

Supporting Software Maintenance

Process by Detecting Software Co-

Changing using Mining Software

Repositories

By:

Ali Aljilani Khamis Ben Abdabdullah

Supervisor:

Dr. Abdelsalam Maatuk

This Thesis was submitted in Partial Fulfillment of the

Requirements for Master's Degree of Science in Software

Engineering

University of Benghazi

Faculty of Information Technology

Department of Software Engineering

Mars 2022

Copyright © 2022. All rights reserved, no part of this thesis may be

reproduced in any form, electronic or mechanical, including photocopy,

recording scanning, or any information, without the permission in writing

from the author or the Directorate of Graduate Studies and Training

University of Benghazi.

. جميع الحقوق محفوظة ، ولا يجوز إعادة إنتاج أي جزء من هذا بأي 2022حقوق الطبع والنشر ©

شكل ، إلكترونياً أو ميكانيكياً ، بما في ذلك التصوير أو المسح الضوئي للتسجيل أو أي معلومات ،

.كتابي من المؤلف أو إدارة الدراسات العليا والتدريب جامعة بنغازي دون الحصول على إذن

I

University of Benghazi

Faculty of Information Technology

Department of Software Engineering

Supporting Software Maintenance Process by

Detecting Software Co-Changing Using Mining

Software Repositories

By

Ali Aljilani Khamis Ben Abdabdullah

This Thesis was Successfully Defended and Approved on

Supervisor

Signature: ……………………….…………………………….

Dr ………………...………. …..……. (Internal examiner)

Signature: ……………………….…………………………….

Dr……………...…………….……… (External examiner)

Signature: …………………………………...………………….

Dean of Faculty Director of Graduate studies and training

II

Acknowledgements

It was a long journey, and no matter what the destination is, I enjoyed it so much. I walked

through the days and nights, I faced Hills and valleys. While I am finally here, I would

like to raise my hat and appreciate the effort of those who pulled me out of the valleys

and pushed me up to the top of hills. Those who lit my path in the dark of night and shed

my way in the heat of the day. The staff members of the University of Benghazi who led

me throughout my Master’s study, my supervisors Professor Abdelsalam M. Maatuk

and Dr Osama Bin Omran, and of course, my family who suffered during all of those

years and supported me with everything. Finally, I want to thank my mentor Haj Waleed

Aldubia , the one who guided me with his wisdom and provided me with everything I

needed since I was in primary school. I owe him all my achievements; without him, I

would not be here submitting my master thesis.

III

Table of Content

Acknowledgements ... II

Table of Content ... III

List of Figures .. VI

List of Tables .. VIII

Abbreviations ... IX

Abstract ... X

Chapter 1 .. 1

Introduction .. 1

1.1 Problem Statement ... 3

1.2 Aim of the Research ... 4

1.3 Research Questions .. 4

1.4 The Proposed Method .. 5

1.5 Dissertation Structure ... 5

Chapter 2 .. 6

Background .. 6

2.1 Software Maintenance .. 6

2.2 Co-change .. 7

2.3 Software Repositories .. 7

2.3.1 Historical Repositories .. 8

2.3.1.1 Source Control Repositories .. 8

2.3.1.2 Bug Repositories .. 8

2.3.1.3 Communications Archives ... 8

2.3.2 Code Repositories ... 9

2.3.2.1 Git Repository .. 9

2.3.3 Deployment Logs .. 10

2.4 Mining Software Repositories .. 10

2.5 Frequent Pattern Analysis .. 11

2.6 Tools and Applications used in the Proposed Solution .. 13

2.6.1 Komodo Edit ... 13

2.6.2 MAMP .. 14

2.6.3 PyCharm.. 15

2.6.4 Git Repository ... 15

2.6.5 MySQL and PhpMyAdmin ... 15

Chapter 3 .. 17

The Literature Review ... 17

IV

Chapter 4 .. 24

The Proposed Method .. 24

4.1 Phase I: Data Extraction ... 26

4.1.1 Tidyextractors ... 27

4.1.2 GHTorrent ... 28

4.1.3 CVSAnalY .. 28

4.1.4 GitPython .. 28

4.1.5 PyDriller .. 28

4.2 Phase II: Data Preprocessing .. 30

4.2.1 Step 1: Feature Extraction ... 30

4.2.2 Step 2: Removing Misleading Commits ... 30

4.2.3 Step 3: Coding File Names ... 31

4.2.4 Step 4: Removing Deleted Files .. 31

4.2.5 Step 5: Data Reduction.. 31

4.3 Phase III: Analytical Processing .. 31

4.3.1 Step 1: Frequent Patterns Algorithm Applying .. 32

4.3.2 Step 2: Rules Generation .. 32

4.3.2.1 Substep 2.1: Evaluating the Patterns .. 32

4.3.2.2 Substep 2.2: Creating Antecedent and Consequent Lists ... 32

4.3.2.3 Substep 2.3: Forming the Rules ... 32

4.3.3 Step 3: Rules Aggregation .. 33

4.3.4 Step 4: Forming Change Propagation Path ... 33

4.5 Summary .. 33

Chapter 5 .. 34

The Prototype Implementation ... 34

5.1 Selecting the Environment ... 34

5.2 Choosing the Programming Languages ... 35

5.3 Phase I: Data Extraction ... 35

5.4 Phase II: Data Preprocessing ... 36

5.4.1 Step 1: Feature Extraction ... 36

5.4.2 Step 2: Removing Misleading Commits ... 37

5.4.3 Step 3: Coding Files Names .. 38

5.4.4 Step 4: Removing Deleted Files .. 38

5.4.5 Step 5: Data Reduction.. 39

5.5 Phase III: Analytical Processing .. 41

5.5.1 Step1: Applying Frequent Patterns Generation Algorithm ... 42

5.5.2 Step 2: Rules Generation ... 42

5.5.2.1 Sub-step 1: Selecting the Interesting Frequent Patterns ... 43

V

5.5.2.2 Sup-step 2: Creating Antecedents and Consequents Lists .. 43

5.5.2.3 Sup-step 3: Forming Rules ... 43

5.5.3 Step 3: Rules Aggregation .. 44

5.5.4 Step 4: Change Propagation Path Creation .. 44

5.6 Summary .. 44

Chapter 6 .. 45

Evaluation of The CPP Approach .. 45

6.1 The WALead Tool Using Scenario .. 45

6.4 Experiment III: Testing the WAlead Tool Performance ... 48

6.5.1 Data Extraction Phase Results .. 48

6.5.2 Data Preprocessing Phase Results ... 49

6.5.3 Applying Frequent Patterns Algorithm Results .. 56

6.6 Comparing WALead tool with the existing proposed tools ... 56

Chapter 7 .. 57

Conclusion and Recommendations .. 57

7.1 Conclusion ... 57

7.2 Recommendations .. 59

7.3 Future Work ... 59

Appendices ... 60

References .. 66

 73 ... الخلاصة

VI

List of Figures

Figure 1.1 direct relationship between two classes ... 2

Figure 1.2 Hidden relationship among software entities .. 3

Figure 2.1: A sample of Laravel framework development data stored in the Git repository 9

Figure 2.2: The way that Git stores and retrieves changes data [12] 10

Figure 2.3: items IDs data format .. 13

Figure 2.4: Transactions IDs data format ... 13

Figure 2.5 Komodo edit to write PHP, code ... 14

Figure 2.6: MAMP local web services environment .. 15

Figure 2.7: The PyCharm IDE .. 15

Figure 2.8: PhpMyAdmin the GUI of MySQL .. 16

Figure 4.1 The CPP Approach Framework.. 25

Figure 4.2: The method used by Git to capture files changes ... 26

Figure 5.1 the main form of WALead tool ... 35

Figure 5.2: Raw data extracted from Git Repository ... 36

Figure 5.3: Transactional database represents all commits in the git repository.................... 37

Figure 5.4: A sample of transitions after coding .. 38

Figure 5.5: A plot describes the variation of commit number between releases 40

Figure 5.6: The result of applying ECLAT on our data .. 42

Figure 6.1 shows using a locally stored repository in the WAlead tool. 46

Figure 6.2 shows extracting data directly from GitHub using the WAlead tool. 46

Figure 6.3 choosing the starting point of the path .. 46

Figure 6.4 the list of the affected files by the changes made in the starting point 46

Figure 6.5 The end of the path where no more files will be changed 46

Figure 6.6: shows the percentage of the usable commits extracted from the project Laravel50

Figure 6.7: shows the percentage of the usable commits extracted from the project PyDriller50

Figure 6.8: shows the percentage of the usable 5commits extracted from the project Hbase51

Figure 6.9: shows the percentage of the usable commits extracted from the project React 51

Figure 6.10: shows the percentage of the usable commits extracted from the project Laravel52

Figure 6.11: shows the percentage of the deleted files to the total files of the PyDriller project

 .. 53

Figure 6.12: shows the percentage of the deleted files to the total files of the Hbase project53

VII

Figure 6.13: shows the percentage of the deleted files to the total files of the Laravel project

 .. 54

Figure 6.14: shows the percentage of the deleted files to the total files of the Cassandra

project .. 54

VIII

List of Tables

Table 3.1: a summary of the software complementary change detection approaches 22

Table 4.1: data extracting tools comparison ... 29

Table 5.1: The projects extracted from Git repositories ... 35

Table 5.2: useful commits in each project ... 38

Table 5.3: The deleted files in each project ... 39

Table 5.4: The number of commits releases and average files number changing in commits for

each year .. 40

Table 6.1 The Time Consumed By Each Developer During The Experiment 47

Table 6.2: testing the tool on locally stored repositories .. 48

 Table 6.3: the number of used commits for each project .. 49

Table 6.4 shows the number of files for each project and deleted files 52

IX

Abbreviations

ICSE International Conference of Software Engineering

MSR Mining Software Repositories

MAMP Machintosh, Apache, MySQL, PHP

TID Transaction Identifier

GUI Graphical User Interface

IID Item Identifier

CCP Changer Propagation Path

CVS Concurrent Versioning System

ROSE Reengineering of Software Evolution

IDE Integrated Development Environment

DR Development Replay

CDG Change Dependency Graph

JSON JavaScript Object Notation

VCS Versioning Control System

DVCS Distributed Versioning Control System

ECLAT Equivalence Class Clustering and Bottom-up Lattence Traversal

SQL Structured Query Language

CP Change Prospect

BLOB Binary Large Object

WALead Wide Assisting and Leading

DBMS Database Management System

PHP Hypertext Preprocessor

HTML Hypertext Markup Language

X

Supporting Software Maintenance Process by Detecting Software

Co-Changing using Mining Software Repositories

By: Ali Aljilani Khamis Ben Abdabdullah

Supervisor: Dr. Abdelsalam Maatuk

Abstract

Software maintenance is considered the costliest process in the software system

development life cycle. The changes made in this process on a specific software entity

may trigger co-changes in other software entities. Detecting these co-changes manually

increases the time and the cost of the maintenance process, while ignoring those co-

changes may lead to software defects or poor software performance. Mining the historical

data stored on software repositories may help in detecting software entities' co-changes.

