An Enhancement Approach of Software System
-Using Reverse Engineering and Restructuring Concept to Improve
the Quality of Software Code

By
Hamza Ali Abdelrahman El-Ghadhafi

Supervisor
Dr.Tawfig Eltawil

This Thesis was submitted in Partial Fulfillment of the
Requirements for Master's Degree of Computer.

University of Benghazi

Faculty of Information Technology

April 2018

Copyright © 2018.All rights reserved, no part of this thesis may be reproduced in
any form, electronic or mechanical, including photocopy , recording scanning , or any
information , without the permission in writhing from the author or the Directorate of

Graduate Studies and Training university of Benghazi.

s W e Akl 3 e sia) (e daslae)) e Y . idigine 2018wkl s
Gl e S G e Jpmanl) (553 cn ol) Jimadil g gl Ayl AS31S0e) ity S
(e Arala appll L) bl 3513

University of Benghazi Faculty of information

Technology

Department of Computer science

An Enhancement Approach for the Quality of Software Cod.

- Using Reverse Engineering and Restructuring Concept to Improve the
Quality of Software Code

By
Haniza Ali Abdelrahman El-Ghadhafi

This Thesis was Successfully Defended and Approved on 26.4.2018

Supervisor
Dr. Tawfig M. Eltaweel

SIgNature: sussssswss s N o

.............................

Dr. Omar M{stafa Elsalabi (Internal examiner)

BIGHIIIE srnn hi0s 2060 B T oy e v s s s B4 RS

Dr. Mohamed Ahmed Khlaif (External examiner)

Signature: . ‘\—% ..

-

(Dean of Faculty) (Director of Graduate studies and training)

Acknowledgements

" Great things are not done by impulse, but by series of small things
brought together..."
— Vincent van Gogh

It gives me a great deal of pleasure to express my profound gratitude to my
thesis advisor Dr. Tawfig Tawill for his persistent and inspiring supervision and for
his valuable advice and guidance in shaping my research towards a this successful

thesis isa..

| am grateful to the members of my family, relatives and friends, especially to my
mother Fitma Salam, , and my sisters Fathia and Ebtesam Elgathafi, who did not
enjoy the share of my time and attention that they deserved. For those that I have not
explicitly mentioned here, thank you for being part of this thesis and helping me grow
as a person and a researcher. Above all, my sincere gratitude to the Almighty, who

creates and makes things happen.

Table of Contents

COopYright © 2018.......cceee et sre e anes ii
EXamination COMMITEE.........cciiiiiiieieieee e i
ACKNOWIBAGEMENTS. ... \Y;
LISE OF TADIES....c.eciie e X
I TS A0 1o U] 1SS USSPRSS Xi
LISt OF APPENAICES.ot Xiv
ADSTICE. ..t XV

Chapter 1 — Introduction

INrOdUCTION 10 SDLC......oiiiiiiiiicee e 1
Problem STAtEMENT..........oiiiiii e 3
IMIOTIVALTON. ...t bbbttt 4
RESEAICH AIMIS. ...ttt 5
RESEAICN QUESLIONS......c.viiiieciiccie ettt ettt saeene s 6
Scope and Limitation 0f the TheSIS.........c.coiiiiiiiiieee e 6
SIgNIficanCe OF the THESIS.......oiiiiiiiice e 6
Organization of the chapters of TheSiS.........ccceiiiiiiic i 7
Chapter 2 — Background

INEFOAUCTION. ...ttt b e ene s 8
CO0E SMELIS ...t b s 8
SMEIS DEFINITION. ...t 9
Classification of the Code SMEIS..........ccooiiiiiiiiii e 11
The Problem of Duplicated COe...........cooiiiiiiiiiiiiieee e 13
The Origin of Duplicated COE..........cooiiiiiiiiieiie e, 13
Classification of Duplicated COde..........ccccvveiiieiieiiiecie e 15

The Problem of Long Methodcoooveiiiiiiiecicc e 16

The Problem of Large Class........ccccoveiieiiiiiie e 17
Side Effects Of Code SMEIIS.........cooiiiiiiii e 17
SOftware PErfOrMANCE.........cviiiieiereee e 17
Detection of Bad SMElIS ..o 18
THE PrODIBM. ..ot 19
PIEVIOUS WOTK. ...ttt 19

Chapter 3 — An Enhancement Approach of Software System

INEFOTUCTION. ...ttt 21
Smells Detection TeChNIQUE OF PrOCESS........ccviiieiieiieie et 21
CONSEIAINTS. ...ttt b bbbttt ettt et e b e bt e s e 21
PropoSed APPIOACH.......c.iiiii i 24
Exploration and ASSESSEMENT STAQE.ccvviieiieieeie e 24
Preprocessing Te COUE........co.iiieiiiie e 25
Suspend Code CONVENTIONS..........ociiiiiiieieiese sttt 25
Methods of Suspend Code CONVENLIONS..........ccooveieriereeie e 26

(Of0To (-l 11 =]] T TSSOSO 27
C0dE FOrMALLING.......coieiieieccieec sttt sre e ens 29
Mapping Code With UML Diagrams..........ccccueueiieneninenieienieniese s 30
Reverse Engineering 0f SOftWAre.........cccooiiiiiiiiiiicceese s 30
Reasons for Reverse ENQINEEriNG........cccvovviieieeiie e 31
Reverse ENQGINEEriNG TYPES.....cciuiiiiieiieiieeiiesieesieesae e see e e stee e sree e e 32

UML FOIMATTING....c.veitiitiiieie ettt 32
Code RESLIUCTUINNG STAGE.....cveiueetieiieieite ettt 35
Detection of Code SMelIS.........c.oooiiiiiiii 36
The Potential Cases 0of Code CIONE..........ccoviiiiiiiiiieee s 37

\

Duplication in the Same Method...........c.ccoeviiieiiii e, 37

Duplication in the Same CIasS.........cccvcveiieieiiesece s 38
Duplication between Sibling Classes..........ccooiiriiiniiiniece e 39
Duplication With SUPEF CIaSS..........cuoiiiiiiiiieeic s 40
Duplication With ANCESTON.........c.ccieieiiece e 41
Duplication With FIrst COUSIN.........cceiieriiiiieseee e 42
Duplication in Unrelated CIaSSeS..........coviiiiiiiiiieieieiese e 43

The Potential Cases of Long Method...........ccooviiiiiiiiiiiieeeee 43
Long Method with More than 10 LINeS.........ccccccvvvriieieere e 44

Long Method because Duplicate LiNeS..........ccccoveveeieerieiieieeie e 45

Long Method With LOOPS.cciiieiiieieiene e 46

Long Method with Conditional EXPreSSions..........c.cuveveeieneneneneseniniens 47

The Potential Cases of Large Class.......ccccooeiveiieiecie i 47
Large Class with Many Methods............cccccoeiieiicieiic e 48
Enhancement MEeCANISIM..........ooiiiiiiiiee e 49
Restructuring TemPIate.........ccoviiiiiii e 49
APPLCALION SOIULION.......oiiiiiice e 49
SUMMIATY ..ttt s st e e st e e s bt e e e bt e e e be e e e bb e e e beeeanseeennbeeennes 51

Chapter 4 — Case Study

INEFOAUCTION. ...t sb et 53
Exploration and ASSESSEMENT STAQE.........ccveiieiieiieie et 53
Suspend Code CONVENLIONS.........c.eciieiieiiie e sraeenree s 54
COdE FITEIING ...ttt ettt 54
COdE FOIMALLING. .. .cueiuieieitiiieiiieeee e et 57
UML FOIMALEING......ciuiiiiieiie ittt eaaeeanae s 63
Code ReSIIUCTUIING STAQE. .. cvviiiieiie ittt 65

VI

Detection Of COAE SMEIIS.eee et 65

The Potential Cases of Code SMEll............cooeiiiiiiiiiice e 65
At the beginning, the simple look of the system (The bird's look)................. 66
At the ending, the close look of the system (The infrastructure inspect)........ 70
Enhancement MeChaniSIM...........ooiiiiiiiiiees s 72
ReName MELNOU.ooviiiiiic s 72
EXIraCt MENOM. ..o 74
EXIract MEthOd.........ooviiiiei e 75
APPLCALION SOIULION........cciiiiccece e e 78

Chapter 5 — The Quantitative Validation of the Enhancement Approach

INEFOAUCTION. ... bbbt 79
Presentation Of the RESUITS.........c.coiiiiiiice s 79
Project ANalyzZer TOOL.........coue i 80
PrOJECT IMIBEIICS. ...ttt ettt e e st e et e e e e sreereenee e 80
ProJect STAtUS REPOIT.......eiiiieieieeiee st 81
SYSTEIM SHZE.... ettt 81
COMMENTALION. ...ttt ettt bbb 82
(000 0] o] (=3 q1 2SSOSR 82
ConditionNal NESTING.......cviiiiiiiiire e 83
Procedure LENGIN......cooiiei s 83
L= =T o | OSSP 84
PAFAMEBTETS. ... i 85
ClaSS DESIGN. ...ttt bbb 85
COUPIING IMBIFICS. ...ttt bbbt 86

Chapter 6 — Conclusions and Future work

AANAIYSIS. ..t e e e e e 87

Vil

Conclusion
Future Work
Bibliography

Appendices

List of Tables

Table 1 classfication of code SMellS..........ccccoiiieiiiiiiii e 11
Table 2 befor remove the blanks from the source code...........c.cooveieiiieninciieee, 28
Table 3 after remove the blanks from the source code...........c.coovveiiiiiciciciinee, 28
Table 4 the determining the restructuring units of the system............ccccccocevveieenne 30
Table 5 the summary of code duplication restructuring mechanisms........................ 51

Table 6 the summary of long method and large class restructuring

MECNANISIMIS. ...ttt bbbttt b ettt et et et bbb b 52
Table 7 befor remove the blanks from the source Code...........cc.cooeviinenciiiiieinenn 55
Table 8 after remove the blanks from the source Code...........cc.coovvvriiciiiineisinncnns 56
Table 9 the determining the restructuring unit for the Main form................cccceevene. 59
Table 10 the determining the restructuring unit for the Card_items form................. 60
Table 11 the determining the restructuring unit for the Edn_Etlaf_bill form............ 60
Table 12 the determining the restructuring unit for the Edn_Srt_bill form............... 60
Table 13 the determining the restructuring unit for the Loing_form form................. 61
Table 14 the determining the restructuring unit for the store form............cc.ccooeene. 61
Table 15 the determining the restructuring unit for the suppliers form..................... 62
Table 16 the determining the restructuring unit for the users form..............cc..cc....... 62

List of Figures

Figure 3.1: the Abstract Diagram of our Approach...........ccccccevveveiieneeie e 22
Figure 3.2: the Schematic Diagram of Enhancement Approach............cc.cccccvveiennen. 23
Figure 3.3: the process of remove (removal) uninteresting parts...........ccccocevevvennenn. 26
Figure 3.4: the UML class diagram that represent a class/interface/form.................. 32
Figure 3.5: the generalization relationship between two classes/interfaces/forms.....33
Figure 3.6: the interface realization (implement) relationship between a class and an
INEEITACE. ...t bbbttt b 33
Figure 3.7: the directed association relationship between two classes....................... 33
Figure 3.8: the instantiate dependency relationship between two classes.................. 34
Figure 3.9: the usage dependency relationship between two classes...............c.cc...... 34
Figure 3.10: the methods in the class or INterface...........cccoovviriieiciciesc e 34
Figure 3.11: the example for the process of UML Formatting (transformation to an
appropriate intermediate representation) used in the Enhancement

APPIOBCN. ..ot 35
Figure 3.12: the duplication in the same Method............cccooeiiieiiiinicee, 37
Figure 3.13: the duplication in the same Class...........ccoeveiiiii i 38
Figure 3.14: the duplication between sibling Classes.........c.ccocevvvevieviiiece e, 39
Figure 3.15: the duplication With SUPErclass............cccveriiireniiiiieee e 40
Figure 3.16: the duplication With anCeStOr...........cccoviiiiiiiiieee e 41
Figure 3.17: the duplication with first COUSIN..........c.coveiiiiiiie e 42
Figure 3.18: the duplication in Unrelated CIasses..........cccccoveviiiiiiiii i, 43
Figure 3.19: the long method with more than 10 lINes...........ccovvivieiiiinenc e 44
Figure 3.20: the long method because duplicate lines..........cccccooeviiiiiiiiiinicien, 45
Figure 3.21: the long method With [00PS..........cooeiiiiiiic e, 46
Figure 3.22: the long method with conditional eXpressions...........cccccvevveiveiieeinenn, 47

Xl

Figure 3.23: the large class with many methods............ccccoevvieiienr i, 48
Figure 4.24: the code conventions are SUSPENded...........cccovevereereerieieerr e, 54

Figure 4.25: the appropriate intermediate representation of the case study using the
Project Analyst appliCAtION..........oviiiieiice s 63

Figure 4.26: the detail description of appropriate intermediate representation of the

(o L (00 Y] o OSSP 64
Figure 4.27: the similarity of the methods’ names are in the forms............ccccoevenee. 66
Figure 4.28: the method that is considered as a long methods............cccccevvriennnen. 67
Figure 4.29: the class is considered a large Class..........ccccevvrveviiiiieiiiece e 69

Figure 4.30: the similarity of the code lines that are in the different methods but in

TE SAME O M. 70

Figure 4.31: the similarity of the some methods that are found in the different

Figure 4.32: the apply of Rename Method mechanism...........c.ccccooevveiiiiciiciecnen, 73

Figure 4.33: the Extract Method mechanism: Create a new method in the same class
[1.8 CIEAI() oo 74

Figure 4.34: the Extract Method mechanism: Copy the extracted code from the

source method into the NEW METhO.........ooooeeeee e, 74
Figure 4.35: the apply of Extract Method mechanism.............cccoceovviniincicnenen 75

Figure 4.36: the Extract Method mechanism: Create a new method in the same class
[1.6 QUNLIEYL() Joreoeoieoeiieie ettt s r e 76

Figure 4.37: the Extract Method mechanism: Copy the extracted code from the

source method into the NEW METNOG..........coeeeeeee e, 76

Figure 4.38: the Extract Method mechanism: send local variable as parameters to
the NEW MELNOM.o 76

Figure 4.39: the Extract Method mechanism: define the new integer variable for
return back Holds the result of this method...........cccccooveiiieiiiiecie e, 77

Figure 4.40: the apply of Extract Method mechanism.............ccccocevieiiieniicnnnnnn 77

Xl

Figure 4.41: return the code that is used to link of the database...............cccccuerveeneenn. 78
Figure 4.42: return some important developer comments that have been omitte......78

Figure 5.43: Charts are illustrating the distribution of the system size before and after

the implementation of the Enhancement Approach............ccocovvveieiencieninenece, 81
Figure 5.44: the average depth of conditional nesting (DCOND)............ccccevevvrenenn. 83
Figure 5.45: the average procedure length (LINES/Proc)......cccccceveveviveveeiesiesneene. 84
Figure 5.46: the average file length(LINES/ile)cccooviieiiiiiiiiiieeece e 84
Figure 5.47: the average number of procedure parameters (PARAMS)................... 85
Figure 5.48: the coupling MEtriCS.......cciveiiiiieiieieee e 86

Xl

List of Appendices

AppendiX A: RESLIUCLUIING PIOCESScoviieiieeiieiieiiesie e seesie e sieesaesraesreenaesneesnes 98

XV

An Enhancement Approach of Software System
-Using Reverse Engineering and Restructuring Concept to Improve the Quality
of Software Code

By
Hamza Ali Abdelrahman El-Ghadhafi

Supervisor
Dr. Tawfig M Eltawil

Abstract

Copying a code fragment and reusing it by pasting with or without minor
modifications is a common practice in software development for improved
productivity. As a result, software systems often have similar segments of code, called
software clones or code clones. Due to many reasons, unintentional smells may also
appear in the source code without awareness of the developer. Studies indicate that
the term of code smell leads to indicate violation of fundamental design principles for
software code and negatively impact design quality; consequently, this code
becomes very difficult for developers to comprehend. This of course makes
developers spend much more time to boost the code; and the maintenance process
becomes very expensive. This thesis describes an approach which allows to detect the
code smells from source code and removal of these smells for refinement and
improvment the quality of software system taking into account keeping the external
behaviour of software system, and judging the efficiency of systems code.
Consequently, we develop an approach which allows the enhancement of software
systems from a source code. The Enhancement Approach is based on the concept of
reverse engineering ,which is used to describe the software code by UML diagrams,

In order to facilitate the process to identify the situations of each code smell.

In addition, based on the concept of restructuring the process of changing a
software system in such a way that does not alter the external behaviour of the code is
yet improves its internal structure. Finally, The concept of situation is a set of

applicable restructuring, which is associated with a given situation.

XV

The principle of our approach is to find for each smell situation and to propose a

list of possible restructuring.

XVI

CHAPTER 1
Introduction

1.1 Introduction

In software engineering, a software development is a splitting of software
development work into distinct phases (or stages) containing activities with the intent
of better planning and management [80]. It is often considered as a process used by
software industry to develop high quality softwares. The Software Development aims
to produce a high quality software that meets customer expectations, reaches

completion within times and cost estimates [22].

Software development is a fundamental process of program designing and other
related processes such as code programming, documenting, testing, and bug fixing. It
is also involved in creating and maintaining applications among many software
products. It is also known as a system development methodology, software
development process, software process, software development model, software
development life cycle (SDLC). In fact, a wide variety of processes have been
exclusively developed over the last decade. Each has its own recognized strengths
and weaknesses [21] [22]. One software development methodology is not necessarily
suitable for use by all projects. Each of the available methodologies is best suited to
specific kinds of projects, based on various technical, organizational, project and team

considerations [24][35].

Most methodologies have so much in common, including the following essential

phases of software development [18]:

Requirements Engineering phase.
Design phase.

Implementation or Coding phase.
Testing phase.

Deployment phase.

AN N N N RN

Maintenance and Bug Fixing phase.

The software development methodology or life cycle(SDLC) is a framework
defining tasks performed at each step of the software industry. There may be many
additional steps and stages depending upon the nature of the software product. You
may have to go through multiple cycles during the testing phase as software testers
find problems and bugs, and developers fix them before a software product is

officially released [30].

A software development process makes everything easier and reduces the amount
of problems encountered [79]. Each phase produces feedback that affects the next
phase. For instance, the requirements gathered during the requirements phase
influence the design, which is translated into working software code during the
implementation phase. The software code is verified against the requirements during
the testing phase. Then the complete software product is delivered to customer in
deployment phase. The actual problems or bugs that come up when the customers

starts using the software system are solved during maintenance phase [23][39].

The focus of this research on some of the existing problems in both the
implementation and testing phase that have negative impact on the software code

design lead to production of poor-quality software negatively impact design quality.

In fact, the implementation phase has one key activity: Writing code for a
program. This is considered as one of critical factors in creating truly successful
software development.” A good or poor design of software relies heavily on a quality
of the code design " [39]. Moreover, writing code is widely considered to be one of the

longest tasks in software engineering process.

There are two different techniques to writing clean code, regardless of what
programming language you are working on, that are: Use Your Brain and Copy And
Paste Method [78].

The first technique (Use Your Brain): Instead of simply copying and pasting
code from Google or any other source, learn to use your brain for writing your code.
Use the help(in the programming language) that you are getting to your advantage

and try to optimize the code that you have. Simply using others code might give you a

temporary joy, but you will not have the satisfaction until you’re able to write code
and solve problems by yourself. The second technique for writing code that is widely
used techniques in this phase known as : Copy and Paste method. The majority of
developers have been utilizing such a popular method for writing code due to a
number of main advantages , most importantly being simple to use. Another major
advantage is the fact that such a method is often used for less time-consuming and
cost when developing the software system. Therefore, a final software product is
delivered in the shortest possible time with relatively minimum cost. However, using
this technigque can cause many problems which frequently appear in the source code.

These problems are known as Code Smells.

1.2 Problem Statement:

The term “code smell” was introduced by Kent Beck to define those structural
problems in the source code that can be detected by experienced developers.
According to Martin Fowler, " a code smell is a surface indication that usually
corresponds to a deeper problem in the system "[17]; Girish Suryanarayana and et al
define a smell / smells as " certain structures in the code that indicate violation of
fundamental design principles and negatively impact design quality " [27]. Smells do
not prevent the current program from functioning. Instead,” they indicate weaknesses
in design that may consume computer resources, i.e. execution time and memory,
increasing the risk of bugs or failures in the future" [17]. When one of the smell
problems mentioned above exists in the software code, there will be need for

maintenance in order to develop the code.

