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ABBREVIATIONS

TOC = total organic carbon (wt. %).
S1 = amount of free hydrocarbons in sample (mg/g).

S, = amount of hydrocarbons generated through thermal cracking (mg/g) — provides the

quantity of hydrocarbons that the rock has the potential to produce through digenesis.

S3 = amount of CO; (mg of CO/g of rock) - reflects the amount of oxygen in the oxidation

step.

Tmax = the temperature at which maximum rate of generation of hydrocarbons occurs.
Hydrogen index: HI =100 * S, / TOC

Oxygen index: Ol =100 * S3 / TOC

Production index: Pl =S1/ (S1+ S2)

Semi-quantitative index: GP =S1/S;

Ro = vitrinite reflectance (wt. %)

Pr/Ph = Pristane/Phytane

Carbon preference index: CPI = 2(Ca3 + Cas + C27 + Ca9)/(Ca22 + 2[Caa+ Ca6 + Cas] + C30)
Waxiness index: WI = %(n-C21-n-C31)/2(n-C15-n-C20)

TPP = tetracyclic polyprenoid
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Petroleum Geochemistry of the Daryanah Formation in the offshore
well AlI-NC 128, Cyrenaica Basin, NE Libya.

By
Abobakar E. Algomati
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Dr. Osama Shaltami

ABSTRACT

Petrographical and geochemical assessments of source rock (Darnah Shale) and reservoir
(Darnah Limestone) in the offshore well AI-NC 128 in the Cyrenaica Basin were achieved in the
present study. In the Darnah Shale, the biomarkers indicate the mixed inputs of aquatic plankton
and terrigenous organic matter deposited under suboxic conditions. The kerogen is of types I1/111
and I1l. The source rock has a fair quality. The reservoir contains medium crude oil. This oil
belongs to source rock of the Darnah Shale as proven by oil-source rock correlation. C1 is the main
gas in the reservoir. Both crude oil and source rock are located in the immature window. The
Darnah Reservoir has been charged with hydrocarbons in two different times. The middle shale

can be considered a cap rock in the petroleum system of the Darnah Formation.

Keywords: Organic Petrography, Organic Geochemistry, Source Rock, Reservoir, Darnah

Formation, Cyrenaica Basin, Libya.
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CHAPTER ONE
INTRODUCTION

1.1. General

The Cyrenaica Basin is located in northeastern Libya (Fig. 1.1). The age of exposed rocks
in the basin ranges from Late Cretaceous to Quaternary (e.g., Hallett and Clark-Lowes, 2016;
Shaltami et al., 2018, Figs. 1.2-4). The rocks of the rest of the geological ages (from Precambrian
to Early Cretaceous) are found in the subsurface (Hallett and Clark-Lowes, 2016).

1.2. Regional Geology

The Al Jabal Al Akhdar is the largest part of the Cyrenaica Basin. It was developed at the
southern margin of the Mediterranean geosynclines of the Tethys, on an attenuated continental
crust of the north passive margin of the Afro-Arabian shield (EI Hawat and Shelmani, 1993). The
age of rocks in the Cyrenaica Basin ranges from Precambrian to Quaternary, but the exposed
rocks range only from Cretaceous to Quaternary, while the rest of ages are found in the
subsurface (e.g., EI Hawat and Abdulsamad 2004; Hallett and Clark-Lowes, 2016, Fig. 1.2).

1.2.1. Regional Stratigraphic Setting
The Cyrenaica Basin largely covered by sediments belonging to a sequence ranging from
Late Cretaceous to Quaternary (Fig. 1.4). The stratigraphic sequence can be described as

following:

1.2.1.1. Late Cretaceous

Previous studies (e.g., Rohlich, 1974; ElI Hawat and Shelmani, 1993) suggested that the
Al Jabal Al Akhdar was formed during the Late Cretaceous. This age is represented by six
formations (Klen, 1974; Rohlich, 1974). According to Rohlich (1974) the Al Hilal and Al Athrun
formations were deposited on the coast and these formations have equivalents in the inland (Qasr
Al Abid, Al Baniyah, Al Majahir and Wadi Dukhan formations). Shaltami et al., (2018) found
that the &Sr/%°Sr data suggest an age of Late Cenomanian for the Qasr Al Abid Formation, Late

Turonian-Late Coniacian for the Al Baniyah, Late Santonian for the Al Hilal Formation, Middle

1



Campanian for the Al Majahir Formation, Early Maastrichtian for the Al Athrun Formation and
Late Maastrichtian for the Wadi Dukhan Formation. The new age of the Late Cretaceous

formations refers to the similarity of deposition at the coast and inland.

10° 26°

Mediterranean Sea N
Misratah T

Benghazi . ca = : 340
Gulf of Sirte

Sabrata

Fig. 1.1: Satellite image showing the sedimentary basins in Libya (after Shaltami, 2012).
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Fig. 1.2: Geological map of the Cyrenaica Basin (after Shaltami et al., 2018).

1.2.2.2. Paleocene

The Al Uwayliayah Formation is the only rock unit representing the Paleocene epoch in
the Al Jabal Al Akhdar (Rohlich, 1974). Many authors (Rohlich, 1974; EI Hawat and Shelmani,
1993; El Hawat and Abdulsamad, 2004) believed that the Middle Paleocene is completely
absent. The 87Sr/%®Sr data suggest an age of Middle Danian-Middle Thanetian for the Al
Uwayliayah Formation, which indicate that the Middle Paleocene is present (Shaltami et al.,
2018).

1.2.1.3. Eocene

Pietersz (1968) divided the Eocene deposits in the Al Jabal Al Akhdar into the Apollonia,
Darnah and Salantah (or Slonta) formations. The type localities of the three formations
mentioned above are situated at the Susah village, Darnah city and Salantah village, respectively

(Pietersz, 1968). It is very difficult to separate the Darnah Formation from the Salantah
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Formation; consequently the former is incorporated within the Darnah Formation (Rohlich,
1974). 1t is now generally accepted that the Eocene deposits in the Al Jabal Al Akhdar are
divided into two formations; a basal Apollonia Formation and an overlying Darnah Formation. It
is dreadfully hard to determine the contact between these two formations, because in some areas
in the Al Jabal Al Akhdar, the Apollonia Formation interfingers with the Darnah Formation
(Rohlich, 1974; Hallett, 2002). Based on the fossil content, the probable depositional
environment of the Apollonia Formation is the deep marine, whereas the Darnah Formation was
definitely deposited in a shallow marine environment (Rohlich, 1974). Shaltami et al., (2018)
calculated the numeric age for the Eocene deposits in the Al Jabal Al Akhdar. This new age is as
follows: 1) Early Ypresian and Late Ypresian-Early Lutetian for the lower and upper parts of the
Apollonia Formation, respectively, and 2) Late Lutetian-Early Priabonian and Late Priabonian
for the lower and upper parts of the Darnah Formation, respectively. Obviously, the Apollonia
and Darnah formations are unguestionably separated by an unconformity, because the Middle
Lutetian is missing. Furthermore, the Middle Priabonian is not present in the Darnah Formation;
therefore it is necessary to separate the Darnah Formation from the Salantah Formation.
Additionally, the Middle Ypresian is completely absent in the Apollonia Formation. Based on
the new age and new type locality, they suggest a new name (Tulmithah Formation) for the

lower part of the Apollonia Formation.

1.2.1.4. Oligocene

The Oligocene in Libya marks a period of regression in which the shoreline migrated
northwards (Hallett, 2002). Significant outcrops of Oligocene rocks are present in the Jabal Al
Akhdar. According to Rohlich (1974) these Oligocene rocks are divided into two formations
namely; the Al Bayda Formation (Early Oligocene) and Al Abrag Formation (Late Oligocene).
The name Al Bayda Formation was introduced by Rohlich (1974) and comprises two members;
the Shahhat Marl Member and Algal Limestone Member. The lithological nature and
paleontoloical content of the formation suggest a neritic, largely shallow marine environment
(Rohlich, 1974). Shaltami et al., (2017) found that the Sr isotope analysis of crystalline calcites
from the two members gave an age of Early Rupelian for the Shahhat Marl Member, and Late

Rupelian for the Algal Limestone Member. Moreover, the K-Ar age of the fine illites (<0.2um)
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from the Shahhat Marl Member was also defined at Early Rupelian. There is an obvious lack of
the Middle Rupelian. Thus, they concluded that the sediments of the two members mentioned
above are unquestionably separated by an unconformity. Accordingly, they changed the Al
Bayda Formation to the Al Bayda Group, divided into Shahhat Formation (previously called

Shahhat Marl Member) and Marawah Formation (formerly called Algal Limestone Member).

The name of the Al Abraqg formation was established by Rohlich (1974) on the Al Abraq
village. Shaltami et al., (2018) found that the ages derived from strontium isotope analysis of
crystalline calcites are Late Oligocene (Early Chattian and Late Chattian) for the Al Abraq
Formation, which indicate that there is an unconformity surface, because the Middle Chattian is
completely absent. Consequently, they changed the Al Abragq Formation to the Abraq Group.
They divided this group into two formations: a basal Massah Formation and an overlying Qasr

Al Balatah Formation.