In this research, we propose the Change Propagation Path (CPP) approach. The CPP

approach is a co-change detection approach that depends on mining software repositories.

The CPP approach consists of three main phases. In the first phase, the commit data stored

in the Git repository are gathered. In the second phase, the data gathered are prepared to

be analyzed. The features are extracted, the misleading commits are removed, and the file

names are coded. Then, the files that are tagged as deleted are ignored. Finally, the data

are reduced. The output of this phase is a transactional database containing a set of coded

file names lists. The final phase includes four main steps. The first step is generating all

the possible patterns from the file names lists. The second step is creating rules from the

patterns that describe the relationship between files. In the third step, the rules with the

same antecedent are aggregated. In the fourth step, the rules are chained according to the

software editing scenario. The output of the approach was tested manually to evaluate the

output. A tool (Wide Assisting and Leading) was built upon the CPP concept and tested

to prove the feasibility of the approach. Testing the CPP approach proved that mining

software repositories may reduce the time of the maintenance process by 50%.

1

Chapter 1

Introduction

A software system can be defined as several separate programs along with its related

configuration files. It may also include the documentation that describes its design,

underlying databases, and other related files. In other words, the software system is a set

of entities that depend on each other and evolve together. The source code elements,

databases, and files are considered software entities [9] [10].

Software entities are being updated continually due to a new feature requested or to fix a

reported bug. The changes made during the updating process may trigger other changes.

Therefore, one change may lead to a complementary change (co-change) or a change

propagation through the whole software system [10] [9].

Co-change is the change required by another change to complete the maintenance

process. For example, adding a new data field to an existing system requires multiple

changes in the software system. First, the data field should be added to the database. Then,

the code responsible for adding, reading, and editing that data field must be changed too.

Finally, the front end of the system must be changed by adding data input to receive the

new value and label that describes the purpose of that input. All these mentioned changes

are the result of one single change. Hence, the co-change is the effect of the coupling

among software entities [21].

Coupled pairs in software engineering are the software entities that have a direct or a

hidden relationship. For example, a global variable that is used within an object or an

object that uses another object. This type of coupling is referred to as explicit coupling or

direct coupling. The other type of coupling occurs when software entities are frequently

changed together and there is no direct relationship among them. This hidden relationship

can be referred to as logical coupling or evolutionary coupling [12][14]. Hence,

evolutionary coupled entities are the entities that frequently change together [13].

Predicting co-changes makes developers aware of entities that need to be changed along

with the entities that they are currently working on. This is to avoid defects and maintain

system integrity [5]. Many difficulties to detect bugs are induced by developers who did

not notice the hidden relationships among the software entities, which lead to a change

propagation failure. Other defects come as a result of the ignorance surgeries, which are

2

modifying the source code by developers who do not have enough knowledge about its

purpose and its structure. Predicting co-changes can also reduce the time consumed

during the maintenance process by guiding the developers through the related changes

[9][11].

In some cases, co-changes are easily recognized by the dependency browsers provided

within the development environments. These browsers analyze the structure of the

software system to detect the related entities (directly coupled) and consequently, detect

the affected ones during the updating process [11] [14]. For example, when Class X uses

an instance of Class Y as shown in Figure 1.1. However, in other cases, especially when

there is no direct relationship between entities (logically coupled), co-changes are hard to

be detected using structural analysis. For example, when entity A writes data in a file, and

entity B is desired to read this data, so that any change in entity A that may affect the data

written must be reflected in entity B. The entities A and B are not structurally related but

there is a hidden relationship between them. Figure 1.2 visualizes this type of relationship.

Figure 1.1 direct relationship between two classes

3

Figure 1.2 Hidden relationship among software entities

 A tremendous amount of data is produced during the software system development

process, describing the changes made in this process. It represents which part of the

system has changed, who made the change when this change was made and other related

data describing each detail of the development process. These data provide a beneficial

information source, which is helpful for many software engineering aspects, especially

detecting co-changes. All of the mentioned data in addition to the software system itself

and all its previous versions are stored in software repositories, which are the

infrastructures that support software development process activities [1].

1.1 Problem Statement

Most difficulties to detect software bugs are induced by developers who sometimes failed

to detect related entities and propagate co-changes correctly. The explicitly coupled

entities are usually detected manually by reading the source code to detect the related

entities or using the Dependency Browsers, which are tools that are usually installed

within the Integrated Development Environments (IDEs). These tools analyze the

structure of the software system to detect the explicitly coupled software entities. Hidden

relationships among entities are undetectable by manual revising or Dependency

Browsers. These relationships can be detected by analyzing the development history of

the software system to recognize frequently changed together entities [13].

4

 Many approaches have been proposed to solve this problem by analyzing the data

available in software repositories to guide the developers through the change propagation

process. However, the developers' community has not yet adopted these approaches

widely because of the low accuracy and the high misleading recommendations provided

by these approaches [1] [11] [14]. In this research, we introduce a Change Propagation

Path (CPP) approach, which is a Mining Software Repositories (MSR) approach that

adopts the frequent patterns analysis techniques. The CPP approach provides a suggestion

about the complementary changes depending on the data extracted from the software

repository.

1.2 Aim of the Research

Since the last decade, until the recent date, researchers tried to find an optimal solution to

predict co-changing software elements. All of these attempts are not adopted yet by the

developer's community because of the low accuracy and the high rate of misleading

recommendations. Hence, this research aims to propose an approach that increases the

accuracy of detecting co-changed software entities by using the historical data stored

within software repositories. The approach is designed to assist the software maintenance

process by reducing the time and cost it takes. This research also aims to prove the

feasibility of the proposed approach by conducting an experimental study, in which we

will apply the approach to a maintenance task and measure its effect on the maintenance

process. The following objectives will guide this research to fulfil its aims

1. To introduce a sufficient background about software co-changes and MSR. This

includes the analysis of the previous work and identifies the problem related to

the co-change prediction area,

2. To extract and prepare the historical software development data,

3. To apply an adapted frequent pattern analysis algorithm to produce a single entity

antecedent rule, and process these rules to form the change propagation path,

4. To evaluate the proposed approach and discuss the obtained results.

1.3 Research Questions

This research tries to answer the following questions:

5

RQ1: To what extent the cost and time are affected positively by applying CPP during

the maintenance process?

RQ2: What is the optimal software repository data extracting tool?

RQ3: What are the features of the data extracted from the software repositories that will

produce knowledge?

RQ4: What factors are vital to selecting a data mining algorithm for producing required

knowledge for the CPP approach?

1.4 The Proposed Method

In this research, we employed the quantitive methods through a deductive approach, on

data extracted from the Git software repositories. The proposed approach consists of three

main phases. The data extraction phase is where the data are gathered. The data preparing

phase where the data is cleaned, transformed, and reduced. The analytical phase is where

the data mining techniques are applied to produce knowledge from the preprocessed data.

The output of these three phases comes as recommendations to guide the developers

through the maintenance process.

1.5 Dissertation Structure

This dissertation starts with an introduction and a brief description of the context of the

problem under the study and outlines our aims, objectives, and research questions.

Chapter 2 provides a sufficient background about the topics, tools, and applications

mentioned in this research. Chapter 3 previews the previous works related to our topic,

and the contribution of this research. Chapter 4 introduces the research methodology that

will guide this research to achieve its aim. Chapter 5 contains the implementation of the

proposed solution and describes the experiment that we are conducted to prove the

validity of the proposed approach. Chapter 6 represents testing the feasibility of the

approach. Chapter 7 presents the conclusion of the research along with the

recommendations and future work.

6

Chapter 2

Background

Software maintenance is the costliest process among software system life cycle processes.

It costs about half of the total software system development budget [10]. The edits made

during this process may require a complementary change (co-changes), which are the

changes made to other software entities according to a previous change. Ignoring those

co-changes may cause defects or software poor performance. Co-change is the result of

software entities coupling that may be explicit and easily detected, or implicit and difficult

to be noticed manually. Co-changes can be detected by revising the historical data of the

software system development. A vast amount of data is produced during the software

development process. This data describes each detail in the software system history, and

is stored in the software repository along with the software itself and its previous versions.

The data stored in software repositories are a valuable source of knowledge that serves

many aspects of software engineering. Software repositories store a huge amount of data

in unstructured form, gaining knowledge from big unstructured data requires applying

data mining techniques to produce the desired knowledge [1].

This chapter gives a sufficient background about the topics of this research. In the

beginning, this chapter introduces the software maintenance process, then it discusses the

co-changes, which is the side effect of the changes made during the software maintenance

process, and why it is important to predict those co-changes. After that, this chapter talks

about software repositories and their categories and how knowledge is extracted from

software repositories using data mining. Finally, the chapter describes the tools and

programs used to accomplish this research aims.

2.1 Software Maintenance

Software maintenance is the process of updating the software system after being

delivered. This update may be required as a result of a software defect occurring after

system delivery, adapting the system to a new environment, or a new feature requested

by the customer. After the software system is delivered, development team members

usually break up, opening the way for new members who have no experience of the

software system to do the maintenance tasks [10]. The new team members might spend a

long time to be familiar with the system, and be able to propagate changes correctly. The

7

maintenance contract is usually separated from the development contract, leading to

assigning the development process to one company, and the maintenance process to

another company. As a result of this poor practice, more time might be consumed to

understand the system by the new company team members. The maintenance process is

considered a less-skilled process than the development process, so it is usually assigned

to junior developers who do not have enough experience, which induces more defects in

the system. Due to incomplete changes, more time is consumed and higher costs to

maintain. Consequentially, maintaining a software system costs two times as much higher

than the developing process [10].

2.2 Co-change

Changing a software system entity may lead to changing another entity, or a change

propagation through the whole system. This change is also referred to as co-change.