Due to changing of system requirements and growing need for software
improvement, modifying legacy systems have become more complex and expensive
tasks, because of time-consuming process of program comprehension. Thus, there is a
need for software engineering methods and tools that facilitate program
understanding[7].

Generally, the need for maintaining existing software systems has become an
important business goal in recent years in order to develop software efficiency,

performance, maintainability, reusability and scalability [2].

1.3 Motivation

Over the last decade , the software engineering community had to encounter a
number of rising issues and common problems related to performing system function
such as understanding legacy code and consuming computer resources. In fact,
software engineering has undergone a paradigm shift as the size of the software
systems increased dramatically and businesses began to rely increasingly on
computers and information systems. Therefore, a substantial portion of the software
development effort is spent on maintaining and improving existing systems rather

than developing new ones.

Having stated the fact that there has been a clear growing increase in the size of
information systems ,here means there is a parallel increase in the size of system
code, too. Unfortunately, this definitely makes the system code becomes more
complex [16]. This complexity allows unwelcome code smells to be present in the
source code, and eventually has a negative effect on the quality of system. Actually,
this argument was supported by Prajakta Ashtaputre and et al, who pointed out that
"the presence of these code smells may weaken the quality of design structure as well
as software quality such as changeability, maintainability, understandability and
readability" [8]. Moreover, the presence of code smells can warn about wider
development problems such as wrong architectural choices or even bad management
practices. The result of that, day by day the complexity levels of Software system
increasing [82]. Hence, more effort is required for software organizations to develop

new or rebuild existing system of high quality.

Furthermore, If code is poorly designed due to this composite system, then this
code becomes very difficult for developers to comprehend. This of course makes
developers spend much more time to boost the code; and the maintenance process
become very expensive. This fact was well observed by Anshu Rani and Harpreet
Kaur. They both pointed out that "Poorly designed software systems are difficult to
understand and maintain. Software maintenance can take up to 50% of the overall
development costs of producing software. One of the main attributes to these high
costs is poorly designed code, which makes it difficult for developers to understand

the system even before considering implementing new code™ [13]. Moreover, presence

4

of bad smells in object-oriented software hints at its low maintainability, which can be
measured with the use of various maintainability quantification metrics. Some of
these metrics concern such aspects of software maintainability like coupling,
cohesion, size and complexity, or description. Therefore, at least theoretically, the
enhancement of the software maintainability can be identified with the reduction of

bad smells [84].

Software maintenance projects are very costly. The total maintenance costs of a
software project are estimated to 40%-70% of the total cost of the development
lifecycle of the project. Consequently, reducing the effort spent on maintenance can
be seen as a natural way of reducing the overall costs of a software project. This is
one of the main reasons for the recent interest in concept such as code smells and
solution of that. Doing this will increase the understandability of code, make it easier
to implement new features and debug the code [2]. By providing an appropriate and
effective approach which can overcome the problems in code. This premise focuses
on “effectively spending time and money in order to save time and money in the
future” [77]. As a consequence, it becomes very important to implement approach for
detecting and removal these smells in order to refine and improve the quality of
software system, taking into account the keeping of the external behaviour of

software system, i.e, the functions that performed by the system.

1.4 Research Aims

The main Aims of this research are as follows:

1. introduce an overview of code problems and describe their side
effects in a software program.

2. reduce the possibility of code problems by developing an effective
approach to increase the quality of software.

3. Attempt to understand the approach through relevant examples and
describe the proposed solutions for the existence of bad smells in

software code.

These goals are reflected in this attempt to answer the following research

questions:

1.5 Research Questions

The researcher identified four research questions that rendered relevant for this

research:

RQ 1: Size- Does the existence of the code smells make the source
code large? And, Does the restructuring of the source code make
it smaller?

RQ 2: Complexity - Is the complexity of the system affected by the size
of the smells that exist in the source code?

RQ 3: Software Reliability-Does the program work without failure
after applying the suggested restructurings on the program?
(Probability of failure-free operation of a computer program for a
specified time in a specified environment).

RQ 4: Maintainability - How good are code smells as indicators of

system-level Maintainability of software?

1.6 Scope and Limitation of the Thesis

There are different and complex challenges existing in the software code which
can impair the quality of software. Thus, this research will focus on three major
problems which are the main limitation of the current study. (Duplicated Code,
Large class and Long Method). In addition, the Object -Oriented Programs are only
covered by the proposal approach and here are considered as the secondary scope of

this study.

1.7 Significance of the Thesis
e The researcher present an approach characterized by its simplicity for analyzing,
detecting and restructuring duplicated code, Large class ,Long Method in an

object oriented context , which is the main contribution of this thesis.

e The researcher use the relationships between the software classes constrained by
the object oriented (OO) context to define bad smells depending on the basics of
the UML notion :

1. The researcher proposes a set of applicable situations for each smell to
facilitate the detection process of the bad smells for developers.
2. Each of them determines a set of applicable restructuring.
e The researcher present a solutions to the problems mentioned above are described

by using textual methods.

1.8 Organization of the Chapters of Thesis

The chapters of this thesis are organized as follows:

v' Chapter one gives a short overview about software development life cycle
(SDLC), introduction of the bad code smells and it also includes the problem
statement, motivation, research aims, objectives, research questions, scope and
limitation and the significance of the theses.

v’ Chapter two presents a general overview about definition, types, and
classification of the bad code smells and it also presents in detail the problems of
duplications, Large class and Long Method including reasons of occurrence and it
also includes the side effects of this problems. At the end of this chapter, the
literature that is related to the proposed approach is reviewed.

v Chapter three presents the proposed approach for solving the problem. It also
explains in detail all the steps to be taken when using UML diagrams to detect
smells and restructuring techniques to solve each of these smells using textual
methods.

v Chapter four presents the General Mills Company system as a case study to show
how the proposed methodology can be used to enhance a complete system by
Enhancement Approach.

v Chapter five presents the quantitative evaluation of the previous case study by the
object-oriented metrics, using reliable tools.

v Chapter six presents conclusion of the research, analysis (answers of research

questions)and future work.

CHAPTER 2
Background

2.1 Introduction

This chapter presents a general overview about definition, types, and
classification of the bad code smells. Moreover, it presents details of three major
problems (Duplicated Code, Large class and Long Method) including reasons of
occurrence and it also includes the side effects of this problems. At the end of this
chapter, shortcomings of some existent approaches are discussed.

2.2 Code Smells

Code smells (also known as a bad smells) are structural characteristics of
software that may indicate a code or design problem that makes software hard to
evolve and maintain. Code smell in computer programming code, refers to any
symptom in the source code of a program that possibly indicates problems. As

written by Kent Beck:
“A code smell is a hint that something has gone wrong somewhere in your code”

According to Martin Fowler " a code smell is a surface indication that usually
corresponds to a deeper problem in the system ". Another way to look at smells is
with respect to principles and quality, Girish Suryanarayana and et al define a smell /

smells as:

"certain structures in the code that indicate violation of fundamental design

principles and negatively impact design quality "[27].

Code smells are usually not bugs and Smells do not prevent the current program
from functioning. Instead, "they indicate weaknesses in design that may consume
computer resources, i.e. execution time and memory, increasing the risk of bugs or
failures in the future™ [17]. In other words, the suspect structure may not be causing

serious harm (in terms of bugs and failures) at the moment, but it has a negative

impact on the overall structure of the system and as a consequence, on its quality
factors. Code smells indicate that the maintainability of the specific code might not be
as good as its potential, or to put it in the words of Fowler, “Any programmer can
write code that a computer can understand. Good programmers write code that
humans can understand . lately the importance of writing understandable code, has
got more focus and acceptance. Code smells can clutter the design of a system,
making it harder to understand and maintain. Moreover, the presence of code smells
can warn about wider development problems such as wrong architectural choices or
even bad management practices. Therefore, when one of the smells problems
mentioned in the next exists in the software code, there will be need for maintenance

in order to develop the code in a good quality.

2.3 Smells Definition

Martin Fowler and Beck identifies 22 code smells are[17][23][26][27]:

1. Duplicated Code: identical or very similar code exists in more than one
location.

2. Long Method : a method, function, or procedure that has grown too large.

3. Large Class :class that has grown too large. See God object.

4. Long Parameter List: Long parameter lists are hard to understand. You do
not need to pass in everything a method needs, just enough so it can find all it
needs.

5. Divergent Change: Software should be sutured for ease of change. If one
class is changed in different ways for different reasons, it may be worth
splitting the class in two so each one relates to particular kind of change.

6. Shotgun Surgery: If a type of program change requires lots of little code
change in various different classes, it may be hard to find all the right places
that do need changing.

7. Feature Envy :a class that uses methods of another class excessively.

8. Data Clumps: Sometimes you see the same bunch of data items together in
various places: fields in a couple of classes, parameters to methods, local data.

May be they should be grouped together into a little class.

https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/God_object

10

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Primitive Obsession: Sometimes it is worth turning a primitive data type in to
a lightweight class to make it clear what it is for and what sort of operations
are allowed on it.

Switch Statements: Switch statements tend to cause duplication. You often
find similar switch statements scattered through the program in several places.
Parallel Inheritance Hierarchies: In this case, whenever you make a
subclass of one class, you have to make a subclass of another one to match.
Lazy Class : a class that does too little.

Speculative Generality: Often methods or classes are designed to do things
that in fact are not required.

Temporary Field: It can be confusing when some of the member variables in
a class are only used occasionally.

Message Chains: A client asks one object for another object, which is then
asked for another object, which is then asked for another, etc. This ties the
code to a particular class structure.

Middle Man: Delegation is often useful, but sometimes it can go too far. If a
class is acting as a delegate, but is performing no useful extra work, it may be
possible to remove it from the hierarchy.

Inappropriate Intimacy: This is where classes seem to spend too much time
delving into each other's private parts. Time to throw a bucket of cold water
over them!

Alternative Classes with Different Interfaces: Classes that do similar things,
but have different names, should be modified to share a common protocol.
Incomplete Library Class: It's bad form to modify the code in a library, but
sometimes they don't do all they should do.

Data Class: Classes that just have data fields, and access methods, but no real
behavior. If the data is public, make it private!

Refused Bequest :a class that overrides a method of a base class in such a
way that the contract of the base class is not honored by the derived class.
See Liskov substitution principle.

Comments: If the comments are present in the code because the code is bad,
improve the code.

https://en.wikipedia.org/wiki/Method_overriding_(programming)
https://en.wikipedia.org/wiki/Contract_(software)
https://en.wikipedia.org/wiki/Base_class
https://en.wikipedia.org/wiki/Derived_class
https://en.wikipedia.org/wiki/Liskov_substitution_principle

2.4 Classification of the Code Smells

This section briefly introduces the higher level taxonomy for classifying the bad

code smells identified by Fowler and Beck. Although, Fowler and Beck present the

22 bad smells in a single flat list and do not provide any classification of the smells.

This taxonomy makes the smells more understandable and recognizes the

relationships between the smells. The classes are: bloaters, object-orientation abusers,

change preventers, dispensable, and couplers [32][81]. The table below shows a

description of the classes of code smells:

Group Name Smells in Group Description
Long Method Bloaters are code, methods and classes that have increased
Large Class to such gargantuan proportions that they are hard to work
The Primitive Obsession . .
Bloaters _ with. Usually these smells do not crop up right away, rather
Long Parameter List h | . h | d
Data Clumps they accumulate over time as the program evolves (an
especially when nobody makes an effort to eradicate them).
Switch Statements
The ObjECt- Temporary Field
Orientation Refused Bequest All these smells are incomplete or incorrect application of
Abusers Altemative Class with object-oriented programming principles.
Different Interfaces
Divergent Change These smells mean that if you need to change something in
The Change Shotgun Surgery one place in your code, you have to make many changes in
Parallel Inheritance
Preventers Hierarchi other places too. Program development becomes much more
lerarcnies
complicated and expensive as a result
Lazy class
Th Data class A dispensable is something pointless and unneeded whose
€ Duplicate Code -
Dispensable absence would make the code cleaner, more efficient and
p Dead Code .
. . easier to understand.
Speculative Generality
Feature Envy)))))
The Inappropriate Intimacy All the smells in this group contribute to excessive coupling
Couplers between classes or show what happens if coupling is

Message Chains
Middle Man

replaced by excessive delegation.

11

table 1 Classifications of Code Smells

In the modern methodology, software maintenance encompasses activities and
processes involving existing software, not only after its delivery but also during its
development. Worth mentioning is the fact that nowadays more than 80% of total
software life-cycle costs is devoted to its maintenance [71].

Swanson [1976] distinguishes and describes three kinds of software maintenance:

1) Corrective maintenance - performed in response to processing,
performance and implementation failures;

2) Adaptive maintenance - performed in response to changes in data
and processing environments;

3) Perfective maintenance - performed to eliminate processing

inefficiencies, enhance performance, or improve maintainability.

Although for small systems, maintenance and evolution may not be an issue; for
large software systems, their effects cannot be ignored. It has been found that almost
40-80% (average 60%) of the costs of developing a typical software system is
consumed on the maintenance phase, which indicates there is a need for state-of-the-
art techniques, methods, and tools to support maintenance and evolution.
Programmers often use code fragments by simple copy and paste them with or
without adaptation. These identical code fragments are called as software clones. Due
to the copy-paste habits of programmers, clones are inevitable in software
development. Previous studies have reported that the total quantity of cloning in

software systems varies from 5-15% and can be even 50% of the main code.

Although some positive impacts of clones have been identified, their negative
impacts cannot be ignored (e.g. increased program size, update anomalies). A code
fragment having a bug causes the same problem to all other fragments copied from it.
Fixing the bug requires the developer to check and update all copied locations as
necessary. Enhancing a code fragment also requires the developer to look for its
duplicated code fragments to ensure that changes are propagated to all desired
locations, which also multiplies the work need to be done. So, clones are treated as a

“bad smell” in code and are a major contributor to project maintenance difficulties
[71].

12

2.4.1 The Problem of Duplicated Code

Duplicated code (also known as code clones) is one of the malicious "code
smells” that often need to be removed for enhancing maintainability. Code
duplication is widely considered to be one of the factors that severely complicates the
maintenance and evolution of large software systems. From the maintenance

perspective, the existence of code clones may increase maintenance effort.

"Duplicate code is a sequence of source code that occurs more than once, either
within a program or across different programs owned or maintained by the same

entity" [9][11][25][42].

Programmers are used some techniques for " Writing Code ". Once approaching
" Writing Code ",it is important to mention one of the widely used techniques in this
field known as : Copy and Paste . The majority of developers have been utilizing
such a popular method for writing code due to a number of main advantages , most
importantly being simple to use. Another major advantage is the fact that such a
method is often used for less time-consuming and cost when developing the software
system. In other words, a final software product is delivered in the shortest possible
time with relatively minimum cost. which is regarded as one of the main reasons for

such intentional clones that are beneficial in many ways [42].
2.4.1.1 The Origin of Duplicated Code (Clones)

Software reuse is the process of creating software systems from existing software
rather than building everything from scratch. The kinds of artefacts that can be reused
are not limited to source code fragments. They may include design structures,
modulelevelimplementation structures, specifications, documentation,
transformations, and more. Forms of code source reuse include loops, functions,
procedures, subprograms ,subroutines, software component libraries, inheritance,
application generators, generic software templates. The mechanisms of software reuse
are well integrated in the software development process [9][41].

13

Many programmers rather adopt an apparently simpler approach to reusing
software system designs and source code. They collect fragments from existing
software systems and use them as part of new software by simply applying the well
known practice that we call copy-and-paste method. This occurs frequently during
the development phase when they reuse tried and tested code in a new context. Every
developer copies pieces of software. When encountering a familiar problem that has
been solved before, it’s a normal reflex to reuse the existing code. One does not have
to reinvent the wheel. This copy-and-paste programming style leads to duplicated
code [9].

Duplication occurs also during the maintenance phase when the program must be
adapted to the new requirements of the users: a program that is used in a real-world
environment must be changed to add new functionality or to adapt to changes in the
environment. Since the existing system already treats many problems of the domain,
an obvious way to integrate the changes is to copy fragments with only small
modifications. Duplicated code is therefore a phenomenon that occurs frequently in
large systems. Some of reasons why programmers duplicate code are listed
below[11][59]:

e The following conditions in the development environment can increase the trend
to code duplication:

1) There is no time to design, implement, and test a newly developed component.
If a programmer cannot finish on time, it’s wiser to copy a piece of code that
runs properly than to persist in doing a very good design that will not run.

2) Efficiency considerations may make the cost of a procedure call or method
invocation seem too high a price.

3) The productivity of developers is sometimes measured in terms of number of
lines of code written. This rewards copy-and-paste rather than writing new
code.

e The programmer personality: we all have a natural laziness.

1) Making a copy of a code fragment is simpler and faster than writing the code
from scratch. In addition, the fragment may already have been tested so the
introduction of a bug seems less likely.

2) Making code reusable takes extra efforts.

14

2.4.1.2 Classification of Duplicated Code

Similar or duplicated code fragments are known as code clones. Over more than a
decade of research on code clones, the following categorising definitions of code
clone have been widely accepted today [9][11][25][42].

v" Type-1 clones: Identical code fragments except for variations in white-
spaces and comments are ‘Type-1’ clones.

v' Type-2 clones: Structurally/syntactically identical fragments except for
variations in the names of identifiers, literals, types, layout and comments
are called ‘Type-2’ clones.

v Type-3 clones: Code fragments that exhibit similarity as of ‘Type-2’
clones and also allow further differences such as additions, deletions or
modifications of statements are known as ‘Type-3’ clones.

v' Type-4 clones: Code fragments that exhibit identical functional
behaviour but implemented through different syntactic structure are

known as ‘Type-4’ clones.

Type-1’ clones are also called ‘exact’ clones, whereas the ‘Type-2’ and ‘Type-3’
clones are also known as ‘near-miss’ clones. Owing to the semantic similarity rather
than syntactic similarity, ‘Type-4’ clones are also referred to as ‘semantic’ clones.
Our work deals with the exact (Type-1) and near-miss (Type-2 and Type-3) ‘block’
clones excluding the semantic (‘Type-4’) clones, because the accurate detection of

semantic (‘Type-4’) clones is still an open problem [25].

Although copy-and-paste programming helps to meet short term goals (the code
is already designed, implemented and debugged), it involves a lot of problems in
software maintenance, which is estimated to cost 70% of the overall effort for

producing software system in average[9]:

1) It complicates the comprehension of the program.
2) Code duplication increases the size of the code, extending compile time and
expanding the size of the executability.

15

3) It uses more memory and complicates the error detection. Defects found in a
code segment that has possibly been copied involves searching the clones of
the segment and assessing the impact of the correction in each new context. If
one repairs a bug in a system with duplicated code, all possible duplications
of that bug must be checked.

4) Code duplication often indicates design problems like missing inheritance or
missing procedural abstraction. In turn, such a lack of abstraction hampers the
addition of functionality.

2.4.2 The Problem of Long Method

One of easy smell to identify in a code is “Long Method”. Is a method that is too
long, which contains too many lines of code. Methods that are longer than 10 lines
are generally viewed as potential problem areas and can harm the readability and
maintainability of your code [38][50].

Among all types of object oriented code, classes with short methods live longest.
The longer a method or function is, the harder it becomes to understand and maintain
it. In addition, long methods offer the perfect hiding place for unwanted duplicate

code.

Since it is easier to write code than to read it, this "smell" remains unnoticed until

the method turns into an ugly, oversized beast.

We want to improve the readability of this code by restructuring it. As has been
mentioned above, it’s going to be attempted to decompose this method into smaller,

more readable methods by using the “Extract Method” restructure.

Before we start, it’s a good idea to identify the behaviour of the method so that it
can ensured that the code behaves the same after restructuring. It can often be
tempting to add new functionality or to change how the code works but this can cause
errors and should be resisted if possible.

16

2.4.3 The Problem of Large Class

When a class is trying to do too much or It’s doing a lot of things, but it seems to
have a variety of responsibilities. When a class has too many instance variables,

fields, methods or lines of code, duplicated code cannot be far behind [60].

Classes usually start small. But over time, they get bloated as the program grows.
As is the case with long methods as well, programmers usually find it mentally less
taxing to place a new feature in an existing class than to create a new class for the

feature.

