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Abstract

Software maintenance is considered the costliest process in the software system
development life cycle. The changes made in this process on a specific software entity
may trigger co-changes in other software entities. Detecting these co-changes manually
increases the time and the cost of the maintenance process, while ignoring those co-
changes may lead to software defects or poor software performance. Mining the historical
data stored on software repositories may help in detecting software entities' co-changes.
In this research, we propose the Change Propagation Path (CPP) approach. The CPP
approach is a co-change detection approach that depends on mining software repositories.
The CPP approach consists of three main phases. In the first phase, the commit data stored
in the Git repository are gathered. In the second phase, the data gathered are prepared to
be analyzed. The features are extracted, the misleading commits are removed, and the file
names are coded. Then, the files that are tagged as deleted are ignored. Finally, the data
are reduced. The output of this phase is a transactional database containing a set of coded
file names lists. The final phase includes four main steps. The first step is generating all
the possible patterns from the file names lists. The second step is creating rules from the
patterns that describe the relationship between files. In the third step, the rules with the
same antecedent are aggregated. In the fourth step, the rules are chained according to the
software editing scenario. The output of the approach was tested manually to evaluate the
output. A tool (Wide Assisting and Leading) was built upon the CPP concept and tested
to prove the feasibility of the approach. Testing the CPP approach proved that mining
software repositories may reduce the time of the maintenance process by 50%.



Chapter 1

Introduction

A software system can be defined as several separate programs along with its related
configuration files. It may also include the documentation that describes its design,
underlying databases, and other related files. In other words, the software system is a set
of entities that depend on each other and evolve together. The source code elements,
databases, and files are considered software entities [9] [10].

Software entities are being updated continually due to a new feature requested or to fix a
reported bug. The changes made during the updating process may trigger other changes.
Therefore, one change may lead to a complementary change (co-change) or a change
propagation through the whole software system [10] [9].

Co-change is the change required by another change to complete the maintenance
process. For example, adding a new data field to an existing system requires multiple
changes in the software system. First, the data field should be added to the database. Then,
the code responsible for adding, reading, and editing that data field must be changed too.
Finally, the front end of the system must be changed by adding data input to receive the
new value and label that describes the purpose of that input. All these mentioned changes
are the result of one single change. Hence, the co-change is the effect of the coupling
among software entities [21].

Coupled pairs in software engineering are the software entities that have a direct or a
hidden relationship. For example, a global variable that is used within an object or an
object that uses another object. This type of coupling is referred to as explicit coupling or
direct coupling. The other type of coupling occurs when software entities are frequently
changed together and there is no direct relationship among them. This hidden relationship
can be referred to as logical coupling or evolutionary coupling [12][14]. Hence,
evolutionary coupled entities are the entities that frequently change together [13].
Predicting co-changes makes developers aware of entities that need to be changed along
with the entities that they are currently working on. This is to avoid defects and maintain
system integrity [5]. Many difficulties to detect bugs are induced by developers who did
not notice the hidden relationships among the software entities, which lead to a change

propagation failure. Other defects come as a result of the ignorance surgeries, which are



modifying the source code by developers who do not have enough knowledge about its
purpose and its structure. Predicting co-changes can also reduce the time consumed
during the maintenance process by guiding the developers through the related changes
[91[11].

In some cases, co-changes are easily recognized by the dependency browsers provided
within the development environments. These browsers analyze the structure of the
software system to detect the related entities (directly coupled) and consequently, detect
the affected ones during the updating process [11] [14]. For example, when Class X uses
an instance of Class Y as shown in Figure 1.1. However, in other cases, especially when
there is no direct relationship between entities (logically coupled), co-changes are hard to
be detected using structural analysis. For example, when entity A writes data in a file, and
entity B is desired to read this data, so that any change in entity A that may affect the data
written must be reflected in entity B. The entities A and B are not structurally related but

there is a hidden relationship between them. Figure 1.2 visualizes this type of relationship.

X

+ field: ¥

Y

+ field: float

Figure 1.1 direct relationship between two classes



Hidden relationship

I'E'I F ¥ F ¥ F F F F F F ¥ F F F B E

Writing Data Reading Data

Storage
file

Figure 1.2 Hidden relationship among software entities

A tremendous amount of data is produced during the software system development
process, describing the changes made in this process. It represents which part of the
system has changed, who made the change when this change was made and other related
data describing each detail of the development process. These data provide a beneficial
information source, which is helpful for many software engineering aspects, especially
detecting co-changes. All of the mentioned data in addition to the software system itself
and all its previous versions are stored in software repositories, which are the

infrastructures that support software development process activities [1].

1.1 Problem Statement

Most difficulties to detect software bugs are induced by developers who sometimes failed
to detect related entities and propagate co-changes correctly. The explicitly coupled
entities are usually detected manually by reading the source code to detect the related
entities or using the Dependency Browsers, which are tools that are usually installed
within the Integrated Development Environments (IDEs). These tools analyze the
structure of the software system to detect the explicitly coupled software entities. Hidden
relationships among entities are undetectable by manual revising or Dependency
Browsers. These relationships can be detected by analyzing the development history of

the software system to recognize frequently changed together entities [13].



Many approaches have been proposed to solve this problem by analyzing the data
available in software repositories to guide the developers through the change propagation
process. However, the developers’ community has not yet adopted these approaches
widely because of the low accuracy and the high misleading recommendations provided
by these approaches [1] [11] [14]. In this research, we introduce a Change Propagation
Path (CPP) approach, which is a Mining Software Repositories (MSR) approach that
adopts the frequent patterns analysis techniques. The CPP approach provides a suggestion
about the complementary changes depending on the data extracted from the software

repository.

1.2 Aim of the Research

Since the last decade, until the recent date, researchers tried to find an optimal solution to
predict co-changing software elements. All of these attempts are not adopted yet by the
developer's community because of the low accuracy and the high rate of misleading
recommendations. Hence, this research aims to propose an approach that increases the
accuracy of detecting co-changed software entities by using the historical data stored
within software repositories. The approach is designed to assist the software maintenance
process by reducing the time and cost it takes. This research also aims to prove the
feasibility of the proposed approach by conducting an experimental study, in which we
will apply the approach to a maintenance task and measure its effect on the maintenance

process. The following objectives will guide this research to fulfil its aims

1. To introduce a sufficient background about software co-changes and MSR. This
includes the analysis of the previous work and identifies the problem related to
the co-change prediction area,

2. To extract and prepare the historical software development data,

3. Toapply an adapted frequent pattern analysis algorithm to produce a single entity
antecedent rule, and process these rules to form the change propagation path,

4. To evaluate the proposed approach and discuss the obtained results.

1.3 Research Questions

This research tries to answer the following questions:



RQ1: To what extent the cost and time are affected positively by applying CPP during

the maintenance process?
RQ2: What is the optimal software repository data extracting tool?

RQ3: What are the features of the data extracted from the software repositories that will

produce knowledge?

RQ4: What factors are vital to selecting a data mining algorithm for producing required

knowledge for the CPP approach?

1.4 The Proposed Method

In this research, we employed the quantitive methods through a deductive approach, on
data extracted from the Git software repositories. The proposed approach consists of three
main phases. The data extraction phase is where the data are gathered. The data preparing
phase where the data is cleaned, transformed, and reduced. The analytical phase is where
the data mining techniques are applied to produce knowledge from the preprocessed data.
The output of these three phases comes as recommendations to guide the developers

through the maintenance process.

1.5 Dissertation Structure

This dissertation starts with an introduction and a brief description of the context of the
problem under the study and outlines our aims, objectives, and research questions.
Chapter 2 provides a sufficient background about the topics, tools, and applications
mentioned in this research. Chapter 3 previews the previous works related to our topic,
and the contribution of this research. Chapter 4 introduces the research methodology that
will guide this research to achieve its aim. Chapter 5 contains the implementation of the
proposed solution and describes the experiment that we are conducted to prove the
validity of the proposed approach. Chapter 6 represents testing the feasibility of the
approach. Chapter 7 presents the conclusion of the research along with the

recommendations and future work.



Chapter 2

Background

Software maintenance is the costliest process among software system life cycle processes.
It costs about half of the total software system development budget [10]. The edits made
during this process may require a complementary change (co-changes), which are the
changes made to other software entities according to a previous change. Ignoring those
co-changes may cause defects or software poor performance. Co-change is the result of
software entities coupling that may be explicit and easily detected, or implicit and difficult
to be noticed manually. Co-changes can be detected by revising the historical data of the
software system development. A vast amount of data is produced during the software
development process. This data describes each detail in the software system history, and
is stored in the software repository along with the software itself and its previous versions.
The data stored in software repositories are a valuable source of knowledge that serves
many aspects of software engineering. Software repositories store a huge amount of data
in unstructured form, gaining knowledge from big unstructured data requires applying
data mining techniques to produce the desired knowledge [1].

This chapter gives a sufficient background about the topics of this research. In the
beginning, this chapter introduces the software maintenance process, then it discusses the
co-changes, which is the side effect of the changes made during the software maintenance
process, and why it is important to predict those co-changes. After that, this chapter talks
about software repositories and their categories and how knowledge is extracted from
software repositories using data mining. Finally, the chapter describes the tools and

programs used to accomplish this research aims.

2.1 Software Maintenance

Software maintenance is the process of updating the software system after being
delivered. This update may be required as a result of a software defect occurring after
system delivery, adapting the system to a new environment, or a new feature requested
by the customer. After the software system is delivered, development team members
usually break up, opening the way for new members who have no experience of the
software system to do the maintenance tasks [10]. The new team members might spend a

long time to be familiar with the system, and be able to propagate changes correctly. The
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maintenance contract is usually separated from the development contract, leading to
assigning the development process to one company, and the maintenance process to
another company. As a result of this poor practice, more time might be consumed to
understand the system by the new company team members. The maintenance process is
considered a less-skilled process than the development process, so it is usually assigned
to junior developers who do not have enough experience, which induces more defects in
the system. Due to incomplete changes, more time is consumed and higher costs to
maintain. Consequentially, maintaining a software system costs two times as much higher

than the developing process [10].

2.2 Co-change

Changing a software system entity may lead to changing another entity, or a change
propagation through the whole system. This change is also referred to as co-change.
Failing to propagate changes correctly is the main reason for software defects and poor
performance so that predicting these changes can reduce the time and cost spent on
software maintenance. In some cases, when software entities are structurally related, co-
changes are easily detected. In other cases, when there is no direct relationship among
software entities, co-changes require more effort to be detected by revising the software

development history and relating the frequently changing together software entities

[11[9][22].

2.3 Software Repositories

According to Hassan et al [12], software repositories have three main categories
depending on the data that is stored in them: historical repositories, code repositories, and
deployment logs. These repositories provide the infrastructure that supports the software
development process, forms a collaborative environment where development teams can
host their projects, keeps the track of those projects, and works remotely in a collaborative

way. The following subsections describes each type of software repositories:



2.3.1 Historical Repositories

The purpose of the historical repositories is to be used as an archive for software systems
and the data, which illustrate the software development process. This category of

repositories has different types according to the data stored in them.