Failing to propagate changes correctly is the main reason for software defects and poor

performance so that predicting these changes can reduce the time and cost spent on

software maintenance. In some cases, when software entities are structurally related, co-

changes are easily detected. In other cases, when there is no direct relationship among

software entities, co-changes require more effort to be detected by revising the software

development history and relating the frequently changing together software entities

[1][9][22].

2.3 Software Repositories

According to Hassan et al [12], software repositories have three main categories

depending on the data that is stored in them: historical repositories, code repositories, and

deployment logs. These repositories provide the infrastructure that supports the software

development process, forms a collaborative environment where development teams can

host their projects, keeps the track of those projects, and works remotely in a collaborative

way. The following subsections describes each type of software repositories:

8

2.3.1 Historical Repositories

 The purpose of the historical repositories is to be used as an archive for software systems

and the data, which illustrate the software development process. This category of

repositories has different types according to the data stored in them.

2.3.1.1 Source Control Repositories

Source control repositories or version control systems track the project's development

history by recording each change made in the software along with a meta-data that

describes each change. For example, which part of the software was changed, who made

the change, and when the change was made. Source control repositories provide a short

message sent by the developer to describe the purpose of the change. They also provide

the ability of parallel development by branching features. Some of these repositories work

in centralized style, where the repository is hosted on a single server, i.e., Concurrent

Versioning System (CVS) and Subversion, while other repositories work in distributed

style by mirroring the whole repository among clients like Git and Mercurial [17][12].

2.3.1.2 Bug Repositories

Bug tracking is the process of tracking and monitoring the bugs and issues that occur

during the development process. Issue tracking systems (also known as bug repositories)

are responsible for storing developers' bug reports and the features requested by users. It

categorizes, describes, and tracks the problem to enable the developers to suggest

enhancements of the reported bugs. The Jira and Bugzilla are examples of this type [18]

[17].

2.3.1.3 Communications Archives

 Communications archives record all the discussions and communications among the

development team members about the development process. Communications archives

contain Emails, instant messages, and other types of communications [12].

9

2.3.2 Code Repositories

Code repositories are storage spaces where developers can store and share their project

releases. These repositories are usually integrated with other software development

support systems to create a collaborative development environment such as

sourceforge.com, GitHub, and Google code [1].

2.3.2.1 Git Repository

Git is a distributed version control system that allows developers to work remotely. Also,

keeps track of all the changes made during the development process, along with the

related data, such as who made these changes, when these changes were made and a

message that describes why these changes were made. Figure 2.1 shows a sample of

Laravel framework data stored on Git repository.

Figure 2.1: A sample of Laravel framework development data stored in the Git repository

In 2002, the Linux kernel project started to use a DVCS called BitKeeper as a free-of-

charge product, to keep the track of changes they made [12]. After three years, the free-

of-charge deal was cancelled due to some issues between the Linux community and the

company producing BitKeeper DVCS. This forced Linus Torvalds, the inventor of the

Linux operating system, to create a new tool named Git. This new tool is focused on

10

fixing the issues they faced with BitKeeper. The new tool aimed to work faster with a

simpler design and support for parallel development. Also, fully distributed and able to

handle large projects [12].

Git works in a simple style as described in Figure 2.2. After the repository is initiated, the

first step is making changes to the projects file, the changes are snapshotted on the staging

area, and then the changes are committed to the Git repository. The commits made on the

Git repository can be pushed to the remote server later. Git Commit contains all the data

describing the changes made, besides the affected files. Each commit has a unique

identifier that allows the developer to retrieve the data within the commit, and also to

revert the changes made to a certain point of time [12].

Figure 2.2: The way that Git stores and retrieves changes data [12]

2.3.3 Deployment Logs

Deployment logs repository contains data about the software execution and usages such

as error messages and software performance. The data stored in logs is used to diagnose

failures and poor performance and helps to propose solutions [19] [12].

2.4 Mining Software Repositories

 Since the last decade, software repositories have taken a vital role in the software

development process. The data stored in these repositories started to attract the attention

11

of the scientific community. Analyzing this data can produce valuable information, which

can be acted upon. This process is known as Mining Software Repositories (MSR) [37].

Due to the importance of the MSR field, the first workshop about MSR was held in 2004

by the International Conference of Software Engineering (ICSE), and after four years of

working in this field, the first MSR conference was held [12]. MSR is helpful in many

aspects of software engineering. It can help the development team to understand software

systems. Predicting and identifying bugs can be more effective by analyzing the previous

versions of the software systems stored within the repositories. Revising the historical

data of a software system conveys vital information about the pairs of entities that change

together and how and why the change was made. This can guide developers while

propagating changes in future versions of the systems [12].

2.5 Frequent Pattern Analysis

 Frequent pattern analysis is the analytical process of detecting the frequently occurring

data sets. This process is applied to a transactional database, which is a set of transactions,

each transaction has a unique identifier and contains a set of items [28]. A frequent pattern

is the item set that satisfies the minimum support threshold assigned by the data analyst.

Those patterns are considered interesting patterns. The support means that the percentage

of transactions that contains a particular data set in a given transaction set [29]. Let T be

a set of transactions and X is a set of items, the support (SUPP) of X is calculated as

shown in the following equation.

SUPP(X) =
|{𝑋}∈𝑇|

|𝑇|

Interesting patterns are the raw material to create association rules, which are the rules

that describe the relationships among items. This type of rule is usually used to predict

consumer behaviour, in the manner of consumers who bought this item also bought that

other item. This can be useful in making offers, promotions, and ordering items on market

shelves. Each rule has a left side (antecedent) and a right side (consequent). The rule is

considered interesting if it satisfies a minimum confidence measure [28]. Let X and Y be

disjoint item sets, where T is the set of transactions so that the confidence (CONF) of the

rule X → Y is calculated by the following equation

CONF(𝑋 → 𝑌) =
𝑆𝑈𝑃𝑃(𝑋∪𝑌)

𝑆𝑈𝑃𝑃(𝑋)

12

In the same way, the frequent pattern analysis can be used to predict the co-changing

software entities, developers who changed this entity also changed that other entity, which

reveals the hidden relationships among software entities.

In 1966, Petr Hájek and chytil [30] introduced the General Unary Hypothesis Automation

(GUHA) method. This method is aimed to analyze the properties of a set of objects to

convey if a combination of properties is the cause of another combination of properties.

For example, a combination of symptoms is an indicator of diseases. GUHA was the first

attempt to analyze the frequent patterns [30].

In 1994, Agrawal and Skrikant [31] have proposed the Apriori algorithm that follows the

candidate itemset generation approach, by applying a breadth-first search to generate all

the possible itemsets within a transaction, where k-frequent itemsets are used to find the

k+1 item set. Generating all the candidate itemsets makes the Apriori algorithm unable to

handle large transactions or big databases.

Later in 2000, Han et al [32], have proposed another method to generate frequent patterns,

called the FP-Growth algorithm, to generate frequent itemsets without candidate

generation. By using a prefix-tree structure called FP-tree (Frequent-Pattern tree), FP-

growth solved several issues in the Apriori algorithm, such as the repeated scanning of

database FP-growth only scans the database twice the time consumed generating the

candidate itemsets also reduced in FP-growth. However, the FP-growth algorithm suffers

from memory consumption when applied to large data sets.

Another algorithm was introduced in 1997, which is called Equivalence Class Clustering

and bottom-up Lattice (ECLAT) was proposed by MJ Zaki, et al [33]. ECLAT is a

scalable algorithm that uses the depth-first search approach, which consumes less

memory than the Apriori algorithm, also the ECLAT does not involve multiple database

scans, which makes it work faster than the other approaches[33]. Candidate Generation

and FP-growth approaches use item-id data sets, where each transaction is a set of items

with a transaction id as shown in Figure 2.3. The ECLAT algorithm uses a different data

format, where each item is associated with a set of (TIDs) transaction ids. Figure 2.4

describes the TID data format, which is helpful in the manner of scalability, but

sometimes TID gets quite long and expensive to compute. This problem was solved by

using the Diffset technique [29].

13

Figure 2.3: items IDs data format

Figure 2.4: Transactions IDs data format

2.6 Tools and Applications used in the Proposed Solution

In this section, we describe a set of tools and applications that were used to accomplish

our study. First, we introduce Komodo Edit, which is a text editor that was used to write

the front end of the suggestion tool. After that, we give a brief description of MAMP, the

local web services environment that was used to host the suggestion tool on the local

server. Then, we describe PyCharm, which is an integrated development environment that

was used to write the back end of the suggestion tool. After that, we introduce Ali

Research Tool (ART), a web-based tool, which is designed by the researcher to

summarize the information gathered from books and research papers. We also mention

the Git repository, the source of the data that was used to prove the feasibility of our

approach. Finally, we describe MySQL relational database management system, and its

graphical user interfaces PhpMyAdmin, which was used to store the output of the

processed data.

2.6.1 Komodo Edit

Komodo edit as shown in Figure 2.5, is a text editor developed by Active State [53].

Komodo Edit provides the ability of managing source code, by colouring different parts

of the source code and giving the code a proper layout. It also auto-corrects syntax errors

and auto-completes the code therefore, the code writing using Komodo is a faster and

more accurate process. We used Komodo Edit to write the Php source code of the WAlead

tool [53].

14

Figure 2.5 Komodo edit to write PHP, code

2.6.2 MAMP

The MAMP is a local web services environment as described in Figure 2.6. It contains all

the necessary tools and apps to test web applications on local machines. MAMP contains

apache and Nginx webservers, MySQL database management system, and supports most

back-end web development languages [54]. We used MAMP to test the WAlead tool on

a local machine and we managed to use it as a server on a local network during the

experiment.

15

Figure 2.6: MAMP local web services environment

2.6.3 PyCharm

PyCharm is an (Integrated Development Environment) IDE Designed specifically for

Python language as shown in Figure 2.7. It provides all the required tools to write and run

python code [55]. We used PyCharm to write python code in data extraction,

preprocessing, and analyzing phases. Also, we used it to write the python part of the

WAlead tool.

Figure 2.7: The PyCharm IDE

2.6.4 Git Repository

Git repository is one of the most popular software repositories, as it is considered a

software changes tracker. Git repository provides the ability to store the software itself

along with all the previous versions and the metadata that describes the development

process [56]. We used Git to keep track of the changes of the WAlead tool. Also, Git is

the data source for our research.