2.5 Side Effects Of Code Smells

One of the most important negative effects of the smells in the source code

iS[17][23][83]:
2.5.1 Software Performance

Performance is an important quality attribute of software architecture. It can be
characterized by metrics such as response, time, throughput, and resource utilization.
In many existing systems, the reason for bad performance is a poorly code designed
software architecture. According to Martin Fowler: "Code smells are usually not bugs
and Smells do not prevent the current program from functioning. Instead, they
indicate weaknesses in design that may consume computer resources"; Therefore, the
smells negatively affect in the software performance. Performance predictions based
on architectural descriptions of a software system can be performed before the
implementation starts, which can possibly reduce cost for subsequent changes to fix
performance problems. It is the hope that such early analyses support the decision for
design alternatives and reduce the risk of having to redesign the architecture after

performance problems have been diagnosed in the implementation [83].

Performance is critical to the success of today’s software systems. However,
many software products fail to meet their performance objectives when they are

initially constructed. Fixing these problems is costly and causes schedule delays, cost

17

overruns, lost productivity, damaged customer relations, missed market windows, lost
revenues, and a host of other difficulties. In extreme cases, it may not be possible to
fix performance problems without extensive redesign and re-implementation. In those
cases, the project either becomes an infinite Consumer for time and money, or it is

cancelled [52][36].

In the next section [Problems that appear in the system (2.6)] you will mention

the remainder of the side effects of the code smells

2.6 Detection of Bad Smells

Robert C. Martin refers to “design smells” as higher-level smells that cause the
decay of the software system’s structure. He states they can be detected when

software starts to exhibit the following problems[s2].

v Rigidity: The design is hard to change because every change forces many
other changes in other parts of the system.

v' Fragility: The design is easy to break. Changes cause the system to break
in places that have no conceptual relationship with the part that was
changed.

v Immobility: It is hard to disentangle the system into components that can
be reused in other systems.

v" Viscosity: Doing things right is harder than doing things wrong. It is hard
to do the right thing because sometimes it is just easier to do “quick
hacks”.

v" Needless Complexity: The system is over-designed, containing
infrastructure that adds no direct benefit.

v Needless Repetition: The design contains repeating structures that could
be unified under a single abstraction.

v Opacity: The system is hard to read and understand and does not express

its intent well.

18

2.7 The Problem

Duplicated Code, Large class and Long Method are phenomenon that occurs
frequently in large systems for several reasons (see section 1.1). Although code
duplication , large class and long method can have justifications, it is considered a
bad practice. During maintenance, which is estimated at 70% of the overall effort for
producing a software system, duplicated codes, large class and long method give the

following problems [8][9][11][22]:

1. Hindrance to comprehension of the program.

2. Independent evolution of the clones.

3. Bad design.

4. suffer from quality problems with respect to internal quality aspects

like usability, maintainability, or reusability.

o1

To improve software design quality.
6. To increase understandability of the code.
7. To reduce project evolution time, especially in source code

management activities.

In this thesis we investigate how this problems can be solved in software systems

are developed using object oriented language.

2.8 Previous Work

Prajakta Ashtaputre and et al(June ,2016), proposed another different approach by
refactoring opportunities for Detected Code Clones (duplication code) in source
codes. This approach consists of two stages: The first one is to detect the clones
which usually exist in the source file or source code. This also involves taking input
as source file. The second step is to distinguish between refactorability and non-

refactorability clones.

This approach " was able to check the refactorability opportunity for clone pair
that is only TWU code fragments which are detected as clones "(Prajakta Ashtaputre
and et al, June 2016).

19

Fabio Palomba(May 2015), however. suggested different means to remove Smells,
which in turn help the developer in program boosting. His approach known as Textual
Analysis Techniques is to identify smells in source code.” The proposed textual-based
approach for detecting smells in source code, coined as TACO (Textual Analysis for
Code smell detection), has been instantiated for detecting the Long Method smell and

has been evaluated on three Java open source projects . (Fabio Palomba, May 2015)

Naouel Moha and et al(January/February, 2010), have provided a tool, called "
DECOR:" Tool in the process of embodying and defining all the steps necessary for
the specification and detection of code smells. These essential steps are developing to
automate this process as much as possible. This tool runs in Java and is currently

designed for Java legacy systems.

Whitfield and et al (November, 1997),proposed a framework that enables the
exploration, both analytically and experimentally the properties of code-improving
transformations. This framework includes a technique that facilitates an analytical
investigation of code-improving transformations using the Gospel specifications, and
contains a tool, called " Genesis", that automatically produces a transformer that

implements the transformations specified in Gospel.

20

CHAPTER 3
An Enhancement Approach of Software System

3.1 Introduction

The success of software system requires some factors, such as approach,
methodologies, metrics, standardization in system design, and code, environment as
well. This chapter, introduces Enhancement Approach for improving the quality of
the software code, it simply "improving the design of existing code without changing
its behaviour”, it attempts to benefit from previous approaches to overcome code
smell, which is considered as one of the existing risks, these smells may appear in the
source code of software system. It is hoped that this approach is to be considered as

the mainstream enhancement technique.

3.2 Smells Detection Technique or Process

Smells detection techniques can broadly be categorized as token-based, text-
based, tree-based, graph-based, syntax-based, semantics-based, and metric-based,
which have their advantages and weaknesses. For smells detection, this research
suggest or adopt a hybrid approach combining strengths of multiple techniques;
Moreover, these approaches depend on Graph-based technique with text-based

technique to improve the precision of smells detection.

3.2 Constraints

The Enhancement Approach is based on two basic concepts: Firstly: The concept
of situation is the basis of this approach: A set of applicable restructuring is associated
to a given situation. The principle of this approach is to find for each smell situation
and to propose a list of possible restructuring. Secondly: The concept of reverse
engineering is the basis of this approach: Describing the software code using UML
diagrams, In order to facilitate the process and identify the situations of each code

smell. It is performed in two stages:

v Exploration and Assessment Stage.

21

v Code Restructuring Stage.

The following Figure presents an abstract diagram of the major stages for the

process of smells detection used in the approach in hand:

Good Source
CodeStructure

Figure 3.1: the Abstract Diagram of our Approach

Restructuring a software system means to refurbish it internally without
interfering with its external behaviour. In other word, restructuring is the process of
changing a software system in such a way that it does not alter the external behaviour
of the code yet improves its internal structure. Firstly, an in-depth analysis are made
which result in a list of findings. Ideally, these findings will be translated to UML
diagrams, which define intermediate representation of software units that should be
restructured. This exploration and assessment stage helps to understand the overall
picture of the software project in mind and to divide it into several sub-projects, parts

or restructuring units.

After that, a restructuring stage describes proposed solutions which are based on
a contextual basis to tackle every problem individually. the end of this stage these
solutions are applied in the source code. The following Figure presents a schematic
diagram for the major modules for the source code enhancement process used in this

approach:

22

Source
Code

Exploration and Assessement Stage

r—

\ 4

Preprocessing the Code

Mapping Code with UML

Code
Filtering

Suspend
Code
Conventions

UML

Code
Formatting Formatting

A\ 4

Intermediate
Representation of
Code

[Code Restructuring Stage

Code Smells Detection

Smell Potential

Detection Situations

Enhancement
Mechanism

Application

Solution

Test the New Code

23

Figure 3.2: the Schematic
Diagram of Enhancement
Approach

Good
Structure
of Code

3.3 An Enhancement Approach of Software System

Now, the basic idea of the approach in the context of smells detection and
restructuring for systems written object oriented. It differs from the previous works in
a general framework using suspend the code conventions, Code filtering, code
formatting and mapping code with UML diagrams, determining of potential
situations smells and execute appropriate restructuring. The above Figure, presents a
schematic diagram for the major modules in the process of smells restructuring used

in this approach.

This approach is called (Enhancement Approach for the Quality of Software
Code), a loose name for accurate detection of three type of smells (Duplicated code,
Long method and Large class). The main distinguishing characteristics of this method
are the identification and extraction of the set of situations for each smell using UML
diagrams and elimination of these situations that cause increasing the risk of bugs or
failures in the future and consume computer resources, i.e. execution time and

memory.

In the following section a detailed description of each step of the Enhancement

Approach is to be provided:
First Stage: Exploration and Assessement Stage

The main goal of this stage is to understand and keep the overall picture of the
software project that is to be restructured; in addition, an in-depth analysis of
software systems are made, which result in suspending some and removing some
unimportant material of the code (eg. whitespace, comments and others). And also
this in-depth analysis result in dividing the large software system to several sub-

projects known as restructuring units.

Once the restructuring units are determined, the source code of the restructuring
units is transformed to an appropriate intermediate representation using UML Class

diagram to restructure it. This transformation of the source code into an intermediate

24

representation is done by applying reverse engineering techniques. This stage is

structured as follows:
First Preprocessing the Code(Preprocessing)

Before the restructuring units of code are transformed to an appropriate
intermediate representation using UML Class diagram for restructuring it. The source

code must pass through several phases, in order to guarantee that:

e First, the source code is easily transformed to the intermediate
representation.
e Second, more importantly, the source code is partitioned and the domain

of the comparison is determined.

In order to make the source code ready for transformation to an appropriate
intermediate representation. There are three main phases that must be done; These

phases are:
Phase 1 Suspend Code Conventions

In this phase, all the code conventions that exist in the source code are suspended.
In fact, these code conventions are considered as one of very important part for the
software system and also the software does not work without them. However, these
parts are not important for the Enhancement Approach; in other words, these code
conventions are not testable, but are suspend it at the beginning before the search of
code smells starts in order to maintain these lines of code, which make them less

subject to damage. After removing the code smells, the code conventions are returned.

The code conventions that should be suspended in the source code to complete
the process of preparing code for transferring are to represent the medium

representation are:

e Database declarations (the definitions or queries linked to the database). For

example (e.g., SQL embedded in Java code).

25

e Library directives(statement that is used for defying library in system, such as

#include).

e Some types of modifiers which are used to define some types of variables

such as the final, and Constant.

Phase 1.1 Methods of Suspend code conventions

This processing phase to suspend the conventions code is done by putting a mark

(**) in front of the code lines that are used to link software system to the database,

and also in front of the lines that are used to the database queries and declarations

(e.g., SQL statement) in order to denote it. Moreover. for maintaining these lines of

code from damage, lose or change. All of the above should be Suspend from the

source code before proceeding to the next phase. The following Figure presents an

example for the process of suspening conventions code in this approach.

////;;;kagenet.sqlitetutorial; ‘\\\\\\
import java.sql.DriverManager;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
/**
* o sqlitetutorial.net
*/
publicclassSelectApp {
/**
* Connect to the test.db database
* the Connection object
*/
private Connection connect() {
// SQLite connection string
String url =
"jdbc:sqlite:C://sqlite/db/test.db";
Connection conn = null;
try {
conn =
DriverManager.getConnection(url);
} catch (SQLException e) {

System.out.println(e.getMessage());}
reaturnconn: 3

**packagenet.sqlitetutorial;
**import java.sql.DriverManager;

**import java.sql.Connection;
**import java.sql.ResultSet;
**import java.sql.SQLException;
**import java.sql.Statement;
/**
* sqlitetutorial.net
*/
publicclassSelectApp {
/**
* Connect to the test.db database
* the Connection object
*/
private Connection connect() {
// SQLite connection string
**String url =
"jdbc:sqlite:C://sqlite/db/test.db";
**Connection conn = null;
try{
**conn =
DriverManager.getConnection(url);
} catch (SQLException e){

System.out.println(e.getMessage());}
returnconn:}

Figure 3.3: the process of remove (removal) uninteresting parts

26

Phase 2 Code Filtering

At this phase we remove all comments that are added by programmer in the

source code. All comments are removed for three reasons:

v First : It reduces false positives by eliminating common constructs and
idioms that should not be considered duplicated code. It also reduces false
negatives by eliminating insignificant differences between software
clones.

v Second :In order to guaranty, the run code lines are only existing in the
source code, and if there is a similarity between code lines, then it is in the
code line (duplicated code). In case the long function, the length is due to
the number of run code lines and also in the case of the large class.

v" Third : In order to reduce the run time of the software system. Because,
the program compiler passes on all the code lines in the system; Even if it
was, run code lines (performs a certain function) or explanatory
comments that do not perform any function in the system. But, as soon as
the compiler passes through this comments, the run time of software
system are consumed; therefore, whenever the comments are more , they

need the more time for compilation and run.

In this phase also, we remove the blanks in the source code. that helps us to find
similarity between code lines, when we need to detection the duplicated code.
Therefore, we remove the comments and blanks from each source code of

software(e.g., methods, constructors or in the variables definition).

The tables below (2 and 3) present an example for the process of removal the

blanks and comments in our approach.

27

Line Of Code Original Code

SNV RwWNR

WWWWNNNNNNNNNNRRRPRRRPBRRR
WNROUOVUONAOAUBRWNROUOUONGOAUDWNER

publicclassSelectApp
{

ik
* Connect to the test.db database
* the Connection object
*/
**private Connection connect()
**{
// SQLite connection string
**String url = **"jdbc:sqlite:C://sqlite/db/test.db";
**Connection conn = null;
**tpy
**{
**conn = **DriverManager.getConnection(url);

**}
**{

**}

**catch (SQLException e)
System.out.println(e.getMessage());

**preturnconn;
k%
}

Vide

Vide
* args the command line arguments
*/

*/

publicstaticvoid main(String[] args)

{
SelectApp app = new SelectApp();
app.selectAll();

}

Total of the number

33

table 2 Befor remove the blanks from the source code

Line Of Code

After filtering

BoR R
SEpsvoeNoaubwNheR

publicclassSelectApp{
private Connection connect(){
**String url = **"jdbc:sqlite:C://sqlite/db/test.db";
**Connection conn = null;
try{
**conn = **DriverManager.getConnection(url); }
catch (SQLException e){

System.out.println(e.getMessage()); }
returnconn; }
publicstaticvoid main(String[] args) {

SelectApp app = new SelectApp();

app.selectAll(); } 3}

Total of the number

12

28

table 3 After remove the blanks from the source code

In fact, there are some comments that are considered as important to the software
the developers cannot dispense it, because it provides a very important explanation for
the part of the source code (Clarify some complex functions) that is to be needed in
the future (maintenance phase). These comments are temporarily deleted; In other

word, after the approach apply is ended, these comments will be returned.

Phase 3 Code Formatting

The code formatting phase is considered as the last phase in the process of pre-
processing the source code of software system. In this phase, the restructuring units of
software system are determined. In order to transform it to an appropriate
intermediate representation for restructure using UML Class diagram. This process is

done as follows:

1. Each class of the software system, they are placed in a table that is
represented a restructuring unit for this class; Moreover, the name table
must be has the same name of the class and the unique number is given to
this table.

2. The methods number constituent to the class are calculated. In order to
help to determine the large class in the code smell detection phase later
(see table 4).

3. The number of code lines for the each method are calculated. In order to
help to determine the long method in the code smell detection phase later
(see table 4).

4. If the class is related to another class or more, this relationships should be
identified and mentioned as follows: Relationship type (Class _Name).

Where: Class _Name: is the name of another class.
Note:

v" The interface in Java is treated like the class.
v" The form in VB.Net is treated like the class.

The following table (4) presents the example for the process of determining the
restructuring units of the software system:

29

Relationship Class Number Methods
. Number
Line of number
of Select App
Method
Code
line
Non 1 2
1 publicclassSelectApp{
2 1/1 **private Connection connect()**{
3 1/2 **String url = **"jdbc:sqlite:C://sqlite/db/test.db";
4 1/3 **Connection conn = null;
5 1/4 *¥ppykr{
6 1/5 **conn = **DriverManager.getConnection(url); **Y
7 1/6 **catch (SQLException e)**{
8 1/7 System.out.println(e.getMessage()); **}
9 1/8 **peturnconn; **}
10 2/1 publicstaticvoid main(String[] args) {
11 2/2 SelectApp app = new SelectApp();
12 2/3 app.selectAll(); }}

table 4 the determining the restructuring units of the system

Second Mapping Code with UML Diagrams

Once the code pre-processing stage is ended and the restructuring units are
determined. In this phase, the source code of the restructuring units is transformed to
an appropriate intermediate representation using UML Class diagram (UML
Notation) for restructuring it. This intermediate representation is needed to bridge the
gap between the Exploration and Assessment Stage and the code Restructuring stage
because, Restructuring stage in our approach depends on UML Class diagram. It is
simply not feasible to apply the best solution into a software system without this
phase, because the Enhancement Approach is considered as hybrid. This
transformation of the source code into an intermediate representation is done by

applying reverse engineering concepts.
Secend. 1 Reverse Engineering of Software
The term reverse engineering as applied to software means different things to

different people, prompting Chikofsky and Cross to write a paper researching the

various uses and defining a taxonomy [5][6].

30

From their paper, they state, "Reverse engineering is the process of analysing a
subject system to create representations of the system at a higher level of
abstraction”. It can also be seen as "going backwards through the development
cycle”. In this model, the output of the implementation phase (in source code form) is
reverse-engineered back to the analysis phase, in an inversion of the traditional
waterfall model. Another term for this technique is program comprehension. Reverse
engineering, in computer programming, is a technique used to analyze software in
order to identify and understand the parts it is composed of. The usual reasons for
reverse engineering a piece of software is to recreate the program, to build something

similar to it, to exploit its weaknesses and strengthen them [5][6][71[64].

Secend. 2 Reasons for Reverse Engineering

v/ Lost documentation: Reverse engineering often is done because the
documentation of a particular device has been lost (or was never written), and
the person who built it is no longer available. Reverse engineering of software
can provide the most current documentation necessary for understanding the
most current state of a software system [6].

v Enhancement software product: Some bad features of a product need to be
eliminated e.g., excessive wear might indicate where a product should be
improved. And also. Strengthening the good features of a product based on
long-term usage [6].

v' Software modernization: Often knowledge is lost over time, which can prevent
updates and improvements. Reverse engineering is generally needed in order
to understand the 'as is' state of existing or legacy software in order to properly
estimate the effort required to migrate system knowledge into a 'to be' state.
Much of this may be driven by changing functional, compliance or security
requirements [6].

v" Bug fixing: To fix (or sometimes to enhance) legacy software which is no
longer supported by its creators (e.g. abandonware) [6].

v Product analysis: To examine how a product works, what components it

consists of, estimate costs, and identify potential patent infringement [6].

31

Secend. 3 Reverse Engineering Types

In practice, two main types of reverse engineering emerge:[7][64]

In the first case: Source code is already available for the software, but higher-

level aspects of the program, perhaps poorly documented or extracting the design

diagrams.

In the second case: There is no source code available for the software, and any

efforts towards discovering one possible source code for the software is regarded as
reverse engineering. This second usage of the term is the one most people are familiar

with.

However, in Enhancement Approach the first case of reverse engineering is used,
because the source code is already available for the software system, but only want to
strengthen and improve the source code by removing the code smells from them, in
order to make the source code more understandable; Thus, the software system

become more maintainable and maintenance cost is reduced.

Phase 4 UML Formatting

Steps to transform there structuring units to an appropriate intermediate
representation using UML Class diagram in this approach:

1. Draw each class, interface or form (in general in UML) from the table that
represent restructuring unit by using the UML class diagram with

class/interface/form names only.

Class Name

Figure 3.4: the UML class diagram that represent a class/interface/form.

32

33

2. ldentify and draw generalization (inheritance/extend) relationship between

two classes in the UML class diagram, from the relationship field in the table.

o class Aextendsclass {.......... }

A R

\ 4

Figure 3.5: the generalization relationship between two classes/interfaces/forms.

3. ldentify and draw interface realization (implement) relationship between a

class and an interface in the UML class diagram, from the relationship field in
the table.

o class A implements IA {.......... }

A Intarfara- 1A

Figure 3.6: the interface realization relationship between a class and an interface

4. ldentify and draw directed association relationship between two classes in the

UML class diagram, from the relationship field in the table.

o class A{private Bb;.... }

A R

;(.
=y

Figure 3.7: the directed association relationship between two classes.

5. Identify and draw instantiate dependency relationship between two classes
from the relationship field in the table.
o class A {... method(...) {... Bb=newB(); ... }

= If there is already an A to B association relationship, do not draw instantiate
relationship from A to B again.

= Only consider creation/instantiation of long-lasting B object.

A R

|._.<<lnstantiate_>> _ |

Figure 3.8: the instantiate dependency relationship between two classes.

6. Identify and draw usage dependency relationship between two classes in the
UML class diagram, from the relationship field in the table.
o classA {... method(Bb) { ...}
or
o class A {... method(...) {...Bb;... }

ISR << usex>_ . _. N

Figure 3.9: the usage dependency relationship between two classes.

7. Draw each methods in the class or interface (in general in UML)from the
table that represent restructuring unit by using the UML diagram with method

number and name of it only.

Class Name

Method (1)

I_Mﬁthd_(Z)_l

Figure 3.10: the methods in the class or interface.