2.3.1.1 Source Control Repositories

Source control repositories or version control systems track the project's development
history by recording each change made in the software along with a meta-data that
describes each change. For example, which part of the software was changed, who made
the change, and when the change was made. Source control repositories provide a short
message sent by the developer to describe the purpose of the change. They also provide
the ability of parallel development by branching features. Some of these repositories work
in centralized style, where the repository is hosted on a single server, i.e., Concurrent
Versioning System (CVS) and Subversion, while other repositories work in distributed

style by mirroring the whole repository among clients like Git and Mercurial [17][12].

2.3.1.2 Bug Repositories

Bug tracking is the process of tracking and monitoring the bugs and issues that occur
during the development process. Issue tracking systems (also known as bug repositories)
are responsible for storing developers' bug reports and the features requested by users. It
categorizes, describes, and tracks the problem to enable the developers to suggest
enhancements of the reported bugs. The Jira and Bugzilla are examples of this type [18]
[17].

2.3.1.3 Communications Archives

Communications archives record all the discussions and communications among the
development team members about the development process. Communications archives

contain Emails, instant messages, and other types of communications [12].



2.3.2 Code Repositories

Code repositories are storage spaces where developers can store and share their project
releases. These repositories are usually integrated with other software development
support systems to create a collaborative development environment such as

sourceforge.com, GitHub, and Google code [1].

2.3.2.1 Git Repository

Git is a distributed version control system that allows developers to work remotely. Also,
keeps track of all the changes made during the development process, along with the
related data, such as who made these changes, when these changes were made and a
message that describes why these changes were made. Figure 2.1 shows a sample of

Laravel framework data stored on Git repository.

Date : 2811-86-83 23:45:88-85:88
Message initial commit of larawel!
Commit Id al88d62185532fcf232839389Th71b862d9B4612
Files
File Mame : .gitignore
complexity : None
Change Type : ModificationType.ADD
Removed @ @
Added @ @
diffrences : {'added': [], 'deleted’: []}
Number of lines of code : None
Fkkdkkkkkhkk ke kk ke ke ke ke ke ke kg
File Mame : application.php
complexity : 29
Change Type : ModificationType.ADD
Removed @ @
Added @ 98
diffrences : {'added': [(1, '<Zphp'), (2, ""), (3, 'return array('), (4, ""), (5, "\t/¥")

Mumber of lines of code : 32

Figure 2.1: A sample of Laravel framework development data stored in the Git repository

In 2002, the Linux kernel project started to use a DVCS called BitKeeper as a free-of-
charge product, to keep the track of changes they made [12]. After three years, the free-
of-charge deal was cancelled due to some issues between the Linux community and the
company producing BitKeeper DVCS. This forced Linus Torvalds, the inventor of the
Linux operating system, to create a new tool named Git. This new tool is focused on
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fixing the issues they faced with BitKeeper. The new tool aimed to work faster with a
simpler design and support for parallel development. Also, fully distributed and able to
handle large projects [12].

Git works in a simple style as described in Figure 2.2. After the repository is initiated, the
first step is making changes to the projects file, the changes are snapshotted on the staging
area, and then the changes are committed to the Git repository. The commits made on the
Git repository can be pushed to the remote server later. Git Commit contains all the data
describing the changes made, besides the affected files. Each commit has a unique
identifier that allows the developer to retrieve the data within the commit, and also to

revert the changes made to a certain point of time [12].

Working Staging
Directory Area
Checkout the project

Figure 2.2: The way that Git stores and retrieves changes data [12]

.git directory
(Repository)

2.3.3 Deployment Logs

Deployment logs repository contains data about the software execution and usages such
as error messages and software performance. The data stored in logs is used to diagnose
failures and poor performance and helps to propose solutions [19] [12].

2.4 Mining Software Repositories

Since the last decade, software repositories have taken a vital role in the software
development process. The data stored in these repositories started to attract the attention

10



of the scientific community. Analyzing this data can produce valuable information, which
can be acted upon. This process is known as Mining Software Repositories (MSR) [37].
Due to the importance of the MSR field, the first workshop about MSR was held in 2004
by the International Conference of Software Engineering (ICSE), and after four years of
working in this field, the first MSR conference was held [12]. MSR is helpful in many
aspects of software engineering. It can help the development team to understand software
systems. Predicting and identifying bugs can be more effective by analyzing the previous
versions of the software systems stored within the repositories. Revising the historical
data of a software system conveys vital information about the pairs of entities that change
together and how and why the change was made. This can guide developers while

propagating changes in future versions of the systems [12].

2.5 Frequent Pattern Analysis

Frequent pattern analysis is the analytical process of detecting the frequently occurring
data sets. This process is applied to a transactional database, which is a set of transactions,
each transaction has a unique identifier and contains a set of items [28]. A frequent pattern
is the item set that satisfies the minimum support threshold assigned by the data analyst.
Those patterns are considered interesting patterns. The support means that the percentage
of transactions that contains a particular data set in a given transaction set [29]. Let T be
a set of transactions and X is a set of items, the support (SUPP) of X is calculated as

shown in the following equation.

[{XJ€ET|
IT|

SUPP(X) =

Interesting patterns are the raw material to create association rules, which are the rules
that describe the relationships among items. This type of rule is usually used to predict
consumer behaviour, in the manner of consumers who bought this item also bought that
other item. This can be useful in making offers, promotions, and ordering items on market
shelves. Each rule has a left side (antecedent) and a right side (consequent). The rule is
considered interesting if it satisfies a minimum confidence measure [28]. Let X and Y be
disjoint item sets, where T is the set of transactions so that the confidence (CONF) of the

rule X — Y is calculated by the following equation

SUPP(XUY)

CONF(X »Y) = SUPPC)
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In the same way, the frequent pattern analysis can be used to predict the co-changing
software entities, developers who changed this entity also changed that other entity, which

reveals the hidden relationships among software entities.

In 1966, Petr Hajek and chytil [30] introduced the General Unary Hypothesis Automation
(GUHA) method. This method is aimed to analyze the properties of a set of objects to
convey if a combination of properties is the cause of another combination of properties.
For example, a combination of symptoms is an indicator of diseases. GUHA was the first

attempt to analyze the frequent patterns [30].

In 1994, Agrawal and Skrikant [31] have proposed the Apriori algorithm that follows the
candidate itemset generation approach, by applying a breadth-first search to generate all
the possible itemsets within a transaction, where k-frequent itemsets are used to find the
k+1 item set. Generating all the candidate itemsets makes the Apriori algorithm unable to

handle large transactions or big databases.

Later in 2000, Han et al [32], have proposed another method to generate frequent patterns,
called the FP-Growth algorithm, to generate frequent itemsets without candidate
generation. By using a prefix-tree structure called FP-tree (Frequent-Pattern tree), FP-
growth solved several issues in the Apriori algorithm, such as the repeated scanning of
database FP-growth only scans the database twice the time consumed generating the
candidate itemsets also reduced in FP-growth. However, the FP-growth algorithm suffers

from memory consumption when applied to large data sets.

Another algorithm was introduced in 1997, which is called Equivalence Class Clustering
and bottom-up Lattice (ECLAT) was proposed by MJ Zaki, et al [33]. ECLAT is a
scalable algorithm that uses the depth-first search approach, which consumes less
memory than the Apriori algorithm, also the ECLAT does not involve multiple database
scans, which makes it work faster than the other approaches[33]. Candidate Generation
and FP-growth approaches use item-id data sets, where each transaction is a set of items
with a transaction id as shown in Figure 2.3. The ECLAT algorithm uses a different data
format, where each item is associated with a set of (TIDs) transaction ids. Figure 2.4
describes the TID data format, which is helpful in the manner of scalability, but
sometimes TID gets quite long and expensive to compute. This problem was solved by

using the Diffset technique [29].
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TID Ttems
T1 I N I T - el

Figure 2.3: items IDs data format

Item TIDs
I1 T1, T2, T3.T4...... Tn

Figure 2.4: Transactions IDs data format

2.6 Tools and Applications used in the Proposed Solution

In this section, we describe a set of tools and applications that were used to accomplish
our study. First, we introduce Komodo Edit, which is a text editor that was used to write
the front end of the suggestion tool. After that, we give a brief description of MAMP, the
local web services environment that was used to host the suggestion tool on the local
server. Then, we describe PyCharm, which is an integrated development environment that
was used to write the back end of the suggestion tool. After that, we introduce Ali
Research Tool (ART), a web-based tool, which is designed by the researcher to
summarize the information gathered from books and research papers. We also mention
the Git repository, the source of the data that was used to prove the feasibility of our
approach. Finally, we describe MySQL relational database management system, and its
graphical user interfaces PhpMyAdmin, which was used to store the output of the

processed data.

2.6.1 Komodo Edit

Komodo edit as shown in Figure 2.5, is a text editor developed by Active State [53].
Komodo Edit provides the ability of managing source code, by colouring different parts
of the source code and giving the code a proper layout. It also auto-corrects syntax errors
and auto-completes the code therefore, the code writing using Komodo is a faster and
more accurate process. We used Komodo Edit to write the Php source code of the WAIlead
tool [53].
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.. code.php (C:Axampp\htdocs\waleedTool) - Komodo Edit 11.1

-

< >~ Ew - &-| - ©
4 codephp X
<?php
function viewMain()
{
2>

000 -

<div style="margin: auto;" class="text-center jumbotron">

<h4>Insert your repository link</hd>

<hr>

<form action="do.php" method="post" class="form-inline">
<input type="text" name="link" class="form-control"s
<input type="hidden” name="act” walue="link">
<input type="submit" value="Go" class="btn btn-warning">

</form>

</divy>

<2php
}
function insertlink()
{

$myfile = fopen("link.txt", "w") or die("Unable to open filel");

$txt = $_POST['1link'];
furite($myfile, $txt);
fclose($myfile);

r

function runTool()

{

set_time limit ( 8 );

/*$command = escapeshellcmd( ' FinalTool/venu/test2.py");

S$output = shell_exec($command);
echo Soutput;*/
$python_print = "finalTool/test2.py";

B1¢Cd B xampp P B htdocs $ B waleedTool ¥ < codephp $

Go to Anything o

Sek3ch,1ln Lm7d Cok9 UTF-8 « ¢ePHR~ |

2.6.2 MAMP

Figure 2.5 Komodo edit to write PHP, code

The MAMP is a local web services environment as described in Figure 2.6. It contains all

the necessary tools and apps to test web applications on local machines. MAMP contains

apache and Nginx webservers, MySQL database management system, and supports most

back-end web development languages [54]. We used MAMP to test the WAIlead tool on

a local machine and we managed to use it as a server on a local network during the

experiment.