2.6.5 MySQL and PhpMyAdmin

MySQL is a database management system that adopts the concept of the relational

database. MySQL databases is a reliable storage system that is suitable for small and

medium projects, and it is also compatible with PHP and python the languages used in

16

this research's practical part [57]. MySQL is usually accessed and manipulated through

the command line, which is a complex and time-consuming process. Hence, we used

PhpMyAdmin, the graphical user interface of MySQL to create and manage the

databases. Figure 2.8 describes the PhpMyAdmin user interface.

Figure 2.8: PhpMyAdmin the GUI of MySQL

17

Chapter 3

The Literature Review

As a time-consuming process, searching for hiddenly related software entities during the

maintenance process has gained the attention of many researchers since the last decade.

The aim was to find an optimal approach for automating this process and providing

accurate suggestions for developers to assist the maintenance process.

Thomas Zimmerman [13] applied the Apriori algorithm on historical data extracted from

the Concurrent Versioning System (CVS). The rules produced by the algorithm are used

to build a Reengineering of Software Evolution (ROSE) recommendation tool to guide

developers while propagating changes. The ROSE was designed to be used as a plugin

for Eclipse IDE, which can only be applied to a specific type of software project. The

Apriori algorithm that was used to build ROSE has some drawbacks, where it consumes

a long time scanning the database (N times) and spends time while creating candidate

itemsets.

Thomas Zimmerman et al [21] has investigated the co-change among lines of code. Using

the annotation graph to visualize how lines of code co-change over time. An annotation

graph is a multipartite graph, where every part represents a version of a file. The nodes in

the graph represent a line of code, and the line connecting two nodes means that a line of

code is produced by editing another line of code. The approach concluded that searching

for a co-changing line of code is a quite expensive and infeasible method to be applied in

supporting the development process.

 An approach for extracting data of over 40 years of software development and applying

the Development Replay (DR) approach to these data has been proposed in [9]. The

empirical results convey that the historical data of software development are extremely

useful in predicting complementary changes. This can assist developers in propagating

changes in the future.

Ramadani [14] proposed a recommendation system for co-changed by applying the FP-

Growth algorithm on data extracted from Git versioning repositories. However, this

18

approach was only applicable to detect co-changes on coarse granular software

entities(files).

Rolfsnes et al[4] have used a frequent pattern analysis on the data of 15 open-source

software systems and introduced the concept of hyper-rules, which is the result of

aggregating multi-applicable rules. The results showed that the hyper-rules can improve

the accuracy of the suggestions by 13% to 90% compared with previous works.

 Rolfsnes et al [27] introduced what so-called TARMAQ algorithm for mining

evolutionary coupling. The algorithm focuses on the drawbacks of using off-shelf mining

algorithms and worked file-level granularity. The TARMAQ algorithm has achieved a

higher accuracy rather than the ROSE tool [13].

 Islam [5] introduced the concept of the transitive evolutionary coupling, which is a

relationship among software entities that never changed together in the past and are likely

to change in the future. The traditional association rules cannot detect that kind of

relationship. Therefore, a set of transitive association rules have been proposed.

Compared to the TARMAQ tool that depends on the regular association rules, the

transitive association rules achieved 13.96% recall and a 5.56% precision higher.

Ajienka et al [3] have investigated the hidden relationships among software classes

according to the semantic coupling of its identifiers. However, this approach was

applicable only on OO-designed systems and on the class-level entities. The solution

concludes that there is no correlation between semantic coupling and change coupling

although 70% of semantic dependencies are linked to change coupling but not vice versa.

Wiese, et al [11] have proposed a prediction model for each pair of software entities,

based on relevant association rules. Those rules are produced from the contextual

information extracted from issues tracking systems, developers' communications, and

commits metadata. Later, Wiese, et al [20] have compared suggestions based on

contextual information with suggestions based on association analysis and concluded that

the contextual information provided fewer false recommendations.

 Tosun and Romero [7] extended the work of Wiese et al [11] by building a prediction

model to predict the co-changing files using the contextual records on software

repositories. This approach achieved a 20% to 45% less accuracy than the previous work.

Similar to [14] this approach applies to coarse granular entities.

19

Vidács, L., and Pinzger [8] investigated the co-evolution patterns between production

code entities and their test code entities.

Stana and Şora [16] analyzed the relationships among logical dependencies and the

structural dependencies on data extracted from 27 open-source software projects written

in Java and C#. The work concluded that including structural dependencies along with

logical dependencies improves the applications based on dependency models and co-

change detection is one of them.

Wang et al [6] conducted an empirical study on bug fixes including multi-entities to

discover the frequently fixed together entities and based on syntactic dependencies among

changed entities. The approach suggested creating a Change Dependency Graph (CDG),

which can be used to guide developers through the entities that are meant to be fixed.

 Jiang, et al [2] proposed the CMSuggester approach, which is aimed to predict co-

changing software entity pairs during maintenance tasks that require multiple changes.

The most majority of the proposed approaches depends on the historical data of the

software development, where the frequently changing together entities in the past is likely

will change in the future. The CMSuggester approach provides recommendations based

on analyzing the structure of the software code, where the methods that access the same

data field are clustered, and the produced recommendations are based on method clusters.

This approach has achieved 70% of suggestions accuracy. However, this approach can

only suggest co-changing methods.

Beyre and Noak [26]introduced a method that clusteres software artefacts into

subsystems using a co-change graph, which is a model that represents software artefacts

as vertices and the co-changes among these entities as edges between vertices.

Kouroshfar [34] investigated the impact of software entities co-change on the software

quality. They applied a subsystem decomposition model on four different open-source

projects. The results showed that the co-changes among software entities in the same

subsystem can improve the bugs prediction process.

Kagdi et al [35] have used the log-entries data in the Subversion repository to investigate

the sequence of files changing the results. A set of tools have been built to discover the

correct sequence of file changing, to help developers in predicting future changes, and

analyze the evolution process of software systems.

20

Martinez and Monperrus [44] have designed a tool called Coming, which is a tool that

extracts the commits data from the Git repository. The data extracted are revised to

convey the change patterns of the fine-grained software entities (Classes, Methods, etc.).

The result of this process is stored in JSON format. However, this tool does not provide

any recommendations, since it is only applicable as a plugin in a larger mining approach.

Alali et al [46] introduced two new ranking patterns measures, i.e., pattern age and

coupled files distance. Those new measures are used to reduce the false positives in co-

changes recommendations. To extract the patterns from sub-version VCS, the srcMiner

tool has been designed and built upon the vertical data format pattern generation

algorithm ECLAT. The tool was applied on eleven different projects using file-level

granularity and concluded that about 75% of co-changes are localized.

Agrawal et al [47] introduced a tool called Ruffle that was used to produce change

recommendations using software revision history by calculating the changing proximity

for each pair of classes. The Ruffle tool was built using Java and Python programming

languages. Each software entity was stored along with the revision id that includes it, then

an SQL query was applied to generate changing pairs. To evaluate the Ruffle tool

performance, five different project histories have been used. However, the tool has

achieved accuracy between 0.7 and 0.8.

The ability of the commit data to provide predictions for co-changes decreases by time

[49] [50] [51]. To avoid this problem, Agrawal et al [48] proposed Change Prospect (CP)

to measure the feasibility of a commit to increase the accuracy of predicting the co-

changing pair of classes.

In conclusion, the previous work investigated the co-change occurrence or the occurrence

of the factors responsible for making software entities evolve together by using different

methods and approaches. Table 3.1 provides a summary of this related research work.

However, it seems that none of these approaches was widely adopted by developers yet.

This is because of the lack of accuracy or during the high rate of false recommendations.

Some of these works focused on one level of granularity so that it cannot be generalized

on the other levels of granularity. Other works have proposed expensive to apply

approaches, therefore, increase the cost of the maintenance process. Hence, a usable

automated co-change detecting approach requires to be accurate enough, stable and cost

effective in manner of time and computation effort. While the software development is a

21

continues process, the co-change detection approach output must be scalable to cover the

changes without reanalyzing the old data.

In this research, we introduce the CPP approach, which tries to avoid the weak points in

the previous works, and employs some of the proposed techniques to produce more

reliable recommendations. Therefore, this will serve the main aim of this research, which

is decreasing the cost of the maintenance process

22

22

Table 3.1: a summary of the software complementary change detection approaches

Approach Tool Data

format

Data source Mining

algorithm

Granularity

level

Main Findings

Thomas

Zimmerman

[13]

ROSE tool Commits CVS Apriori Code elements

level

ROSE tool employees’ unfeasible algorithm that

is expensive to apply and provides unscalable

output.

Thomas

Zimmerman

[21]

Annotation

graph

Lines of

code

CVS - Lines of code Detecting co-changes among lines of code is an

expensive process.

Ahmad Hassan

et al [9]

Developme

nt replay

Commits CVS - Files Proved that historical data is a significant source

for detecting co-changes

Ramadani, J

[14]

Recommend

ation system

Commits Git repository FP-Growth Files This approach is only applicable on file level only

Rolfsnes, T et

al[4]

Hyper rules - 16 open source

projects

Association

rules

Files Aggregating applicable rules can increase the

accuracy of the co-change detection process

Rolfsnes et al

[27]

TARMAQ Commits - TARMAQ Files TARMAQ is a mining algorithm that was

exclusively designed to detect co-changes

 Islam,

M.A[5]

Transitive

rules

Commits - Association

analysis

Files Spotted the light on the relationship among

software entities that have never changed together

in the history

Wiese, I.S et al

[11]

Prediction

model

Contextual

data/Commi

ts metadata

Communication

archive, issue

tracking

systems

Association

analysis

- Using the contextual data along with the

traditional methods may increase the accuracy of

the co-change detection process.