34

The following Figure presents an example for the process of UML formatting

used in our approach:

Select App

Method (1)

Methad (2)

Figure 3.11: the example for the process of UML Formatting (transformation to an

appropriate intermediate representation) used in the Enhancement Approach
Second Stage: Code Restructuring Stage

Restructuring must be done systematically to reduce the risk of introducing bugs
on the source code. Another equally important goal is to define the HOW, i.e. to find
the best way to achieve the new design to avoid many risks. This includes to discover
the order of the steps in which an actual restructuring can be made without breaking
to much code at one time. Which starts from the clarification of way to detect smells,
and also identify a set of situations are associated to a given smells. Then propose a
list of possible restructuring for each situation. To do this, the phases listed later

must be followed.

In fact, our approach (Enhancement Approach) is based on the concept of
situation is the basis of the approach: is to find for each smell situation and to
propose a list of possible restructuring. Obviously, during the assessment stage we
gained a comprehensive understanding of the system architecture and this helps now
to established the best practices for how to detect these smells and identify the

situations that will be removed by proposed approach.

35

In the following phases a detailed description of each step of this process of

detection of each smell consecutively is provided:

Phase 1 Detection of Code Smells

Detection of smells inside the source code of the system could be done in one of
two ways, the first which is the easy one, by using some ready tools which is used for
detection and analysis to indicate the place of code smells, however, one of the
limitations of this way is to have to use more than one tool consecutively together in
order to detect the three different types of smells, which our approach is treating and
terminating them. Whereas the available tools are used to detect only one or two types
at most of smells in the source code. So far there is not one tool that can deal with
three smells. Most of the available tools detects the repetition of the code in the source
code . one of the most common used tools to detect the duplication of the code is:
Duploc; While as detection could be done the long method, large class by the
following tools: Johnson and CC Finder.

The second way, which is more difficult, by using sight (observation) to detect
smells through searching units of restructuring to detect the present smells in the

source code. This is done through three main ideas to detect each smell in isolation.

The idea into understanding duplicated code, depending on finding the similarity
in the code lines that create the source code system to find the duplicated code, either
they were in the same method or in the different classes. also, the idea in long method
is to know the number of lines that are found in the method. Where the methods that
are longer than 10 lines are generally viewed as potential problem areas and can harm
the readability and maintainability of the code. Then, the idea into knowing large
class, depends on the class that contains the methods, which has been identified as the
large class. Also, depending on the methods number which constitute the class. Where
the class that has more than 10 methods is generally viewed as potential problem
areas ,and can harm the readability and maintainability of the code.

After completion of smells detection inside the source code, then comes the

process of defining which technique of restructuring is to be used to eliminate the

36

detected smells, In other words, it is decided which is the best technique of
restructuring to be used to get rid of all types of smells. As in regard to the process of
restructuring is considered a critical process which should be dealt with very
carefully, a group of expected situations for each smell is to be defined, in order to
facilitate restructuring through suggesting a list of solutions for each smell case. This

facilitates choices for the developer to get rid of smells.

In the following sections, the situations described will be defined and it will be
defined for each smell case. Each section contains a figure to illustrate the relation
between classes in the system, a paragraph that describes the situation and a list of

proposed restructuring.

Phase 1.1 The Potential Cases of Code Clone

the idea in duplicated code is to define such situations, and to find out the
corresponding set of restructuring. Depending on the relationship between classes
containing the methods where the duplicated code was found, different situations that

characterize them have been defined, and allow the definition of possible cures.

First Situation Duplication in the Same Method

Description: Two pieces of code (See Figure 3.12) are duplicated in the same

method.

Class A

Method (1)

Method (2)

Figure 3.12: the duplication in the same method

37

Proposed Restructuring:

e Extract Method (See Section A.2).

e Parameterization (See Section A.3).

Discussion. This case represents the simplest situation. No attention should be
paid to the side effects between classes. If an extract method is applied, the piece of
code is replaced by a call to the newly created method. The signature of the original
methods are not changed and a possible client does not see the difference. If there are
no local variables the duplicated piece of code, it is propose at first the Extract
Method restructuring for this situation. In some circumstance, the Parameterization
could be used or a combination of both restructurings. The biggest problem with
proposed restructuring , Extract Method, is dealing with local and temporary
variables. In the simplest case, there is no local variable and the restructuring is

trivially easy.

Second Situation Duplication in the Same Class

Description: Two different methods of the same class contain the same piece of

code (See the following Figure 3.13).

Class A

Method (1)

—

Figure 3.13: the duplication in the same class

38

Proposed Restructuring:

e Extract Method (See SectionA.2).

e Insert Method Call.

e Parameterization (See SectionA.3).

e Form Template Method (See SectionA.6).

Discussion: It is proposed four Restructuring which could be applied each alone
or in combination. The Extract Method was discussed in the previous section. Insert
Method Call could be applied when one method is entirely copied in the other method

or when another method could be called with a special value.

Third Situation Duplication between Sibling Classes

Description: By sibling classes (See the following Figure3.14) we refer to all
classes with the same direct superclass and with the same hierarchical level. The
highlighted rectangles represent the classes in which the methods containing
duplicated code were found.

Figure 3.14: the duplication between sibling classes

Proposed Restructuring:

e Pull Up Method (See Section A.4).

e Parameterization (See Section A.3).

39

e Extract Method (See Section A.2).

e Substitute Algorithm (See Section A.7).

e Form Template Method (See Section A.6).

e Replace Subclass with Field (See SectionA.12).
e Extract Super-Class (See Section A.9).

Discussion: The experiments leads in previous works show the trend to pull up
into the superclass the extracted duplication by using Form Template Method and Pull
Up Method.

Fourth Situation Duplication with Super Class

Description: This situation describes a duplication between a class and its direct

superclass(See Figure 3.15).

Figure 3.15: the duplication with superclass

Proposed Restructuring:

e Parameterization (See Section A.3).

e Insert Super Call.

e Pull Up Method (See Section A.4).

e Push Down Method (See Section A.5).

e Form Template Method (See Section A.6).

40

Discussion: If both methods have the same name, we can think on a template
method for the restructuring or the duplication could also be eliminated by extracting

method from both classes and then by putting it into the superclass.

Fifth Situation Duplication with Ancestor

Description: This situation describes the case where one class inherits from the
other but not directly (See Figure 3.16).

Figure 3.16: the duplication withancestor

Proposed Restructuring:

e Extract Method (See Section A.2).

e Parameterization (See Section A.3).

e Pull Up Method (See Section A.4).

e Form Template Method (See Section A.6).

Discussion: The difference to the previous situation(with superclass) is that if
something is modified in the ancestor, all classes between the ancestor and the
concerned subclass are also affected by the change. Vigilance must be there, for
where the new created method is defined. If it is put it into the ancestor class, more

classes are affected than in the case of superclass situation.

41

Sixth Situation Duplication with First Cousin

Description: This situation describes the case where both classes have the same
hierarchical level and their super classes are sibling classes (See the Following Figure
3.17).

Figure 3.17: the duplication with first cousin

Proposed Restructuring:

e Pull Up Method (See Section A.4).

e Form Template Method (See Section A.6).
e Extract Method (See Section A.2).

e Parameterization (See Section A.3).

e Extract Super-class (See Section A.9).

Discussion: Using inheritance it can also pull up the extracted method two levels
upper in the hierarchy. other classes with the same ancestor involved in the
duplication must checked. If yes, “a flawed design” is a probability. All subclasses
containing the same code may need a common superclass (Extract Superclass). One
possibility is to extract a new superclass up to all concerned classes and to be put into

it the new created component.

42

Seventh Situation Duplication in Unrelated Classes

Description: This situation describes the case where both classes do not have any

common ancestor (See the Following Figure 3.18).

Figure 3.18: the duplication in Unrelated Classes

Proposed Restructuring: Proposing a solution for this situation is the most
difficult one. If you have duplicated code in two unrelated classes, consider extracting
a class from one class and then use the new component. If the method really belongs
only to one of the classes, the other class should invoke it. You have to decide where

the method makes sense and ensure it is there and nowhere else.

Phase 1. Il The Potential Cases of Long Method

The idea in long method is to define such situations, and to find out the
corresponding set of restructuring. Depending on the number of method lines
contained in the class. Where the methods that are longer than 10 lines are generally
viewed as potential problem areas and can harm the readability and maintainability of
the code. different situations have already been defined that characterize the situation

and allow the definition of possible cures.

43

First Situation ~ Long Method with More than 10 Lines

Description: This situation describes the case where the method has a group of
lines (more than 10 lines) or as little as a single line (even a single line) of code (

See the Sollowing Figure 3.19).

Class A

Method (1)

Private sub()

Method (2)

Figure 3.19: the long method with more than 10 lines

Proposed Restructuring:

e Extract Method (See Section A.2).

e Parameterization (See Section A.3).

Discussion: This case represents the simplest situation. No attention should be
paid to side effects between classes. If an extract method is applied, the piece of code
is replaced by a call to the newly created method. The signature of the original
methods are not changed and a possible client does not see the difference. If local
variable in the long method does not exist , it is proposed at first the Extract Method

restructuring for this situation.

44

Second Situation Long Method because of Duplicate Lines

Description: This situation describes the case where two pieces of code (See
Figure 3.20) are duplicated in the method. This situation is treated as (Duplication in
the Same Method situation).

Class A

Method (1)

1. Private sub()

Method (2)

Figure 3.20: the long method because duplicate lines

Proposed Restructuring:

e Extract Method (See Section A.2).

e Parameterization (See Section A.3).

Discussion. this discussion is mentioned above (First situation. long method with

more than 10 lines).

45

Third Situation Long Method with Loops

Description: This situation describes the case where the method has loops and

the lines of code more than 10 lines (See the Following Figure 3.21).

Class A
Method (1)
1. Private sub()
2.
3. .
5.}

Figure 3.21: the long method with loops

Proposed Restructuring:

e Extract Method (See Section A.2).

e Parameterization (See Section A.3).

Discussion: This case represents the simplest situation. When the method is long
(has more than 10 lines) and has a loop in its code. Extract the loop and the code

within the loop into its own method.

46

Fourth Situation Long Method with Conditional Expressions

Description: The method containing the conditional expressions of code and is

considered as long method (See the Following Figure3.22).

Class A
Method (1)
6. Private sub()
7.
8. .
9. if| |
10 3}

Figure 3.22: the long method with conditional expressions
Proposed Restructuring:
e Decompose Conditional (See Section A.13).

Discussion: This case represents the simplest situation. When the method is long
(has more than 10 lines) and has a conditional expressions in its code. In this case

Use Decompose Conditional to deal with conditional expressions.

Phase 1. IIl The Potential Cases of Large Class

the idea of a large class is to define such situations, and to find out the
corresponding set of restructuring. Depending on the class that contains the methods,
which has been identified as the long method. And also depending on the method’s
number which constitute the class, different situations have been defined that

characterize the situation and allow the definition of possible cures.

47

First Situation Large Class with Many Methods

Description: When a class is trying to do too much; In other words, A class
contains many methods of code. But over time, they get bloated as the program
grows (See the Following Figure3.23).

Class A

Method (1)

Method (2)

Method (20)

Figure 3.23: the large class with many methods

Proposed Restructuring:

e Extract Class (See Section A.8).
e Extract Subclass (See Section A.11).
e Extract Interface (See Section A.10).

e Extract Method (See Section A.2).

Discussion: Extracted Class helps if part of the behaviour of the large class can
be spun off into a separate component. Extracted Subclass helps if part of the
behaviour of the large class can be implemented in different ways or is used in rare
cases. Extracted Interface helps if it is necessary to have a list of the operations and
behaviours that the client can use.

48

Phase 2 Enhancement Mechanism

After the detection of the smells in earlier phases, and defining the expected
solutions for each smell, in this phase the best choices and executions are to be
chosen for the best solution for restructuring , the best solutions suggested to each
smell depending on the case which appeared in the source code. This process should
be conducted systematically to avoid or reduce entering errors in the source code.
Therefore, a template was suggested to execute the process of smell reconstructing
in an organized and simple way. Restructuring must be done systematically to avoid

or reduce the risk of introducing bugs on the working code.

Each restructuring in this approach is implemented according to the following

template(known as a restructuring template):

Phase 2. | Restructuring Template

Bad smell: The name of a bad smell situation.

Method Name: The name of a model restructuring Process.
Location: The restructuring area(s) of the transformation.
Reasons :Probable reason(s) for performing the restructuring.

Description: A short explanation of things if its intent is not obvious.

2L T A e

Restructuring Process: A mechanics of the improvement—identification
of basic operations and/or other restructurings and the order in which they
should be applied to achieve the objectives of the process; Hence, the
Mechanics(Processes) that are used in this approach to the restructuring

the source code are listed in Appendix A.

Phase 3 Application Solution

After the enhancement, the result will be obtaining a source code without these
smells. It will carried out to make sure it excutes its functions. In this phase, code
conventions (the code lines that are used to link software system to the database) are

released by removing the mark (**) that are put in front of these code lines.

49

Moreover, some important developers comments that have been deleted from the

source code are to be returned.

At the end of this phase, operating program, testing its functions to ensure that

restructuration is perfectly done without impacting the system behaviour.

The main goal of this work is to manage the growth in size and complexity of a
software system due to source code smell. For increase reliability, longevity and
modifiability of software system. A large number of software smells induces
undesirable side effects in a software system. The first possible effect is an increase in
the resources required by the software on the system. This increases the cost of

operation. The enhancement approach presents the way of eliminating these smells.

50

3.4 Summary

Duplicated Code

2
3 g1 g | § | 8
o 9 O] S 5 2
= S o O 7 o 8
ke) = T 3 O O
= | 2 2| 5| &| E | B
= c (:,:) < = L %
& @ 8 = E = =
S = S 5
(6]
o]
Extract Method v v S N N
Parameterization v v v v v v
Insert super Call V
Insert Method Call N N
Form Template Method N N N N N
Pull Up Method N N N N
Substitute Algorithm V
Replace Subclass with Field V
Extract Superclass N N
Push Down Method V

table 5 the summary of code duplication restructuring mechanisms

51

Long Method

Large Class

Z
A S "
£ f " @ S
o £ Q &L 2
— @ o o =
c =1 L= X QL
© 3 - = £
= = i c é
@ =3 = e a
S > ra)
(@] © '_5 E
e c
(@]
o
Extract Method v v N N
Parameterization N N y
Decompose Conditional J
Extract Class V
Extract Subclass N
Extract Interface N

52

table 6 the summary of long method and large class restructuring mechanisms

CHAPTER 4
Case Study

4.1 Introduction

This chapter briefly illustrates how Enhancement Approach can be applied,
through a case study of the reinforcement of a code for General Mills Company
system. By describing the stages they are followed for reinforcement of the Microsoft
Visual Basic.Net 2010 system and the techniques that are used to detect code smells.
It also explains how the techniques are used. For reasons of brevity, some details are
omitted, that aim to give a general flavor of the improvement. Finally, the activities
regarding Mills are evident in our case study. The actual implementation of the
proposed solution to improve source code of the General Mills Company system is

explained.

The following activities regarding General Mills Company system are evident in
the case study. This system contains three classes; Each class must be isolated from
the other classes but certainly dealing with each other to perform system functionality,

and every class performs a set of special functions which are required.

The Enhancement Approach contains two basic Stages. Each Stage contains a set
of phases. A detailed description of two stages and their phases depending on their

effective application are provided:

First Stage: Exploration and Assessement Stage

The target of this stage is to make (performance) an in-depth analysis of software
system that is needed to be restructured, which result to remove some unimportant
things of the code. After that, restructuring units are identified in order that the source
code is partitioned to facilitate the determination of the comparison domain. At the
end of this stage, using the reverse engineering concepts specifically the class

diagram. The restructuring units are transferred to the intermediate representation.

The actual implementation of this stage is in the following phases:

53

First Preprocessing The Code(Preprocessing)

In order to make the source code possible to transferred to the intermediate
representation, The existence of code conventions, comments and blanks must be

removed from the source code; For doing this, you must follow these phases:

Phase 1 Suspend Code Conventions

Now, all the code conventions are suspended out in the source code; that is done
by putting a mark (**) in front of the code conventions. This phase will be applied to
each source code for the case study. The following figure (the first) shows a part of
this actual Apply:

% Modulel ~| % main

**Imports System.Data.SgqlClient
Imports System.Windows.Forms.Flatstyle
SlModule Modulel

**Public s As String = (“"data source=.;initial catalog = Stores_Watania;Integrated Security=True™)
**public cn As New SglConnection(s)

Public user_name As String

Public w1, w2, w3, w4, v5, w6, v7, v8 As Boolean

] Sub main()
" the main method used for open connection to database
Try

spplication.EnableVisualStyles()
Application.DoEvents()

** cn.open()
login_form.ShowDialog()

Catch ex As Exception
MsgBox(” SLsley 91 Faeldy Jlas¥l 8 Lks", MsgBoxStyle.Critical + MsgBoxStyle.MsgBoxRtlReading, " Li=")
End Try
End Sub

=
3
a
g
=
a
]
El
(=]
15
=3
=
"
=
=
w
&
c
al
o
w
S
2
=
53
=
-
=
z
e
=
o
-2
T
2

End Module

Figure 4.24: the code conventions are suspended

Phase 2 Code Filtering

At this phase; All the blanks between the source code lines of the system that are
added when the code is wrote to facilitate the process of separation between source
codes are removed. That is to be applied to each source code for the case study. The

following table (7) shows a part of this actual apply:

54

Original Code

PrivateSub Button7_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button7.Click

1ok ok ok ok ok ok o ok o ok s ok s ok sk ok ok ok ok ok ok o ok o ok o ok ok ok ok ok ok s ok sk ok koK ok ok ok o ok ok ok o ok o ok ok ok ok ok s ok ok ok ok ok ok o ok ok ok o ok o ok ok K
*ok ok koK kK

ERCGPERIE TN

ForEach item In ListView2.SelectedItems
ListView2.Items(item.Index).Remove()

Next

ListView2.BackColor = Color.White
Dim col AsInteger = ©

For i = @ To ListView2.Items.Count - 1

If col Mod 2 = @ Then
ListView2.Items.Item(i).SubItems(@).BackColor

Color.LightGoldenrodYellow

Else
ListView2.Items.Item(i).SubItems(®).BackColor = Color.White
EndIf
col = col +1
Next

' @PEEEEEEREEEEEEERPEERAEERAECRREERREER22

'clearl
TextBox9.Clear()
TextBox7.Clear()
Labell3.Text = ""
Button7.Enabled = False
EndSub

Total of the number

30

table 7 before remove the blanks from the source code

Note that the source code of the method starts from 1 to 30; Therefore, line of
code (LOC) for method is (30). And once the blanks and blocks are deleted the LOC
of this method is reduced to (6). In addition, delete blanks process makes method have

only been contained to source code.

After the completion of the blanks removal process. Now, all comments are to be
removed that are added by programmer in the source code. These comments are

removed because it reduces false positives by eliminating common constructs and

55

idioms that should not be considered duplicated code. It also reduces false negatives
by eliminating insignificant differences between software clones. This phase will be
applied to each source code for the case study. The following figure (8) shows a part
of this actual Apply:

After filtering

PrivateSub Button7_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button7.Click
ForEach item In ListView2.SelectedItems
ListView2.Items(item.Index).Remove()
Next
ListView2.BackColor = Color.White
Dim col AsInteger = ©
For i = @ To ListView2.Items.Count - 1
If col Mod 2 = @ Then
ListView2.Items.Item(i).SubItems(®).BackColor
Color.LightGoldenrodYellow

Else
ListView2.Items.Item(i).SubItems(®).BackColor = Color.White
EndIf
col = col + 1

Next

TextBox9.Clear()

TextBox7.Clear()

Labell3.Text = ""

Button7.Enabled = False
EndSub

Total of the number

19

table 8 After remove the blanks from the source code

Now note that, the code line of this method becomes the shortest after the
comments are deleted; LOC for this method is (19). This makes, the comparison

process between the code lines very easy.

In fact, there are some comments that are considered as important to the software
developers and the developers cannot dispense it, because it provides a very important
explanation for the part of the source code (i.e... Method ()) that we are needed it in
future (maintenance phase). this comment is temporarily deleted; In other words, after

the approach apply is ended, these comments will be returned.

56

Phase 3 Code Formatting

The code formatting phase is the last phase in the pre-processing process of the
source code of software system. Now, the source code is ready for determining its

restructuring units.