) MAMP

ElEIESa)

»

O

Preferences...

MAMP

manage your websites locally

R

Cpen start page

Apachs Server [E

MySQL Server [

b

Stop Servers

Quit

Try MAMP PRO
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Figure 2.6: MAMP local web services environment

2.6.3 PyCharm

PyCharm is an (Integrated Development Environment) IDE Designed specifically for
Python language as shown in Figure 2.7. It provides all the required tools to write and run
python code [55]. We used PyCharm to write python code in data extraction,
preprocessing, and analyzing phases. Also, we used it to write the python part of the
WAIead tool.

& finalTool [C:xampp\hidocs\waleedToolfinalTool] - \testZ py - PyCha
Fle Edit View Navigate Code Refoctor Run Tools VCS Window Help
finalTool test2py tes2 ~| b # Q
Projecy €3 = | & — start = time.time()
> 1 finalTool
External Librarics def subsetter(self,1): # returns o List of all sublissts for a given Lsit
Scratches and Consoles

I 1 Project

for § in range(len(lists))
lists[j] = lists[3] + [new]

lists = orig + lists
lists.remove(lists[@])
return lists

Terminal:  Local + o -

2 Microso ft Windows [Versien 6.1.7601]
() 2009 Microso ft Corporation. ALl rights reserve d

]
g
£
=

*

i= 6: TODO B4 Terminal @ Python Console @) Event Log
0] IDE and Plugin Updates: PyCharm is ready o update. (6 minutes ago) 420 CRLF UTF8 4spaces Python37 (finalTool) W &

Figure 2.7: The PyCharm IDE

2.6.4 Git Repository

Git repository is one of the most popular software repositories, as it is considered a
software changes tracker. Git repository provides the ability to store the software itself
along with all the previous versions and the metadata that describes the development
process [56]. We used Git to keep track of the changes of the WAIlead tool. Also, Git is

the data source for our research.

2.6.5 MySQL and PhpMyAdmin

MySQL is a database management system that adopts the concept of the relational
database. MySQL databases is a reliable storage system that is suitable for small and
medium projects, and it is also compatible with PHP and python the languages used in
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this research's practical part [57]. MySQL is usually accessed and manipulated through
the command line, which is a complex and time-consuming process. Hence, we used
PhpMyAdmin, the graphical user interface of MySQL to create and manage the
databases. Figure 2.8 describes the PhpMyAdmin user interface.

p hP I [ f]Server localhost3306 » @ Database: eclat » [ Table: items
ﬁﬂJU‘ & e | ] Browse & Structure J;f saL 4 Search é-é Insert =} Export [« Import a5 Privileges ¥ More
Recent  Favorites + Options
™ Q—T% v file 1D id
4. calipso -| O g7 Edit 3éCopy @ Delete README xt i 1
-
=L eclat 0 7 Edit 3&Copy @ Delete build.xml 2 2
4 New -
%0 com (0 &7 Edit 3 Copy @ Delete HAbstractScannerjava i3 3
I I
T’y’ com2 (0 &7 Edit %< Copy @ Delete HClientjava i4 4
+L 47 com3 g =
e (0 g7 Edit 3eCopy @ Delete HConstants.java i5 5
) i ct =
-:i-_yi items (0 47 Edit %2 Copy @ Delete HGlobals java i6 6
T:V', i (O 7 Edit ¥ Copy @ Delete HLocking.java i7 7
=+ l# transactions .
~ 1all2020 (0 o7 Edit $£Copy @ Delete HLog java i8 8
+ . 099 (O 47 Edit 3 Copy @ Delete HLogEdit.java i9 9
haonolol 3 =
- honololo O 7 Edit & Copy @ Delete HLogKey java 10 10
+ 4 information_schema = =
L_ lara O 7 Edit $¢Copy @ Delete HMasterjava M 1
! i =
o midb O 7 Edit & Copy @ Delete HMasterinterface java 2 12
+__ 1 mi_tables . _
L e ~ | m/Console |t < Copy @ Delete HMasterRegioninterface.java i13 13 -

Figure 2.8: PhpMyAdmin the GUI of MySQL
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Chapter 3

The Literature Review

As a time-consuming process, searching for hiddenly related software entities during the
maintenance process has gained the attention of many researchers since the last decade.
The aim was to find an optimal approach for automating this process and providing

accurate suggestions for developers to assist the maintenance process.

Thomas Zimmerman [13] applied the Apriori algorithm on historical data extracted from
the Concurrent Versioning System (CVS). The rules produced by the algorithm are used
to build a Reengineering of Software Evolution (ROSE) recommendation tool to guide
developers while propagating changes. The ROSE was designed to be used as a plugin
for Eclipse IDE, which can only be applied to a specific type of software project. The
Apriori algorithm that was used to build ROSE has some drawbacks, where it consumes
a long time scanning the database (N times) and spends time while creating candidate

itemsets.

Thomas Zimmerman et al [21] has investigated the co-change among lines of code. Using
the annotation graph to visualize how lines of code co-change over time. An annotation
graph is a multipartite graph, where every part represents a version of a file. The nodes in
the graph represent a line of code, and the line connecting two nodes means that a line of
code is produced by editing another line of code. The approach concluded that searching
for a co-changing line of code is a quite expensive and infeasible method to be applied in

supporting the development process.

An approach for extracting data of over 40 years of software development and applying

the Development Replay (DR) approach to these data has been proposed in [9]. The
empirical results convey that the historical data of software development are extremely
useful in predicting complementary changes. This can assist developers in propagating
changes in the future.

Ramadani [14] proposed a recommendation system for co-changed by applying the FP-

Growth algorithm on data extracted from Git versioning repositories. However, this
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approach was only applicable to detect co-changes on coarse granular software
entities(files).

Rolfsnes et al[4] have used a frequent pattern analysis on the data of 15 open-source
software systems and introduced the concept of hyper-rules, which is the result of
aggregating multi-applicable rules. The results showed that the hyper-rules can improve

the accuracy of the suggestions by 13% to 90% compared with previous works.

Rolfsnes et al [27] introduced what so-called TARMAQ algorithm for mining
evolutionary coupling. The algorithm focuses on the drawbacks of using off-shelf mining
algorithms and worked file-level granularity. The TARMAQ algorithm has achieved a
higher accuracy rather than the ROSE tool [13].

Islam [5] introduced the concept of the transitive evolutionary coupling, which is a
relationship among software entities that never changed together in the past and are likely
to change in the future. The traditional association rules cannot detect that kind of
relationship. Therefore, a set of transitive association rules have been proposed.
Compared to the TARMAQ tool that depends on the regular association rules, the

transitive association rules achieved 13.96% recall and a 5.56% precision higher.

Ajienka et al [3] have investigated the hidden relationships among software classes
according to the semantic coupling of its identifiers. However, this approach was
applicable only on OO-designed systems and on the class-level entities. The solution
concludes that there is no correlation between semantic coupling and change coupling
although 70% of semantic dependencies are linked to change coupling but not vice versa.

Wiese, et al [11] have proposed a prediction model for each pair of software entities,
based on relevant association rules. Those rules are produced from the contextual
information extracted from issues tracking systems, developers' communications, and
commits metadata. Later, Wiese, et al [20] have compared suggestions based on
contextual information with suggestions based on association analysis and concluded that

the contextual information provided fewer false recommendations.

Tosun and Romero [7] extended the work of Wiese et al [11] by building a prediction
model to predict the co-changing files using the contextual records on software
repositories. This approach achieved a 20% to 45% less accuracy than the previous work.

Similar to [14] this approach applies to coarse granular entities.
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Vidacs, L., and Pinzger [8] investigated the co-evolution patterns between production
code entities and their test code entities.

Stana and Sora [16] analyzed the relationships among logical dependencies and the
structural dependencies on data extracted from 27 open-source software projects written
in Java and C#. The work concluded that including structural dependencies along with
logical dependencies improves the applications based on dependency models and co-

change detection is one of them.

Wang et al [6] conducted an empirical study on bug fixes including multi-entities to
discover the frequently fixed together entities and based on syntactic dependencies among
changed entities. The approach suggested creating a Change Dependency Graph (CDG),

which can be used to guide developers through the entities that are meant to be fixed.

Jiang, et al [2] proposed the CMSuggester approach, which is aimed to predict co-
changing software entity pairs during maintenance tasks that require multiple changes.
The most majority of the proposed approaches depends on the historical data of the
software development, where the frequently changing together entities in the past is likely
will change in the future. The CMSuggester approach provides recommendations based
on analyzing the structure of the software code, where the methods that access the same
data field are clustered, and the produced recommendations are based on method clusters.
This approach has achieved 70% of suggestions accuracy. However, this approach can
only suggest co-changing methods.

Beyre and Noak [26]introduced a method that clusteres software artefacts into
subsystems using a co-change graph, which is a model that represents software artefacts

as vertices and the co-changes among these entities as edges between vertices.

Kouroshfar [34] investigated the impact of software entities co-change on the software
quality. They applied a subsystem decomposition model on four different open-source
projects. The results showed that the co-changes among software entities in the same

subsystem can improve the bugs prediction process.

Kagdi et al [35] have used the log-entries data in the Subversion repository to investigate
the sequence of files changing the results. A set of tools have been built to discover the
correct sequence of file changing, to help developers in predicting future changes, and

analyze the evolution process of software systems.
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Martinez and Monperrus [44] have designed a tool called Coming, which is a tool that
extracts the commits data from the Git repository. The data extracted are revised to
convey the change patterns of the fine-grained software entities (Classes, Methods, etc.).
The result of this process is stored in JSON format. However, this tool does not provide

any recommendations, since it is only applicable as a plugin in a larger mining approach.

Alali et al [46] introduced two new ranking patterns measures, i.e., pattern age and
coupled files distance. Those new measures are used to reduce the false positives in co-
changes recommendations. To extract the patterns from sub-version VCS, the srcMiner
tool has been designed and built upon the vertical data format pattern generation
algorithm ECLAT. The tool was applied on eleven different projects using file-level

granularity and concluded that about 75% of co-changes are localized.

Agrawal et al [47] introduced a tool called Ruffle that was used to produce change
recommendations using software revision history by calculating the changing proximity
for each pair of classes. The Ruffle tool was built using Java and Python programming
languages. Each software entity was stored along with the revision id that includes it, then
an SQL query was applied to generate changing pairs. To evaluate the Ruffle tool
performance, five different project histories have been used. However, the tool has

achieved accuracy between 0.7 and 0.8.

The ability of the commit data to provide predictions for co-changes decreases by time
[49] [50] [51]. To avoid this problem, Agrawal et al [48] proposed Change Prospect (CP)
to measure the feasibility of a commit to increase the accuracy of predicting the co-
changing pair of classes.