Tosun, A. and

Romero, B [7]

Prediction

model

Contextual

data/Commi

ts metadata

Communication

archive, issue

tracking

systems

Association

analysis

Files Using the contextual data only may decrease the

accuracy of the predicting process by 20% to

45% less than the work in 7

Wang, Y et al

[6]

CDR

(Change

Contextual

data

Bug tracking

systems

- Code entities Using bug fixing data can help in detecting co-

changes

23

propagation

graph)

Jiang, Zet al[2] CMSuggest

er

Source code CVS clustering Code entities Co-changing methods that access the same data

field are likely to co-change

Kouroshfar

[34]

Subsystem

decompositi

on model

Source code Four different

open-source

projects

- Code entities Artifacts in the same subsystem are more likely to

co-change

Kagdi et al

[35]

Sequence

file change

correcting

tools

Historical

data

Subversion

repository

analyze the

evolution

process of

software

systems

Code entities The correct sequence of software entities

changing may affect the accuracy of the co-

change detection process

Martinez and

Monperrus[44]

Coming tool Commits Git repository - Software releases Provided a plugin that can be used in larger

mining software repositories projects

[47] Agrawal Ruffle tool Source code Five different

projects

SQL queries classes Investigated the change proximity for each pair of

software entities

24

Chapter 4

The Proposed Method

This chapter describes the design of the CPP approach and its phases. The CPP is an

approach for detecting co-changes among software entities. The CPP approach employs

frequent patterns analysis techniques to search in the historical data of software

development for frequently changing together software entities. The frequent patterns

generated are used to create association rules, which predict the co-changes for a set of

software entities based on a change on one single software entity. The created rules are

aggregated to form a larger rule based on the same antecedent. The larger rules create the

Change Propagation Path depending on the software editing scenario, which leads the

developers through the related changes. Using the CPP approach may decrease the time

consumed while searching for related changes manually during the maintenance process.

It also may eliminate the cost of hiring highly paid senior developers.

The aim of this research is achieved by employing quantitative methods, through a

deductive approach [58] [61]. The aim is reached by applying a data mining framework,

on the data generated during the development process and stored in software repositories.

Figure 4.1 describes the three phases of the proposed approach. Phase I is concerned with

gathering data from the Git software repository. The data collected in Phase I are prepared

and cleaned in Phase II. Finally, in Phase III, the required knowledge is produced using

data mining techniques.

25

Figure 4.1 The CPP Approach Framework

26

The following subsections describe the three phases of the CPP approach. The process

starts with extracting data from the software repository, cleaning and preparing the

extracted data., and finally, analyzing the data and producing the required knowledge in

the form of a change path.

4.1 Phase I: Data Extraction

 In this phase, the data stored within the Git software repository are extracted. This data

should be covering a long period of development time to enable the mining method to

convey relationships among software entities. The commits stored within the Git

repository that is stored on a local machine, or the commits pushed to GitHub are pulled

using one of the available commit extraction tools. We conducted a comparative study

among data extracting tools and frameworks. To decide which extraction tool is suitable

for our purpose.

 The Git repository stores the software system versions and records the changes made on

its entities. Also, it records the metadata describing those changes in the following three

different objects as shown in Figure 4.2.

Figure 4.2: The method used by Git to capture files changes

27

1. BLOB (Binary Large Object): stores the content of each file as a string without

the file metadata (filename, creation date, ... etc.). Each BLOB is identified with a

SHA1-hash referring to its content.

2. Tree Object: represents a directory that refers to BLOBs and other trees

(directories), trees are identified by SHA1-hash that are produced according to the

tree content.

3. Commit Object: represents the status of the system at a point in time (snapshot of

the system). The commit points to the main tree hash and contains the metadata about

the latest changes (i.e., who made the latest changes, when the latest changes were

made, … etc.). Each commit has a parent commit describing the previous statutes of

the system.

When a developer makes a change to a file, the hash of the related BLOB will be changed

according to the new content of the file. This change will be reflected on the tree hash

containing that BLOB. The new tree will contain the edited BLOB and the references to

the untouched BLOBs. This process produces a new commit with a new hash and new

metadata [12].

Extracting data from the GIT objects is a quite complex process that requires extra

programming effort and consumes more time. To accomplish this task, we examined five

different data extraction tools that were designed to deal with software repositories shown

in Table 4.1. These data extraction tools are described as follows:

4.1.1 Tidyextractors

The Tidyextractors is a python framework introduced by Becker et al [40]. This

framework was built on the tidy data conceptual framework [43]. The Tidyextractors

aimed to extract data from local Git repositories, Twitter user data, and email data with

minimal effort and in a "tidy data format", which is the cleaned reshaped data that is ready

for analysis. We followed the installation instructions through the pip package manager

and by cloning the Tidyextractors repository to our local machine, and we tried to install

the framework on different operating systems. Unfortunately, the installation process did

not complete successfully for an unknown reason.

28

4.1.2 GHTorrent

The GHTorrent provides a scalable mirror of GitHub repositories in the form of

MongoDB incremental data dumps. This mirror is distributed in a peer-to-peer BitTorrent

network. The latest data reflected in the GHTorrent mirror was on 30-6-2019, which is

outdated data and cannot be used to predict co-changing software entities [41].

4.1.3 CVSAnalY

 The CVSAnaly is a data extraction tool that aimed to extract relevant data from software

repositories. This tool was used by several researchers to collect data from software

repositories [11][20]. This tool depends on the 2. x python version, which is replaced

lately with the 3. x version [42].

4.1.4 GitPython

The GitPython is a python library that was created to deal with Git repositories. It

simplifies the access of Git objects by reflecting the content of these objects into databases

to be ready for use [36].

4.1.5 PyDriller

 In our research, we used the PyDriller framework, which is a python framework Built

upon the GitPython [36] framework to make the commit data extraction simpler. The

PyDriller achieved 50% less LOC than GitPython to produce the same results. The result

of this phase is a set of commits containing all the data related to the software system

development process [24].

29

Table 4.1: data extracting tools comparison

Tool Extracting

method

Advantages Drawbacks Environment

Tidyextractors General data

extracting

framework

● Provides cleaned formatted data.

● Provides data with minimum

effort.

● Extract data from multiple

sources.

Suffers from bugs and errors Python code

GHTorrent Repository

mirroring
● Provides a database of Git

objects ready to use.

● Data stored in a peer-to-peer

BitTorrent network which

provides fast access and

scalability

The database is out of date Online

service

CVSAnaly Extracting tool A reliable tool that was used in

previous works successfully

Works on an old version of

python

Stand-alone

tool

GitPython Extracting

framework
● Reliable

● Fast relatively to other methods

Requires extra effort to

produce outputs

Python code

PyDriller Extracting

framework
● Reliable

● Fewer lines of code to produce

results

Slower respectively to other

methods

Python code

30

4.2 Phase II: Data Preprocessing

The raw data extracted from software repositories requires several steps to be suitable for

the mining process. Relevant data must be extracted, then cleaned by removing noise.

After that, the relevant data should be transformed in a shape suited to the used algorithm.

The data preprocessing phase includes the following steps [28].

4.2.1 Step 1: Feature Extraction

Git commit is an action made by the developer. To preserve the changes made on the

system as a snapshot in the repository. Git Commits contain several attributes describing

the event when the commit was made, i.e., the commit date, the author, the affected files

...etc. Some specific attributes form the features that will convey relationships among

software entities. In this step, the relevant attributes, which are the set of affected files in

each commit are extracted and then inserted into a relational database to be cleaned and

preprocessed.

4.2.2 Step 2: Removing Misleading Commits

Some of the extracted commits are considered noise or misleading commits. In this step,

the extracted commits from Phase I are revised to remove the commits considered as

misleading data. Commits with one file edited do not represent any relationship among

files. Also, commits with no affected files do not provide any knowledge and will affect

the accuracy of calculating support and confidence. The other type of misleading commits

is the commits with an extra-long affected files list. These commits come as a result of a

software developer's bad practices. When a developer makes changes in a software

system for a long period without committing the changes, the commit will contain an

extra-long affected file list. The files in this list are might not be related therefore will

produce misleading knowledge. We assigned the average number of files that the

developer change for each software project to be a threshold of the commits that were

considered useful. Commits with affected files numbers equal to or less than the

threshold, and more than one file are considered as useful commits, and other commits

will be removed.

31

4.2.3 Step 3: Coding File Names

File names are usually long strings that require a large portion of the main memory and

so that require extra processing effort during the mining process. In this step, file names

are replaced with integers. The original file names and their integer codes are stored in a

relational database table to be retrieved later after the mining process.

 4.2.4 Step 4: Removing Deleted Files

Commit data records each detail in the development process. Deleting files is one of the

main operations made during the development process. The recorded deleted files in the

commit data may lead to suggesting none existing files, which are false recommendations.

In this step, the files tagged as deleted are removed to enhance the accuracy of the

produced recommendations.

 4.2.5 Step 5: Data Reduction

Old commits are less valuable than new commits for the knowledge-producing process

[48]. Also, the vast amount of commits in the large projects are expensive to analyze and

will increase the time of the co-change detection. In this step, the total amount of the

commits is reduced to remove the valueless old commits and to reduce the time consumed

during the analyzing phase.

4.3 Phase III: Analytical Processing

The final phase of the data mining framework is gaining valuable knowledge out of the

cleaned data. After extracting and preprocessing the data, the altered frequent patterns

analysis algorithm is applied to the preprocessed data. The applied algorithm produced

rules with a single software entity on the antecedent side. After that, the rules with the

same antecedent are aggregated to create larger consequent side rules, containing all the

entities that frequently change with the entity in the antecedent. Later, these rules are

chained to create the co-change path, which will guide the change propagation process.

The following steps clarify each part of Phase III.

32

4.3.1 Step 1: Frequent Patterns Algorithm Applying

The final output of the preprocessing phase is a transactional database that contains sets

of codes that represents the names of affected files in each commit. In this step, a frequent

pattern algorithm is applied to generate patterns from each set of codes. The generated

patterns are stored in a relational database along with its support count, which is the

frequency number of that pattern in the whole transactional database.

4.3.2 Step 2: Rules Generation

After generating all the possible patterns from the transactional database, the generated

patterns are used to create the rules that represent the relationships among software

entities. The generating rules consist of the following sub-steps:

4.3.2.1 Substep 2.1: Evaluating the Patterns

 In this step, the patterns are evaluated according to their support count threshold. Patterns

with support counts less than the threshold specified are ignored.

4.3.2.2 Substep 2.2: Creating Antecedent and Consequent Lists

The frequent patterns generated and evaluated as an interesting pattern contain a set of

items. The number of items per pattern ranges from one item to N number of items. The

patterns with one item that satisfy the minimum evaluation criteria threshold are selected

and inserted into the antecedents list. Patterns with more than one item and have a support

count equal to or higher than the threshold are inserted in the consequent list.

4.3.2.3 Substep 2.3: Forming the Rules

In this step, the rules are created from the antecedent and consequent lists. A rule is a

statement that describes the relationship between two disjoint sets of software entities.