1.2.1.5. Miocene

There were many local names that were used for the Miocene deposits in the Cyrenaica
Basin, but now only seven formations have been recognized. These formations are Al Faidiyah,
Benghazi, Al Sceleidima, Msus, Wadi Al Qattarah, Qarat Mariem and Al Jaghbub formations
(Hallett, 2002). The proved depositional environment for the formations is the shallow marine
(e.g., Klen, 1974; Francis and Issawi, 1977; Giammarino, 1984; El Hawat and Abdulsamad,
2004). The Al Faidiyah and Ar Rajmah formations were defined by Pietersz (1968) and Klen
(1974), respectively. The last author used the name Benghazi Member for the lower part of the
Ar Rajmah Formation, and Wadi Al Qattarah Member for the upper part. EI Hawat and
Abdulsamad (2004) changed the status of the Ar Rajmah Formation to the Ar Rajmah Group,
divided into the Benghazi and Wadi Al Qattarah formations. The Al Sceleidima and Msus
formations are also parts of the Ar Rajmah Group (Francis and Issawi, 1977). These formations
were introduced by Francis and Issawi (1977) and Mazhar and Issawi (1977), respectively. Di
Cesare et al., (1963) identified the Al Jaghbub Formation in the Al Jaghbub oasis. Giammarino
(1984) divided this formation into two members: a basal Wadi Al Hamim Member and an

overlying Wadi Al Khali Member. The Qarat Mariem Formation is a transitional facies between
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the Al Jaghbub and Msus formations (Swedan and Issawi, 1977). Shaltami et al., (2018)
calculated the absolute age for the Miocene deposits in the Cyrenaica Basin. They found that
these deposits from oldest to youngest are as follows: Al Faidiyah Formation (Middle
Aquitanian), Jardinah Formation (Early Burdigalian), Benghazi Formation (Late Burdigalian-
Early Serravallian), Al Sceleidima Formation (Late Serravallian), Msus Formation (Middle
Tortonian), Al Jaghbub Formation (Early Messinian), Wadi Al Qattarah Formation (Middle
Messinian), Bu Mariam Formation (earliest Late Messinian) and Al Abyar Formation (latest Late
Messinian). They also found that the unconformity between the Wadi Al Qattarah and Bu
Mariam formations marks the beginning of the MSC event in the Cyrenaica Basin. Furthermore,
they have re-formed the Ar Rajmah Group to include the Jardinah, Benghazi, Al Sceleidima,
Msus, Al Jaghbub, Wadi Al Qattarah, Bu Mariam and Al Abyar formations.

1.2.1.6. Pliocene

Previous studies (e.g., Carmignani, 1984; ElI Hawatand Abdulsamad, 2004) showed that
the Pliocene-Early Pleistocene sediments in the Cyrenaica Basin are represented by Qarat
Weddah Formation, while Shaltami et al., (2018) found that there are two formations in this age
in the Cyrenaica Basin; a basal Al Hishah Formation and an overlying Qarat Weddah Formation.
The Al Hishah Formation was introduced by Mijalkovic (1977) after Al Hishah village. Shaltami
et al., (2018) found that the isotope data gave ages of Early Zanclean and Late Zanclean for the
Al Hishah Formation. Clearly there is an unconformity surface because the Middle Zanclean is
not present (Shaltami et al., 2018). Therefore, they changed the status of the Al Hishah
Formation to the Al Hishah Group divided into the Umm Al Gharanig and Uyun Ghuzayil
formations (with names based on new type localities). The §°°Si and trace element ratios
indicated that the Umm Al Gharanig and Uyun Ghuzayil formations were deposited in fluvial
and shallow marine environments, respectively (Shaltami et al., 2018). Unlike all previous
studies, Shaltami et al., (2018) found that the Pliocene deposits are present in the Al Jabal Al
Akhdar represented by the Umm Al Gharanig Formation. This formation represents the Zanclean
flood that coincided with the end of the MSC event in the Cyrenaica Basin. There was also
deposition of alluvial sediments (terra rossa soil, conglomerate and calcrete) during the Late
Pliocene (Middle-Late Piacenzian) (Shaltami et al., 2018).
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1.2.1.7. Quaternary

The Qarat Weddah Formation was established by Di Cesare et al., (1963) on the Qarat
Weddah hill. The isotope data suggested two different ages (Middle-Late Piacenzian and Middle
Gelasian) for the Qarat Weddah Formation (Shaltami et al., 2018). The ages derived from
isotope analysis indicate the complete absence of the Early Piacenzian and Early Gelasian,
indicating the presence of two unconformity surfaces. The first surface separates the Al Hishah
Group and Qarat Weddah Formation and the other separates the lower and upper parts of the
Qarat Weddah Formation (Shaltami et al., 2018). Thus, they concluded that the Qarat Weddah
Formation must be changed to the Qarat Weddah Group which can be divided into the Qarat Al
Asi and Wadi Al Magar formations. The possible depositional environments for the Qarat Al Asi
and Wadi Al Magar formations are the shallow marine and fluvial environments, respectively
(Shaltami et al., 2018).

Klen (1974), Rohlich (1974) and Zert (1974) showed that there are two types of the
Quaternary calcarenites in the Al Jabal Al Akhdar: marine and aeolian. Shaltami et al., (2017)
supported this assumption by the PAAS-normalized REE patterns. They used crystalline calcite
to determine the age of the calcarenites. The 8’Sr/%Sr ratio gave an age of Early-Late Calabrian
for the marine calcarenite and Middle lonian for the lower part of the aeolian calcarenite, while
the 22°Th/%8U ratio suggested a Middle-Late Tarantian age for the upper part. Obviously, there
are two unconformities because the Early lonian and Late lonian-Early Tarantian are not present.
Based on the new age and new type localities they gave names for the calcarenites (Tansulukh
Formation for the marine calcarenite, while they divided the aeolian calcarenite into two
formations; a basal Al Hamamah Formation and an overlying Al Haniyah Formation). According
to Shaltami et al., (2018) the Early Pleistocene (Middle Gelasian) is the numeric age for the tufa
and travertine in the Cyrenaica Basin. There are alluvial sediments belonging to the Late
Pleistocene (Middle-Late Tarantian) (Shaltami et al., 2018).

According to Shaltami et al., (2018) the Early Holocene in the Cyrenaica Basin is
represented by the sabkha deposits (Early-Middle Boreal) and alluvial sediments (Late Boreal).



They also added that the youngest deposits in the basin are the coastal sediments (Middle

Holocene (Early-Late Atlantic).

1.3. Daryanah Formation

The Daryanah Formation was introduced by Duronio et al., (1991) for subsurface
sequences encountered in the AI-NC 120 and AI-NC 128 wells (Fig. 1.5). This formation
contains large foraminifera, gastropods, echinoderms and pelecypods which indicate an Early
Cretaceous age (Aptian-Albian, Hallett, 2002). The proved depositional environment of the

Daryanah is the shallow marine (Hallett, 2002).

1.4. Objectives

The current work is a petrographical and geochemical study of the Daryanah Formation

in the offshore well AI-NC 128 (Fig. 1.5). The specific objectives of this study are the following:

1) Conduct an organic petrographical and geochemical assessment of the Daryanah Shale (source
rock) in the studied well. This assessment will give information about the maceral type, source
rock quality, organic matter type, thermal maturity, organic matter origin, depositional
environment and paleosalinity.

2) Geochemical evaluation of natural gas and crude oil of the Daryanah Limestone (reservoir)
using petroleum inclusions.

3) Identification of the charging times.
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1.5. Previous Work

Despite the existence of source rocks and reservoirs in the sedimentary basins of Libya,
the petroleum production is only from the Sirte, Murzug, Ghadamis and Sabratah basins.
However, the source rocks and reservoirs in the Cyrenaica Basin are illustrated in Fig (1.6).
There are several studies on the petroleum system of the Cyrenaica Basin and | will present a

summary of these studies.

Buitrago et al., (2011) suggested that there are three reservoirs in the Cyrenaica Basin,
namely the Early Cretaceous carbonates (Daryanah Formation), the Late Cretaceous carbonates
(Al Baniyah Formation) and the Middle-Late Eocene carbonates (Darnah Formation). They
added that the Qasr Al Abid and Al Hilal formations (Late Cretaceous shales) are considered as

source rocks.

Hallett and Clark-Lowes (2016) suggested that the three main source rocks of Libya
(Tanezzuft, Frasnian and Sirte shales) are present in the Cyrenaica Basin, but these rocks are not
in a facies capable of generating significant hydrocarbons. The naming of the Middle-Late
Jurassic formations of the Cyrenaica basin remains controversial (Hallett, 2016). In some wells
these sediments are called Sirual Formation while in other wells they are divided into two rock
units: a basal Ghurab Formation and an overlying Mallegh Formation. Hallett and Clark-Lowes
(2016) added that the source rocks in the Cyrenaica Basin also include the Middle-Late Jurassic
sediments (Sirual Formation) and the Early Cretaceous shales (Qahash and Daryanah
formations). There is controversy about the type of kerogen in the Qahash Shale, for example
Buitrago et al., (2011) believed that type IV kerogen is prevailing, while Hallett (2016)
suggested that the Qahash Shale is dominated by gas-prone type Il kerogen.