In conclusion, the previous work investigated the co-change occurrence or the occurrence
of the factors responsible for making software entities evolve together by using different
methods and approaches. Table 3.1 provides a summary of this related research work.
However, it seems that none of these approaches was widely adopted by developers yet.
This is because of the lack of accuracy or during the high rate of false recommendations.
Some of these works focused on one level of granularity so that it cannot be generalized
on the other levels of granularity. Other works have proposed expensive to apply
approaches, therefore, increase the cost of the maintenance process. Hence, a usable
automated co-change detecting approach requires to be accurate enough, stable and cost

effective in manner of time and computation effort. While the software development is a
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continues process, the co-change detection approach output must be scalable to cover the
changes without reanalyzing the old data.

In this research, we introduce the CPP approach, which tries to avoid the weak points in
the previous works, and employs some of the proposed techniques to produce more
reliable recommendations. Therefore, this will serve the main aim of this research, which

is decreasing the cost of the maintenance process
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Table 3.1: a summary of the software complementary change detection approaches

Approach Tool Data Data source Mining Granularity Main Findings

format algorithm level
Thomas ROSE tool  Commits CVS Apriori Code elements ROSE tool employees’ unfeasible algorithm that
Zimmerman level is expensive to apply and provides unscalable
[13] output.
Thomas Annotation  Lines of CVsS - Lines of code Detecting co-changes among lines of code is an
Zimmerman graph code expensive process.
[21]
Ahmad Hassan Developme  Commits CVS - Files Proved that historical data is a significant source
etal [9] nt replay for detecting co-changes
Ramadani, J Recommend Commits Git repository FP-Growth  Files This approach is only applicable on file level only
[14] ation system
Rolfsnes, Tet  Hyperrules - 16 open source  Association  Files Aggregating applicable rules can increase the
al[4] projects rules accuracy of the co-change detection process
Rolfsnesetal TARMAQ  Commits - TARMAQ  Files TARMAQ is a mining algorithm that was
[27] exclusively designed to detect co-changes

Islam, Transitive Commits - Association  Files Spotted the light on the relationship among
M.A[5] rules analysis software entities that have never changed together
in the history

Wiese, I.Setal Prediction Contextual ~ Communication Association - Using the contextual data along with the
[11] model data/Commi archive, issue analysis traditional methods may increase the accuracy of

ts metadata  tracking the co-change detection process.

systems

Tosun, A.and  Prediction Contextual ~ Communication Association  Files Using the contextual data only may decrease the
Romero, B [7] model data/Commi archive, issue analysis accuracy of the predicting process by 20% to

ts metadata  tracking 45% less than the work in 7

systems

Wang, Yetal CDR Contextual ~ Bug tracking - Code entities Using bug fixing data can help in detecting co-
[6] (Change data systems changes
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propagation

graph)
Jiang, Zetal[2] CMSuggest Source code CVS clustering Code entities Co-changing methods that access the same data
er field are likely to co-change
Kouroshfar Subsystem  Source code Four different - Code entities Artifacts in the same subsystem are more likely to
[34] decompositi open-source co-change
on model projects
Kagdi et al Sequence Historical Subversion analyze the  Code entities The correct sequence of software entities
[35] file change  data repository evolution changing may affect the accuracy of the co-
correcting process of change detection process
tools software
systems
Martinez and Coming tool Commits Git repository - Software releases  Provided a plugin that can be used in larger
Monperrus[44] mining software repositories projects
[47] Agrawal Ruffle tool ~ Source code Five different SQL queries  classes Investigated the change proximity for each pair of

projects

software entities
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Chapter 4

The Proposed Method

This chapter describes the design of the CPP approach and its phases. The CPP is an
approach for detecting co-changes among software entities. The CPP approach employs
frequent patterns analysis techniques to search in the historical data of software
development for frequently changing together software entities. The frequent patterns
generated are used to create association rules, which predict the co-changes for a set of
software entities based on a change on one single software entity. The created rules are
aggregated to form a larger rule based on the same antecedent. The larger rules create the
Change Propagation Path depending on the software editing scenario, which leads the
developers through the related changes. Using the CPP approach may decrease the time
consumed while searching for related changes manually during the maintenance process.
It also may eliminate the cost of hiring highly paid senior developers.

The aim of this research is achieved by employing quantitative methods, through a
deductive approach [58] [61]. The aim is reached by applying a data mining framework,
on the data generated during the development process and stored in software repositories.
Figure 4.1 describes the three phases of the proposed approach. Phase I is concerned with
gathering data from the Git software repository. The data collected in Phase | are prepared
and cleaned in Phase Il. Finally, in Phase 111, the required knowledge is produced using
data mining techniques.
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Phase I: Phase Il Phase Il
Data Extraction Data Preprocessing Analytical Processing

i - Feature extraction Frequent pattern
Extracting commit data from generation

Y

Y

Git repository

b

Y h
Removing misleading

Rules Generation

commits
h ¥
Coding file names Rules Aggregation
h ¥
Removing deleted files Forming CPP

k

Data reduction

Figure 4.1 The CPP Approach Framework
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The following subsections describe the three phases of the CPP approach. The process
starts with extracting data from the software repository, cleaning and preparing the
extracted data., and finally, analyzing the data and producing the required knowledge in

the form of a change path.

4.1 Phase |: Data Extraction

In this phase, the data stored within the Git software repository are extracted. This data
should be covering a long period of development time to enable the mining method to
convey relationships among software entities. The commits stored within the Git
repository that is stored on a local machine, or the commits pushed to GitHub are pulled
using one of the available commit extraction tools. We conducted a comparative study
among data extracting tools and frameworks. To decide which extraction tool is suitable

for our purpose.

The Git repository stores the software system versions and records the changes made on
its entities. Also, it records the metadata describing those changes in the following three

different objects as shown in Figure 4.2.

Commit

Message :”Some message”
Parent : c898896f3f...

Tree
Hash : bfd20436f4... —»-Hash : b31d032cfcf...
Tree : b31d032cfcf== BLOB : 8743b52063...
BLOB : f7u3bc20kt... OB : 57u3ba206t...
BLOB BLO BLOB
HASH : f7u3bc20kt............ HASH : 8743b52063............ HASH :'57u3ba206t............
Content ! e— Content ; e—— Content : e—

Figure 4.2: The method used by Git to capture files changes
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1. BLOB (Binary Large Object): stores the content of each file as a string without
the file metadata (filename, creation date, ... etc.). Each BLOB is identified with a
SHA1-hash referring to its content.

2. Tree Object: represents a directory that refers to BLOBs and other trees
(directories), trees are identified by SHA1-hash that are produced according to the
tree content.

3. Commit Object: represents the status of the system at a point in time (snapshot of
the system). The commit points to the main tree hash and contains the metadata about
the latest changes (i.e., who made the latest changes, when the latest changes were
made, ... etc.). Each commit has a parent commit describing the previous statutes of

the system.

When a developer makes a change to a file, the hash of the related BLOB will be changed
according to the new content of the file. This change will be reflected on the tree hash
containing that BLOB. The new tree will contain the edited BLOB and the references to
the untouched BLOBSs. This process produces a new commit with a new hash and new
metadata [12].

Extracting data from the GIT objects is a quite complex process that requires extra
programming effort and consumes more time. To accomplish this task, we examined five
different data extraction tools that were designed to deal with software repositories shown
in Table 4.1. These data extraction tools are described as follows:

4.1.1 Tidyextractors

The Tidyextractors is a python framework introduced by Becker et al [40]. This
framework was built on the tidy data conceptual framework [43]. The Tidyextractors
aimed to extract data from local Git repositories, Twitter user data, and email data with
minimal effort and in a "tidy data format", which is the cleaned reshaped data that is ready
for analysis. We followed the installation instructions through the pip package manager
and by cloning the Tidyextractors repository to our local machine, and we tried to install
the framework on different operating systems. Unfortunately, the installation process did

not complete successfully for an unknown reason.
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4.1.2 GHTorrent

The GHTorrent provides a scalable mirror of GitHub repositories in the form of
MongoDB incremental data dumps. This mirror is distributed in a peer-to-peer BitTorrent
network. The latest data reflected in the GHTorrent mirror was on 30-6-2019, which is
outdated data and cannot be used to predict co-changing software entities [41].

4.1.3 CVSAnalY

The CVSAnaly is a data extraction tool that aimed to extract relevant data from software
repositories. This tool was used by several researchers to collect data from software
repositories [11][20]. This tool depends on the 2. x python version, which is replaced
lately with the 3. x version [42].

4.1.4 GitPython

The GitPython is a python library that was created to deal with Git repositories. It
simplifies the access of Git objects by reflecting the content of these objects into databases

to be ready for use [36].

4.1.5 PyDriller

In our research, we used the PyDriller framework, which is a python framework Built
upon the GitPython [36] framework to make the commit data extraction simpler. The
PyDriller achieved 50% less LOC than GitPython to produce the same results. The result
of this phase is a set of commits containing all the data related to the software system

development process [24].
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Table 4.1: data extracting tools comparison

Tool Extracting Advantages Drawbacks Environment
method
Tidyextractors  General data e Provides cleaned formatted data. Suffers from bugs and errors  Python code
extracting e Provides data with minimum
framework effort.
e Extract data from multiple
sources.
GHTorrent Repository e Provides a database of Git The database is out of date Online
mirroring objects ready to use. service
e Data stored in a peer-to-peer
BitTorrent network which
provides fast access and
scalability
CVSAnaly Extracting tool A reliable tool that was used in Works on an old version of Stand-alone
previous works successfully python tool
GitPython Extracting e Reliable Requires extra effort to Python code
framework e Fast relatively to other methods  produce outputs
PyDriller Extracting e Reliable Slower respectively to other ~ Python code
framework e Fewer lines of code to produce ~ methods

results
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4.2 Phase I1: Data Preprocessing

The raw data extracted from software repositories requires several steps to be suitable for
the mining process. Relevant data must be extracted, then cleaned by removing noise.
After that, the relevant data should be transformed in a shape suited to the used algorithm.

The data preprocessing phase includes the following steps [28].

4.2.1 Step 1: Feature Extraction

Git commit is an action made by the developer. To preserve the changes made on the
system as a snapshot in the repository. Git Commits contain several attributes describing
the event when the commit was made, i.e., the commit date, the author, the affected files
...etc. Some specific attributes form the features that will convey relationships among
software entities. In this step, the relevant attributes, which are the set of affected files in
each commit are extracted and then inserted into a relational database to be cleaned and

preprocessed.

4.2.2 Step 2: Removing Misleading Commits

Some of the extracted commits are considered noise or misleading commits. In this step,
the extracted commits from Phase | are revised to remove the commits considered as
misleading data. Commits with one file edited do not represent any relationship among
files. Also, commits with no affected files do not provide any knowledge and will affect
the accuracy of calculating support and confidence. The other type of misleading commits
is the commits with an extra-long affected files list. These commits come as a result of a
software developer's bad practices. When a developer makes changes in a software
system for a long period without committing the changes, the commit will contain an
extra-long affected file list. The files in this list are might not be related therefore will
produce misleading knowledge. We assigned the average number of files that the
developer change for each software project to be a threshold of the commits that were
considered useful. Commits with affected files numbers equal to or less than the
threshold, and more than one file are considered as useful commits, and other commits

will be removed.
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4.2.3 Step 3: Coding File Names

File names are usually long strings that require a large portion of the main memory and
so that require extra processing effort during the mining process. In this step, file names
are replaced with integers. The original file names and their integer codes are stored in a

relational database table to be retrieved later after the mining process.