The rules produced in this step contain one item on the left side and one or more items on

the right side. Forming a rule starts with a loop through the antecedent list, and another

loop starts on the consequent list, to select patterns that contain the current antecedent and

form a rule. The rules will be stored in permanent storage to be accessed in the following

steps.

33

4.3.3 Step 3: Rules Aggregation

Not all of the generated rules are applicable [28]. The generated rules must be evaluated

to avoid misleading recommendations. There are several criteria to evaluate rules

(Support, confidence ...etc.). In this process, an evaluation criterion is chosen to pick the

rules that may form valuable recommendations. The rules that satisfy the minimum

evaluation criteria threshold and have the same antecedent are aggregated into a larger

rule.

4.3.4 Step 4: Forming Change Propagation Path

The consequence of the aggregated rules is a set of software entities, some of which have

their own rules. Therefore, a rule may trigger other rules and so on. In this process, we

will create a path of changes depending on a starting point the software developer will

choose during the maintenance process. The algorithm will chain all the affected rules

and merge them as a long path of suggestions. The developer will change another entity

and move to the entities affected and so on till the path ends.

4.5 Summary

In this chapter, we introduced the CPP approach and described each of its phases. The

next chapter will describe the prototype implementation of the CPP approach.

34

Chapter 5

The Prototype Implementation

All the proposed tools in the literature are plugins or stand-alone desktop tools, which

make them only available on one device at a time. However, being a plugin within an

IDE makes it aimed at a narrow range of programming languages. In this chapter, we

introduce the design of the Wide Assisting and Leading (WALead) tool as an

implementation of the CPP approach. The WAlead is a web-based tool that can be

accessed online from everywhere. The WAlead tool does not require previous installation

or any other requirements. It only requires a stable internet connection and a machine

with a web browser. After building the tool, we tested the correctness of its output. The

output of the tool is unique (one item antecedent rules) it cannot be compared with other

tools and approaches. Hence, we tested it manually by inserting a small dataset into the

tool and testing the same dataset manually and comparing the output.

The following subsections describe the implementation of each phase in the CPP

approach. Each phase is applied to the sample data extracted from the Git software

repository, to examine the actual effect of each process on actual data.

5.1 Selecting the Environment

 After revising several maintenance recommendation tools, we found that the tools were

designed to work as plugins within another software, making it applicable to a specific

type of software or a few programming languages. The other type of recommendation

tool works as a stand-alone desktop application that requires pre-installation on the

machine and requires locally stored data to work with. To overcome this insufficiency,

we designed the WAlead tool to be hosted on a server and accessed online. The tool can

receive a compressed file containing a Git repository or extract the data directly from

Github. This feature will enable the developers’ team to work remotely and share

suggestions about software changes with no need to install applications or programs on

their machines.

35

5.2 Choosing the Programming Languages

In the data extracting phase, we used PyDriller as a data-gathering tool, which is a sturdy

data extraction python framework. Using PyDriller forced us to use python as a data

processing language and python provides wide support for data mining tasks in the form

of libraries and frameworks. The output of the data processing phase is stored in a

relational database, where we chose the MySQL DBMS to be the data storage. The online

tool requires a web-developing language. Therefore, we used PHP to be the back end of

our tool along with python language. The PHP script receives the user requests, processes

the request and provides outputs from the MySQL database as HTML layout. Figure 5.1

shows the main form of the WALead tool.

Figure 5.1 the main form of WALead tool

5.3 Phase I: Data Extraction

By using the Pydriller framework we extracted the commits data of five open-source

projects with different sizes of development history, different purposes and, different

programming languages. Table 5.1 describes the extracted projects and the differences

among them.

Table 5.1: The projects extracted from Git repositories

Project

name

Launching

date

Number of

commits

Number

of files

Programming

language

project purpose

Laravel 2011 6441 673 Php, Blade, Shell Web application

framework

Hbase 2007 18258 8920 Java, Ruby, Perl,

Shell, Python,

Thrift

Distributed

datastore

Pydriller 2018 630 134 Python Data mining

framework

Cassandra 2009 25908 6157 Java, Python,

HTML, Shell,

GAP, Lex

Scalable row-store

React 2013 13776 3853 JavaScript,

HTML, CSS,

C++, TypeScript,

CoffeeScript

User interface

JavaScript library

36

5.4 Phase II: Data Preprocessing

The raw data collected in the data extraction phase in Figure 5.2 is not suitable for any

type of data mining, therefore this data requires multiple preparation processes.

Figure 5.2: Raw data extracted from Git Repository

The pre-processing phase consists of five different activities. These activities will

guarantee the quality of the data passed to the analytical phase. The following steps

describe the preprocessing activities:

5.4.1 Step 1: Feature Extraction

To detect hiddenly related software entities, we applied a frequent pattern analysis

algorithm on the data extracted from the git repository. Frequent pattern analysis requires

a Transactional database [29]. A transactional database is a set of transactions that are

collected over a period. Each transaction contains a set of items that occur together. This

set of items determines the relationships among items. The raw commit data collected

from the git repository contains a similar format shown in Figure 5.3. The entire history

of the software development process is stored as a set of commits, and each commit

37

contains a set of filenames that changed together. Hence, we created a transactional

database from the extracted commits Figure 5.3.

Figure 5.3: Transactional database represents all commits in the git repository

5.4.2 Step 2: Removing Misleading Commits

 In this step, the commits that may affect the final result are eliminated. The commit with

one file does not represent a relationship between files and will affect that certain file’s

support. Also, a commit with no files changed will produce empty items in the database

and will also increase the total number of commits and induce misleading support for all

files. As a bad practice, developers may make changes for a long period without

committing them to the repository, after making a commit all the files changed in that

long time will be added in one commit. Some of those files are unrelated to each other

and the long transaction extracted from that commit requires a long time to produce

subsets. In [13], the ROSE tool ignores commits with more than 30 files. In this step, we

take the average number of files that the developer’s team changes in all commits and

make it a threshold for the considered commits. After applying this step to the five

projects data the results shown in Table 5.2, only 11.83% to 47.65% are considered useful

commits.

38

Table 5.2: useful commits in each project

project All commits Used commits percentage

Laravel 6441 762 11.83%

Pydriller 630 205 32.50%

HBase 18258 8700 47.65%

React 13776 4452 32%

Cassandra 25908 7081 27%

5.4.3 Step 3: Coding Files Names

File names require a relatively large space of storage to save, also take a massive portion

of the main memory while processed, leading to a delay in the mining process, especially

when those names are long.

To solve this problem, we created a table containing file names and a serial number for

each file name as shown in Figure 5.4. This table will be used to code and decode the file

name during processing and storing. Numbers take less memory than file names and it is

faster to process. In addition, in matters of scalability, adding new files to this table is

easier than other coding methods.

Figure 5.4: A sample of transitions after coding

5.4.4 Step 4: Removing Deleted Files

During the software system lifetime, new files are added and other files are deleted. As

we mentioned in Chapter 1, we attempt to create a co-change path that will guide the

change propagation process. This process will be stopped if a deleted file appears in that

path, preventing the rest of the files to be changed. In addition, if a commit contains only

removed files, it will affect the pattern support calculation.

39

The examination of the five projects extracted data proved that 28% to 73% of the files

mentioned in the developing history are deleted and must be ignored in the mining process

Table 5.3

 Table 5.3: The deleted files in each project

project deleted files active files Total

Pydriller 52 82 134

Hbase 3525 5395 8920

Laravel 489 184 673

Cassandra 1744 4413 6157

React 2045 1808 3853

5.4.5 Step 5: Data Reduction

 After the previous data preparation process, the amount of data is significantly reduced.

However, for large projects, it is still large and expensive to generate patterns out of it.

Furthermore, the older commits are less valuable for producing frequent patterns [48].

Therefore, a reduction process must be applied to reduce the time consumed during the

mining process.

Reducing the data requires a unit to be used as a breaking point to divide data. We

examined different units for data reduction. The first unit we examined was the Git tag

(Git release). The Git tag is used to specify a point of time when an important event occurs

in the project's developing history. After examining the releases in each project, we found

that the number of commits in each release ranges between 0 and 40 commits as shown

in Figure 5.5. The huge variation in the number of commits makes the release unusable

as a data reduction unit.

40

Figure 5.5: A plot describes the variation of commit number between releases

The second data reduction unit we examined is the year of development. The data in Table

5.4 presents each year of the developing history of the software system. In each year,

there is a different number of commits, a different number of releases, and the behaviour

of developers changes from time to time in each project. Hence the year cannot be used

as a unit to divide the data. Also, the average changing files in each commit is not the

same for each time in the same project, therefore the threshold of the considered number

of files in each commit should be dynamic according to the developer’s behaviour at each

time.

In this step, we considered the number of commits as a dividing unit for data reduction.

The number of considered commits is 1000 commits since it requires an acceptable time

to generate frequent patterns.

Table 5.4: The number of commits releases and average files number changing in commits for each year

project year Commits average files in a commit releases in each year

HBASE 2007 235 9 2

HBASE 2008 559 7 0

HBASE 2009 664 6 0

HBASE 2010 769 8 55

HBASE 2011 1015 6 32

41

HBASE 2012 792 16 72

HBASE 2013 1059 10 97

HBASE 2014 924 12 65

HBASE 2015 898 9 44

HBASE 2016 947 9 37

HBASE 2017 1027 20 21

HBASE 2018 819 9 43

HBASE 2019 657 9 63

HBASE 2020 637 10 37

Pydriller 2018 117 4 17

Pydriller 2019 62 4 9

Pydriller 2020 95 5 10

Laravel 2012 445 6 31

Laravel 2013 43 15 12

Laravel 2014 128 6 4

Laravel 2015 54 8 11

Laravel 2016 57 3 13

Laravel 2017 19 3 12

Laravel 2018 18 3 10

Laravel 2019 30 3 16

Laravel 2020 15 4 43

react 2013 507 6 10

react 2014 507 6 12

react 2015 713 8 16

react 2016 800 6 18

react 2017 826 12 26

react 2018 594 8 27

react 2019 1359 8 20

react 2020 779 10 8

Cassandra 2009 666 8 1

Cassandra 2010 1134 7 36

Cassandra 2011 1545 6 41

Cassandra 2012 1012 9 36

Cassandra 2013 1020 7 49

Cassandra 2014 1164 7 44

Cassandra 2015 1257 8 54

Cassandra 2016 918 9 50

Cassandra 2017 487 7 28

Cassandra 2018 331 10 12

Cassandra 2019 190 12 15

Cassandra 2020 396 7 57

5.5 Phase III: Analytical Processing

This research aims to support the maintenance process by decreasing the cost and the time

consumed while applying the required changes to the software system. Hence, the speed

of the frequent pattern algorithm is a vital factor to achieve our goal. The algorithm used

42

should be fast and the output is suitable to generate single item antecedent rules.