Shaltami et al., (2018), in two different studies, introduced three new source rocks in the
Cyrenaica Basin, namely the Early-Middle Eocene marls (Apollonia Formation) and the Late
Oligocene marls (Massah and Qasr Al Balatah formations). Shaltami et al., (2018), in another
study, re-evaluated the Qahash and Daryanah formations in the offshore well AI-NC 120. They
found the following: 1) The Qahash and Daryanah shales are fair source rocks, while the Qahash
Coal has a poor quality, 2) The Qahash and Daryanah shales are characterized by the
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predominance of type II/IIl and Il kerogen, whereas the Qahash Coal behaves as type IV
kerogen, 3) All organic matter is thermally immature, 4) The Qahash and Daryanah shales are
characterized by mixed organic matter formed in suboxic to anoxic conditions, while the Qahash
Coal contains terrigenous organic matter formed in oxidizing conditions, 5) The Daryanah
Reservoir (limestone and dolostone units) contains immature oils, 6) The petroleum inclusions
show indications of oil-water interactions, 7) The oils of the Daryanah Reservoir were sourced
from the Qahash and Daryanah shales, and 8) There are two episodes of oil charging occurred in
the Daryanah Reservoir.

Shaltami et al., (2019), in eight different studies, evaluated the petroleum system of all
exposed rocks in the Cyrenaica Basin. The conclusions of these studies are as follows:
1) The hydrocarbon gases especially Ci are dominant in the Daryanah Reservoir inclusions,
while the inclusions of the Al Baniyah and Darnah reservoirs contain lesser amounts of these
gases.
2) The inclusions of the Al Baniyah and Darnah reservoirs contain more non-hydrocarbon gases
such as H, H2S, CO2 and N2 than those of the Daryanah Reservoir.
3) The upper part of Shahhat Formation is a good source rock, while the rest of the formation has
a poor quality.
4) The upper part of Shahhat Formation contains type I/l kerogen (mature organic matter),
whereas type Il kerogen is dominant in the other parts (immature organic matter).
5) The Shahhat Formation is characterized by mixed organic matter formed in suboxic
conditions.
5) The Marawah Formation is one of the reservoirs in the Cyrenaica Basin.
6) C is the main constituent of the Marawah Reservoir.
7) The petroleum inclusions of the Al Baniyah Reservoir contain two oil families.
8) The characteristics of the Family | oils indicate that these oils were sourced from the Late
Santonian shale (Al Hilal Formation), while the Late Cenomanian marl (Qasr Al Abid
Formation) is the probable source for the Family 11 oils.
9) The Al Baniyah Reservoir oils are thermally immature.

10) Two episodes of oil charging took place in the Al Baniyah Reservoir.
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11) The Miocene shales and marls of the Cyrenaica Basin display three grades of organic
richness, namely good (Al Faidiyah and Benghazi shales), fair (Al Faidiyah Marl and Al
Sceleidima Shale) and poor (Benghazi Marl, Sceleidima Marl, Msus Shale, Msus Marl and Al
Jaghbub Marl).

12) The Al Faidiyah and Benghazi shales are characterized by kerogen of type II.

13) The Al Faidiyah and Benghazi shales contain mature organic matter.

14) Migrated hydrocarbons are dominant in the Al Faidiyah and Benghazi shales.

15) The Al Sceleidima and Al Jaghbub samples are characterized by terrigenous organic matter,
whereas mixed organic matter is prevailing in the Al Faidiyah and Benghazi shales.

16) The Benghazi Formation is the only Miocene reservoir in the Cyrenaica Basin.

17) There are two genetically distinct oil families in the Benghazi Reservoir inclusions. 18) All
oil families of the Benghazi Reservoir are thermally mature.

19) The Benghazi Reservoir oils are classified as medium to heavy oils.

20) The Middle Aquitanian shale (Al Faidiyah Formation) and the Late Burdigalian-Early
Serravallian shale (Benghazi Formation) are the main sources of the Benghazi Reservoir.

21) There are two different charging times took place in the Benghazi Reservoir.

22) The compositions of organic matter repeatedly changed in the Al Uwayliayah Formation,
varying from kerogen type-I11 in the limestones, to type-11 in the marls.

23) The Al Uwayliayah Marl can be considered a good source rock (TOC>1%), while the quality
of the Al Uwayliayah Limestone ranges from poor to fair (TOC<1%).
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Fig. 1.6: Lithostratigraphic column of the sedimentary infill of the Cyrenaica Basin

showing the source rocks and reservoirs (after Shaltami et al., 2019).
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24) The Al Uwayliayah Formation contains immature to early mature organic matter.

25) The presence of rearranged diasterenes in the Al Uwayliayah Formation suggests enhanced
clay catalysis rather than thermal catalysis.

26) The Al Uwayliayah Marl was deposited under the influence of episodic photic zone anoxia.
On the other hand, a fully oxidized photic zone was present during the deposition of the Al
Uwayliayah Limestone.

27) The quality of the Apollonia Marl (source rock) ranges from good to excellent

28) The Apollonia Marl contains type-1l kerogen.

29) There is one oil family in the petroleum inclusions of the Darnah Reservoir; this oil is of
medium type.

30) The Darnah Reservoir oils were derived from the Apollonia Marl.

31) The Darnah Reservoir oils and the Apollonia Marl have entered in the oil generation
window.

32) The Uyun Ghuzayil Shale is a fair source rock, while the Uyun Ghuzayil Diatomite has a
good quality.

33) The source rocks of the Uyun Ghuzayil Formation have diverse potential ranging from gas-
prone to oil-prone.

34) The organic matter in the source rocks of the Uyun Ghuzayil Formation is thermally
immature and characterized by the sovereignty of type II/I11 and 111 kerogens.

35) Land-plant derived organic matter is dominant in the diatomite and shale of the Uyun
Ghuzayil Formation with a small contribution of marine organic matter.

36) The Uyun Ghuzayil Diatomite is the main source rock of the Umm Al Gharaniq Reservoir
oils, whereas the Qarat Al Asi Reservoir oils were derived from the Uyun Ghuzayil Shale.

37) The Umm Al Gharanig and Qarat Al Asi reservoirs contain medium and heavy oils,
respectively. These oils are thermally immature.

38) The most abundant gas in the Umm Al Gharaniqg and Qarat Al Asi reservoirs is C1 with
lesser amounts of C», Cs, nCa, iC4, N2, CO2 and HaS.
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1.6. Stratigraphy

The lithostratigraphic column of the Daryanah Formation in the offshore well AI-NC 128
is shown in Fig (1.7). Clearly, the Daryanah Formation consists of shale, limestone, dolostone
and calcareous sandstone. In the studied well, the Qasr Al Abid Formation (Late Cretaceous)
overlies the Daryanah Formation, while the lower boundary of the formation is conformable with
the underlying Qahash Formation (Early Cretaceous).

1.7. Methodology

The AGIP Company submitted the data used in the current work to my supervisor (Dr.
Osama Shaltami). Twenty samples from the Daryanah Formation were selected (8 samples from
the shale, 2 samples from the calcareous sandstone, 7 samples from the limestone and 3 samples
from the dolostone, Fig. 1.7). Those samples were subjected to supplementary analyses,
including organic petrography, scanning electron microscope (SEM), total organic carbon (TOC)
content, Rock Eval pyrolysis, gas chromatography-mass spectrometry (GC-MS) and
fluorescence spectrophotometry. Preparation and analysis of the samples were carried out in the
laboratory of Chemostratigraphy and Organic Geochemistry (LGQM), State University of Rio de
Janeiro (UERJ), Brazil.

1.7.1. Organic Petrography

Organic petrography (Fig. 1.8) of the shale samples was done following standard
procedure (ICCP System, 1994a,b). The rock chips prepared from the black shale were then
mounted in a block of cold-setting resin and ground and polished (50um) to give a flat surface.
Quantification of the macerals was achieved by employing a point counting device fitted to the
microscope stage. Counts were made by traversing the block and alternating the light modes on
every move. At least 100 counts were made on every block. The relative abundance of each
maceral was reported as a percentage of the sum of all the maceral identified in the block. The
reflectance at near normal incidence of vitrinite phytoclasts was measured under oil immersion
using a photomultiplier. Before measuring the reflectance, the AMDEL microscope was first
calibrated using two standards: synthetic spinel with a reflectance of 0.42% and synthetic yttrium
aluminum garnet (YAG) with a reflectance of 0.92% at 546-nm wavelength. Calibrations were
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repeated after several measurements in order to maintain identical conditions for the standards
and the mounted samples. At least 40 readings were taken from every sample depending on the
abundance of vitrinite in the block. A mean random value (Ro) was obtained as the arithmetic
average of the total number of readings from the samples.