4.2.4 Step 4: Removing Deleted Files

Commit data records each detail in the development process. Deleting files is one of the
main operations made during the development process. The recorded deleted files in the
commit data may lead to suggesting none existing files, which are false recommendations.
In this step, the files tagged as deleted are removed to enhance the accuracy of the

produced recommendations.

4.2.5 Step 5: Data Reduction

Old commits are less valuable than new commits for the knowledge-producing process
[48]. Also, the vast amount of commits in the large projects are expensive to analyze and
will increase the time of the co-change detection. In this step, the total amount of the
commits is reduced to remove the valueless old commits and to reduce the time consumed

during the analyzing phase.

4.3 Phase I11: Analytical Processing

The final phase of the data mining framework is gaining valuable knowledge out of the
cleaned data. After extracting and preprocessing the data, the altered frequent patterns
analysis algorithm is applied to the preprocessed data. The applied algorithm produced
rules with a single software entity on the antecedent side. After that, the rules with the
same antecedent are aggregated to create larger consequent side rules, containing all the
entities that frequently change with the entity in the antecedent. Later, these rules are
chained to create the co-change path, which will guide the change propagation process.
The following steps clarify each part of Phase I11.
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4.3.1 Step 1: Frequent Patterns Algorithm Applying

The final output of the preprocessing phase is a transactional database that contains sets
of codes that represents the names of affected files in each commit. In this step, a frequent
pattern algorithm is applied to generate patterns from each set of codes. The generated
patterns are stored in a relational database along with its support count, which is the

frequency number of that pattern in the whole transactional database.

4.3.2 Step 2: Rules Generation

After generating all the possible patterns from the transactional database, the generated
patterns are used to create the rules that represent the relationships among software

entities. The generating rules consist of the following sub-steps:

4.3.2.1 Substep 2.1: Evaluating the Patterns

In this step, the patterns are evaluated according to their support count threshold. Patterns

with support counts less than the threshold specified are ignored.

4.3.2.2 Substep 2.2: Creating Antecedent and Consequent Lists

The frequent patterns generated and evaluated as an interesting pattern contain a set of
items. The number of items per pattern ranges from one item to N number of items. The
patterns with one item that satisfy the minimum evaluation criteria threshold are selected
and inserted into the antecedents list. Patterns with more than one item and have a support

count equal to or higher than the threshold are inserted in the consequent list.

4.3.2.3 Substep 2.3: Forming the Rules

In this step, the rules are created from the antecedent and consequent lists. A rule is a
statement that describes the relationship between two disjoint sets of software entities.
The rules produced in this step contain one item on the left side and one or more items on
the right side. Forming a rule starts with a loop through the antecedent list, and another
loop starts on the consequent list, to select patterns that contain the current antecedent and
form a rule. The rules will be stored in permanent storage to be accessed in the following

steps.
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4.3.3 Step 3: Rules Aggregation

Not all of the generated rules are applicable [28]. The generated rules must be evaluated
to avoid misleading recommendations. There are several criteria to evaluate rules
(Support, confidence ...etc.). In this process, an evaluation criterion is chosen to pick the
rules that may form valuable recommendations. The rules that satisfy the minimum
evaluation criteria threshold and have the same antecedent are aggregated into a larger

rule.

4.3.4 Step 4: Forming Change Propagation Path

The consequence of the aggregated rules is a set of software entities, some of which have
their own rules. Therefore, a rule may trigger other rules and so on. In this process, we
will create a path of changes depending on a starting point the software developer will
choose during the maintenance process. The algorithm will chain all the affected rules
and merge them as a long path of suggestions. The developer will change another entity

and move to the entities affected and so on till the path ends.

4.5 Summary

In this chapter, we introduced the CPP approach and described each of its phases. The

next chapter will describe the prototype implementation of the CPP approach.
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Chapter 5

The Prototype Implementation

All the proposed tools in the literature are plugins or stand-alone desktop tools, which
make them only available on one device at a time. However, being a plugin within an
IDE makes it aimed at a narrow range of programming languages. In this chapter, we
introduce the design of the Wide Assisting and Leading (WALead) tool as an
implementation of the CPP approach. The WAIlead is a web-based tool that can be
accessed online from everywhere. The WAIead tool does not require previous installation
or any other requirements. It only requires a stable internet connection and a machine
with a web browser. After building the tool, we tested the correctness of its output. The
output of the tool is unique (one item antecedent rules) it cannot be compared with other
tools and approaches. Hence, we tested it manually by inserting a small dataset into the

tool and testing the same dataset manually and comparing the output.

The following subsections describe the implementation of each phase in the CPP
approach. Each phase is applied to the sample data extracted from the Git software

repository, to examine the actual effect of each process on actual data.

5.1 Selecting the Environment

After revising several maintenance recommendation tools, we found that the tools were
designed to work as plugins within another software, making it applicable to a specific
type of software or a few programming languages. The other type of recommendation
tool works as a stand-alone desktop application that requires pre-installation on the
machine and requires locally stored data to work with. To overcome this insufficiency,
we designed the WAlIead tool to be hosted on a server and accessed online. The tool can
receive a compressed file containing a Git repository or extract the data directly from
Github. This feature will enable the developers’ team to work remotely and share
suggestions about software changes with no need to install applications or programs on

their machines.
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5.2 Choosing the Programming Languages

In the data extracting phase, we used PyDriller as a data-gathering tool, which is a sturdy
data extraction python framework. Using PyDriller forced us to use python as a data
processing language and python provides wide support for data mining tasks in the form
of libraries and frameworks. The output of the data processing phase is stored in a
relational database, where we chose the MySQL DBMS to be the data storage. The online
tool requires a web-developing language. Therefore, we used PHP to be the back end of
our tool along with python language. The PHP script receives the user requests, processes
the request and provides outputs from the MySQL database as HTML layout. Figure 5.1

shows the main form of the WALead tool.

Insert your repository link

C:\Users\Soft\Desktop'pydril

Figure 5.1 the main form of WALead tool

5.3 Phase I: Data Extraction

By using the Pydriller framework we extracted the commits data of five open-source
projects with different sizes of development history, different purposes and, different

programming languages. Table 5.1 describes the extracted projects and the differences

among them.
Table 5.1: The projects extracted from Git repositories
Project Launching Number of Number Programming project purpose
name date commits of files language
Laravel 2011 6441 673 Php, Blade, Shell Web  application
framework
Hbase 2007 18258 8920 Java, Ruby, Perl, Distributed
Shell, Python, datastore
Thrift
Pydriller 2018 630 134 Python Data mining
framework
Cassandra 2009 25908 6157 Java, Python, Scalable row-store
HTML,  Shell,
GAP, Lex
React 2013 13776 3853 JavaScript, User interface

HTML, CSS, JavaScript library
C++, TypeScript,
CoffeeScript
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5.4 Phase Il: Data Preprocessing

The raw data collected in the data extraction phase in Figure 5.2 is not suitable for any

type of data mining, therefore this data requires multiple preparation processes.
Commit date: 2828-11-38 14:35:15+81:88
Commit author email: spadini.davidefgmail.com
Commit auther name: Davide Spadini
Commit message: (removing git obj from GitRepo)
Commit hash: #92511c8eeled356b8e487435b481144a566e3acT

The affected files in this commit
EE R R R R E R R R E R E R E R R R R

File name: git_repository.py

Change type: ModificationType.MODIFY
Change complexity: 43

File name: test git repository.py
Change type: ModificationType.MODIFY
Change complexity: 48

Commit date: 2028-11-38 14:51:27481:88

Figure 5.2: Raw data extracted from Git Repository

The pre-processing phase consists of five different activities. These activities will
guarantee the quality of the data passed to the analytical phase. The following steps
describe the preprocessing activities:

5.4.1 Step 1: Feature Extraction

To detect hiddenly related software entities, we applied a frequent pattern analysis
algorithm on the data extracted from the git repository. Frequent pattern analysis requires
a Transactional database [29]. A transactional database is a set of transactions that are
collected over a period. Each transaction contains a set of items that occur together. This
set of items determines the relationships among items. The raw commit data collected
from the git repository contains a similar format shown in Figure 5.3. The entire history

of the software development process is stored as a set of commits, and each commit
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contains a set of filenames that changed together. Hence, we created a transactional
database from the extracted commits Figure 5.3.

['repository mining.py', 'test between dates.py', 'test repository mining.py']
['git_repository.py', 'repository_mining.py', "test_commit_filters.py']
["commit.py', 'git_repository.py’, 'test_commit.py']

['commit.rst', 'configuration.rst’', 'commit.py']

["tutorial.rst', 'commit.py', 'test_memory_consumpticn.py’]

['requirements.txt', 'setup.py', 'test-requirements.txt']

['commit.py', 'git repository.py’, 'test memory consumption.py’]

['commit.py", 'test-repos.zip', "test commit.py']

['git_repository.py', 'repository_mining.py', '"test_git_repository.py']
['commit.py', 'git_repository.py', 'repository_mining.py', "test_git_repository.py']
['gitrepository.rst', 'git_repository.py', 'test-repos.zip', "test_git _repository.py']
['gitrepository.rst’, 'git_repository.py', 'test _git repository.py']
['git_repository.py', 'test-repos.zip', "test_git repository.py']

["test-repos.zip', "test git repository.py’, 'test _memory consumpticn.py’]
['git_repository.py', 'test-repos.zip', "test_git repository.py’]

["test_commit.py', 'test_developer.py', 'test_ranges.py']

['reference.rst', 'commit.py', 'git_repository.py']

['commit.py', 'git_repository.py', 'test_memory_consumption.py']

['commit.py', 'git_repository.py', 'test_git repository.py']

['requirements.txt’, 'setup.py', 'test_memory_consumption.py']

['repository mining.py', 'requirements.txt’, 'test memory consumpticn.py’]

Figure 5.3: Transactional database represents all commits in the git repository

5.4.2 Step 2: Removing Misleading Commits

In this step, the commits that may affect the final result are eliminated. The commit with
one file does not represent a relationship between files and will affect that certain file’s
support. Also, a commit with no files changed will produce empty items in the database
and will also increase the total number of commits and induce misleading support for all
files. As a bad practice, developers may make changes for a long period without
committing them to the repository, after making a commit all the files changed in that
long time will be added in one commit. Some of those files are unrelated to each other
and the long transaction extracted from that commit requires a long time to produce
subsets. In [13], the ROSE tool ignores commits with more than 30 files. In this step, we
take the average number of files that the developer’s team changes in all commits and
make it a threshold for the considered commits. After applying this step to the five
projects data the results shown in Table 5.2, only 11.83% to 47.65% are considered useful

commits.