In this phase, the software system restructuring units are determined. The process
is applied or done to the proposed system (case study) as follows:

Relationship Class Methods

Number number

e Modulel
Number Of e Users

Method Main e Edin_Estelam_bill
line e Edn_srf_bill

e Edn_Etlaf bill 2 17

e Suppliers

e Store

e Login_form

e Card_items

1. **Imports System.Data.SqlClient
2. PublicClassmain

1/1 Sub User_rights()

1/2 ml.Enabled = vi1

1/3 m2.Enabled = v2

1/4 m3.Enabled = v3

1/5 fl.Enabled = v4

1/6 f2.Enabled = v5

1/7 f3.Enabled = v6

1/8 i.Enabled = v7

1/9 u.Enabled = v8

1/10 EndSub

2/1 PrivateSub Timerl_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timerl.Tick

2/2 ToolStripStatusLabell.Text = "&ul: " + Format(Now,
"yyyy/MM/dd") + ")

2/3 ToolStripStatusLabel3.Text = " JAal@l: " + Format(Now,
"hh:mm:ss tt")

2/4 EndSub

3/1 PrivateSub main_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) HandlesMyBase.lLoad

3/2 User_rights()

3/3 ToolStripStatusLabel5.Text = " Jdalladiudl: " + yser_name

3/4 EndSub

4/1 PrivateSub m10_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)
4/2 users.ShowDialog()
4/3 EndSub

57

5/1

5/2
5/3

5/4
5/5
5/6
5/7
6/1

6/2
6/3

6/4
6/5
6/6
6/7
6/8
7/1

7/2
7/3

7/4
7/5

7/6
7/7
7/8
7/9
7/10
7/11
7/12
7/13
7/14
7/15

7/16
7/17
7/18
7/19

7/20
7/21
8/1

8/2
8/3
9/1

9/2
9/3
10/1

PrivateSub el _Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles el.Click
Dim ms AsString
ms = MsgBox("sUaillies s ally yiasSlila™ | MsgBoxStyle.YesNo +
MsgBoxStyle.Question + MsgBoxStyle.MsgBoxRight +
MsgBoxStyle.MsgBoxRtlReading, "4xi")
If ms = vbYes Then
Dispose()
EndIf
EndSub
PrivateSub e2 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles e2.Click
Dim ms AsString
ms = MsgBox("piaiwaduaiy yastilll" | MsgBoxStyle.YesNo +
MsgBoxStyle.Question + MsgBoxStyle.MsgBoxRight +
MsgBoxStyle.MsgBoxRtlReading, "4wi"
If ms = vbYes Then
Me.Dispose()
login_form.ShowDialog()
EndIf
EndSub
PrivateSub u2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles u2.Click
Try
**Dim sqlConn AsNewSqlConnection("data source=.;Initial catalog =
Stores_Watania;Integrated Security=True")
**sqlConn.Open()
**Dim sCommand = "BACKUP DATABASE [Stores_Watania] TO DISK =
N'd:\backup Stores_Watania.bak' WITH COPY_ONLY"
**Using sqlCmd AsNewSqglCommand(sCommand, sqlConn)
**sqlCmd.ExecuteNonQuery()
**sqlConn.Close()
EndUsing
**¥Dim co AsString = "l sllialhbalis o jlaalbse WA LLEYRA W), bak"
SaveFileDialogl.Title = " hliaylawal”
SaveFileDialogl.Filter = "<Ulukacl|* bak"
SaveFileDialogl.FileName = co
If SaveFileDialogl.ShowDialog = Windows.Forms.DialogResult.0K Then
I0.File.Copy("d:\backup Stores Watania.bak",
SaveFileDialogl.FileName, True)
MessageBox.Show(" hlisYiwillilealaiia")
EndIf
Catch ex AsException
MsgBox ("alealiialeliny” | MsgBoxStyle.Information +
MsgBoxStyle.MsgBoxRight + MsgBoxStyle.MsgBoxRtlReading, "4ui")
EndTry
EndSub
PrivateSubaWillasToolStripMenuItem _Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
HandlessWhillxsToolStripMenuItem.Click
system_by.ShowDialog()
EndSub
PrivateSub ml_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ml.Click
Edin_Estelam_bill.ShowDialog()
EndSub

PrivateSub m2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles m2.Click

10/2
10/3
11/1

Edn_Srf _bill.ShowDialog()
EndSub
PrivateSub ul_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ul.Click

58

11/2 users.ShowDialog()

11/3 EndSub

12/1 PrivateSub i1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles il.Click

12/2 bill reports.ShowDialog()

12/3 EndSub

13/1 PrivateSub m3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles m3.Click

13/2 Edn_Etlaf_bill.ShowDialog()

13/3 EndSub

14/1 PrivateSub f1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles f1.Click

14/2 Suppliers.ShowDialog()

14/3 EndSub

15/1 PrivateSub f2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles f2.Click

15/2 Card_items.ShowDialog()

15/3 EndSub

16/1 PrivateSub f3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles f3.Click

16/2 store.ShowDialog()

16/3 EndSub

17/1 PrivateSub i2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles i2.Click

17/2 reorder_point_report.ShowDialog()

17/3 EndSub

90. EndClass

Total of 90
LOC

table 9 the determining the restructuring unit for the Main form

Likewise, this process will be applied to all classes and forms of the software
system, but because the case study has many classes and forms(eight forms and three
classes) these a very large number of forms, in order to simplify the purpose of non-
lengthening, the rest of the restructuring units will be determinate for the software

system and without the source code here.

Relationship Class Methods
Number Of . Number number
Card _items
Method line
e Modulel 3 11
1. **Imports System.Data.SqlClient
2. PublicClassCard_items
3. **Inherits System.Windows.Forms.Form
4.
5.

59

234. EndClass

Total 234
of LOC
table 10 the determining the restructuring unit for the Card _items form
Relationship Class Methods
Number OF Edn Etlaf bill Number number
Method - -
line
1. Modulel 4 22
1. **Imports System.Data.SqlClient
2. Imports System.Data
3. PublicClassEdn_Etlaf_bill
4, .
5.
489: EndClass
Total of 489
LOC
table 11 the determining the restructuring unit for the Edn _Etlaf _bill form
Relationship Class Methods
Number Of ;
Edn Srt bill Number number
Method - -
line
1. Modulel 5 23
1. **Imports System.Data.SqlClient
2. Imports System.Data
3. PublicClassEdn_Srf bill
4.
5.
569. EndClass
Total of 569
LOC

table 12 the determining the restructuring unit for the Edn _Srt_ bill form

60

Relationship Class Methods
Number Of . Number number
Loing_form
Method -
line
2. Modulel
. 6 5
3. main
1. **Imports System.Data.SqlClient
2. PublicClasslogin form
3. Inherits System.Windows.Forms.Form
4.
5.

132. EndClass

Total of

table 13 the determining the restructuring unit for the Loing_form form

Relationship Class Methods
Number Of Number number
Method Store
line
4. Modulel 7 11
1. **Imports System.Data.SqlClient
2. PublicClassstore
3. Inherits System.Windows.Forms.Form
4.
5.
286. EndClass
Total 286
of LOC

table 14 the determining the restructuring unit for the store form

61

Relationship Class Methods
Number Of . Number number
Method Suppliers
line
5. Modulel 8 13
1. **Imports System.Data.SqlClient
2. PublicClassSuppliers
3. Inherits System.Windows.Forms.Form
4.
5.

233. EndClass

Total of
LOC 233

table 15 the determining the restructuring unit for the suppliers form

Relationship Class Methods
Number Of Number number
Method Users
line
6. Modulel 9 15
1. **Imports System.Data.SqlClient
2. PublicClassusers
3. Inherits System.Windows.Forms.Form
4.
5.
534. EndClass
Total of 534
LOC

table 16 the determining the restructuring unit for the users form

Now, the eleven restructuring units for the software system were clearly and
accurately identified; also, the software system is ready for transform it to an

appropriate intermediate representation.

62

Second Mapping Code with UML Diagrams
Phase 4 UML Formatting

In this section, the transformation of an appropriate intermediate representation
using the Project Analyst application (Version 10.2) will be discussed. One of the
advantages of this application is that it supports the concepts of the Reverse
Engineering that have been used in the Enhancement Approach for the initial
description of the classes and their relationship with each other. The following

figure represents the UML formatting:

Ecn_Srf_bill vl |

login_form.vh | | Suppliers . vh |

main. vk | Card_tems.vh |
Edn_Etlaf_hill. vk 4?

Module! .vh

store.vh |

Edlin_Estelam_bill vb |

Lusers.vh |

Figure 4.25: the appropriate intermediate representation of the case study using

the Project Analyst application

The above figure shows the classes and forms of the system; and also, the
relationships between them in terms of dependency, ie the dependence of each form
on other forms. Moreover, the shares show the relationships between these classes and
forms, where the black shares show the directed association relationship between
classes or forms, while the red shares show the generalization (inheritance/extend)
relationship between classes or forms. After that; A description in full detail of the
classes and forms; And also, all the methods which are included in these classes in the

following figure:

63

Generalization (inheritance)

(login_form
Class
=+ Farm

4|

| Modulel (¥

IModule

64

Figure 4.26: the detail description of appropriate intermediate

representation of the case study using

Assocition

(Edn_Srf bl
Class
= Farm

4|

| store
Class
=+ Form

USEers
Class
=+ Farm

| Card_items
Class
=+ Farm

B Estelam bl
Class
= Farm

(¥]

's uppliers
Class
=+ Form

R

| Edn_Etlaf_bill
Class
=t Form

Second Stage: Code Restructuring Stage

Now, the restructuring stage of the software system begins. Restructuring must
be done systematically to reduce the many risks. This is done by arranging the steps
that are Implemented at this stage. Which starts from detecting the smell of the code
based on the situations that are proposed in this approach. And ends with the

implementation of a one of proposed restructuring solutions to eliminate this smell.
Phase 1 Detection of Code Smells

Due to the researcher's knowledge and his deep understanding of the system used
as a case study; because of that, this system is considered as one of the systems that
are easy to understand for him. Therefore, The researcher does not need to use the
detection technique of smells to pick up the smells that exists in codes. Thus, the
researcher relies on the consideration and observation to detect the smells in the

source code and eliminate them by applying the effective restructuring.
Phase 1.1 Potential Cases of Code Smell

As discussed in the previous section (in phase i of the second stage), we set out
as a requirement to continue that. The user is determinate the bottlenecks in source
code by the consideration that actually perform the detection of code smells in

software system.

The source code should be well watched, although the developer's performance
might be affected (ie, it is very difficult to do this). In the beginning the system is
viewed in a simple way (The bird's look) based on components (Classes and
Forms) to determine the similar in the names of the methods in the same class or in
the different classes. And also, to determine whether the method is long or not;
Hence, By knowing the class methods, it is possible to determine whether the class is

large or not.

Then, we turn to look more closely(The Infrastructure Inspect); is to look at

the similarity in the source code for the method itself (Lines Of Code), if they exists

65

in the same class or in different classes. This is based on a set of situations that are

processed by the Enhancement Approach.
e At the beginning, the Simple Look of the System (The Bird's Look):

The system components (Classes and Forms) in an abstract way is to be
examined, and without going into details, and by looking at the system components it

is found:

First There is a similarity in the names of the methods that are found in most

forms (See the Following Figure)

| Edin_Estelam_bill #
Class
- Form
%! Fields
= Methods

2Y Button3_Clic

»

| users

VB ron
fa
=iy oY bButtond_Clic [
Fields a¥ Button7 Click
a¥ Button8_Click
= Methods 3% Button9_Click
Vbt bask Click $¥ Dispose
: a¥ Edn_Estlam_Load
oY ButtonZ_Clic { © full_Edn_Estlam
#¥ Button3_Click v full_listl
W Buttond Vv full_list2
2Y InitializeCompo
y¥ Dispose 2% ListViewl Dou...
a¥ formld_Load a¥ ListView2_Click
4¥ InitializeCompo... a¥ ListView3_Dou...
¥ ListViewl Dou... ¥ load_Edn_Estla...

v load_list
V¥ lcad_user_num

4 TextBox1_KeyPr..

LR e o

!) ~ = LA ST
Y TextBoxl_KeyPr., oY TextBox7 _KeyPr...

Figure 4.27: the similarity of the methods’ names are in the forms

66

This is considered as one of the code smells which must be eliminated by using
one of the improving solution (Restructuring Technique) known as Rename Method

(A.1). Apply this technique in detailed in the next section (Phase 2.1).

Second There are many methods are considered as a long method(see the

following figure)

PrivateSub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
If ListView2.Items.Count = © Then
MsgBox (" aSiuYulidliala) jalay" | MsgBoxStyle.Question +
MsgBoxStyle.MsgBoxRtlReading, "4ni"
Exit Sub
EndIf
If TextBox3.Text = ""Then
MsgBox ("2 slliilulanl" - MsgBoxStyle.Question +
MsgBoxStyle.MsgBoxRtlReading, "4xi'")
TextBox3.Focus()
Exit Sub
EndIf
load_Edn_Estlam_num()
Dim s1 AsString = "select * from Edn_Estlam where ed_estelam_no ="&
Val(TextBox2.Text)
Dim cml AsNewSglCommand(sl, cn)
Dim rl AsSqlDataReader = cml.ExecuteReader
If rl.Read = TrueThen
MsgBox ("Lisllsilels ") MsgBoxStyle.Information +
MsgBoxStyle.MsgBoxRight + MsgBoxStyle.MsgBoxRtlReading, "4xi")
rl.Close()
Exit Sub
EndIf
rl.Close()
Dim s2 AsString = "insert into Edn_Estlam
(ed_estelam_no,ed_Suppliers_no,ed_date,ed_user)values(@x1l,@x2,@x3,@x4)"
Dim cm2 AsNewSglCommand(s2, cn)
cm2.Parameters.AddWithvValue("@x1", Val(TextBox2.Text))
cm2.Parameters.AddWithvalue("@x2", Val(TextBox3.Text))
cm2.Parameters.AddWithvValue("@x3", (Format(DateTimePickerl.Value,
"yyyy/MM/dd")))
cm2.Parameters.AddWithvalue("@x4", user_name)
cm2.ExecuteNonQuery()
For i = © To ListView2.Items.Count - 1
Dim s3 AsString = "insert into details_Estelam
(db_estelam_no,db_item_no,db_store_no,db_quantity)values(@x1,@x2,@x3,@x4)"
Dim cm3 AsNewSglCommand(s3, cn)
cm3.Parameters.AddWithvValue("@x1", Val(TextBox2.Text))
cm3.Parameters.AddWithvalue("@x2",
Val(ListView2.Items(i).SubItems(4).Text))
cm3.Parameters.AddWithvalue("@x3",
Val(ListView2.Items(i).SubItems(5).Text))
cm3.Parameters.AddWithvalue("@x4",
Val(ListView2.Items(i).SubItems(3).Text))
cm3.ExecuteNonQuery ()
Next
For i = @ To ListView2.Items.Count - 1
Dim gn AsInteger = ©
Dim FOUND AsBoolean = False

67

Dim s AsString = "select * from Items_stock where it_item no ="&
Val(ListView2.Items(i).SubItems(4).Text) &" and it_store_no ="&
Val(ListView2.Items(i).SubItems(5).Text)
Dim cm AsNewSglCommand(s, cn)
Dim r AsSqglDataReader = cm.ExecuteReader
If r.Read = TrueThen

FOUND = True

gn = Val(r!it_quantity)

r.Close()
EndIf
r.Close()
If FOUND = FalseThen
Dim s5 AsString = "insert into Items_stock

(it_item_no,it_store_no,it_quantity)values(@x1,@x2,@x3)"
Dim cm5 AsNewSqglCommand(s5, cn)
cm5.Parameters.AddWithvalue("@x1",
Val(ListView2.Items(i).SubItems(4).Text))
cm5.Parameters.AddWithvValue("@x2",
Val(ListView2.Items(i).SubItems(5).Text))
cm5.Parameters.AddWithvalue("@x3",
Val(ListView2.Items(i).SubItems(3).Text))
cm5 . ExecuteNonQuery ()
Else
Dim s6 AsString = "update Items_stock set it_quantity=@x1 where it_item_no ="&
Val(ListView2.Items(i).SubItems(4).Text) &" and it_store_no ="&
Val(ListView2.Items(i).SubItems(5).Text)
Dim cm6 AsNewSglCommand(s6, cn)
cm6.Parameters.AddWithvalue("@x1",
Val(ListView2.Items(i).SubItems(3).Text) + gn)
cm6 . ExecuteNonQuery ()
EndIf
Next
MsgBox ("Léaliileic" | MsgBoxStyle.MsgBoxRight, "asb™)
Dim dal AsNewSqglDataAdapter(“"select * from Store", cn)
Dim dasl AsNewDataSet
dasl.Clear()
dal.Fill(dasl, "Store")
ComboBox1.DataSource = dasl
ComboBox1.ValueMember = "Store.st_no"
ComboBox1.DisplayMember = "Store.st_name"
TextBox2.Clear()
TextBox3.Clear()
TextBoxl.Clear()
TextBox4.Clear()
TextBox1@.Clear()
TextBox5.Clear()
TextBox6.Clear()
TextBox9.Clear()
TextBox7.Clear()
Labell3.Text = ""
ListViewl.Items.Clear()
ListView2.Items.Clear()
ComboBox1.SelectedIndex = @
TextBox1l.Enabled = True
DateTimePickerl.Enabled = True
DateTimePickerl.Value = Now.Date
Buttonl.Enabled = True
Button3.Enabled = False
GroupBox3.Enabled = True
Dim dal AsNewSqglDataAdapter(“"select * from Store", cn)
Dim dasl AsNewDataSet
dasl.Clear()

68

dal.Fill(dasl, "Store")
ComboBox1.DataSource = dasl
ComboBox1.ValueMember = "Store.st _no"
ComboBox1.DisplayMember = "Store.st_name"
load_Edn_Estlam_num()
full listi()
full_list2()
full Edn_Estlam()

End Sub

Figure 4.28: the method that is considered as a long methods

There are 141 line of code in this method, these are considered as one of the code
smells known as the Long Method, which must be eliminated by using one of
improving solutions (Restructuring Technique) like Extract Method, Replace Temp
with Query, Introduce Parameter Object, Preserve Whole Object or Replace Method
with Method Object. one of these techniques to be implemented in the next section (
see section Phase 2). But, in this system no long method can be solved, because the

source code of this method is not disassembled.

Third There are many classes considered as a large class(see the following

figure)

[Edin_Estelam_bill =) |
Class
—+ Form

+l Fields

=l pMethods
&% Add_Edin_Estel ...
S Button3_Click
s Buttond_Click
S ButtonG_Click
S Button7_Click
S Button8_Click
S Button9_Click
¥ Dispose

s Edn_Estlam_Locad

full_Edn_Estlam
full_listl
full_list2

InitializeCompo..
ListWiewl_Dou...
ListWiew2_Click
ListWiew3_Dou...
load_Edn_Estla...
load_Store

66 6% % 66

print_Delivery

=" Return_back_Cli...
S Supplier_numkb...

S TextBoxG_TextC...
S TextBox7_KeyPr...

Figure 4.29: the class is considered a large class

69

In this class there are 23 methods. These are considered as one of the code smells
known as Large Class, which must be eliminated by using one of improving solutions
(Restructuring Technique) like Extract Class, Extract Subclass, Extract Interface.
one of the techniques is to be implemented in the next section (see section Phase 2).

But ,in this system no large class can be dismantled.

e At the End, the Close View of the System (The Infrastructure Inspect):

Consequently, the system components is to be viewed closely (Classes and
Forms) in a detailed way. this is done by focusing the look at the code lines, Which
is established by each method in the form or class, and is to look at the similarity in
the source code for themethod itself (Lines Of Code). if they exists in the same class

or in different classes, and by looking at the code lines are found:

Eirst There is a similarity in the lines code that are found in different methods

,but in the same form (see the following figure)

= Private Sub Button2 Click(ByWal sender As System.Object, ByVal e As System.EventiArgs) Handles Button2.Click
extBox2.Clear()
TextBox3.Clear()
TextBoxl.Clear()
Buttonl.Enabled
Button3.Enabled
Button4.Enabled
full list()

load_Store_num()

True

False
False

2101dx3 Janag :—'a 532IN0% B8

TextBox2.Clear ()
TextBox3.Clear ()
TextBoxl.Clear()
Buttonl.Enabled = True
Button3.Enabled = False
Button4.Enabled = False
full_list()
load_Store_num()
End™S0D

=
H
=N
g
o
E
a
o
L
iy
2
[
=3
h=1
5

full list()
load_Store_num()
F T

& LU CACLULENUNIZUETTY |)

il | e — Lo 5", MsgBoxStyle.MsgBoxRight, "..sls")
w TextBox2.Clear()

- TextBox3.Clear()

E_‘ TextBoxl.Clear()

= Buttonl.Enabled = True
s Button3.Enabled = False
- Button4.Enabled = False
-

o

-

2

=3

Figure 4.30: the similarity of the code lines that are in the different methods but

in the same form

70

D i it~ e I e TS E e
End IFf
Catch ex As Exception
MsgBox(ex.Message)

This is considered as one of the code smells which must be eliminated by using
one of the improving solution (Restructuring Technique) known as Extract Method (

A.2). Apply this technique in details in the next section (Phase 2.11).