1.7.2. Total Organic Carbon (TOC) and Rock Eval Pyrolysis

TOC, a measure of the total organic carbon in a rock usually expressed as weight percent
(wt. %), was done using LECO C230 instrument (Fig. 1.9). TOC analysis requires decarbonation
of the shale samples by treatment with hydrochloric acid (HCI). This is done by treating the
samples with concentrated HCL for at least two hours. The samples are then rinsed with water
and flushed through a filtration apparatus to remove the acid. The filter is then removed, placed
into a LECO crucible and dried in a low temperature oven (110°C) for a minimum of four hours.
Samples were weighted after this process in order to obtain a percentage carbonate value based
on weight loss. The LECO C230 instrument is calibrated with standards having known carbon
contents. This is completed by combustion of these standards by heating to 1200°C in the
presence of oxygen. Both carbon monoxide and carbon dioxide are generated and the carbon
monoxide is converted to carbon dioxide by a catalyst. The carbon dioxide is measured by an IR
cell. Combustion of unknowns is then completed and the response of unknowns per mass unit is
compared to that of the calibration standard, thereby the TOC is determined. Rock Eval pyrolysis
(Fig. 1.10) technique for the shale samples was also done. It enables the bulk chemical
composition of kerogen, and hence its hydrocarbon potential, to be determined. Approximately
100 milligrams of washed, ground (60 mesh) whole rock sample was analyzed in the Rock-Eval

instrument and the operating condition was as follows:
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Fig. 1.7: Lithologic column of the Daryanah Formation in the offshore well AI-NC 128.
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Fig. 1.8: Organic Petrographic Microscope.

S1: 300°C for 3 minutes
S2: 300 to 550°C at 25°C/min; hold at 550°C for 1 minute
Sa: trapped between 300 to 390°C

The S: signal represents any free hydrocarbons that can be volatilized out of the rock
without cracking the kerogen (mg HC/g rock) at 300°C. S measures the amount of hydrocarbons
(mg HC/g rock) that are expelled from kerogen cracking at temperature-programmed pyrolysis
(300-550°C). The S» peak represents the existing potential of a rock to generate petroleum if
burial and maturation would continue to completion. Sz determines the released CO. due to
pyrolysis break off between 300 and 390°C expressed in milligrams of CO> per gram of rock
(mg HC/g rock).

1.7.3. Gas Chromatography-Mass Spectrometry (GC-MS)

Gas Chromatography-Mass Spectrometry (Fig. 1.11) analysis of the studied samples were
performed using an Agilent 6890N gas chromatograph/5975 MSD mass spectrometer (GC-MS)
equipped with a HP-5MS capillary column (30mx 0.25mmx0.25um film thickness). The GC
oven temperature was programmed from 50 to 100°C at the rate of 20°C/min, and then from 100
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to 315°C at the rate of 3°C/min with initial and final hold times of 1min and 16min, respectively.
Helium was used as a carrier gas. The MS was operated in electron ionization (EI) mode at 70
eV, with the ion source temperature of 230°C. The GC-MS system was operated in the full scan

mode and select scan mode.

1.7.4. Fluorescence Spectrophotometry

The samples of limestone, dolostone and calcareous sandstone were prepared as thick
doubly polished sections of approximately 100mm thickness for fluid inclusion petrographic
analysis and microthermometric measurements. Fluid inclusion petrography and fluid inclusion
assemblages were first examined using an Olympus AX 70 microscope equipped with both
transmitted white and incident ultraviolet light (UV) sources (A = 365nm). UV illumination for
fluorescence analysis of petroleum inclusions was provided by a mercury lamp with a 400nm
barrier epifluorescence filter, so the wavelength of the emission fluorescence is greater than
400nm. The fluorescence spectra of individual petroleum inclusions were measured using an
Ocean Optics USB2000 miniature fiber optic spectrometer (Fig. 1.12). CIE-XYZ chromaticity
coordinates and Lambda max (Amax) for individual inclusions were calculated from the obtained
spectra. Microthermometry of oil, gas and aqueous fluid inclusions was carried out using a
calibrated Linkam TH-600 stage. The homogenization temperatures and ice final melting
temperatures were obtained by cycling. Homogenization temperature measurements were
determined using a heating rate of 10°C/min. The final ice melting temperature measurements,
which are dependent on the quantity of salt present in solution, were determined using a
heating/cooling rate of 1°C/min. The measured temperature precisions for homogenization and
ice melting temperatures are £1°C and £0.1°C, respectively. The API gravity was calculated as:
API gravity = (141.5/speciflc gravity at 15.6°C)-131.5.
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Fig. 1.10: Rock-Eval 6 instrument.
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Fig. 1.12: Fluorescence spectrophotometer instrument.
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1.7.5. Scanning Electron Microscope (SEM)

One technique was applied to characterize the fracture surfaces of the studied samples,
namely scanning electron microscopy (SEM, Fig. 1.13). High-resolution electron micrographs
were captured using a field-emission SEM (JEOL JSM-7001F) with operating parameters set in
the vicinity of 20 kV accelerating voltage and ‘medium’ (11) spot size. The hierarchical nature of
the surface was surveyed with magnifications ranging from 1000 x to 15,000 x. This was carried
out at across various representative locations, along the longitudinal centerline of the fracture

surface.

Fig. 1.13: Scanning electron microscope instrument.
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CHAPTER TWO
ORGANIC PETROGRAPHY AND GEOCHEMISTRY OF SOURCE ROCK

2.1. Introduction

The organic petrography service delivers information about source rock type and
associated organic matter, thermal maturity level, and the hydrocarbon generation zone
(Chabalala et al., 2011; Hackley and Cardott, 2016; Aviles et al., 2019). Interpretations of
thermal maturity level and hydrocarbon generation zone are based on the reflectance
measurements and overall observations of organic matter (OM) under the microscope with white
and UV light in oil immersion or dry environment (Furmann et al., 2015; Ndip et al., 2019).
Understanding of maceral composition of source rocks and interplay between OM and minerals
allows for in-depth evaluation of source rock potential in conventional and unconventional

exploration and production (Sykes et al., 2014; El Hajj et al., 2019).

Data provided includes both vitrinite reflectance (%VRo0) and solid bitumen reflectance
(%BRo0), which are used as thermal maturity indicators. Reflectance data for solid bitumen are
reported in percent vitrinite reflectance equivalent (%VRE) via set of available correlations.
Using this information, data are reported with a confidence level that is a function of quantity
and quality of OM particles and solid bitumen concentrations in sedimentary rock (Chabalala et
al., 2011; Erik et al., 2015 Malachowska et al., 2019).

Maceral analysis offers the detailed composition of OM types (by volume percentage on
a mineral matter-free basis) present in source rock as well as oil and gas proneness. Macerals are
the components of the source rock describing the origin of a particular organic matter type in

coal and organic rich shales (Furmann et al., 2015; Ndip et al., 2019).
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Major groups of macerals are liptinite (involved Exinite), vitrinite, and inertinite. The
liptinite group is divided into primary (resinite, sporinite, subernite, cutinite and alginite) and
secondary (bituminite) liptinites. The vitrinite group is classified into three subgroups, namely
gelovitrinite (gelinite and corpohuminite), detrovitrinite (densinite and attrinite) and telovitrinite
(collotelinite, ulminite, textinite and telinite). The inertinite group includes seven macerals,

namely fusinite, semifusinite, inertodetrinite, micrinite, macrinite funginite and secretinite.

Organic geochemistry can be viewed as forensic science that combines aspects of
geology, chemistry and biology and applies them to a colossally long time scale. Molecular and
microscopic fossils provide the indicators on which we base our reconstructions of past events
and ecosystems. We not only perform basic research, but also work closely with petroleum
industrial partners to investigate the processes which lead to the development of fossil fuels
(Zongying, 2009; El Atfy et al., 2014; Huo et al., 2019).

2.2. Organic Petrography

In the current study, vitrinite represents the most abundant maceral in the Daryanah
Shale. Liptinite is the second common maceral. There is also a small amount of inertinite. The
vitrinite group is represented by gelovitrinite (gelinite, Fig. 2.1), detrovitrinite (densinite and
attrinite, Figs. 2.2-3) and telovitrinite (collotelinite, telinite ulminite and textinite, Figs. 2.4-7).
The observed liptinites are resinite, sporinite, subernite, cutinite, alginite and bituminite (Figs.
2.8-13), while fusinite and inertodetrinite are common inertinites (Figs. 2.14-15). The detected
macerals imply that the precursors of the majority of organic matter are higher land plants and

aquatic organisms.
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Fig. 2.1: Photomicrograph (oil immersion) showing gelinite (black arrows, sample D3).

Fig. 2.3: Photomicrograph showing attrinite (yellow arrows, sample D16).
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Fig. 2.5: BSE image showing telinite (yellow arrow, sample D1).

28



Fig. 2.7: Photomicrograph (oil immersion) showing textinite (white arrows, sample D3).

Fig. 2.8: Photomicrograph (oil immersion) showing resinite (white arrows, sample D9).
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Fig. 2.9: Photomicrograph showing sporinite (white arrows, sample D3).

Fig. 2.11: Photomicrograph showing cutinite (yellow arrows, sample D2).
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Fig. 2.13: Photomicrograph showing bituminite (white arrow, sample D1).

Fig. 2.14: Photomicrograph showing fusinite (white arrows, sample D1).
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Fig. 2.15: Photomicrograph showing inertodetrinite (yellow arrows, sample D4).

2.3. Organic Geochemistry

Geochemically, the studied shales were evaluated using LECO, Rock Eval pyrolysis and
gas chromatography-mass spectrometry (GC-MS). The results of these analyses are shown in
Tables (1-8).