Moreover, scalability is an important feature to ensure continued maintenance support for

the software system. The analytical phase in the CPP approach consists of the following

four steps:

5.5.1 Step1: Applying Frequent Patterns Generation Algorithm

According to the comparative studies [38] [39] [45] on frequent pattern algorithms, the

ECLAT algorithm achieved higher speed respectively to FP-growth and Apriori

algorithm. Also, it is suitable for large databases, since there is no database scan in the

ECLAT algorithm. We applied the ECLAT algorithm on the pre-processed data to

generate frequent itemsets, each item set is presented with its frequency in the

transactional database shown in Figure 5.6.

Figure 5.6: The result of applying ECLAT on our data

5.5.2 Step 2: Rules Generation

While applying changes to a software file, the software developer performs those changes

on one file per time. Hence, we need a rule that describes the effect of changing one file

on the other files in the software system. The off-shelf data mining algorithms produce

rules that contain multiple items on the left side and another set of items on the right side.

43

This form of rules is not suitable for describing the effect of changing one file, because

software developers cannot change multiple files at the same time.

In this process, we will produce rules with a single item in the antecedent (left-side) and

a set of items in the consequence (right-side), by performing the following sub-steps:

5.5.2.1 Sub-step 1: Selecting the Interesting Frequent Patterns

In this step, we select the patterns that have support equal to or higher than the support

threshold specified. Support threshold is usually set manually by revising the data

characteristics [48]. After revising the data of five different projects. We discovered that

each data sample has its characteristics, and applying a support threshold according to

one project data on other projects' data is not feasible. In [13], the Support Count was

used to measure the interestingness of the generated patterns. The Support Count of a

pattern is the number of the transactions (commits) that contain that pattern. The Support

count is easier for developers to understand rather than support. On the other hand, it

applies to different projects data. To determine the Support Count threshold, we grouped

the patterns with the same support to select the largest group. We found that the largest

group has a support count of 2. Hence, we considered each pattern with a support count

of 2 an interesting pattern.

5.5.2.2 Sup-step 2: Creating Antecedents and Consequents Lists

After selecting the interesting patterns, we extract the patterns that contain one item that

satisfies the minimum support count threshold and insert it into a list along with their

support count. This list will form the antecedents of the rules. The other patterns that

contain more than one item and satisfy the support count threshold, are inserted in the

candidate consequent list.

5.5.2.3 Sup-step 3: Forming Rules

The final step in this process is creating rules. We scan the antecedents list and search for

each item we reach in the consequent list. If the item in the antecedents list appears in any

patterns in the consequent, we form a rule out of the two patterns and calculate the

confidence of the rule using the support of the two patterns.

44

5.5.3 Step 3: Rules Aggregation

 "The confidence of an association rule is a percentage value that shows how

frequently the rule head occurs among all the groups containing the rule body. The

confidence value indicates how reliable this rule is." IBM [62].

To select the valuable rules, we assigned 50% as a confidence threshold to filter the

generated rules. This means that the rules are 50% accurate. Setting a high confidence

threshold will extremely reduce the number of recommendations, also setting a low

confidence threshold will produce misleading recommendations.

After assigning the confidence threshold, we looped through the rules table, and

combined the rules with the same antecedent, and satisfied the minimum confidence

threshold to create a large rule.

5.5.4 Step 4: Change Propagation Path Creation

The final step in the CPP approach is to create the path that the developer will follow

during the maintenance process. In this step, the developer will select a starting point, a

software entity from the antecedents list. A list of the software entities affected by the

starting point will be shown. The developer will examine, which file deserves to be

changed. After that, the developer can choose one of the affected entities to continue the

path. This process will be repeated till the path ends.

5.6 Summary

This chapter described the practical effort to implement the three phases of the CPP

approach. Firstly, the data extracting, then preprocessing the data after that, analyzing the

preprocessed data.

45

Chapter 6

Evaluation of The CPP Approach

This research aims to develop an approach to support the software development process

by reducing the time and the cost of the maintenance process. To accomplish this aim, we

proposed the CPP approach, which is a path created using the historical data of the

software development process recorded on the Git repository. The path is the result of

chaining multiple aggregated rules that describe the effect of changing a particular

software entity. To prove the feasibility of the approach, we put it under test. We

employed this approach in developing a software maintenance recommendation tool

called WAlead tool. This tool can guide developers through the related changes after

editing a software entity in a software system. To examine the feasibility of the WALead

tool, we put it under three different tests. First, we compared the actual output of the tool

with the theoretical description of the algorithm. Then, we tested the performance of the

tool by measuring the time required for the tool to produce recommendations. Finally, we

examined the effect of using the WALead tool during the maintenance process. This

chapte describes the three experiments and the results of each test.

6.1 The WALead Tool Using Scenario

Using the WAlead tool is quite simple, the user requests the main form of the tool, and

inserts the repository link as shown in Figures 6.1 and 6.2. The tool receives and processes

the request. After that, the tool provides a list of files so the developer chose a starting

point along with the time consumed and the number of the usable commits as shown in

Figure 6.3. Then, the tool will show a list of affected files in Figure 6.4. The developer

will check the files and change the files that should be changed. The next step is choosing

one of the changed files and this process will be repeated till the end of the path as shown

in Figure 6.5.

46

Figure 6.1 shows using a locally stored repository in the WAlead tool.

Figure 6.2 shows extracting data directly from GitHub using the WAlead tool.

Figure 6.3 choosing the starting point of the path

 Figure 6.4 the list of the affected files by the changes made in the starting point

Figure 6.5 The end of the path where no more files will be changed

47

6.2 Experiment I: CPP Approach Validation

Before employing the WALead tool in supporting the software maintenance process. We

have to validate the output of the tool. To perform this task, we applied the three phases

of the CPP approach manually on a small dummy data set. Then, we used the same data

set and inserted it into the WALead tool. After that, we compared the output of the

manually generated recommendations and the onces produced by the WALead tool. The

results revealed that the output of the WALead tool is identical to the output of the

manually performed CPP approach phases.

6.3 Experiment II: Testing the Effect of CPP on Maintenance Process

WAlead tool is a recommendation tool that provides change suggestions built on the CPP

approach and using the historical data of the development process. To prove the feasibility

of the WAlead tool we put it under test by using it to support the maintenance process of

a simple attending registration system. We invited six junior PHP developers to add a

feature to an existing system built using PHP language.

We prepared a simulation for the World Wide Web environment. First, we prepared a

server to client network containing seven computers. After that, we installed the WAlead

tool on one machine to be the service provider. Then, we installed the Komodo text editor

and MAMP server on the other six machines. Later, we installed a copy of the system

that will be edited during the experiment in the MAMP server.

We made the experiment in 24-5-2021 at the Higher Institute of Engineering Professions

Almajory in Lab-2 the experiment started at 10:15 am. We split the developers into two

groups. The first group was allowed to use the WAlead tool. The second group was asked

to figure the related changes on their own. We gave the developers a simple task, which

is adding a feature to an existing system. The experiment ended at 11:40, and we recorded

the time consumed by each developer. Table 6.1 shows the results of the conducted

experiment.

Table 6.1 The Time Consumed By Each Developer During The Experiment

Developer name Tool Start time Ending time Time consumed

Rela Yes 10:15 10:52 00:30

Aya Yes 10:15 10:40 00:25

Asma Yes 10:15 10:30 0:15

48

Monia No 10:15 11:13 0:58

Aisha No 10:15 10:40 0:25

Amal No 10:15 11:10 00:55

6.4 Experiment III: Testing the WAlead Tool Performance

This research aims to find an approach to reduce the time and cost of the maintenance

process. The performance of the CPP approach can be measured by the time used during

the recommendation production process. During this experiment, we tested the

performance of the WAlead tool. The experiment was conducted on the data of the five

projects we used previously in this research. The time consumed during the whole three

phases depends on three main factors: number of the used commits, the number of files

in each commit, the number of characters in the names of the files. The results are shown

in Table 6.2. After that, we tested the tool on fresh copy extracted directly from GitHub

and found that the efficiency of the tool in this scenario depends on the quality of the

network.

Table 6.2: testing the tool on locally stored repositories

Project Number of

usable commits

average files in a

commit
Time consumed

PyDriller 82 4 1 minute

Laravel 229 6 7 minutes

React 1000 8 24 minutes

Hbase 1000 10 1 hour

Cassandra 1000 8 34 minutes

6.5 Results Discussion

After implementing and testing the CPP approach. We review and discuss the results of

each phase and try to answer the research questions. We show the results of each phase

starting with the data gathering phase and ending with the experiment conducting.

6.5.1 Data Extraction Phase Results

In this phase, we made a comparative study among five different software repository data

extracting tools in Table 4.1 and concluded that PyDriller is the most suitable tool for this

task. Using the PyDriller tool, we extracted the data of five different open source projects

49

Table 5.1. The data extracted in this phase is raw commits data containing a massive

amount of information, some of this information is useful for our purpose and other

information are useful for other tasks. Hence, the data extracted requires several

preprocessing stages to produce knowledge.

6.5.2 Data Preprocessing Phase Results

This phase prepares the extracted data to be analyzed by a data mining technique. First,

the features were extracted from the raw data. to make the data suitable for frequent

pattern analysis in the analytical phase. Most of the data attached to each commit such as

date, committer, message ...etc. was abandoned. The names of the files edited in each

commit were kept to create a transactional database. After that, the extra-long commits

were removed along with the commits with one file edited. Then the files that were tagged

as deleted from each commit were discarded. Later the number of transactions was

reduced to minimize the time consumed by the analytical phase. The final step is coding

the names of the files to optimize the mining process performance.

During the preprocessing of the data extracted from the five different projects we

concluded the following:

After removing the extra-long and short commits. We discovered that the useful commits

are between 11.83% to 47.65% of the total number of commits. Table 6.3 presents the

number of extracted and discarded commits. Figures 6.6, 6.7, 6.8, 6.9, 6.10 show pie

charts for the percentage of the commits used in each project. Hence, we conclude that

the number of usable commits differs from one software project to another.