Second There is similarity in some of the methods that are found in different form

(see the following figure)

M (SRR Fan Etlaf billvb Edin_Estelam billvb Edn S billvb [Design] Edn_Etlaf bill vb [Design] Edin_Estelam_billvb [Design]

¥ Buttond | 7 dick

® [Private Sub TextBoxb TextChanged(ByVal sender As System.Object, ByVal e As System.Eventdrgs) Handles TextBoxb.TextChanged ...
Sub quntity()
com = False
TextBoxl.Text = @
Dim sql As String = "select * from Items_stock where it item_no=" & Val(labell3.Text) & " and it_store_no=" & Val(ComboBoxl.SelectedValue)
Dim em2 As New SqlConmand(sql, cn)
Dim rl As SglDataReader = cm2.ExecuteReader
If rl.Read Then
TextBoxl.Text = Val(rl!it_quantity)
End If
rl.Close()
com = True
End Sub

(=]
Q
A
E
m
3
£
o]
E
=
2
m
(=]
a
+
o
“
Q
E
=
a
m
n
0]
i)

Fdn S billvb JRGNSEAINGIRE Edin Estelam billvb Edn S billvb [Design] Edn_Ftlaf billvb [Design] Edin_Estelam_billvb [Design]

¥ Butto -| 7 ik

Sub quntity()
com = False
TextBoxl.Text = @
Dim sql As String = "select * from Items_stock where it_item no=" & Val(labelld.Text) & " and it_store_no=" & Val(ComboBoxl.SelectedValue)
Dim em2 As New SqlCommand(sql, cn)
Dim rl As SqlDataReader = cm2,ExecuteReader
If rl.Read Then
TextBox1.Text = Val(rl!it_quantity)
End If
r1.Close()
com = True
End Sub

=g seounos eieq Bl Fupno uswnoog Bl

Figure 4.31: the similarity of the some methods that are found in the different forms

This is considered as one of the code smells which must be eliminated by using
one of the improving solution (Restructuring Technique) known as Extract Method (
A.2). Apply this technique in details in the next section (Phase 2.111).

71

Phase 2 Enhancement Mechanism

Phase 2.1 Rename Method

1. Bad smell: the duplication method name.

2. Method Name: Rename Method.

3. Location: Edn_Srf_bill : Class and Edn_Etlaf_bill : Class.

4. Reasons: Increase the understandability and readability.

5. Description: It is used after an extraction in order to name the newly
extracted method. Methods should be named in a way that communicates
(‘announces) their intention (function).

6. Restructuring Process:

1 Find a name for the new method you extract that reflects the function of the
methods.
¢ In this case the methods which extract in two forms:

v" Form: Users
o Add_User_Click().
o NewNew_Click().
o User_number_KeyPress().

v' Form: Edin_Estelam_bill
o Add_Edin_Estelam_bill_Click().
o Return_back_Click().
o Supplier_number_KeyPress().

2 The new methods signature that are extracted are not implemented by a
super-class or sub-class. In other words, the names of these methods
extracted which are not used in all software source code.

3 Declare a new method with the new name. In this case the methods which
extract in two forms:

v" Form: Users
o Private Sub Add_User_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Add_User.Click.
o Private Sub NewNew_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles NewNew.Click.

72

73

o Private Sub User_number_KeyPress(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles
User_number.KeyPress.

v' _Form: Edin_Estelam bill
oPrivate Sub Add_Edin_Estelam_bill_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
Add_Edin_Estelam_bill.Click.

oPrivate Sub Return_back Click(Byval sender As
System.Object, ByVal e As System.EventArgs) Handles

Return_back.Click.

oPrivate Sub Supplier_number_KeyPress(ByVal sender As
Object, ByVal e As System.Windows.Forms.KeyPressEventArgs)
Handles Supplier_number.KeyPress.

4 Moreover, copy the old body of code over to the new name. And also, there
are some changes that must be made in the two forms. These changes
are:The textboxl is used by some methods, which has been changed to
User_number in the Users form and to Supplier_number in

Edin_Estelam_bill form; Therefore, must be use the new names in all

Methods that used of textbox1 .

5 Compile

| Edin_Estelam_bill z) |
Class
—+ Form

* Fields

Add_Edin_Estel ...

uttenz_Lhc
Buttond _Click
Button6_Click
Button7_Click
Button&_Click
Button9_Click

| users =
Class
—+ Form

= clear
+l Fields

clearl
=l Methods

e
&%
e
av
av

-]
-
Ehd
Ehd
o

o

-

S

ot

but_back_Click
Button2_Click
Button3_Click
Buttond_Click
clear

Dispose

formld _Leoad
InitializeCompo...
ListViewl_Dou...
load_list
load_user_num

)
JV
JV
JV
JV
JV
.
&
gv
&% Edn_Estlam_Load
-
-
o
JV
av
J\'
J\'
-
-
e
-

full_Edn_Estlam
Full_listl

Full_list2
InitializeCompo...
ListViewl_Dou...
ListView?2 Click
ListView3_Dou...
load_Edn_Estla...
load_Store

print Delivery

Figure 4.32:

the apply of Rename Method mechanism

Return_back Cli...

g4 =Ted g - a
TextBox7_KeyPr...

At the end, we will apply this mechanism in the all software system forms for

resolve similar methods names problem.

Phase 2. Il Extract Method

1.

2
3.
4

6.

Bad Smell: the duplication in the Same Class.

Method Name: Extract Method.

Location: store : Class.

Reasons: Increase the performance and Maintain the consumption of
computer resources.

Description: Extract Method is considered the duplication of method that
must be removal; If a code fragment can be grouped together, turn it into
a new method whose name explains the purpose of the this method and
replace the fragment with a call to the new method.

Restructuring Process:

1. Create a new method in the same class, and name it (Methods should be named

in a way that communicates their intention); In this case the lines of code that

should be extracted are perform the cleans process TextBoxs that existed in the

store form; Therefore, the name of new method is clear().

[Sub load Store num() ...

|SJ3 Tull list() ...

Sub clear()

|End Sub

|3'i:a:e Sub Buttonl Click(Bywval sender As System.Object, ByWal e As System.Ew

Figure 4.33: the Extract Method mechanism: Create a new method in the same

class [i.e. clear()]

2. Copy the extracted code from the source method into the new target method.

74

- [
TextBomS . Clear ()
xxxxxxxx SCleae)

FULL_Tdi=wC)
load _Store_rnum [
End sub

method into the new method

3. Scan the extracted code for references. If there are local variables will be sent as
parameters of the new method, in this case there is not any local variables.

4. In this case there is not any temporary variables.

5. Look to see whether any of these local-scope variables are modified by the
extracted code. ,In this case there is not any variables that are used by new
method.

6. Replace the extracted code in the source method with a call to the new method.

ke FrIVATE SUD DUTTON4 LILCK(DOYVAL SEN0Er AS SYSTEM.UDJECT, DYVAL & AS SYSTEM.CVENTArgZs) Handies HuTTon4.Lllck
ﬁ + Private Sub Button5 Click(B 1 sender As System.Object, ByVal e As System.EventArgs) Handles ButtonS
3 [Private Sub ListViewl DoubleClick(Byval sender As Object, ByVal e As System.EventArgs) Handles Lis wl.
ul -] Private Sub Button2_Click(Byval sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click
5‘ clear()
=} End Sub
& + [Private Sub TextBox2 TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles TextBox

MSEEOX| wim il dalas Sl , MSZODOXSTYLE.MSEOOXKLENT + MSEHOXSTYLE.MSEUOXKTLKEAAINE, J4.SL3)

(=]
o End If
/_::, Catch ex As Exception
— MsgBox(ex.Message)
g_ End Try
E— clear()

End Sub

cmd . Parameters. AddWithWalue ("@x3", TextBoxl.Text)
cmd . Parameters. AddWithWalue (" @x4", user_name)
omd . ExecuteNonQuery ()
MsgBox (™ J su=3 31 Z.laec Sa 5™, MsgBoxStyle.MsgBoxRight, ".a.si 5")
clear ()
End Sub

Figure 4.35: the apply of Extract Method mechanism

7. Compile and test.

At the end, we will apply this mechanism in the all software system forms for

resolve similar methods names problem.

Phase 2. Ill Extract Method

1.1 Bad smell: the duplication in the Same Class

1.2 Method Name: Extract Method.

1.3 Location: store: Class.

1.4 Reasons: Increase the performance and Maintain the consumption of
computer resources.

1.5 Description: Extract Method is considered the duplication of method that

must be removal; If a code fragment can be grouped together, turn it into

75

a new method whose name explains the purpose of the this method and
replace the fragment with a call to the new method.
1.6 Restructuring Process:
1. Create a new method in the super class, and name it (Methods should be
named in a way that communicates their intention); In this case the name of
new method is like the methods name contained the similar code lines.

Therefore, the name of new method is quntityl().

- ———— - — - — -—r - -—r - - S

Public Function quntityl() As

Return
End Functicon

BIINOS B18(]

Figure 4.36: the Extract Method mechanism: Create a new method in the same

class [i.e. quntityl()]

2. Copy the extracted code from the source method into the new target method.

= Public Function quntityl() As Integer
com = False
Dim cm2 As MNMew SglCommand(Sgql, cn)
Dim rl1 As SglDataReader = om2Z.ExecuteReader
If rl.Read Then
= Wal{(rl!it quantity)
End IF
rL..Close ()
com = Trus
Return
End Function

)
=
a
o
=
=
=
24
[
o
=
]
=
=
=
=

Figure 4.37: the Extract Method mechanism: Copy the extracted code from the

source method into the new method

3. There is a local variable its name is sqgl, sent it as parameters of the new

method.

= Public Function quntityl(ByWal =sql As String) As Integer
com = False
Dim cm2 As MNew SqlCommand(sql, cn)
Dim rl As SglDataReader = cm2.ExecuteReader
If rl.Read Then
= Wal{rl!lit quantity)
End T
rl.Close()
com = True
Return
End Functicon

=
=
2
af
e
f=]
=
=]
®
®
o
i}
=
=
o

=
=
o]

Figure 4.38: the Extract Method mechanism: send local variable as parameters to

the new method

76

4. There is a temporary variable it name is com, declaret it in the target method
as temporary variables.
5. Now, the new method must be declared the new integer variable (I) for

return back Holds the result of this method.

= Public Function quntityl(Bywal sql As String) As

=i =
Dim om2 As Mew SglCommand(sgql. <n)
Dim rl As SglDataResader = cm2.ExecuteReader
IF ril.Read Then
I = wal(rl!it_quantity)
End IF
1 .Close ()

End = =

=
=
=
=
o
p
1
=
=
=

=
=
=

Figure 4.39: the Extract Method mechanism: define the new integer variable for

return back Holds the result of this method

6. Replace the extracted code in the source method with a call to the new

method.

Edn St bilvb JRLREEETINERY Modulel vb

% Edn_taf bl «| ¥ quntity

Me. TextBoxl. Text = quntityl(sql)
End Sub

(ARG Fon Eaf bilvh Modulelvb

Dim sql As String = "select * from Itens_stock where it_item no=" & Val(label13.Text) & " and it_store_no=" & Val(ComboBoxl.Selectedvalid

o|dxg uonn|os

Fode Fombalend FalockedTudenfhomee d/Maiel coedee 0a Foekem Akdeci: Maia]l o G Foedes; Coceifoeed Hewdlon Femkafend FolecbedTedenfhoea

¢ S il +| W quntty

T

M. TextBoxL. Text = quntityd(sql)
End Sub

Figure 4.40: the apply of Extract Method mechanism

7. Compile and test.

At the end, we will apply this mechanism in the all software system forms for

resolve similar methods names problem.

77

Din sql As String = “select * from Itens stock where it iten no=" & Val(Labell3.Text) & " and it store no=" & Val{ComboBox].SelectedValid

Phase 3 Application Solution

are

Now, after finishing removing the smells that appeared in the source code. There

two important things to be returned:

Firstly: in all source codes, the code lines that are used to link to the data baseis

be returned (See Figure 4.41)

3 1210idi3 Raiag S sa0unog eleq Wl FuIpnE U

Imports System.Data.SqlClient
Imports System.Windows.Forms.FlatStyle
SlModule Modulel
Public s As String = (“data source=.;initial catalog = Stores_Watania;Integrated Security=True™)
Public en As New SqlConnection(s)
Public user_name As String
Public w1, w2, w3, w4, v5, v6, v7, v8, com As Boolean

& |Pub;i: Function quntityl(ByVal sgql As String) As Integer ...
= Sub main()
Try
Application.EnableVisualStyles()
Application.DoEvents()
cn.Open()
login_form.ShowDialog()
Catch ex As Exception

MsgBox(" olilua 0l Gusliy Jlas¥i & Lks", MsgBoxStyle.Critical + MsgBoxStyle.MsgBoxRtlReading, "Luns")
End Try
End Sub
End Medule

Figure 4.41: return the code that is used to link of the database

Note:

v This technique (mechanism) is to be applied to all the codes in the target

software system.

Secondly: some important developer comments that have been omitted from the

source code are returned (See the following Figure).

g
2
g
E
2
El
ES
=
£
-4
=
H
=
5
5
Ay
rs
g
g
a
o
B
n
i
2
[}
s
g
i
5
A
!
2
3

78

% Modulel ~| “% main
Imports System.Data.SqlClient
Imports System.Windows.Forms.Flatstyle
SModule Modulel

Public s As String = ("data source=.jinitial catalog = Stores_Watania;Integrated Security=True™)
Public cn As New SqlConnection(s)
Public user_name As String
Public w1, w2, w3, v4, v5, v, v7, vB8, com As Boolean

[+ |Publi: Function quntityl(Byval sql As String) As Integer ...
= Sub main()
' the connection to database is opened by this method
Try
Application.EnableVisualStyles()
Application.DoEvents()
cn.Open()
login_form.ShowDialog()
Catch ex As Exception
MsgBox (" Sloldl Fueldy Jlad¥l 8 Lks", MsgBoxStyle.Critical + MsgBoxStyle.MsgBoxRtlReading, "Lus")
End Try
End Sub
End Module

Figure 4.42: return some important developer comments that have been omitted

CHAPTER 5

The Quantitative Validation of the Enhancement Approach

5.1 Introduction

This chapter discusses the Quantitative Validation of proposed Approach using
object oriented metrics (source code calculation metrics). The whole process is based
on the size of program code and number of files that created the system, these
measured by some of object-oriented metric criteria like Line Of Code (LOC)
metrics, Blank lines, Executable Physical, Executable Logical and McCabe VG
Complexity (these metrics known as Internal Measures), that are helping in

verification Enhancement Approach based on metrics.

There are several purposes in attempting to evaluate Enhancement Approach:

v' To determine what the advantages and disadvantages of the
Approach.
v' It also help researchers to verification that the proposed Approach

is effective or ineffective.

The object-oriented metric criteria, therefore, are to be used to answer the
research questions for evaluating the software code.

5.2 Presentation of the Results:

For the presentation of the results, the effective tools to measure the cases study

are used that, by verification in the previous chapter; these Tools are:

1. Project Analyzer Tool (version10.2).
2. Ndepend Tool.

79

¢ Project Analyzer Tool

" Project Analyzer is a Visual Basic code review and quality control tool.
Understand, optimize and document your Visual Basic code. Project Analyzer reads
source code written with Visual Basic versions 3.0-6.0 and VB.NET 2002-2013.
Office VBA is supported with VBA Plug". (Service Manual)

v What are the main benefits?

Project Analyzer makes a full code review. Project Analyzer generates technical
documentation by reading program source code. The available documents include
graphical representations of program structure, commented source code listings and
various reports such as file dependencies. Automatic document generation relieves the
programmers from the burden of keeping technical documentation in sync with the

existing code. [85]

Project Analyzer helps programmers to understand existing code in less time. By
browsing code in hypertext form and viewing interactive graphs, a programmer can
quickly understand how a certain function operates with other functions and variables.
This helps evaluate the impact of code changes. It is also useful for understanding

the migration effort from classic VB to VB.NET. [61][85]

v Project Metrics

To monitor their programming efforts, software engineers often use some simple
metrics such as lines of code or EXE size. These are the most basic metrics. They
aren’t very sophisticated, but they’re easy. Project Analyzer knows more. It can tell

you about the understandability, complexity and reusability of your code. [61]

" Project Metrics provides more than a hundred different metrics. You can find
comprehensive instructions to metrics and their use in the help file in the Tool. Some

of the available metrics are:" (Service Manual)

» Size metrics, such as lines of code and number of methods.

80

« Complexity metrics, such as McCabe cyclomatic complexity, cyclomatic
density, depth of conditional nesting, structural fan-in/fan-out, informational
complexity, class hierarchy metrics.

* Understandability metrics, such as length of names and amount of

comments.

Therefore, it is relied on this tool to give the validation results of the case study
before and after apply of the Enhancement Approach. The following section present

the Comparison report that is presented by this tool.

5.3 Project Status Report

Before Using Enhancement Approach <2017-10-11> vs. [After Using
Enhancement Approach <2017-10-13>] :

5.3.1 System Size

There are 4,863 [2,866] lines in the system (LLINES). It is a small system. Of
these lines, 3,328 [2,801] are code, 458 [57] are pure comment lines and 1,077 [8]are
empty. Thus, 68% [98%] is code lines, 9% [1.99%] is comment lines and 22%

[0.28%)] is empty lines.

Lines

4000
fchulngu]
j=Yululul

1000

Figure 5.43: Charts are illustrating the distribution of the system size before and

after the implementation of the Enhancement Approach

81

Other size metrics:

Number of statements: 3,338 [2,811] (STMT).
Number of procedures: 139 [148] (PROCS).
Kilobytes of source code: 182 [140] kB.
Source files: 89 [90].

Forms: 6 [6].

RN NN

5.3.2 Commentation

All in all, there are 248 [56] meaningful comments (MCOMM) in the system
(compared to 3,328 [2,801] code lines). By meaningful we mean a comment that has

some text in it, not just separators or empty comments.

The comment density (meaningful comments per code line, MCOMM%) is 7%
[2.00%]. In other words, there is a comment for every 13.4 [50.0] lines of code. We
recommend a density of over 20% so that there is at least 1 comment for every 5 lines
of code.

Anything to improve? There are 10 [10] files with comment density less than
15%. You should consider adding more cementation to files that fall below this limit.

There are 33 [130] procedures having no cementation.

5.3.3 Complexity

The average cyclomatic complexity (CC) of a procedure is 2.8 [2.6].

Anything to improve? There are 2 [2] moderate risk procedures (CC 11..20), no
[O] high risk procedures (CC 21..50) and no [0] very high risk procedures (CC over
50). The total number of procedures is 139 [148].

Cyclomatic complexity (CC) is counted as decisions+1. Decisions include
statements such as If, Elself, Case, For, While and Until. The higher CC, the riskier
are code changes to that procedure. If CC exceeds 20, you should consider it

82

alarming. Procedures with a high cyclomatic complexity should be simplified or split

into several smaller procedures.

5.3.4 Conditional Nesting

The average depth of conditional nesting (DCOND) is 0.9 [0.8]. Thus, on
average, there are so many nested conditional statements (nesting levels) in a
procedure.

Anything to improve? There are no [0] procedures with DCOND>5. Too many
nesting levels make the code difficult to understand and can lead to errors in program
logic. Consider splitting these procedures. You may also find a way to rewrite the
logic with a Select Case statement or an easier-to-read If..Then..Elself..Else structure.

DCOMND Depth of conditional nesting

b= m R

=4 035

SIOTh

203

109

Figure 5.44: the average depth of conditional nesting (DCOND)

5.3.5 Procedure Length

The average procedure (LINES/proc) is 31.8 [18.7] lines. Shorter procedures are

easier to understand than longer ones.

Anything to improve? There are 19 [4] procedures that exceed one page when
printed (66 lines).

83

& LINES Physical lines

= 0SS
b= o

= 035G

SIOTh
2090

1003

1- 11- =21 - = 1- 41 - =1 - = 1 - v1i- =Z=1-=40

Figure 5.45: the average procedure length (LINES/proc)
5.3.6 File Length

The average file (LINES/file) is 486.3 [286.6] lines. Shorter files are easier to

understand than longer ones.