2.3.1. Source Rock Quality

Source rocks are generally organic-rich fine-grained sediments that are naturally capable
of generating and releasing hydrocarbons in amounts to form commercial accumulations (Hunt,
1996). Rock-eval pyrolysis is used to determine the petroleum potentiality, thermal maturity of
the organic matter and its ability to generate oil and/or gas. The utmost method is widely used for
determining the amount and type of the organic matter in the rock and measuring petroleum
potential via this method (Espitalie, 1984). The pyrolysis gives rise two parameters; S1: and S,
both are expressed as kilograms of hydrocarbons per ton of rock. S; measures the amount of free
hydrocarbons that can be volatilizing out of the rock without cracking the kerogen (mg HC/g
rock) while, S, measures the hydrocarbons yield from cracking of kerogen (mg HC/g rock).
Generally, the organic richness is divided into five grades (Peters and Cassa, 1994). These grades
are excellent (TOC>4%), very good (2%<TOC<4%), good (1%<TOC<2%), fair
(0.5%<TOC<1%) and poor (TOC<0.5%).

32



Table 2.1: LECO and Rock Eval pyrolysis data of the Daryanah Shale

Sample No. TOC T Ro S; S, S3 HI ol GP Pl

D1 087 422 045 333 255 112 293.10 128.74 5.88 0.57
D2 089 428 042 310 231 1.77 259.55 198.88 541 0.57
D3 080 426 049 256 209 110 261.25 13750 4.65 0.55
D4 086 426 040 3.00 197 090 229.07 104.65 4.97 0.60
D9 040 419 034 247 092 0.87 230.00 21750 3.39 0.73
D10 037 417 038 211 088 0.76 237.84 20541 298 0.71
D16 033 419 029 205 089 051 269.70 15455 294 0.70
D17 039 420 035 211 079 0.60 20256 153.85 290 0.73

Table 2.2: Gas chromatogram data of normal alkanes and isoprenoids ratios of the

Daryanah Shale (calculated on m/z 85)

2.(n-Cy-n-Cyp)/
Sample No. Pr/Ph (Pr+n-C;;)/ Prin-Cy; Ph/n-Cig (3 (n-Cy,-n-Cyp)+ CPI - WI

(Ph+n-Cyg) 2. (n-C15-n-Cyg))
D1 141 0.90 1.22 0.90 0.71 144 0.63
D2 1.58 0.77 1.25 0.81 0.57 154 0.70
D3 1.68 0.69 1.39 0.88 0.44 1.50 0.65
D4 1.62 0.81 1.31 0.93 0.62 1.32 0.56
D9 1.55 0.76 1.44 0.80 0.67 136 0.54
D10 1.64 0.55 1.29 0.82 0.52 1.33 0.57
D16 1.61 0.42 1.21 0.85 0.46 133 0.72
D17 1.50 0.39 1.21 0.77 0.48 140 0.77
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Table 2.3: Gas chromatogram data of steranes and diasteranes of the Daryanah Shale

(calculated on m/z 217)

ng B(X(S‘I‘R)-dla/

Sample No. Cy; Cy  Cy Cyg (C,5 Bo(S+R)-dia+

(BB/BB+aa) C,7 Ba(S+R)-dia)
D1 46.18 4.45 49.37 0.23 1.00
D2 46.44 3.97 49.59 0.27 0.88
D3 35.28 24.35 40.37 0.22 0.93
D4 35.00 27.29 37.71 0.24 1.05
D9 33.50 31.50 35.00 0.24 0.65
D10 32.08 34.25 33.67 0.16 0.54
D16 44,65 8.87 46.48 0.19 0.44
D17 4423 10.21 45.56 0.19 0.56

Table 2.4: Continued

C,g Steranes:  C,q Steranes:  Cy, Sterane

Sample No. _
B6/(ao+BB) 20S/(20S+20R) index
D1 0.33 0.16 0.09
D2 0.30 0.17 0.08
D3 0.25 0.11 0.07
D4 0.29 0.09 0.09
D9 0.11 0.24 0.14
D10 0.15 0.26 0.13
D16 0.13 0.27 0.13
D17 0.11 0.27 0.15
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Table 2.5: Gas chromatogram data of terpanes, hopanes and TPP ratios of the Daryanah
Shale (calculated on m/z 217)

Hopanes/

Sample No. C4 R/ C3, 225/ GIC3  Cyy Cs5/Cyy (Hopanes+  TPP

CyH (225+22R) 22R/H homohopanes Y 20R steranes)
D1 0.47 0.39 0.58 0.28 0.59 0.48 0.19
D2 0.50 0.43 0.64 0.26 0.66 0.52 0.16
D3 0.46 0.33 0.70 0.32 0.88 0.59 0.22
D4 0.45 0.33 0.56 0.39 0.65 0.56 0.21
D9 0.51 0.45 0.82 0.55 0.33 0.33 0.24
D10 0.48 041 0.88 0.57 0.29 0.31 0.16
D16 0.49 041 0.73 0.59 0.43 0.31 0.17
D17 0.49 0.29 0.70 0.48 0.39 0.44 0.19

Table 2.6: Continued
Sample No. Ts/ 29Ts/ (C10+Cp)!  Cou TeT/ (Cyg*+Cop)/
(Ts+Tm) (29Ts+30NH) CptCo) TT  Cpe TT  Cp TT

D1 0.18 0.07 1.11 2.10 1.40

D2 0.19 0.05 0.69 1.82 0.94

D3 0.19 0.05 0.89 1.77 1.15

D4 0.13 0.05 0.78 1.96 1.33

D9 0.05 0.16 0.33 0.82 0.76

D10 0.09 0.18 0.37 0.88 0.69

D16 0.09 0.19 0.41 0.91 0.67

D17 0.08 0.19 0.32 0.90 0.67
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Table 2.7: Continued

C,, TeT/
Sample No.  C,4f Cyo TT/ Cos TT/  Cys TT/ (Cyy TeT+
Cyy TT Cyphopane Csohopane C,, TeT  Cy TT)

D1 0.88 0.05 0.09 0.31 0.52
D2 0.72 0.07 0.04 0.84 0.59
D3 0.43 0.04 0.07 0.25 0.50
D4 0.35 0.02 0.05 0.62 0.61
D9 1.14 0.10 0.19 0.17 0.23
D10 1.09 0.12 0.19 0.15 0.25
D16 1.00 0.12 0.17 0.19 0.28
D17 1.05 0.11 0.16 0.18 0.28

Table 2.8: Continued

C,, diahopane/  C,4 diahopane/

Sample No.
C3, hopane C,g hopane
D1 0.21 0.41
D2 0.29 0.22
D3 0.35 0.29
D4 0.41 0.33
D9 0.10 0.16
D10 0.10 0.17
D16 0.09 0.17
D17 0.10 0.13

Where:

TOC = total organic carbon (wt. %)

S1 = amount of free hydrocarbons in sample (mg/g)

S2 = amount of hydrocarbons generated through thermal cracking (mg/g) — provides the quantity
of hydrocarbons that the rock has the potential to produce through diagenesis

Sz = amount of CO, (mg of CO2/g of rock) - reflects the amount of oxygen in the oxidation step
Tmax = the temperature at which maximum rate of generation of hydrocarbons occurs

Hydrogen index: HI = 100 * So/TOC
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Oxygen index: Ol = 100 * S3/TOC

Production index: Pl = S1 / (S1+S2)

Semi-quantitative index: GP = S1/S

Ro = vitrinite reflectance (wt. %)

Pr/Ph = Pristane/Phytane

Carbon preference index: CPI = 2(C23+Cas+ Co7+C29)/(C22+2[C24+C26+C28]+Ca0)
Waxiness index: WI = Z(n-C21-n-Cs1)/Z(n-C15-n-Cao)

TPP = tetracyclic polyprenoid

Ts = Cy7 18a(H)-22,29,30-trisnorneohopane

Tm = Cy7 170(H)-22,29,30-trisnorhopane

The lower shale samples contain TOC >0.5% and are fair source rocks according to the
standard given by Peters and Cassa (1994). There is no significant difference in the TOC content
(<0.5%) in the middle and upper shales, which suggests that these shales have poor quality. To
confirm the assumptions mentioned above, the plots of TOC vs. Sz and TOC vs. GP were used in
this chapter (Figs. 2.16-17).

2.3.2. Organic Matter Type

Kerogen includes all solid organic matter in all sedimentary rocks. Most classification of
kerogen are based on the chemical properties of kerogen, usually isolated by demineralization
techniques, and belong to one of the following types: (i) elemental analysis; (ii) “bitumen” or
soluble fraction extraction; (iii) chemical degradation (including oxidation, hydrogenolysis, and
pyrolysis); (iv) functional analysis; (v) electron spin resonance studies; and (vi) nuclear magnetic
resonance studies (Hutton et al., 1994). Many authors (e.g., Hutton et al., 1994; Xianming et al.,
2000; Werner-Zwanziger et al., 2005; Mao et al., 2010; Liao et al., 2015; Burnham, 2019)

clearly mean maceral when using the term kerogen.
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Fig. 2.16: Plot of TOC vs. S, showing the hydrocarbon potentialities for the studied
shales (fields after Dembicki, 2009).
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Fig. 2.17: Plot of TOC vs. GP showing the hydrocarbon potentialities for the studied
shales (fields after Ghori, 2002).