37



Table 5.2: useful commits in each project

project All commits  Used commits percentage
Laravel 6441 762 11.83%
Pydriller 630 205 32.50%
HBase 18258 8700 47.65%
React 13776 4452 32%
Cassandra 25908 7081 27%

5.4.3 Step 3: Coding Files Names

File names require a relatively large space of storage to save, also take a massive portion
of the main memory while processed, leading to a delay in the mining process, especially

when those names are long.

To solve this problem, we created a table containing file names and a serial number for
each file name as shown in Figure 5.4. This table will be used to code and decode the file
name during processing and storing. Numbers take less memory than file names and it is
faster to process. In addition, in matters of scalability, adding new files to this table is
easier than other coding methods.

[51, 52]
[29, &5, 51]
[51, 52, 84]
[10, 26]

[10, 891

[79, 110]

[65, 120, 131]
[51, 96]

[10, &0]

[83, 51, 117]
[51, 110, 117]
[51, 117]

(83, 117, 129]
[21, &3]

Figure 5.4: A sample of transitions after coding

5.4.4 Step 4: Removing Deleted Files

During the software system lifetime, new files are added and other files are deleted. As
we mentioned in Chapter 1, we attempt to create a co-change path that will guide the
change propagation process. This process will be stopped if a deleted file appears in that
path, preventing the rest of the files to be changed. In addition, if a commit contains only

removed files, it will affect the pattern support calculation.
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The examination of the five projects extracted data proved that 28% to 73% of the files
mentioned in the developing history are deleted and must be ignored in the mining process
Table 5.3

Table 5.3: The deleted files in each project

project deleted files active files  Total
Pydriller 52 82 134
Hbase 3525 5395 8920
Laravel 489 184 673
Cassandra 1744 4413 6157
React 2045 1808 3853

5.4.5 Step 5: Data Reduction

After the previous data preparation process, the amount of data is significantly reduced.
However, for large projects, it is still large and expensive to generate patterns out of it.
Furthermore, the older commits are less valuable for producing frequent patterns [48].
Therefore, a reduction process must be applied to reduce the time consumed during the

mining process.

Reducing the data requires a unit to be used as a breaking point to divide data. We
examined different units for data reduction. The first unit we examined was the Git tag
(Gitrelease). The Git tag is used to specify a point of time when an important event occurs
in the project's developing history. After examining the releases in each project, we found
that the number of commits in each release ranges between 0 and 40 commits as shown
in Figure 5.5. The huge variation in the number of commits makes the release unusable

as a data reduction unit.
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—— Pydriller
—— Laravel
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—— React
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30

| l” !" ,Nl 'w(‘ x‘,\ ,i ' ‘ 'll

Commits
———

o

0 50 100 150 200 250 300 350 400
Release

Figure 5.5: A plot describes the variation of commit number between releases

The second data reduction unit we examined is the year of development. The data in Table
5.4 presents each year of the developing history of the software system. In each year,
there is a different number of commits, a different number of releases, and the behaviour
of developers changes from time to time in each project. Hence the year cannot be used
as a unit to divide the data. Also, the average changing files in each commit is not the
same for each time in the same project, therefore the threshold of the considered number
of files in each commit should be dynamic according to the developer’s behaviour at each

time.

In this step, we considered the number of commits as a dividing unit for data reduction.
The number of considered commits is 1000 commits since it requires an acceptable time
to generate frequent patterns.

Table 5.4: The number of commits releases and average files number changing in commits for each year

project year Commits average files in a commit  releases in each year
HBASE 2007 235 9 2

HBASE 2008 559 7 0

HBASE 2009 664 6 0

HBASE 2010 769 8 55

HBASE 2011 1015 6 32
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HBASE 2012 792 16 72

HBASE 2013 1059 10 97
HBASE 2014 924 12 65
HBASE 2015 898 9 44
HBASE 2016 947 9 37
HBASE 2017 1027 20 21
HBASE 2018 819 9 43
HBASE 2019 657 9 63
HBASE 2020 637 10 37
Pydriller 2018 117 4 17
Pydriller 2019 62 4 9

Pydriller 2020 95 5 10
Laravel 2012 445 6 31
Laravel 2013 43 15 12
Laravel 2014 128 6 4

Laravel 2015 54 8 11
Laravel 2016 57 3 13
Laravel 2017 19 3 12
Laravel 2018 18 3 10
Laravel 2019 30 3 16
Laravel 2020 15 4 43
react 2013 507 6 10
react 2014 507 6 12
react 2015 713 8 16
react 2016 800 6 18
react 2017 826 12 26
react 2018 594 8 27
react 2019 1359 8 20
react 2020 779 10 8

Cassandra 2009 666 8 1

Cassandra 2010 1134 7 36
Cassandra 2011 1545 6 41
Cassandra 2012 1012 9 36
Cassandra 2013 1020 7 49
Cassandra 2014 1164 7 44
Cassandra 2015 1257 8 54
Cassandra 2016 918 9 50
Cassandra 2017 487 7 28
Cassandra 2018 331 10 12
Cassandra 2019 190 12 15
Cassandra 2020 396 7 57

5.5 Phase I11: Analytical Processing

This research aims to support the maintenance process by decreasing the cost and the time
consumed while applying the required changes to the software system. Hence, the speed
of the frequent pattern algorithm is a vital factor to achieve our goal. The algorithm used
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should be fast and the output is suitable to generate single item antecedent rules.
Moreover, scalability is an important feature to ensure continued maintenance support for
the software system. The analytical phase in the CPP approach consists of the following

four steps:

5.5.1 Stepl: Applying Frequent Patterns Generation Algorithm

According to the comparative studies [38] [39] [45] on frequent pattern algorithms, the
ECLAT algorithm achieved higher speed respectively to FP-growth and Apriori
algorithm. Also, it is suitable for large databases, since there is no database scan in the
ECLAT algorithm. We applied the ECLAT algorithm on the pre-processed data to
generate frequent itemsets, each item set is presented with its frequency in the

transactional database shown in Figure 5.6.

51=3347
E2=332

51, 52=3>2
29=3>338
E5=332

29, 65=>>1
29,51=>>10
51, 65=3>1
29,51, 65=>>1
g4=3>1

51, 84=3>1
52, 84=>>1
51,52, 84=>>1
10=>>15
86=333

10, 86=>>1

Figure 5.6: The result of applying ECLAT on our data

5.5.2 Step 2: Rules Generation

While applying changes to a software file, the software developer performs those changes
on one file per time. Hence, we need a rule that describes the effect of changing one file
on the other files in the software system. The off-shelf data mining algorithms produce
rules that contain multiple items on the left side and another set of items on the right side.
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This form of rules is not suitable for describing the effect of changing one file, because
software developers cannot change multiple files at the same time.

In this process, we will produce rules with a single item in the antecedent (left-side) and

a set of items in the consequence (right-side), by performing the following sub-steps:

5.5.2.1 Sub-step 1: Selecting the Interesting Frequent Patterns

In this step, we select the patterns that have support equal to or higher than the support
threshold specified. Support threshold is usually set manually by revising the data
characteristics [48]. After revising the data of five different projects. We discovered that
each data sample has its characteristics, and applying a support threshold according to
one project data on other projects' data is not feasible. In [13], the Support Count was
used to measure the interestingness of the generated patterns. The Support Count of a
pattern is the number of the transactions (commits) that contain that pattern. The Support
count is easier for developers to understand rather than support. On the other hand, it
applies to different projects data. To determine the Support Count threshold, we grouped
the patterns with the same support to select the largest group. We found that the largest
group has a support count of 2. Hence, we considered each pattern with a support count

of 2 an interesting pattern.

5.5.2.2 Sup-step 2: Creating Antecedents and Consequents L.ists

After selecting the interesting patterns, we extract the patterns that contain one item that
satisfies the minimum support count threshold and insert it into a list along with their
support count. This list will form the antecedents of the rules. The other patterns that
contain more than one item and satisfy the support count threshold, are inserted in the
candidate consequent list.

5.5.2.3 Sup-step 3: Forming Rules

The final step in this process is creating rules. We scan the antecedents list and search for
each item we reach in the consequent list. If the item in the antecedents list appears in any
patterns in the consequent, we form a rule out of the two patterns and calculate the
confidence of the rule using the support of the two patterns.
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5.5.3 Step 3: Rules Aggregation

"The confidence of an association rule is a percentage value that shows how
frequently the rule head occurs among all the groups containing the rule body. The
confidence value indicates how reliable this rule is."" IBM [62].

To select the valuable rules, we assigned 50% as a confidence threshold to filter the
generated rules. This means that the rules are 50% accurate. Setting a high confidence
threshold will extremely reduce the number of recommendations, also setting a low

confidence threshold will produce misleading recommendations.

After assigning the confidence threshold, we looped through the rules table, and
combined the rules with the same antecedent, and satisfied the minimum confidence

threshold to create a large rule.

5.5.4 Step 4: Change Propagation Path Creation

The final step in the CPP approach is to create the path that the developer will follow
during the maintenance process. In this step, the developer will select a starting point, a
software entity from the antecedents list. A list of the software entities affected by the
starting point will be shown. The developer will examine, which file deserves to be
changed. After that, the developer can choose one of the affected entities to continue the

path. This process will be repeated till the path ends.

5.6 Summary

This chapter described the practical effort to implement the three phases of the CPP
approach. Firstly, the data extracting, then preprocessing the data after that, analyzing the

preprocessed data.

44



Chapter 6

Evaluation of The CPP Approach

This research aims to develop an approach to support the software development process
by reducing the time and the cost of the maintenance process. To accomplish this aim, we
proposed the CPP approach, which is a path created using the historical data of the
software development process recorded on the Git repository. The path is the result of
chaining multiple aggregated rules that describe the effect of changing a particular
software entity. To prove the feasibility of the approach, we put it under test. We
employed this approach in developing a software maintenance recommendation tool
called WAIead tool. This tool can guide developers through the related changes after
editing a software entity in a software system. To examine the feasibility of the WALead
tool, we put it under three different tests. First, we compared the actual output of the tool
with the theoretical description of the algorithm. Then, we tested the performance of the
tool by measuring the time required for the tool to produce recommendations. Finally, we
examined the effect of using the WALead tool during the maintenance process. This

chapte describes the three experiments and the results of each test.

6.1 The WALead Tool Using Scenario

Using the WAIead tool is quite simple, the user requests the main form of the tool, and
inserts the repository link as shown in Figures 6.1 and 6.2. The tool receives and processes
the request. After that, the tool provides a list of files so the developer chose a starting
point along with the time consumed and the number of the usable commits as shown in
Figure 6.3. Then, the tool will show a list of affected files in Figure 6.4. The developer
will check the files and change the files that should be changed. The next step is choosing
one of the changed files and this process will be repeated till the end of the path as shown

in Figure 6.5.