Anything to improve? There are no [0] files that exceed 1000 lines. No [0] file
has over 50 procedures. No [0] file declares over 50 variables and no [0] file declares
over 50 constants.

LINES Phvsical lines

=0
=0
1 0
O S I I

Figure 5.46: the average file length(LINES/file)

84

5.3.7 Parameters

The average number of procedure parameters (PARAMS) is 1.6 [1.4].

Anything to improve? There should be max 5 parameters in a procedure. In this
system, this count is exceeded in no [0] procedures. Consider simplifying or splitting

those procedures.
& PARAMS Procedurs parameters
S0

=0

= 02

209

Figure 5.47: the average number of procedure parameters (PARAMYS)

5.3.8 Class Design

The maximum depth of class inheritance tree (maxDIT) is 7 [7]. This should be 6

or fewer.

Class variables should always be declared private to avoid accidental changes. In
this system this succeeds at a rate of 46% [44%]. Of all the 9 [9] classes, 2 [2] classes
have problems in this regard.

Project Metrics Viewer v4.1.05

Now, Ndepend Tool will be used to compare the coupling and complexity of the

study case before and after the Enhancement Approach is applied :

85

http://www.aivosto.com/

5.3.9 Coupling Metrics:

Search Results - Search Type by Coupling 3 x
Element by Name Type by Coupling & X

Search | Type ~| by | Coupling - =
Search types that are] types
0 106
U
[E] code Query Generated
Edit from t in Application.Types o~
Query where t.NbTypesUsed »>= @) il
orderhyv t_MhTvneslised descendine
@ BN | ©Groupby: =&l T = 4 @ D | _
T8 types TypeslUsed Typ =
4 w8 After Using Enhancement Approach (55
4 {} Windowsbpplication2 (25 fpes
%3 Edn_Etlaf_bill 105 types
#3 Edn_Sif_bill 105 types
¥ Edin_Estelam_bill 105 types
bill_reports 87 types
#+ main 87 types
#+ Card_items BE types
reorder_point_report 82 types
*+ store 80 types §
Suppliers 79 types |
#¢ users 78 types 3
DataSet1 60 types i
#+ DataSet1+element1DataTable 57 types
#¢ system_by 47 types
login_form 4B types
#2 print_view 31 types
% Module1 25 types
DataSet1+element1Row 18 types hd
| Sum | 3019
4| 1 | 3

Class Browser Queries and Rules Edit Search Results

Search Results - Search Type by Coupling o X
Element by Name Type by Coupling & X

Search | Type = | by |Coupling - =
o] 106

U

=] Code Query Generated

Edit from t in Application.Types ~
where t.NbTypesUsed >= @

L= orderhv_t_NhTvneslised descendine i
B | ©Goupby: =8 T £ ‘% @ DO | -
78 types Typeslzed Typ +
78 types matched |
4 w8 Befor Using Enhancement Approach 40 |=
4 {} WindowsApplication? (25 fpss 3
#¢ Edin_Estelam_hill 106 types
Edn_Etlsf_bill 106 types
Edn_Srf bill 106 types
#2 bill_reports 89 types
*# main 89 types
* Card_items 87 types
#1% reorder_point_report 83 types
#3 store 81 types
#z Suppliers 80 types
#i3 users 80 types
DataSet 64 types
#¢ DataSet1+element1DataTable 53 types
#2 login_form 49 types
¥z system_by 49 types
¢ print_view 34 types i
[I S T T o SR | o PR | o I

Figure 5.48: the coupling metrics

86

CHAPTER 6
Conclusions and Future work

6.1 Aanalysis

In order to answer the research questions, a case study has been conducted for
the general Mill company (chapter 4) the proposed approach has been used to
improve the system, which allowed for the opportunity of evaluation by analyzing the
results using the effective tools depending on the concepts of quantitative
investigation for code programming (chapter 5), and by comparing analysis results
for the system before and after improvement approach. What has been mention above

enable us to answers the research questions.

RQ 1: Size- Does the existence of the code smells make the source code
large? And; Does the restructuring of the source code make it smaller?

Point 5.3.1 shows the size of source code before and after approach application.
Regarding the form of this point, and by comparing results it could be seen, firstly:
the size of the source code is 182KB. However, as soon as the approach is applied and
deletion of smells in the source code, the size of the source code of the organizer
decrease to 140 KB this decrease is excellent , because the used system as a case
study is not considered as a big system. If this approach is applied on a bigger system
the percentage of decrease in the code size would be bigger as compared to the code
size. Secondly: the number of program lines LOC of the system has decreased from
3338 to 2811.

RQ 2: Complexity - Is the complexity of the system affected by the size of

the smells that exist in the source code?

Point 5.3.3 shows the source code of the system’s complexity before and after
applying the improvement approach. As in regard to the calculated results using the
CC , and taking their the mean average and analyzing them, it could be seen: the
complexity mean average of the system is 2.8, however, as soon as applying the
improvement approach in the complexity mean average it will decrease to 2.6.

87

This indicates that the co-relation (If A increases, B increases) between the size
of the smells and complexity is a reverse co-relation (as soon as the size of the smells
increases it becomes more complexity) in other words, complexity is effected by the
size of the smells.

RQ 3: Software Reliability-Does the program work without failure after
applying the suggested restructurings on the program? (Probability of failure-free

operation of a computer program for a specified time in a specified environment).

After the use of Enhancement Approach, which executes the restructurings
concepts, and by applying it to the general Mills Company, this system which is has
used, and testing the functions it performs, it has been found out that the system is
functioning without failure. This indicates that the restructuring application on the
programming systems does not impact the external functions behaviour this is part of

the definition, in addition, that it supports software reliability.

RQ 4: Maintainability - How good are code smells as indicators of

system-level Maintainability of software?

As a matter of fact, maintainability is considered a unit of quality measurement
“qualitative Validation” of the source code which has been left out for future research.
However, all the researchers, developers and those concerned with system designs

and constructions keep in mind maintainability.

Actually the probability of maintainability means the simplicity of maintaining
defaults and how to develop the program in the future, as well as, the probability of
maintainability is effected by the complexity of the system, the more the system is
complex the harder its maintained. i.e. the probability of maintainability is co-related
with complexity. As in respect to the item 5.3.3 its found that the rate of the system
complexity before the application of the suggested approach was 2.8 and became 2.6
after applying the approach. As mentioned before (adverse relation (If A increaes B
decreases and vica versus) between complexity and maintainability) this indicates that
the reduction of complexity percentage after applying the suggested approach means

that maintainability has increased and improved.

88

6.2 Conclusion

Smell code is one of the elements that acutely complicates the
maintainability and development of programming systems, it is also considered
one of the structuring in programming as indicated to as principles of basic
designs, which effects negatively the design quality. In this research, a simple
approach has been provided which depends on definitions of reverse engineering,
and restructuring to analyze and eliminate smells in the source code, through
defining a set of situations for that smell. The situation is defined as the relation

between classes that contain smells.

The proposed approach is considered a hybrid approach, it includes two
sort of approaches or techniques (Graph and text-based approach). Graphs are
used to describe all situations to facilitate smells detection, because it uses texts in
describing effective restructuring for all situations (a situation represent a specific
case of code smell). The developed General Mill’s Company system has been
analyzed by using VB.Net 2010 and by adding the suitable improvements through
our approach, also the qualitative validation has been ratified this system before

and after improvement.

The actual result for the experiment on the case study, shows that using
the situation provides useful information which helps in detecting code smell;
Also the use of reverse engineering is considered effective, because it support
detection of smells a siple visual way. Finally, definitions of restructuring use in a
textually makes it simple to eliminate smells effectively. In addition to using
(point 2.3 page 57) makes smells elimination of these smells is done in an
organized way, because it describes every smell detail and how to eliminate it. In
addition to the fact that the test and verifications of results quantitatively provided
good results that presented all answers to this research. Therefore, this research
has achieved its objectives represented in improving an approach that would help
developers in improving their source code of the system through eliminating three
source of code smells (the repeated code, the long indicative, the big class) by
depending on the definitions of reverse engineering, and the definition of code

restructuring.

89

6.3 Future Work

This section summarizes ideas for potential future work. This list does not

include minor improvements or cosmetic changes that are in the ‘to do’ list for

Enhancement Approach. Also omitted are various planned internal design changes

(e.g. to improve maintainability or efficiency of the system). Future work of this

research:

90

Further develop the Enhancement Approach for other code smells,
because the any smell is appear in the code has a negative impact on the
quality system standards.

The addition of other UML diagrams for use in the Enhancement
Approach.

Work on integrating the Enhancement Approach into the software
development life cycle (SDLC) for eliminate code smells in the software
system from the beginning of SDIC, precisely at the writing code phase (
Implementation Phase).

Further develop the Enhancement Approach for multi-agent systems,
because the complexity in the multi-agent systems differs from other
systems.

Developing a tool as a computerized software and demonstrate how to
make it available as a useful technology instrument for a wide range of
developers, to do the same jobs Enhancement Approach.

The addition of the quality assurance for the Enhancement Approach.
The Qualitative Validation of the Enhancement Approach will be keep in
mind in the future.

Decrease risk factor by the Enhancement Approach.

Bibliography

[1]Kaur,J and Singh,S. (2016). "Neural Network based Refactoring Area
Identification in Software System with Object Oriented Metrics". Indian Journal of
Science and Technology. Vol 9\1.

[2] Suryanarayana,G and et al. (2011). "Towards a Principle-based Classification of
Structural Design Smells”. Journal of Object Technology. Vol. 12\2.

[3]Tsantalis,N and et al. (2009)."Identification of Move Method Refactoring
Opportunities”. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,. Vol.
35\3.

[4]Wani,S,N and Dang,S. (2015). "A Comparative Study of Clone Detection Tools ".
International Journal of Advance Research in Computer Science and Management
Studies. Vol. 3\1.

[5]Al-Sreenu,K and Jagannadha Rao,D. (2012)." Performance - Detection of Bad
Smells In Code for Refactoring Methods ". International Journal of Modern
Engineering Research (IJMER). Vol. 2\5.

[6]Patil,V and et al. (2014). "Code Clone Detection using Decentralized Architecture
and Parallel Processing-Latest Short Review". International Journal of Advanced
Research in Computer Science and Software Engineering. VVol. 4\9.

[7]Al-Najdawi,N and et al. (2016). "A Frequency Based Hierarchical Fast Search
Block Matching Algorithm for Fast Video Communication”. (IJACSA) International
Journal of Advanced Computer Science and Applications. VVol. 7\4.

[8]Ashtaputre, P and et al. (June, 2016)." An Effective Approach to Find Refactoring
Opportunities for Detected Code Clones ". International Journal of Innovative
Research in Science, Engineering and Technology, 6/5.

[9]Jelodar,H and Aramideh,J. (2014). " Common Techniques and Tools for the
Analysis of Open Source Software in Order to Detect Code Clones: A Study".
International Journal of Electronics and Information Engineering. Vol. 1\2.

[10]Moha, N and et al. (January/February, 2010). "DECOR: A Method for the
Specification and Detection of Code and Design Smells”. US: IEEE Transactions on
Software Engineering, 36/1:20-36.

[11] Kaur,B and Kaur,H. (2015). "Clone Detection in UML Sequence Diagrams
Using Token Based Approach ". International Journal of Advanced Research in
Computer Science and Software Engineering. Vol. 5\5..

91

[12]Deborah, L and et al. (November, 1997). "An Approach for Exploring Code-
Improving Transformations™. University of Pittsburgh: ACM Transactions on
Programming Languages and Systems, 19/6:1053-1084.

[13]Rani, A and Kaur,H. (January, 2010). "Refactoring Methods and Tools ".
International Journal of Advanced Research in Computer Science and Software
Engineering,2/12.

[14]Singh,G and Ali,J. (2015). "A Novel Composite Approach for Software Clone
Detection”. International Journal of Computer Applications. VVol. 126\7.

[15]Ducasse,S and et al. (2006).0n the effectiveness of clone detection by string
matching. JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION:
RESEARCH AND PRACTIC. 18:37-58.

[16]Fowler,M and et al. (1999). "Refactoring:Improving the Design of EXisting
Code". Mass: Addison-Wesley.

[17]Rani, A and Kaur,H. (December, 2012)." Refactoring Methods and Tools ".
International Journal of Innovative Research in Science, Engineering and Technology,
2/12.

[18]Ten Step. "Implement Phase".
http://www.lifecyclestep.com/open/450.0lIMPLEMENTPHASE.htm. viewed 8/10/2016.

[19]Sharma,A and et al. (2010). " A Complexity measure based on Requirement
Engineering Document”. JOURNAL OF COMPUTER SCIENCE AND
ENGINEERING. Vol. 1\1.

[20]Niu,Z and et al. (2012). "Schedule of Bad Smell Detection and Resolution: A
New Way to Save Effort". IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING. Vol. 38\1.

[21]Wikipedia the Free Encyclopaedia. (August, 2014)" Software Development".
https://en.wikipedia.org/wiki/Software_development. viewed 8/10/2016.

[22]Astuti, H and et al. (March, 2015). " SOFTWARE QUALITY MEASUREMENT
AND IMPROVEMENT USING REFACTORING AND SQUARE METRIC
METHODS ".Journal of Theoretical and Applied Information Technology, 37/5.

[23]Adhikary,C and et al. (2014). "Detection of Clones in Digital Images".
International Journal of Computer Science and Business Informatics. Vol. 9\1.

[24]Kaur, H and Kaur,P. (May, 2014). "A Study on Detection of Anti-Patterns in
Object-Oriented Systems ". International Journal of Computer Applications, 93/5.

92

http://www.lifecyclestep.com/open/450.0IMPLEMENTPHASE.htm.%20viewed%208/10/2016

[25]Ragunath,P and et al. (2010). Evolving A New Model (SDLC Model-2010) For
Software Development Life Cycle (SDLC). IJCSNS International Journal of
Computer Science and Network Security. VOL.10 No.1.

[26]Fowler,M and Scott ,K and et al. (2000). "UML Distilled, Second Edition: A
Brief Guide to the Standard Object Modeling Language. Reading . Mass: Addison-
Wesley.

[27]Stocker,M. (August, 2015). " Refactoring for Software Design Smells Review
and Q&A with the Authors”. https://www.infoqg.com/articles/refactoring-for-design-
smells-book-review viewed 8/10/2016.

[28] Ghosh,A and Lee,Y. (2017). "An Empirical Study of a Hybrid Code Clone
Detection Approach on Java Byte Code ". GSTF Journal on Computing (JoC). Vol.
5\2.

[29]Zanoni,M and et al. (2012). "Automatic detection of bad smells in code: An
experimental assessment"”. Journal of Object Technology. Vol. 11\2.

[30]Navita,M. (2017). "A Study on Software Development Life Cycle & its Model".
International Journal of Engineering Research in Computer Science and Engineering
(1JERCSE). Vol 4/9.

[31]McConnell,S. (2004) . In Engelman.L and Van Steenburgh.R(eds). "Code
Complete--2nd ed".Redmond, = Washington: A Division of Microsoft
Corporation,Microsoft Press.

[32]Kannangara,S and Wijayanake,M. (2015). " AN EMPIRICAL EVALUATION
OF IMPACT OF REFACTORING ON INTERNAL AND EXTERNAL MEASURES
OF CODE QUALITY". International Journal of Software Engineering &
Applications (IJSEA). Vol. 6\1.

[33]Baumann,C. (November, 2012) ."Framework for Automated Code Smell
Correction in a BrownVeld Context".Magdeburg: Institut fir Technische und
Betriebliche Informationssysteme (IT1), Guericke University.

[34]AlHakami,H and et al. (2014). " AN EXTENDED STABLE MARRIAGE
PROBLEM ALGORITHM FOR CLONE DETECTION". International Journal of
Software Engineering & Applications (IJSEA). Vol. 5\4.

[35]Office of Information Services. (March, 2008) ™ SELECTING A
DEVELOPMENT APPROACH " . centers for medicare and medicaid services.

[36]Meyer,B. "Object-Oriented Software Construction SECOND EDITION".Santa
Barbara (California),USA:Interactive Software Engineering Inc. (ISE).

93

[37]0uni,A and et al. (2015)." Improvingmulti-objectivecode-
smellscorrectionusingdevelopmenthistory”. The Journal of Systems and Software,
105:18-39

[38]Yang,Y and et al. (2009) ."ldentifying Fragments to Be Extracted from Long
Methods". 16th Asia-Pacific Software Engineering Conference.

[39]Davis,N. (December,2005) ."Secure Software Development Life Cycle Processes:
A Technology Scouting Report ". Carnegie Mellon University: Software Engineering
Process Management.

[40]Myagmar,S and et al. (2006). " CP-Miner: Finding Copy-Paste and Related Bugs
in Large-Scale Software Code". IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING. Vol. 32\3.

[41]Roy,C and et al. (February, 2009)."Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative Approach ". Canada: School of
Computing, Queen’s University.

[42]Fahim,M and Kumar.C. (December,2005) ."A Constraint Programming
Approach to Conflict-aware Optimal Scheduling of Prioritized Code Clone
Refactoring”. Canada: Department of Computer Science, University of Saskatchewan,
Saskatoon, SK.

[43]Zibran,M and Roy.C. (2013) ."Conflict-aware optimal scheduling of prioritised
code clone refactoringl1th IEEE International Working Conference on Source Code
Analysis and Manipulation. ISSN: 1751-8806.

[44]Rieger,Mand et al."A Language Independent Approach for Detecting Duplicated
Code ". University of Berne: Software Composition Group.

[45]Khanna.VV and et al. (September,2014) ."International Journal of Advanced
Research in Computer Science and Software Engineering . India: International
Journal of Advanced Research in Computer Science and Software Engineering, 9/4.
ISSN: 2277 128X

[46]Srikanth,N and et al. (July,2011) ."Conceptual Cohesion of Classes in Object
Oriented Systems ". India: International Journal of Computer Science and
Telecommunications,4/2 . ISSN: 2047-3338

[47]Neukirchen,H and Bisanz,M."Utilising Code Smells to Detect Quality Problems
in TTCN-3 Test Suites ". Germany: Software Engineering for Distributed Systems
Group, Institute for Informatics, University of G ottingen.

[48]Dexun,Jand et al. (September,2013)."DETECTION AND REFACTORING OF
BAD SMELL CAUSED BY LARGE SCALE ". China: International Journal of
Software Engineering & Applications (IJSEA),5/7.

94

[49]Lassenius,Cand et al. (2004)."Bad Smells - Humans as Code Critics ". Finland:
Helsinki University of Technology, the 20th IEEE International Conference on
Software Maintenance (ICSM’04) 1063-6773/04.

[50]Rochimah,Sand et al. (2015)."Non-Source Code Refactoring: A Systematic
Literature Review ". International Journal of Software Engineering and Its
Applications, 6/9, pp. 197-214.

[51]Mika,V. (2015)."Empirical Software Evolvability — Code Smells and Human
Evaluations . Finland: School of Science and Technology, Aalto University.

[52]Smith,C and Williams,L. "SOFTWARE PERFORMANCE ENGINEERING .
The USA ,Santa Fe: Performance Engineering Services.

[53]Bellon,S and et al. (2007). "Comparison and Evaluation of Clone Detection
Tools". IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. Vol. 33\9.

[54]KONTOGIANNIS,K and et al. (1996)."Pattern Matching for Clone and Concept
Detection ". Automated Software Engineering, 3, 77-108

[55]Bellon,Sand et al.(SEPTEMBER, 2007)"Comparison and Evaluation of Clone
Detection Tools ". IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 9/33.

[56]Al-Najdawi,N. (2012). "A Novel Hierarchical Search Algorithm for Video
Compression”. International Conference on Advances in Computer and Electrical
Engineering. VVol. 17\18.

[57]IMOTOGNA.S and et al.(2015)"METRICS-BASED REFACTORING
STRATEGY AND IMPACT ON SOFTWARE QUALITY". STUDIA UNIV.
BABES-BOLYAI, INFORMATICA, Volume LX, Number 2.

[58]Rajakumari,K and Jebarajan,T. (Mar, 2011)." Importance Of String-Based
Techniques In Clone Detection ". Int. J. on Recent Trends in Engineering &
Technology, 01/05.

[59]Chen,X and et al. (2014). " A Replication and Reproduction of Code Clone
Detection Studies". Proceedings of the Thirty-Seventh Australasian Computer Science
Conference. Vol. 147.

[60]Sun,Wand et al. "Analyzing Behavioral Refactoring of Class Models ". Colorado
State University, Fort Collins, USA.