38



The TOC, Sz, Tmax, HI and Ol values of the Daryanah Shale range from 0.33 to 0.89%,
0.79 to 2.55mg HC/g Rock, 417 to 428°C, 202.56 to 293.1mg HC/g TOC and 104.65 to 217.5mg
CO2/g TOC, respectively. This finding suggests that the organic matter contains predominantly
kerogens of type II/111 and I1l. Confirmation of this hypothesis was done using the plots of Tmax
versus HI, Ol versus HI and TOC versus Sy (Figs. 2.18-20). The dominance of vitrinite and
liptinite macerals, and the small contribution of inertinite indicate a mixed origin for the kerogen.
However, the significant content of liptinite and vitrinite could influence the measured values of

TOC and HI. Additionally, nonindigenous (migrated) hydrocarbons are dominant in the studied
shales (Fig. 2.21).
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Fig. 2.18: Plot of Tmax vs. HI showing the thermal maturity for the studied shales (fields
after Hall et al., 2016).
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Fig. 2.19: Plot of Ol vs. HI showing the kerogen type for the studied shales (fields after
Van Krevelen, 1961).
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Fig. 2.20: Plot of TOC vs. S showing the kerogen type for the studied shales (fields after
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Fig. 2.21: Plot of TOC vs. S1 showing the status of hydrocarbons for the studied shales
(fields after Hunt, 1996).

2.3.3. Thermal Maturity

As a general rule, Tmax increases linearly with the degree of maturation of the organic
matter (Espitalie, 1984), thus giving a rapid estimate of the thermal maturity of sedimentary
basins. Tmax IS dependent on the cracking kinetics of the organic matter and is correlated with the
type of organic matter: lacustrine (type 1), marine (type IlI) and continental (type IlI). The
relationship between Tmax and different stages of oil and gas formation zones varies with the type
of organic matter; however type Il is the most reliable in estimating the degree of maturation
(Espitalie, 1984). The variation of Tmax With the organic matter maturity has been compared to
the change in vitrinite reflectance (Ro) and, for the kerogen of type Ill, the beginning of the oil
formation is characterized by Ro of 0.5% and Tmax in the range 430-435°C, whereas the
transition oil-gas zone is fixed at Ro of 1.35% and Tmax ~465°C (Espitalie, 1984). Fig (2.18) and
Figs (2.22-23) show the immaturity of organic matter in the studied shales.
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Fig. 2.22: Plot of Tmax vs. Ro showing the thermal maturity for the studied shales (fields
after Atta-Peters and Garrey, 2014).

0.8

0.7
Peak oil window and higher

0.6 4

0.4 4

03 === mm - -

C2o (RB/BBR+aa) sterane

T
|
|
|
|
|
|
|
0.5 - :— ———————————————————
|
|
|
|
.|.
|
|
|

0.2 A o)

Immature ro®k extracts :

0.1 : : : . : : : : :
030 035 040 045 050 055 060 065 070 0.75 0.80

C3, 22S/(22S+22R) homohopane

|A Lower Shale B Middle Shale © Upper Shale |
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the thermal maturity for the studied shales (fields after Peters and Moldowan, 1993).
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2.3.4. Organic Matter Input, Redox Condition and Depositional Environment

Biomarkers are natural products that can be assigned as particular biosynthetic origin
(Cai et al., 2009; Song et al., 2013; EI-Sabagh et al., 2018). These compounds are useful in
geological and environmental studies, where, they are recalcitrant against geochemical changes
and easily analyzable in environmental samples (Cai et al., 2009; Song et al., 2013; Cheng et al.,
2019). Accordingly, biomarkers can be regarded as a chemical fossil, meaning that these
compounds originated from formerly living organisms (Mello et al., 1988; Simoneit, 2004).
Occurrences and distributions of biological markers patterns of crude oils are commonly used for
oil/oil and oil/source rock correlations and to assess such source rock attributes as lithology,
depositional environment, kerogen type and maturity (Peters et al., 2005). The exploration
applications of biomarkers rely on the premise that the biomarker pattern of oil is imprinted by
the source rock. However, the source-related biomarker pattern may have been altered by a
number of processes after generation and expulsion from the source rock. One of the most
important processes which affect crude oils in reservoirs, especially shallow reservoirs, is
biodegradation. Most researchers consider aerobic bacteria to be the principal agents in the
subsurface degradation of petroleum (Peters et al., 2005). To determine the organic matter input,
redox condition and depositional environment, several plots were used in this study. The triplot
of C27-Cas-Cog regular steranes (Fig. 2.24) and the biplots of Pr/Ph versus CPI, Pr/Ph versus WI,
Pr/Ph versus C29/Cy7 regular steranes, Ph/n-Cig versus Pr/n-Ciz, Pr/Ph versus Y (n-Cio-n-
C20)/(3.(n-C12-n-C20)+> (n-C12-n-C29)) and Pr/Ph versus Czg Ba(S+R)-dia/(C2s Ba(S+R)-dia+Cor
Ba(S+R)-dia) (Figs. 2.25-30) refer to the dominance of mixed organic matter formed under
suboxic conditions. Furthermore, the biplots of Pr/Ph versus C3122R/C3zo- Hopane, Pr/Ph versus
(Pr+n-C17)/(Ph+n-C1g), Hopanes/(Hopanes+) 20R steranes) versus TPP and Pr/Ph versus G/Cso

(Figs. 2.31-34) suggest deposition in a high salinity marine environment.
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Fig. 2.24: Ternary diagram of C.7-Cas-C29 regular steranes showing the organic matter

origin for the studied shales (fields after Huang and Meinschein, 1979).
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Fig. 2.25: Plot of Pr/Ph vs. CPI showing the organic matter origin and redox conditions
for the studied shales (fields after Akinlua et al., 2007).
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Fig. 2.26: Plot of Pr/Ph vs. WI showing the organic matter origin and redox conditions
for the studied shales (fields after El Diasty and Moldowan, 2012).
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Fig. 2.27: Plot of Pr/Ph vs. C29/C>7 regular steranes showing the organic matter origin

and redox conditions for the studied shales (fields after Yandoka et al., 2015).
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Fig. 2.28: Plot of Ph/n-Cys vs. Pr/n-C17 showing the organic matter origin and redox

conditions for the studied shales (fields after Shanmugam, 1985).
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Fig. 2.29: Plot of Pr/Ph vs. n-alkane SLR (Xn-C12-20)/(2n-C12-20) showing the organic
matter origin and redox conditions for the studied shales (fields after Shaltami et al.,
2019).
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showing the organic matter origin for the studied shales (fields after Shaltami et al.,
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Fig. 2.31: Plot of Pr/Ph vs. C31R/C3o hopane showing the depositional environment of the
studied shales (fields after Peters et al., 2005).
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Fig. 2.32: Plot of Pr/Ph vs. (Pr+n-C17)/(Ph+n-C1s) showing the depositional

environment of the studied shales (fields after Shaltami et al., 2019).
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Fig. 2.34: Plot of Pr/Ph vs. G/Cz showing the paleosalinity and redox conditions for the
studied shales (fields after Zhou and Huang, 2008).
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CHAPTER THREE
RESERVOIR GEOCHEMISTRY

3.1. Introduction

Traditionally, fluid geochemistry has played little role in reservoir engineering practice,
with some notable exceptions (Larter et al., 1997). Since 1985, however, the focus of
geochemistry in the petroleum industry has shifted away from exploration toward reservoir
appraisal and production (Larter et al., 1997; England, 2007; Li et al., 2018). This new focus has
been termed "reservoir geochemistry” and has been recently reviewed by many authors (e.g.,
Carpentier et al., 2007; Zhu et al., 2015; Yang et al., 2019). Because geochemists deal with both
reservoir rocks and their contained fluids, reservoir geochemistry provides a natural, but
underexploited, link between reservoir geologists and reservoir/petroleum engineers (Carpentier
et al., 2007; Kolchugin et al., 2016; Li et al., 2019).

Petroleum-bearing fluid inclusions (petroleum inclusions) are small aliquots of pore
fluids trapped within the framework of rock-forming minerals. These fluid inclusions typically
range in size from <1um to ~20um and are present in a wide variety of different minerals (e.g.,
Burruss, 1981; Pironon et al., 1995; Munz, 2001; Arouri et al., 2009; Liu et al., 2014; Shaltami
et al., 2018). They offer direct evidence about the nature of pore-filling petroleum at different
times in the geological past. This makes them the witness of paleo-fluid compositions during
petroleum migration and accumulation, offering an opportunity to map petroleum presence and
composition through time and space (Volk and George, 2019). The presence of petroleum
inclusions indicates that petroleum was present in the pore space at the time that the host mineral
phase formed or when a fracture was propagated through an existing mineral (Burruss, 1981,
Munz, 2001; Liu et al., 2014; Shaltami et al., 2019).

Shaltami et al., (2018) are the first to apply the technology of petroleum inclusions to

evaluate reservoirs in Libya. This study was a geochemical evaluation of the crude oil found in

the petroleum inclusions of the Achabiyat and Hawaz reservoirs in the Dur Al Qussah area,
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Murzuq Basin, SW Libya. This chapter is a geochemical evaluation of the natural gas and crude

oil in the petroleum inclusions of the Daryanah Reservoir.