Insert your repository link

C:\Users\SoftiDesktop'pydril
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Figure 6.1 shows using a locally stored repository in the WAIlead tool.

Insert your repository link

https:/fgithub.com/laravel/lar

Figure 6.2 shows extracting data directly from GitHub using the WAlIead tool.

number of usable commits is : 82
time consumed during mining 1

Choose a file to start with

repository_mining.py v

Figure 6.3 choosing the starting point of the path

Follow this path to complete the change propagation process

Files affected By the file : test-requirements.txt

‘ 1 == continuous-integration-workflow.yml ‘

‘ 2 => setup.py ‘

choose another file to start

gitignore v

Figure 6.4 the list of the affected files by the changes made in the starting point

Follow this path to complete the change propagation process

Files affected By the file : setup.py

this file is not frequintly changed

choose another file to start

gitignore v

Figure 6.5 The end of the path where no more files will be changed
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6.2 Experiment I: CPP Approach Validation

Before employing the WALead tool in supporting the software maintenance process. We
have to validate the output of the tool. To perform this task, we applied the three phases
of the CPP approach manually on a small dummy data set. Then, we used the same data
set and inserted it into the WALead tool. After that, we compared the output of the
manually generated recommendations and the onces produced by the WALead tool. The
results revealed that the output of the WALead tool is identical to the output of the

manually performed CPP approach phases.

6.3 Experiment I1: Testing the Effect of CPP on Maintenance Process

WAlead tool is a recommendation tool that provides change suggestions built on the CPP
approach and using the historical data of the development process. To prove the feasibility
of the WAIead tool we put it under test by using it to support the maintenance process of
a simple attending registration system. We invited six junior PHP developers to add a

feature to an existing system built using PHP language.

We prepared a simulation for the World Wide Web environment. First, we prepared a
server to client network containing seven computers. After that, we installed the WAIlead
tool on one machine to be the service provider. Then, we installed the Komodo text editor
and MAMP server on the other six machines. Later, we installed a copy of the system
that will be edited during the experiment in the MAMP server.

We made the experiment in 24-5-2021 at the Higher Institute of Engineering Professions
Almajory in Lab-2 the experiment started at 10:15 am. We split the developers into two
groups. The first group was allowed to use the WAIead tool. The second group was asked
to figure the related changes on their own. We gave the developers a simple task, which
is adding a feature to an existing system. The experiment ended at 11:40, and we recorded
the time consumed by each developer. Table 6.1 shows the results of the conducted

experiment.

Table 6.1 The Time Consumed By Each Developer During The Experiment

Developer name  Tool  Starttime Ending time Time consumed
Rela Yes 10:15 10:52 00:30
Aya Yes 10:15 10:40 00:25
Asma Yes 10:15 10:30 0:15
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Monia No 10:15 11:13 0:58
Aisha No 10:15 10:40 0:25
Amal No 10:15 11:10 00:55

6.4 Experiment I11: Testing the WAIead Tool Performance

This research aims to find an approach to reduce the time and cost of the maintenance
process. The performance of the CPP approach can be measured by the time used during
the recommendation production process. During this experiment, we tested the
performance of the WAIead tool. The experiment was conducted on the data of the five
projects we used previously in this research. The time consumed during the whole three
phases depends on three main factors: number of the used commits, the number of files
in each commit, the number of characters in the names of the files. The results are shown
in Table 6.2. After that, we tested the tool on fresh copy extracted directly from GitHub

and found that the efficiency of the tool in this scenario depends on the quality of the

network.
Table 6.2: testing the tool on locally stored repositories
Project Number of average filesin a Time consumed
usable commits commit
PyDriller 82 4 1 minute
Laravel 229 6 7 minutes
React 1000 8 24 minutes
Hbase 1000 10 1 hour
Cassandra 1000 8 34 minutes

6.5 Results Discussion

After implementing and testing the CPP approach. We review and discuss the results of
each phase and try to answer the research questions. We show the results of each phase

starting with the data gathering phase and ending with the experiment conducting.

6.5.1 Data Extraction Phase Results

In this phase, we made a comparative study among five different software repository data
extracting tools in Table 4.1 and concluded that PyDriller is the most suitable tool for this

task. Using the PyDriller tool, we extracted the data of five different open source projects
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Table 5.1. The data extracted in this phase is raw commits data containing a massive
amount of information, some of this information is useful for our purpose and other
information are useful for other tasks. Hence, the data extracted requires several

preprocessing stages to produce knowledge.

6.5.2 Data Preprocessing Phase Results

This phase prepares the extracted data to be analyzed by a data mining technique. First,
the features were extracted from the raw data. to make the data suitable for frequent
pattern analysis in the analytical phase. Most of the data attached to each commit such as
date, committer, message ...etc. was abandoned. The names of the files edited in each
commit were kept to create a transactional database. After that, the extra-long commits
were removed along with the commits with one file edited. Then the files that were tagged
as deleted from each commit were discarded. Later the number of transactions was
reduced to minimize the time consumed by the analytical phase. The final step is coding

the names of the files to optimize the mining process performance.

During the preprocessing of the data extracted from the five different projects we

concluded the following:

After removing the extra-long and short commits. We discovered that the useful commits
are between 11.83% to 47.65% of the total number of commits. Table 6.3 presents the
number of extracted and discarded commits. Figures 6.6, 6.7, 6.8, 6.9, 6.10 show pie
charts for the percentage of the commits used in each project. Hence, we conclude that

the number of usable commits differs from one software project to another.

Table 6.3: the number of used commits for each project

project all commits used commits  percentage
laravel 6441 762 11.83%
pydriller 630 205 32.50%
hbase 18258 8700 47.65%
react 13776 4452 32%
Cassandra 25908 7081 27%
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Figure 6.6: shows the percentage of the usable commits extracted from the project Laravel

' pydriller ‘
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Figure 6.7: shows the percentage of the usable commits extracted from the project PyDriller
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Figure 6.8: shows the percentage of the usable 5commits extracted from the project Hbase
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Figure 6.9: shows the percentage of the usable commits extracted from the project React
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Cassandra

M allcommits

usedcommits

Figure 6.10: shows the percentage of the usable commits extracted from the project Laravel

Discarding the deleted files from the extracted commits revealed that 28% to 73% of the
files recorded within the commits metadata are deleted during the development process.
Table 6.4 presents the number of files of each project and the deleted files. Figures 6.11,
6.12, 6.13, 6.14 show pie charts for the deleted files of each project.

Table 6.4 shows the number of files for each project and deleted files

Project Deleted Files Active Files  Total
Pydriller 52 82 134
Hbase 3525 5395 8920
Laravel 489 184 673
Cassandra 1744 4413 6157
React 2045 1808 3853
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Pydriller

deleted files
M deleted files 39%

1 active files active files
61%

Figure 6.11: shows the percentage of the deleted files to the total files of the PyDriller project

Hbase

deleted files
M deleted files 40%

" active files active files
60%

Figure 6.12: shows the percentage of the deleted files to the total files of the Hbase project
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M deleted files

" active files

laravel
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Figure 6.13: shows the percentage of the deleted files to the total files of the Laravel project

Cassandra
28%

Figure 6.14: shows the percentage of the deleted files to the total files of the Cassandra project

M deleted files

" active files
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React

M Deleted Files

Active Files

Figure 6.15: shows the percentage of the deleted files to the total files of the React project

The next preprocessing step is data reduction. In this step, we concluded that old commits
are not useful and the huge amount of data requires a long time to be analyzed. While we
aim to reduce the time consumed and provide proper accuracy. We reduced the number
of commits analyzed to the last 1000 commits. Before that, we tested several units to use
it for data reduction. First, we tested the releases. Release or tag is a point of the project
history when a major event occurs. We found that the number of commits in each release
differs from project to project and from release to release. Figure 5.5 presents a chart of
each release's commit number in our five projects, which varies from 1 commit per release
to 40 commits per release. After revising the number of commits in each release we

concluded that the release is not suitable for reducing the number of commits

The next reduction unit we tested was the year of development. We revised the number
of commits in each year of software development. We found that the number of commits
in each year is extremely varying and cannot be used as a reduction unit. Table 5.4 shows
the number of commits, the number of releases and the average number of files changed

in each year of development.

Finally, we used the number of commits as a data reduction unit and we set the latest
1000 commits hence 1000 commits requires a maximum of 1 hour to be analyzed and

contain enough commits to produce knowledge.

The final step of the preprocessing phase is coding. File names preserve a huge portion

of the main memory during the processing. To reduce the memory usage, we gave every
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file a code this code maximumly contains 5 digits. Coding file names reduced the time

consumed during analyzing from 15 hours to 1 hour in worst cases.

In a conclusion, the relevant data that is useful in co-change prediction is the list of
changed file names in each commit discarding the deleted files, the latest 1000 commits
and the commits that contain changed files less than or equal to the average number of

files changed in each commits and, greater than one file.

6.5.3 Applying Frequent Patterns Algorithm Results

In this phase, we revised previous comparative studies [38][39][45] and concluded that
the ECLAT algorithm is the optimal algorithm for our task. ECLAT scans the database 1
time, the output of ECLAT is scalable and, the variation we made of ECLAT provides a
single item antecedent rule, which is the main component in our approach (Change
Propagation Path).

6.6 Comparing WALead tool with the existing proposed tools

In this research we proposed the CPP approach to be a usable approach in detecting co-
changing software entities. We built WALead tool to prove the feasibility of the CPP
approach, while designing this tool we tried to avoid the shortcomings of the existing

tools. In table 6.5 a comparison preview among the proposed tools and WALead tool

Table 6.5: A comparison among the proposed tools and WALead tool

Tool Accuracy Scalable  Availability Cost effectiveness Granularity level Data Algorithm
source
ROSE [13] Depends on the No Eclips IDE Consumes long time to Code level elements  CVS Apriori
support Plugin produce patterns
threshold
Ramadhani Depends on the No Standalone Scans the database twice File level Git FP-growth
[14] support tool to produce patterns
threshold
Hyper-rules  13% to 90% No Standalone Yes File level Git Hyper-rules
[4] higher than tool
previous work
TARMAQ No Standalone Yes File level Git TARMAQ
[27] tool
Coming [44] - No Plugin within Code level elements  Git Frequent
other tools patterns
analysis
Ruffle [47] 70% to 80% No Standalone Code level elements -
tool
WALead Dependsonthe  Yes Web based Yes File level Git ECLAT
support system
threshold
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Chapter 7

Conclusion and Recommendations

7.1 Conclusion

The main aim of this research is to find a solution to support software maintenance
processes by reducing the time and cost of this process. To reach the aim of this research
we employed MSR to detect co-changes among software entities, which will reduce the
time consumed while searching for related changes and eliminate the cost of hiring highly
paid senior developers to guide the development team through the change propagation
process. We conducted deductive research on quantities data to test the effect of detecting
co-changes using our proposed CPP approach.