[61]Aivosto-programming Tools for Software Developers. (December, 2015).
"Project Analyzer — VB code review". http://www.aivosto.com// . viewed 13/8/2017.

95

http://www.aivosto.com/project/project.html
http://www.aivosto.com/

[62]Nguyen,Hand et al. (May,2009)."Complete and Accurate Clone Detection in
Graph-based Models . Canada: Electrical and Computer Engineering Department at
lowa State University.

[63]Falke,Rand et al. (October,2006)."Clone Detection Using Abstract Syntax Suffix
Trees . Germany: University of Bremen.

[64]Sarkar,Mand et al. (September,2013)."Reverse Engineering: An Analysis of
Static Behaviors of Object Oriented Programs by Extracting UML Class Diagram ".
International Journal of Advanced Computer Research (ISSN (print): 2249-7277
ISSN (online): 2277-7970) Volume-3 Number-3 Issue-12.

[65]Kumar,R and et al. (Nov,2016)."An Empirical Study of Bad Smell in Code on
Maintenance Effort ". International Journal of Computer Science Engineering
(CSE), 6/5, ISSN : 2319-7323.

[66]Arendt, Tand et al. (January,2009)."Model Refactoring in Eclipse by LTK, EWL,
and EMF Refactor: A Case Study ". Germany: Mathematics and ComputerScience,
Software-Engineering.

[67]Slinger,S. (March,2005)."Code Smell Detection in Eclipse ". Delft University of
Technology: Faculty of Electrical Engineering, Mathematicsand Computer Science
Department of Software Technology.

[68]Jubair,J and Khair Eddin,M. (March,2004)."CHIDAMBER-KEMERER (CK)
AND LORENZEKIDD (LK) METRICS TO ASSESS JAVA PROGRAMS "
Jordan: King Abdullah Il School for Information Technology, University of Jordan.

[69] Abd EI-Aziz,Rand et al. (2012)."Clone Detection Using DIFF Algorithm For
Aspect Mining ". Cairo, Egypt: (IJACSA) International Journal of Advanced
Computer Science and Applications, 8/3.

[70]Sethi,D and et al. (July, 2012). " Detection of code clones using Datasets ".
International Journal of Advanced Research in Computer Science and Software
Engineering, 7/2 ,ISSN: 2277 128X

[71]Dobrza,L. (July, 2005)."UML Model Refactoring- Support for Maintenance of
Executable UML Models ". Sweden: School of Engineering,Blekinge Institute of
Technology.

[72]Kaur,H and kaur,R . (Aug, 2014)." A Review: Clone Detection in Web
Application Using Clone Metrics". International Journal of Computer Science
Trends and Technology, 4/2.

[73]Zibran,M and Roy,C. (April, 2013). " Conflict-aware optimal scheduling of
prioritised code clone refactoring”. 11th IEEE International Working:Conference on
Source Code Analysis and Manipulation ,ISSN: 1751-8806.

96

[74]Maduranga,M and et al. (2016). " DOMAIN SPECIFIC INFRASTRUCTURE
FOR CODE SMELL DETECTION IN LARGE-SCALE SOFTWARE SYSTEMS".
Sri Lanka: International Research Symposium on Engineering Advancements.

[75]Wangberg,R. (May, 2010). " A Literature Review on Code Smells and
Refactoring". Press: Reprosentralen, University of Oslo.

[76] Coding Dojo Blog. (December, 2015). "10 Clean Code Techniques That Every
Coder Should Know". http://www.codingdojo.com/blog/clean-code-techniques/. Viewed
8/4/2017.

[77]Computer Hope. (Jun, 2017). "Softwrae Development Process".
https://www.computerhope.com/jargon/s/softdeve.htm.viewed27/6/2017.

[78]Wikipedia. (December, 2010). "Softwrae Development Process".
https://en.wikipedia.org/wiki/Software_development_process . viewed 25/6/2017.

[79]Expertiza. (December, 2010). "Ildentifing code smells".
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2012/chlb_1w44 as.viewed2/
4/2017.

[80]Garcia,F. (Junuary, 2011). " Refactoring Planning for Design SmellCorrection in
Object-Oriented Software ". University of Antwerp: SUPERIOR TECHNICAL
SCHOOL OF COMPUTER ENGINEERING COMPUTER DEPARTMENT.

[81]Mirza,O. (2007). ™ Software Performance Evaluation using UML-¥ (PSI)".
Department of Applied Information Technology.

[82]Dobrzaski,L. (July, 2005). " UML Model Refactoring - Support for Maintenance
of Executable UML Models ".School of Engineering: Blekinge Institute of
Technology.

[83]Kayttdopas. (2016). "Project Analyzer v10
http://www.aivosto.com/project/tutorial.pdf.

97

http://www.codingdojo.com/blog/clean-code-techniques/
https://www.computerhope.com/jargon/s/softdeve.htm
https://en.wikipedia.org/wiki/Software_development_process%20.%20viewed%2025/6/2017
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2012/ch1b_1w44_as
http://www.aivosto.com/project/tutorial.pdf

Appendix A
Restructuring Process

Restructuring must be done systematically to avoid or reduce the risk of
introducing bugs on the working code. Martin Fowler wrote a catalogue of 72
restructurings. This section is an extract of that catalogue.

In this appendix; A list of Restructuring Process will be presented which is
considered important to elmiminate smells in this theses. A simple explanation is to

be provided along with mechanism.

A.1 Rename Method

This Restructuring is not directly related to the duplication removal, but it is used
after an extraction in order to name the newly extracted method. Methods should be
named in a way that communicates their intention. A good way to do this is to think
what the comment for the method would be and turn that comment into the name of
the method.

o Mechanics:

6 Find a name for the new method you extract.

7 Check to see whether the method signature is implemented by a super-class
or subclass. If it is, find another name.

8 Declare a new method with the new name. Copy the old body of code over
to the new name and make any alterations to fit.

9 Compile

10 Change the body of the old method so that a call to the new created one
replaces the extracted code.

11 Compile and test.

A.2 Extract Method

If a code fragment can be grouped together, turn it into a method which its name
explains the purpose of the method and replace the fragment with a call to the new

method.

98

« Mechanics:
1 Create a new method, and name it after the intention of the method (name it by

what it does, not by how it does it).

2 Copy the extracted code from the source method into the new target method.

3 Scan the extracted code for references to any variables that are local in scope to
the source method. These are local variables and parameters to the method.

4 See whether any temporary variables are used only within this extracted code. If
so, declare them in the target method as temporary variables.

5 Look to see whether any of these local-scope variables are modified by the
extracted code. If one variable is modified, see whether you can treat the extracted
code as a query and assign the result to the variable concerned. If this is awkward,
or if there is more than one such variable, you can’t extract the method asit stands.

6 Pass into the target method as parameters local-scope variables that are read from
the extracted code.

7 Compile when you have dealt with all the locally-scoped variables.

8 Replace the extracted code in the source method with a call to the target method.

9 Compile and test.

A.3 Parameterize Method
Several methods do similar things, but with different values contained in the
method body. We can create one method that uses a parameter for the different

values.

e Mechanics:
Create a parameterized method that can be substituted for each repetitive method.

Compile.
Replace one old method with a call to the new method.

Compile and test.

o B~ W N -

Repeat all the methods, testing after each one.

A.4 Pull Up Method

You have methods with duplicated code on sub classes. You can eliminate the
duplication by extracting method from both classes and then by putting it into an

upper class in hierarchy. Often Pull Up Method comes after other steps. You see two

99

methods in different classes that can be parameterized in such a way that they end up
as essentially the same method. A special case of the need for Pull Up Method occurs
when you have a sub-class that overrides a super-class method yet does the same
thing. The most awkward element of Pull Up Method is that the body of the methods
may refer to features that are on the subclass but not on the super-class. If the feature

is a method, you can create an abstract method in the super-class.

e Mechanics:
10 Inspect the methods to ensure they are identical.

11 Create a new method in the super-class, copy the body of one of the methods to it,
adjust, and compile.

12 Delete one subclass method.

13 Compile and test.

14 Keep deleting subclass methods and testing until only the super-class method
remains.

15 Take a look at the callers of this method to see whether you can change a required

type to the super-class.

A5 Push Down Method

Behaviour on a super-class is relevant only for the subclass. Push Down Method
is the opposite of Pull Up Method (See Section A.4).

e Mechanics:
1 Declare the method in the subclasses and copy the body.
2 Remove method from super-class.

3 Compile and test.

A.6 Form Template Method

There are two methods in subclasses that seem to carry out broadly similar steps
in the same sequence, but the steps are not the same. Move the sequence to the super-
class and allow polymorphism to play its role in ensuring the different steps do their
things differently. This kind of method is called a template method.

e Mechanics:
1 Decompose the methods so that all the extracted methods are either identical or

completely different.

100

2 Use Pull Up Method (see Section A.4) to pull the identical methods into the
super-class.

3 For the different methods use Rename Method (see Section A.1) so the signatures
for all the methods at each step are the same. This makes the original methods the
same in that they all issue the same set of method calls, but the subclasses handle
the calls differently.

4 Compile and test after each signature change.

5 Use Pull Up Method on one of the original methods. Define the signatures of the
different methods as abstract methods on the super-class.

6 Compile and test.

7 Remove the other methods, compile, and test after each removal.

A.7 Substitute Algorithm

You want to replace an algorithm with one that is clearer. Replace the body of the
method with the new algorithm.
e Mechanics:
1 Prepare your alternative algorithm. Get it so that it compiles.
2 Run the new algorithm against your tests. If the results are the same, you are
finished.
3 If the results are not the same, use the old algorithm for comparison in testing and
debugging. Run each test case with old and new algorithms and watch both

results. That will help you see which test cases are causing trouble, and how.

A.8 Extract Class

You have one class doing work that should be done by two. Create a new class
and move the relevant fields and methods from the old class into the new class.

e Mechanics:
1 Decide how to split the responsibilities of the class.

2 Create a new class to express the split-off responsibilities.
v' If the responsibilities of the old class no longer match its name rename the
old class.

3 Make a link from the old to the new class.

101

v" You may need a two-way link. But don't make the back link until you find
you need it.
Use Move Field on each field you wish to move.
Compile and test after each move.
Use Move Method to move methods over from old to new. Start with lower-level
methods (called rather than calling) and build to the higher level.
Compile and test after each move.
Review and reduce the interfaces of each class.
v If you did have a two-way link, examine to see whether it can be made one
way.
Decide whether to expose the new class. If you do expose the class, decide
whether to expose it as a reference object or as an immutable value object.

A.9 Extract Super-Class

You have two classes with similar features. Create a super-class and move the

common features to the super-class.

102

o Mechanics:
Create a blank abstract super-class; make the original classes subclasses of this

super-class.

One by one, use Pull Up Field (See Section A.15), Pull Up Method (See Section
A.4) and Pull Up Constructor Body (See Section A.21) to move common
elements to the super-class.

Compile and test after each pull.

Examine the methods left on the subclasses. See if there are common parts, if
there are you can use Extract Method (See Section A.2) followed by Pull Up
Method on the common parts. If the overall flow is similar, you may be able to
use Form Template Method (See Section A.6).

After pulling up all the common elements, check each client of the subclasses. If
they use only the common interface you can change the required type to the super-

class.

A.10 Extract Interface

There is some similarity between Extract Super-class and Extract Interface.
Extract Interface can only bring out common interfaces, not common code. Using
Extract Interface can lead to smelly duplicate code. You can reduce this problem by
using Extract Class to put the behaviour into a component and delegating to it. If there
IS substantial common behaviour Extract Super-class is simpler, but you do only get

to have one super-class.

Interfaces are good to use whenever a class has distinct roles in different
situations. Use Extract Interface for each role. Another useful case is that in which
you want to describe the outbound interface of a class, that is, the operations the class
makes on its server. If you want to allow other kinds of servers in the future, all they

need do is implement the interface.

e Mechanics:
Create an empty interface.

Declare the common operations in the interface.

Declare the relevant class(es) as implementing the interface.

el

Adjust client type declarations to use the interface.

A.11 Extract Subclass

The main trigger for use of Extract Subclass is the realization that a class has a
behaviour used for some instances of the class and not for others. Sometimes this is
signalled by a type code, in which case you can use Replace Type Code with
Subclasses or Replace Type Code with State/Strategy. But you don't have to have a

type code to suggest the use for a subclass.

e Mechanics:
1 Define a new subclass of the source class.

2 Provide constructors for the new subclass.
v In the simple cases, copy the arguments of the super-class and call the
super-class constructor with super .
v If you want to hide the use of the subclass from clients, you can use
Replace Constructor with Factory Method.
3 Find all calls to constructors of the super-class. If they need the subclass, replace

with a call to the new constructor.

103

4

the

o 01 b W

104

v" If the subclass constructor needs different arguments, use Rename Method
to change it. If some of the constructor parameters of the super-class are no
longer needed, use Rename Method on that too.

v"If the super-class can no longer be directly instantiated, declare it abstract.

One by one use Push Down Method and Push Down Field to move features onto
the subclass.

v Unlike Extract Class it usually is easier to work with the methods first and
the data last.

v" When a public method is pushed, you may need to redefine a caller's
variable or parameter type to call the new method. The compiler will catch
these cases.

Look for any field that designates information now indicated by the hierarchy
(usually a Boolean or type code). Eliminate it by using Self Encapsulate Field and
replacing the getter with polymorphic constant methods. All users of this field
should be restructured with Replace Conditional with Polymorphism.

v For any methods outside the class that use an accessor, consider using
Move Method to move the method into this class; then use Replace
Conditional with Polymorphism.

Compile and test after each push down.

A.12 Replace Subclass with Field

You have subclasses that vary only in methods that return constant data. Change
methods to super-class fields and eliminate the subclasses.

e Mechanics:

Use Replace Constructor with Factory Method (See Section A.17) on the
subclasses.

If any code refers to the subclasses, replace the reference with one to the super-
class.

Declare final fields for each constant method on the super-class.

Declare a protected super-class constructor to initialize the field.

Add or modify subclass constructors to call the new super-class constructor.

Compile and test.

7 Implement each constant method in the super-class to return the field and remove
the method from the subclass.

8 Compile and test after each removal.

9 When all the subclass methods have been removed, use Inline Method (See
SectionA.14) to inline the constructor into the factory method of the super-class.

10 Compile and test.

11 Remove the subclass.

12 Compile and test.

13 Repeat inlining the constructor and eliminating each subclass until they are all

gone.

A.13 Decompose Conditional

You have a complicated conditional (if-then-else) statement. Extract methods
from the condition, then part, and else parts.

e Mechanics:
1. Extract the condition into its own method.

2. Extract the then part and the else part into their own methods.

If I find a nested conditional, | usually first look to see whether | should use
Replace Nested Conditional with Guard Clauses. If that does not make sense, |

decompose each of the conditionals.

A.14 Inline Method

A method’s body is just as clear as its name. Put the method’s body into the body
of its callers and remove the method.
o Mechanics:
Check that the method is not polymorphic.
Find all calls to the method.
Replace each call with the method body.

Compile and test.

g B~ W N

Remove the method definition.

105

A.15 Pull Up Field

Two subclasses have the same field. Move the field to the super-class.
e Mechanics:
1 Inspect all uses of the candidate fields to ensure they are used in the same way.
2 If the fields do not have the same name, rename the fields so that they have the
name you want to use for the super-class field.
Compile and test.
Create a new field in the super-class.
Delete the subclass fields.

Compile and test.

~N oo o1 B~ W

Consider using Self Encapsulate Field (See Section A.16) on the field.

A.16 Self Encapsulate Field

You are accessing a field directly, but the coupling to the field is becoming
awkward. Create getting and setting methods for the field and use only those to access
the field.

o Mechanics:

Create a getting and setting method for the field.

Find all references to the field and replace them with a getting or setting method.
Make the field private.

Double check that you have caught all references.

g A W N P

Compile and test.

A.17 Replace Constructor with Factory Method
When more than one object is created, a simple construction is needed. Replace
the constructor with a factory method.
« Mechanics:
Create a factory method. Make its body a call to the current constructor.
Replace all calls to the constructor with calls to the factory method.
Compile and test after each replacement.

Declare the constructor private.

g B~ W N P

Compile.

106

A.18 Pull Up Constructor Body

You have constructors on subclasses with mostly identical bodies. Create a super-
class constructor; call this from the subclass methods.
e Mechanics:
1 Define a super-class constructor.
2 Move the common code at the beginning from the subclass to the super-class
constructor.
3 Call the super-class constructor as the first step in the subclass constructor.

4 Compile and test.

A.19 Replace Nested Conditional with Guard Clauses
A method has conditional behaviour that does not make clear the normal path of

execution. Use guard clauses for all the special cases.

e Mechanics:
1. For each check put in the guard clause.

v The guard clause either returns, or throws an exception.
2. Compile and test after each check is replaced with a guard clause.
v If all guard clauses yield the same result, use Consolidate Conditional

Expressions.

A.20 Collapse Hierarchy

Restructuring the hierarchy often involves pushing methods and fields up and
down the hierarchy. After you have done this , you find you have a subclass that is not
adding any value, so you need to merge the classes together.

e Mechanics:

1 Choose which class is going to be removed: the super-class or the subclasses.

2 Use Pull Up Method (See Section A.4) or Push Down Method (See Section A.5)
to move all the behaviour of the removed class to the class with which it is being
merged.

3 Compile and test with each move.

4 Adjust references to the class that will be removed to use the merged class. This
will affect variable declarations, parameter types and constructors.

5 Remove the empty class.

107

6 Compile and test.

A.21 Pull Up Constructor Body

You have constructors on subclasses with mostly identical bodies. Create a
superclass constructor; call this from the subclass methods.

e Mechanics:
1 Define a superclass constructor.
2 Move the common code at the beginning from the subclass to the superclass

constructor.
3 Call the superclass constructor as the first step in the subclass constructor.

4 Compile and test.

108

Gyl alil Gpaal gl
Falinll B8 Baga (el Auel) Bale) asgia 9 Apuasal) Auigl) aldaiul
J8 (e et
GA\M\ LJAA)MJ.\Q ‘éjc'é).o;
i)) Caad
d.UH\ é:\é}:i.d
adal)
Al gkt 5 Alua LB S 0SS S0) jealiall aal sjadl Asdl) e
oo bl apanail) goobae @llgil) yain Al Aoyl JSha aal ey WS ¢ Gl
Lvigh Cligpt o dding Jas gt a5 cind) 138 8 L apenailll 53ea e Ula i
Al uadll 385 (e il Al 5 ISl 5 Jianl Al sale) amlie 5 Gl

Bl e aldeWh Alall Cayped L Asihl s3] OV e de gene 23t P e

) e gging Sl il o

clal) bl e g o Jail Cun s lagd zRdl gl e

Al) el oty (o) o S Gl 5 Sl sl e 5 sll)
Y ALYL il GLES) Al Jigad] d4adly IS Axigdl cYAD ges Cias)
A8 Ml Jas 5 Al JS e Galdll Alledll Al Bale) Caiag) agall ardiog
fanlial) i) 8la) 3y 5 VB.Net 2010 aladiuly jshae sl 13 5 calaall Zalsl)

comeail] ey U8 Uil asall e oS Baal e hal 2 clingd alasiuly dlaill e

Gloglea gy Al alatin) of a5 Al duhy 8 dppanll Gleall dagill el

ey 4 Ylad Lpuall Lunigh) Ao iy WS i) Aty Gali€l b aelud 34
il Al sale Y dpatl) cligyan Gli ¢ By Ay diphy &l e il
(57 daia 2.3 adaal) alaaiad of) ALYl L Jled <G sl Al Jeasdl (e Juad
A8 5 Aaihll Jualii S Caony 4 cialaie 48 jlay oy =lg)ll 038 e o liaill Jray «
e) 5 Bam il a2 Al Alall e oSU EEaA G) ASleaY L L lgle o Lol
b Aliaie adlaal Cnd) 1aa 3ia a8 ¢ Gl Ll 13 Al S e V) (e Caalil
gl A (e aldill DA e Al jrad) 303 (puat o guyshaa) el e
pseie o AVl dllyy (5l dadall ¢ ALhall AV ¢ 3 Sial) 8)all)) BALN il (g

A sale) asie 5 danSall il

Gyl alid Cradl mgd

fealipl) 5, Baga (ppeuat) Aligl) 5l aggda g Apeitall Luasigh oty

108 (e il
uﬁ\&sl\ L)AA)S\J.I.G ‘_Ar_ [SYEN

Pl pd) Caad

d.\.JH\ L}}éj:\..l

asle b piwalall daja Lo Jgant) cillbiial YiaSind Alugl) 038 cuath

el glal) 4085 4405

2018 Uy