3.2. Petroleum Inclusions

The SEM shows that the lower limestone is rich in petroleum inclusions, while the
inclusions are very rare or not found in the dolostone, calcareous sandstone and upper limestone.
Accordingly, the lower limestone can be considered a reservoir (Daryanah Limestone) and
therefore the study was focused on it. The detected petroleum inclusions are of two-phase (Figs.
3.1-4). The two phases are mainly crude oil and natural gas in most inclusions. These inclusions
have irregular patterns and different shapes. Clearly, the inclusions have a different chemical

composition.

fécéé Spot Megan
' 25.9&»’7’/‘»1@0x

-
Fig. 3.1: BSE image of irregular petroleum inclusions (Sample D5).
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Fig. 3.3: BSE image of irregular petroleum inclusions (Sample D7).
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Fig. 3.4: BSE image of irregular petroleum inclusions (Sample D8).

3.3. Types of Natural Gas

Hydrocarbon gases are common in marine sediments (Claypool and Kvenvolden, 1983;
Prinzhofer et al., 2000; Alsaab et al., 2008; Liao et al., 2015; Zhao et al., 2019). Such gases
originate from decomposition of organic matter by biochemical and chemical processes. These
gases are shown in Table (3.1). In addition, inorganic gases such as N2 and Ar are present, but
usually as minor or trace components in natural gas (Claypool and Kvenvolden, 1983). There are
also gases of mixed origin, such as CO2 and HS, but they are also found in small quantities in
marine sediments. According to Claypool and Kvenvolden (1983) there are three main stages of
natural gas formation. The earliest stage is biological C: formation, which occurs at low
temperatures (<50°C) under certain environmental conditions. The next stage is early
thermogenic (nonbiological) gas formation, in which the whole series of gaseous and liquid
hydrocarbons are formed at rates that become geologically significant when burial temperatures
are in the range of 80-120°C. Late thermogenic Ci-rich gas is produced during the last stage of

gas formation, at temperatures higher than about 150°C at which previously formed heavier
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hydrocarbons are converted to Ci. Natural gas formed during each of these stages has a

characteristic chemical and isotopic composition.
The types of natural gas in the petroleum inclusions are listed in Table (3.2). In general,

the Daryanah Reservoir inclusions contain high concentration of hydrocarbon gases (especially

Cy, Fig. 3.5) with lesser content of nonhydrocarbon gases (H, H2S, CO2 and Ny).

Table 3.1: Hydrocarbon gases in marine sediments (after Claypool and Kvenvolden,

1983)
Name Symbol Molecular formula
Methane C, CH,
Ethane C, C,Hs
Ethene (Ethylene) C,- C,H,
Propane Cs CsHg
Propene Cs- CsHe
Isobutane iIC, C,Hyo
n-Butane nC, C,4H1o

Table 3.2: Components of gases (%) in the Daryanah Reservoir inclusions

Sample No. C; C, Cop- C; Cs- iC, nC, H, H,S CO, N,
D5(1) 79.00 920 0.04 611 0.02 157 150 0.77 0.11 200 0.09
D5(2) 77.77 1105 0.04 6.17 002 160 163 081 0.09 185 0.12
D5(3) 81.09 867 006 555 003 146 141 069 010 174 0.17
D6(1) 74.63 13.00 0.04 7.07 0.04 171 166 092 022 136 0.26
D6(2) 56.21 22.21 0.08 1023 0.04 332 292 334 279 300 0.98
D6(3) 57.00 21.88 0.08 10.00 0.04 356 350 3.06 283 277 105
D7(1) 56.09 23.10 0.08 10.19 0.04 341 344 271 305 259 0.84
D7(2) 90.13 231 0.02 217 001 112 112 034 0.08 168 0.08
D7(3) 89.89 254 002 220 001 120 122 040 0.08 159 0.08
D8(1) 9470 134 0.02 141 002 1.00 100 023 0.05 181 0.09
D8(2) 9519 121 0.02 133 002 1.00 100 0.27 0.05 167 0.07
D8(3) 9554 1.18 0.02 139 002 094 09 019 0.09 190 0.07
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Fig. 3.5: Concentration of natural gas in the Daryanah Reservoir inclusions.

3.4. Crude Oil Type

There are two different classifications for crude oil. The first classification was
introduced by Martinez et al., (1984). They divided crude oils into three types, namely light oils
(API gravity>31.1°), medium oils (API gravity ranges from 27.3° to 31.1°) and heavy oils (API
gravity<27.3°). The second classification was established by Waples (1985). He divided crude
oils into two types, namely biodegraded oils (APl gravity<20°), and condensate oils (API
gravity>45°). Biodegradation occurs when bacteria, fungi, or other organism or biological
process chemically dissolves materials. The process can be beneficial or detrimental within the
industry depending on the circumstances. For instance, biodegradation via bacteria can aid in the
cleanup of oil spills.

The chemical analysis data of the studied crude oil are illustrated in Tables (3.3-8). The
API gravity values of the crude oil range from 27.93° to 29.17°, which suggests that the
Daryanah Reservoir inclusions contain medium crude oil (Fig. 3.6). Moreover, the crude oil

samples fall in the field between biodegraded oil and condensate oil (Fig. 3.7).
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Table 3.3: API gravity and SARA values of crude oil of the Daryanah Reservoir

inclusions

Sample No. API (°) SAT (%) ARO (%) NSO (%)
D5a 29.11 12.81 31.25 55.94
D5b 28.00 11.42 31.77 56.81
D5c 27.93  19.96 31.11 48.93
D6a 29.09 20.59 32.13 47.28
D6b 29.00 19.47 35.96 44.57
Déc 28.28  18.59 35.55 45.86
D7a 29.17 21.34 35.29 43.37
D7b 27.98  20.23 37.05 42.72
D7c 28.91 1550 30.61 53.89
D8a 28.88 1581 30.38 53.81
D8b 29.05 12.18 30.96 56.86
D8c 28.00 12.48 31.15 56.37

Table 3.4: Peak wavelength (Amax), Qrs3s and Qesosso0 Values of the micro-beam

fluorescence spectra of crude oil of the Daryanah Reservoir inclusions

Sample NO. Ama (M) Qgsoso0  Qksss
D5a 500.00 0.30 0.69
D5b 504.00 0.38 0.88
D5c 503.00 0.41 1.00
D6a 500.00 0.38 0.79
D6b 500.00 0.31 0.77
D6c 504.00 0.45 1.22
D7a 546.00 0.44 1.39
D7b 551.00 0.49 1.52
D7c 548.00 0.69 1.43
D8a 550.00 0.75 1.52
D8b 550.00 0.66 1.57
D8c 552.00 0.75 1.40
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Table 3.5: Biomarker analysis of crude oil of the Daryanah Reservoir inclusions

(calculated on m/z 217)

C,g Steranes:  C,q Steranes:  Csy sterane Cgs/Csyy Cy

Sample No. ]
BB/(aatBB) 20S/(20S+20R) index homohopanes 22R/H
D5a 0.22 0.19 0.07 0.67 0.30
D5b 0.21 0.17 0.07 0.81 0.30
D5c 0.29 0.17 0.09 0.76 0.39
D6a 0.22 0.14 0.09 0.70 0.32
D6b 0.19 0.13 0.08 0.92 0.33
Déc 0.21 0.19 0.08 0.90 0.33
D7a 0.22 0.11 0.08 0.90 0.36
D7b 0.18 0.15 0.09 0.77 0.39
D7c 0.18 0.18 0.09 0.86 0.31
D8a 0.20 0.13 0.07 0.85 0.31
D8b 0.17 0.17 0.07 0.85 0.35
D8c 0.17 0.16 0.07 0.90 0.35
Table 3.6: Continued
Sample No. Ts/ 29Ts/ pr/Ph CeHs/  C,Hg/
(Ts+Tm) (29Ts+30NH) CeHiz CiHyy
D5a 0.09 0.09 090 0.22 0.30
D5b 0.10 0.07 088 0.21 0.32
D5c 0.35 0.16 3.13  0.40 0.45
D6a 0.33 0.17 342 0.39 0.43
D6b 0.13 0.10 123 034 0.29
D6c 0.17 0.10 130 0.34 0.31
D7a 0.16 0.11 222 0.33 0.35
D7b 0.12 0.10 092 0.29 0.29
D7c 0.12 0.09 095 032 0.28
D8a 0.09 0.11 111 0.29 0.33
D8b 0.13 0.11 110 0.28 0.33
D8c 0.13 0.09 1.00 0.31 0.31
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Table 3.7: Continued
(CiotCp0)l  Cyy TeT/  (Cyg+Cy)/ Cosl Cy TT/

Sample No.
CytCoy) TT  Cy TT Cyu TT C,y TT Cso hopane
D5a 0.89 1.55 0.95 0.44 0.03
D5b 1.00 2.17 0.90 0.78 0.03
D5c 1.12 1.89 1.37 0.82 0.06
D6a 0.93 1.76 151 0.39 0.05
D6b 0.68 2.33 1.17 0.77 0.04
D6c 0.77 1.91 1.28 0.69 0.02
D7a 0.83 1.95 1.22 0.54 0.07
D7b 1.08 1.67 1.47 0.47 0.06
D7c 0.76 1.78 0.97 0.59 0.02
D8a 0.66 2.00 0.70 0.83 0.03
D8b 1.10 1.90 1.42 0.87 0.05
D8c 0.80 1.73 1.26 0.80 0.05