The CPP approach consists of three main phases. In Phase I, the commits’ data stored
within the Git repository is extracted. We conducted a comparative study among five
different data extraction tools, from which we selected the appropoarte tool to do this
task. The study revealed that PyDriller is the most compatible tool for our task. Phase 1l
is the data preparation phase, in which we eliminated the noise, transformed the data and
reduced the data amount. The output of Phase 1l is a transactional database that contains
lists of coded file names. Phase Il is the core of the CPP approach, where the
preprocessed data is transformed into recommendations that guide developers to
propagate changes correctly. In Phase 11, the data within the transactional database are
transformed into patterns using the ECLAT algorithm. After that, the patterns are
evaluated to select the interesting patterns that may form knowledge. Then, interesting
patterns are used to create rules that describe the relationships among files. The rules
produced in this stage contains one item on the antecedent side. The interesting rules with
the same antecedent are aggregated to create larger rules. Finally, the aggregated rules
are used according to the editing scenario to create the change propagation path.

To prove the feasibility of the CPP approach we built a recommendations tool, which is
called the WALead tool. The tool is a web-based tool that uses the data stored in the Git
repository and provides recommendations to the software developers during the
maintenance process. These recommendations are produced according to the software
editing scenario. After building the WALead tool, we conducted three different
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experiments to prove the feasibility of the CPP approach. First, we tested the output of
the WALead tool and compared it with the expected output using dummy data. After that,
we tested the effect of using the WALead tool during the maintenance process. We
managed to reduce the time consumed by 50% and eliminated the cost of hiring highly
paid a senior developers to guide the development process. Finally, we tested the
performance of the WALead tool by recording the time required to produce
recommendations for five different software projects. The results revealed that the time
consumed during the production of the recommendation is affected by three factors the
number of commits extracted from the software repository, the average number of files

in each commit and the size of the string the presents the file names.
We attemped to answer the following questions during the conduction of this research.

RQ1: To what extent the time and cost can be reduced by detecting co-changes

during the maintenance processes?

The results of the experiment show that our approach reduced the time of the software
maintenance process by 50%. In addition, the cost was reduced by eliminating the role of

the guiding senior developer.
RQ2: What is the optimal software repository data extracting tool?

Extracting data from software repositories is a complex process and is out of the scope of
this research. Hence, we conducted a comparative study among six different extracting
tools. We concluded that the PyDriller is the most suitable tool for our purpose.

RQ3: What are the features of the data extracted from the software repositories that

will produce knowledge?

Data is the base that our research is built on. Selecting the right pieces of data guarantees
more accurate results. After reviewing the data of five different projects. We concluded
that the relevant data (the features) are the list of the edited entities in each commit
regardless of the entities that are tagged as deleted in the development history. On the
other hand, a huge portion of the commits is considered as noise. Extralong commits with
one edit entity and old commits. We set 1000 commits as a limit for the extracted commits
because the old commits are not valuable and more than 1000 commits require a long

time to be processed.
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RQ4: What factors are vital to selecting a data mining algorithm for producing

required knowledge for the CPP approach?

This research aims to propose a solution to reduce the time of co-changed software
entities. Therefore, the speed of the algorithm is a vital factor to select the data mining
algorithm. Software development processes are usually continuous processes. Changes
on the software system are continually made to add a new feature or to fix defects. Hence,
the output of the mining algorithm must be scalable to support continual development.
After revising several mining algorithms and according to previous studies, we selected
the ECLAT algorithm. The ECLAT algorithm scans the database on time, therefore, it is
considered faster relatively compared to the other mining algorithms. The ECLAT
algorithm produces a scalable output, which can be used incrementally to support
continual development. The output of the ECLAT algorithm is suitable to produce single
item antecedent association rules which is the main component to create the Change

Propagation Path.

7.2 Recommendations

Given the results discussed in Chapter 6, and to obtain accurate results from the commit
metadata, we recommend developers avoid editing and committing unrelated files.
Moreover, to avoid editing files for a long time without committing. Finally, we
recommend developers avoid committing after editing one file on its own. Those
practices that we recommend to avoid, forms valueless commits that will produce

misleading change suggestions.

7.3 Future Work

In this research, we tested the feasibility of our approach on file-level software entities.
As future work, we attend to add code parsers to test the validity of the CPP approach on
the source code entity level. While we aim to reduce the time of the maintenance process,
we attend to design a software repository data extracting tool based on a compiled
language to avoid the latency induced by interpreted language such as Python.
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Appendices

The data mining portion of the WALead tool written in Python programming language :

from pydriller import RepositoryMining

import time

import mysql.connector

start = time.time()

#ommmmmmmmea Real Shit goes here :)--------

class RawData:
link = ""
avgFilesPerCommit = ©
commits = []

filesStatue = {}
codedFiles = {}
codedCommits = []
start = 0

end = 0

def _init_ (self, 1link, start, end):
self.link = 1link
self.start = start
self.end = end
self.extractCommits()
self.removeUnwantedFiles()
self.codeFiles()
self.codeCommits()
self.commits[start:end]
self.insertCodedFiles()

def extractCommits(self):
sum = ©
for commit in
RepositoryMining(self.link).traverse_commits():
itemsInCommit = []
for modification in commit.modifications:
itemsInCommit.append(modification.filename)

self.filesStatue[modification.filename]=str(modification.change_
type)
if len(itemsInCommit)>1:
sum+=len(itemsInCommit)
self.commits.append(itemsInCommit)
self.avgFilesPerCommit=round(sum/len(self.commits))
self.commits.reverse()

def removeUnwantedFiles(self):
newCommits=[]
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for commits in self.commits:
itemList=[]
for item in commits:
if
self.filesStatue[item]!="ModificationType.DELETE":
itemList.append(item)
if len(itemList)>2 and
len(itemList)<=self.avgFilesPerCommit:
newCommits.append(itemList)
self.commits=newCommits
self.commits=self.commits[self.start:self.end]
def codeFiles(self):

i1=20
for x in self.filesStatue:
i+=1

self.codedFiles[x] = i

def codeCommits(self):
for i in self.commits:
itemlist=[]
for j in 1i:
itemlist.append(self.codedFiles[j])
self.codedCommits.append(itemlist)

def insertFile(self,file, code):
mydb = mysqgl.connector.connect(
host="localhost",
user="root",
password="",
database="mytool"
)
mycursor = mydb.cursor()
sql = "INSERT INTO files (file_name, file_code) VALUES
(%s, %s)"
val = (file, code)
mycursor.execute(sql, val)
mydb.commit ()
def insertCodedFiles(self):
for i in self.codedFiles:
self.insertFile(i,self.codedFiles[i])

class pattern: # frequent pattern lList content
def init (self, files, suppCount):
self.files = files
self.suppCount = suppCount
suppCount = ©
support=0
files = []
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def patternSupport(self, commitsSize):

self.support=self.suppCount/commitsSize
class patterns:

patts=[]

averageSupport=0

commits=[]

def _init_ (self,commits):
self.commits=commits
self.patternGenerator()
self.removeUglyOne()
self.addSupport()
self.calculateAvgSupport()

def subsetter(self,l): # returns a list of all sublissts
for a given Lsit
base = []
lists = [base]
for i in range(len(1l)):
orig = lists[:]
new = 1[1i]
for j in range(len(lists)):
lists[j] = lists[j] + [new]
lists = orig + lists
lists.remove(lists[0])
return lists

def calSupport(transCount, patterns):
for i in patterns:
i.support = round((i.suppCount - 1) / transCount, 2)
return patterns

def removeUglyOne(self):
for i in self.patts:
i.suppCount -=1

def patternGenerator(self):
t=pattern([],0)
self.patts.append(t)
for i in self.commits:
newList=self.subsetter(i)
for j in newlList:
c=0
for k in self.patts:
c+=1
if set(k.files)==set(j):
k.suppCount +=1
break
elif c == len(self.patts):
t=pattern(j,1)

62




self.patts.append(t)
self.patts.remove(self.patts[0])
def addSupport(self):
for i in self.patts:
i.support=i.suppCount/len(self.commits)

def calculateAvgSupport(self):
self.averageSupport =2
class rule:
def _init_ (self,left , right, confidence, support):
self.left=1left
self.right=right
self.confidence=confidence
self.support=support
class rules:
patterns=[]
minconf=1
minsup=0
rules=[]
lsides=[]
rsides=[]

def init_ (self,patterns,items,minsup):
self.items=items
self.minsup=minsup
self.patterns=patterns
self.createRules()

def createRules(self):
for i in self.patterns:
if len(i.files) <= 1:
if i.suppCount >=2:
self.lsides.append(i)
else:
if i.suppCount >= 2:
self.rsides.append(i)
for i in self.lsides:
for j in self.rsides:
if i.files[@] in j.files :
conf= j.support/i.support
r = rule(i.files[@],]j.files,conf,j.support)
if r.confidence>=0.5:
self.rules.append(r)

class AgRules:
rules=[]
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agrules={}
codedItems={}

def

def

def

def

__init_ (self,rules):

self.rules=rules
self.agit()
self.insertRules()

agit(self):
for i in self.rules:
if i.left in self.agrules.keys():
self.agrules[i.left] += i.right
else:
self.agrules[i.left] = i.right

insertRule(self,lside,rside):

res = []

for i in rside:
if i not in res and i != lside:

res.append(i)

mydb = mysqgl.connector.connect(
host="1localhost",
user="root",

password="",
database="mytool"

)

mycursor = mydb.cursor()

rr=[str(int) for int in res]

r="',"'.join(rr)

sql = "INSERT INTO rules (lside, rside) VALUES (%s, %s)"
val = (1lside, r)

mycursor.execute(sql, val)

mydb.commit ()

insertRules(self):

for i in self.agrules:
self.insertRule(i,self.agrules[i])

The implementation of the web services portion of WALead tool written in Php
programming language and HTML.:

<?php

function viewMain()

{

?>

<form action="<?php echo $_SERVER['self']; ?>"

method='

'post">

<input type="text" name="1link">
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<input type="hidden" name="act" value="1link">
<input type="submit" value="Go">

</form>

<?php
}
function insertLink()
{

$myfile = fopen("link.txt", "w") or die("Unable to open file!");
$txt = $_POST['link'];
fwrite($myfile, $txt);
fclose($myfile);
}
function runTool()
{
$command = escapeshellcmd('python
C:/Users/Soft/research/venv/extracting.py');
$output = shell exec($command);
echo $output;
}
?>
<!DOCTYPE html>
<html>
<?php
include('code.php');
$act=$ POST['act'];
switch($act)
{

case
viewMain();
break;
case "link":
insertLink();
runTool();
break;
default:
echo"<hl>something went wrong</h1>";
}
?>
</html>
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