العالية. أظهر مؤشر قوة الشتلات انخفاضًا معنويًا عند زيادة تركيز ماء البحر في كلا النباتين و أن الأطوال الجافة للساق والجذر تأثرت سلبًا بتركيزات مياه البحر ، وكانت السيقان أكثر حساسية لتركيزات مياه البحر من الجذور . انخفض كل من الأوزان الرطبة والجافة للنباتين نبات اللبخ مع زيادة تركيزات مياه البحر وكان هذا الانخفاض معنويًا في اللبخ و لم يكن

معنويا في الاكاسيا،. تحسن المعالجة المسبق لحمض الكبريتيك إنبات بذور كلا النباتين حتى بتركيزات عالية (10% و 20%) و كذلك عند المعالجة بالماء المغلي.



# تأثير ماء البحر المنمذج علي نوعين من نباتات الزينة

# في مدينة بنغازي

قدمت من قبل:

رجاء بالعيد علي الفرجاني

تحت اشراف:

أ.د.سالم الشطشاط

قدمت هذه الرسالة استكمالا لمتطلبات الحصول على درجة الماجستير في علم النبات جامعة بنغازي

كلية العلوم

#### فبراير 2022