Table 3.8: Continued

C,, TeT/
Sample No. Cy, TT/ Cy TT/ (C,, TeT+ Cy diahopane/ C,q diahopane/
Csohopane C,, TeT  Cy TT) C3, hopane C,o hopane DMDI-1 DMDI-2

D5a 0.10 0.89 0.51 0.45 0.24 66.61 0.55
D5b 0.08 0.33 0.55 0.20 0.28 70.00 0.41
D5c 0.08 0.56 0.72 0.27 0.44 73.09 0.38
D6a 0.04 0.49 0.67 0.33 0.39 69.69 0.39
D6b 0.06 0.80 0.63 0.39 0.31 63.18 0.38
Dé6c 0.07 0.80 0.61 0.24 0.30 70.16 0.55
D7a 0.07 0.37 0.59 0.27 0.30 67.80 0.50
D7b 0.05 0.21 0.54 0.40 0.42 71.19 0.50
D7c 0.10 0.54 0.71 0.37 0.28 72.21 0.43
D8a 0.10 0.50 0.66 0.21 0.22 66.23 0.52
D8b 0.04 0.50 0.53 0.23 0.20 65.41 0.43
D8c 0.08 0.61 0.70 0.43 0.20 70.34 0.41
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Fig. 3.6: API gravity values of the studied crude oil (fields after Martinez et al., 1984).
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Fig. 3.7: API gravity values of the studied crude oil (fields after Waples, 1985).
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3.5. Oil-Source rock Correlation

Correlation of a crude oil to one or more source rocks is a common industrial application
of petroleum geochemistry (Curiale, 2008; Korkmaz et al., 2013; Xiao et al., 2019).
Confirmation that oil has been generated in the target sedimentary basin is the most critical piece
of knowledge a petroleum explorationist can derive; second in importance is the determination of
the source(s) of that oil (Curiale, 2008; Korkmaz et al., 2013; Xiao et al., 2019). For this reason,
an extensive arsenal of analytical methods is utilized to collect primary data on the organic
matter in crude oils and possible source rocks, and various components of these data are used to
relate oils causally to their prospective sources (Curiale, 2008; Korkmaz et al., 2013; Xiao et al.,
2019). Oil-source rock correlations at various confidence levels have been established for the
petroleum systems of all major sedimentary basins. Any successful oil-source rock correlation
must include three attributes: 1) requirement of causality, 2) comparable chemical data for all

samples, and 2) geological support (Curiale, 2008).

Aquino Neto et al.,, (1983) systematically investigated the distribution of tricyclic
terpanes in oils and source rock extracts in a variety of depositional environments and pointed
out that Cx3TT is often the dominant homologue in marine oils and saline lacustrine oils.
Generally, C1oTT and CxTT are more abundant in terrestrial oils (Zhu, 1997; Chen et al., 2013;
Xiao et al., 2019). Based on this, we can infer that these variations in C19/C23TT, C20/C23TT,
(C19+C20)TT/C23TT and (C19+C20)TT/ (CosTT+C24TT) ratios may in some way reflect a relative
distribution of terrigenous versus marine organic matter (Zumberge, 1987; Zhang and Huang,
2005; Tao et al., 2015). In addition, a higher abundance of long-chain tricyclic terpanes (CosTT
and Co9TT) are often found in brackish to saline water sedimentary environments and are mainly
derived from aquatic algal plankton (Tuo et al., 1999; Hao et al., 2009). More importantly, the
proportion of Co4TeT relative to tricyclic terpanes may also be facies dependent wherein
relatively higher C24TeT abundances in source rocks and related oils are found to be associated
with terrigenous organic matter input (Philp and Gilbert, 1986; Zhang and Huang, 2005).
Therefore, C19-Co4 tricyclic and Co4 tetracyclic terpanes could be useful indicators for providing

a variety of geological and geochemical information. C19-C24 tricyclic and Cas tetracyclic
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terpanes related parameters have been extensively used in oil-oil and oil-source rock correlations
studies (e.g., Xiao et al., 2019).

In the present study, the plots of Pr/Ph versus Cass/Css homohopanes, Cz1 22R/H versus
Cao sterane indeX, (C19+C20)/(C23+Ca4) TT versus Cos TeT/Czs TT, (C19+C20)/C2z TT versus
C23/C21 TT, Ca29 TT/Csz0 hopane versus Czg TT/Cso hopane, Cas TT/Ca4 TeT versus Cas TeT/(Caa
TeT+Cy TT) and Czo diahopane/Cso hopane versus Cog diahopane/Czg hopane (Figs. 3.8-14)
indicate that there is one oil family in the Daryanah Reservoir inclusions. These plots also
illustrate that the majority of the crude oils and the source rock (Daryanah Shale) fall into the
same zone, which suggests that the Daryanah Shale is the main source rock of the Darnah

Reservoir. This assumption is further supported by the diamondoid diagram (Fig. 3.15).
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Fig. 3.8: Plot of C31 22R/H vs. Csg sterane index showing the source rock for the studied
crude oil (fields after Ziegs et al., 2018).
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3.6. Thermal Maturity and Oil-Water Interactions

Many detailed chemical parameters have been proposed as indicators of thermal maturity
of crude oil (Obermajer et al., 2010; Jiang et al., 2019). Among these parameters, the molecular
distributions of metalloporphyrins, cyclic hydrocarbons and low molecular-weight hydrocarbons
are most commonly used (Jiang et al., 2019).

In this chapter, several binary plots have been used to determine the maturity of crude oil
and the oil-water Interactions such as Ts/(Ts+Tm) versus 29Ts/(29Ts+30NH), Coag
steranes:BB/(aa+BB) versus Cao steranes:20S/(20S+20R), CeHs/CsH12 (benzene/ cyclohexane)
versus C7Hs/C7H14 (toluene/methyl cyclohexane) as well as the ternary plot of SARA (saturated
hydrocarbons, aromatic hydrocarbons and resins plus asphaltenes) (Figs. 3.16-19). The samples
of crude oil and source rock have entered in the immature window. Furthermore, there are

indications of oil-water interactions.
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3.7. Charging Episodes

Petroleum reservoirs are often charged by oil that has been expelled from different source
rocks over a considerable maturity range. Over geological time, different oils in a petroleum
reservoir tend to form a homogeneous mixture (England et al., 1987). In addition, early oil
charges may be displaced by subsequent gas charges or mixed with subsequent oil charges, or
may be altered by biodegradation or water-washing prior to later oil charge (Baba et al., 2019).
All these processes blur geochemical differences and often make it difficult to reconstruct the
detailed charge history of a petroleum reservoir based on the analysis of recovered oils alone.
The geochemical analysis of petroleum inclusions offers an opportunity to obtain information on
the composition of petroleum during an earlier stage of the fill history (Shaltami et al., 2019).
Petroleum inclusions are encapsulations of paleo-oil that are commonly formed in diagenetic
cements and in healed fractures cross-cutting detrital grains and cements in petroleum reservoirs
(Zhang et al., 2012).

In the current study, the charging episodes of hydrocarbons are determined based on the
peak wavelength (Amax) values and intensities of the micro-beam fluorescence spectra parameters
(Qesors00 and Qrsss). There are two peak wavelength values, namely 500nm, and 545nm (Figs.
3.20-21). These peaks indicate that two episodes of crude oil charging occurred in the Daryanah

Reservoir.

Briefly, the petroleum system of the Daryanah Formation is as follows:
1) The lower shale (Daryanah Shale) represents the source rock.
2) The lower limestone (Daryanah Limestone) represents the reservoir.

3) The middle shale represents the cap rock (seal).
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CHAPTER FOUR
CONCLUSIONS

The evaluation of the Daryanah Formation in the offshore well AI-NC 128, Cyrenaica
Basin, NE Libya, is the objective of the current study. Six techniques have been used to achieve
this purpose, namely organic petrography, scanning electron microscope (SEM), LECO C230,
Rock Eval pyrolysis, gas chromatography-mass spectrometry (GC-MS) and fluorescence
spectrophotometry. Moreover, natural gas and crude oil were assessed using petroleum
inclusions. The conclusions of this study are as follows:
1) Vitrinite (gelinite, densinite, attrinite, collotelinite, telinite ulminite and textinite) represents
the most abundant maceral in the shales. Liptinite (resinite, sporinite, subernite, cutinite, alginite
and bituminite) is the second common maceral. There is also a small amount of inertinite
(fusinite and inertodetrinite).
2) The lower shale samples contain TOC >0.5% (fair source rock) while the middle and upper
shales have TOC <0.5% (poor source rock).
3) All shales contain kerogens of type 1I/111 and I11.
4) Organic matter in the shales is immature thermally.
5) All shales contain mixed organic matter formed under suboxic conditions.
6) The highly saline marine environment is the proved origin of the Daryanah Formation.
7) The petroleum inclusions in the Daryanah Reservoir (lower limestone) contain two phases,
namely crude oil and natural gas.
8) The Daryanah Reservoir inclusions contain high concentration of hydrocarbon gases
(especially C1) with lesser content of nonhydrocarbon gases.
9) Medium crude oil is dominant in the petroleum inclusions.
10) The Daryanah Shale is the main source rock of the Darnah Reservoir. Furthermore, the cap
rock is the middle shale.
11) The crude oil and source rock have entered in the immature window.

12) There two episodes of crude oil charging occurred in the Daryanah Reservoir.
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