Table 6.3: the number of used commits for each project

project all commits used commits percentage

laravel 6441 762 11.83%

pydriller 630 205 32.50%

hbase 18258 8700 47.65%

react 13776 4452 32%

Cassandra 25908 7081 27%

50

Figure 6.6: shows the percentage of the usable commits extracted from the project Laravel

Figure 6.7: shows the percentage of the usable commits extracted from the project PyDriller

89%

11%

laravel

allcommits

usedcommits

75%

25%

pydriller

allcommits

usedcommits

51

Figure 6.8: shows the percentage of the usable 5commits extracted from the project Hbase

Figure 6.9: shows the percentage of the usable commits extracted from the project React

68%

32%

hbase

allcommits

usedcommits

76%

24%

react

allcommits

usedcommits

52

Figure 6.10: shows the percentage of the usable commits extracted from the project Laravel

Discarding the deleted files from the extracted commits revealed that 28% to 73% of the

files recorded within the commits metadata are deleted during the development process.

Table 6.4 presents the number of files of each project and the deleted files. Figures 6.11,

6.12, 6.13, 6.14 show pie charts for the deleted files of each project.

Table 6.4 shows the number of files for each project and deleted files

Project Deleted Files Active Files Total

Pydriller 52 82 134

Hbase 3525 5395 8920

Laravel 489 184 673

Cassandra 1744 4413 6157

React 2045 1808 3853

79%

21%

Cassandra

allcommits

usedcommits

53

Figure 6.11: shows the percentage of the deleted files to the total files of the PyDriller project

Figure 6.12: shows the percentage of the deleted files to the total files of the Hbase project

deleted files
39%

active files
61%

Pydriller

deleted files

active files

deleted files
40%

active files
60%

Hbase

deleted files

active files

54

Figure 6.13: shows the percentage of the deleted files to the total files of the Laravel project

Figure 6.14: shows the percentage of the deleted files to the total files of the Cassandra project

73%

27%

laravel

deleted files

active files

28%

72%

Cassandra

deleted files

active files

55

Figure 6.15: shows the percentage of the deleted files to the total files of the React project

The next preprocessing step is data reduction. In this step, we concluded that old commits

are not useful and the huge amount of data requires a long time to be analyzed. While we

aim to reduce the time consumed and provide proper accuracy. We reduced the number

of commits analyzed to the last 1000 commits. Before that, we tested several units to use

it for data reduction. First, we tested the releases. Release or tag is a point of the project

history when a major event occurs. We found that the number of commits in each release

differs from project to project and from release to release. Figure 5.5 presents a chart of

each release's commit number in our five projects, which varies from 1 commit per release

to 40 commits per release. After revising the number of commits in each release we

concluded that the release is not suitable for reducing the number of commits

The next reduction unit we tested was the year of development. We revised the number

of commits in each year of software development. We found that the number of commits

in each year is extremely varying and cannot be used as a reduction unit. Table 5.4 shows

the number of commits, the number of releases and the average number of files changed

in each year of development.

Finally, we used the number of commits as a data reduction unit and we set the latest

1000 commits hence 1000 commits requires a maximum of 1 hour to be analyzed and

contain enough commits to produce knowledge.

The final step of the preprocessing phase is coding. File names preserve a huge portion

of the main memory during the processing. To reduce the memory usage, we gave every

53%
47%

React

Deleted Files

Active Files

56

file a code this code maximumly contains 5 digits. Coding file names reduced the time

consumed during analyzing from 15 hours to 1 hour in worst cases.

In a conclusion, the relevant data that is useful in co-change prediction is the list of

changed file names in each commit discarding the deleted files, the latest 1000 commits

and the commits that contain changed files less than or equal to the average number of

files changed in each commits and, greater than one file.

6.5.3 Applying Frequent Patterns Algorithm Results

In this phase, we revised previous comparative studies [38][39][45] and concluded that

the ECLAT algorithm is the optimal algorithm for our task. ECLAT scans the database 1

time, the output of ECLAT is scalable and, the variation we made of ECLAT provides a

single item antecedent rule, which is the main component in our approach (Change

Propagation Path).

6.6 Comparing WALead tool with the existing proposed tools

In this research we proposed the CPP approach to be a usable approach in detecting co-

changing software entities. We built WALead tool to prove the feasibility of the CPP

approach, while designing this tool we tried to avoid the shortcomings of the existing

tools. In table 6.5 a comparison preview among the proposed tools and WALead tool

Table 6.5: A comparison among the proposed tools and WALead tool

Tool Accuracy Scalable Availability Cost effectiveness Granularity level Data

source

Algorithm

ROSE [13] Depends on the

support

threshold

No Eclips IDE

Plugin

Consumes long time to

produce patterns

Code level elements CVS Apriori

Ramadhani

[14]

Depends on the

support

threshold

No Standalone

tool

Scans the database twice

to produce patterns

File level Git FP-growth

Hyper-rules

[4]

13% to 90%

higher than

previous work

No Standalone

tool

Yes File level Git Hyper-rules

TARMAQ

[27]

- No Standalone

tool

Yes File level Git TARMAQ

Coming [44] - No Plugin within

other tools

- Code level elements Git Frequent

patterns

analysis

Ruffle [47] 70% to 80% No Standalone

tool

- Code level elements - -

WALead Depends on the

support

threshold

Yes Web based

system

Yes File level Git ECLAT

57

Chapter 7

Conclusion and Recommendations

7.1 Conclusion

The main aim of this research is to find a solution to support software maintenance

processes by reducing the time and cost of this process. To reach the aim of this research

we employed MSR to detect co-changes among software entities, which will reduce the

time consumed while searching for related changes and eliminate the cost of hiring highly

paid senior developers to guide the development team through the change propagation

process. We conducted deductive research on quantities data to test the effect of detecting

co-changes using our proposed CPP approach.

 The CPP approach consists of three main phases. In Phase I, the commits’ data stored

within the Git repository is extracted. We conducted a comparative study among five

different data extraction tools, from which we selected the appropoarte tool to do this

task. The study revealed that PyDriller is the most compatible tool for our task. Phase II

is the data preparation phase, in which we eliminated the noise, transformed the data and

reduced the data amount. The output of Phase II is a transactional database that contains

lists of coded file names. Phase III is the core of the CPP approach, where the

preprocessed data is transformed into recommendations that guide developers to

propagate changes correctly. In Phase III, the data within the transactional database are

transformed into patterns using the ECLAT algorithm. After that, the patterns are

evaluated to select the interesting patterns that may form knowledge. Then, interesting

patterns are used to create rules that describe the relationships among files. The rules

produced in this stage contains one item on the antecedent side. The interesting rules with

the same antecedent are aggregated to create larger rules. Finally, the aggregated rules

are used according to the editing scenario to create the change propagation path.

 To prove the feasibility of the CPP approach we built a recommendations tool, which is

called the WALead tool. The tool is a web-based tool that uses the data stored in the Git

repository and provides recommendations to the software developers during the

maintenance process. These recommendations are produced according to the software

editing scenario. After building the WALead tool, we conducted three different

58

experiments to prove the feasibility of the CPP approach. First, we tested the output of

the WALead tool and compared it with the expected output using dummy data. After that,

we tested the effect of using the WALead tool during the maintenance process. We

managed to reduce the time consumed by 50% and eliminated the cost of hiring highly

paid a senior developers to guide the development process. Finally, we tested the

performance of the WALead tool by recording the time required to produce

recommendations for five different software projects. The results revealed that the time

consumed during the production of the recommendation is affected by three factors the

number of commits extracted from the software repository, the average number of files

in each commit and the size of the string the presents the file names.

We attemped to answer the following questions during the conduction of this research.

 RQ1: To what extent the time and cost can be reduced by detecting co-changes

during the maintenance processes?

The results of the experiment show that our approach reduced the time of the software

maintenance process by 50%. In addition, the cost was reduced by eliminating the role of

the guiding senior developer.

RQ2: What is the optimal software repository data extracting tool?

Extracting data from software repositories is a complex process and is out of the scope of

this research. Hence, we conducted a comparative study among six different extracting

tools. We concluded that the PyDriller is the most suitable tool for our purpose.

RQ3: What are the features of the data extracted from the software repositories that

will produce knowledge?

Data is the base that our research is built on. Selecting the right pieces of data guarantees

more accurate results. After reviewing the data of five different projects. We concluded

that the relevant data (the features) are the list of the edited entities in each commit

regardless of the entities that are tagged as deleted in the development history. On the

other hand, a huge portion of the commits is considered as noise. Extralong commits with

one edit entity and old commits. We set 1000 commits as a limit for the extracted commits

because the old commits are not valuable and more than 1000 commits require a long

time to be processed.

59

RQ4: What factors are vital to selecting a data mining algorithm for producing

required knowledge for the CPP approach?

This research aims to propose a solution to reduce the time of co-changed software

entities. Therefore, the speed of the algorithm is a vital factor to select the data mining

algorithm. Software development processes are usually continuous processes. Changes

on the software system are continually made to add a new feature or to fix defects. Hence,

the output of the mining algorithm must be scalable to support continual development.

After revising several mining algorithms and according to previous studies, we selected

the ECLAT algorithm. The ECLAT algorithm scans the database on time, therefore, it is

considered faster relatively compared to the other mining algorithms. The ECLAT

algorithm produces a scalable output, which can be used incrementally to support

continual development. The output of the ECLAT algorithm is suitable to produce single

item antecedent association rules which is the main component to create the Change

Propagation Path.

7.2 Recommendations

Given the results discussed in Chapter 6, and to obtain accurate results from the commit

metadata, we recommend developers avoid editing and committing unrelated files.

Moreover, to avoid editing files for a long time without committing. Finally, we

recommend developers avoid committing after editing one file on its own. Those

practices that we recommend to avoid, forms valueless commits that will produce

misleading change suggestions.

7.3 Future Work

In this research, we tested the feasibility of our approach on file-level software entities.

As future work, we attend to add code parsers to test the validity of the CPP approach on

the source code entity level. While we aim to reduce the time of the maintenance process,

we attend to design a software repository data extracting tool based on a compiled

language to avoid the latency induced by interpreted language such as Python.

60

 Appendices

The data mining portion of the WALead tool written in Python programming language :

from pydriller import RepositoryMining
import time
import mysql.connector
start = time.time()
-------------Real Shit goes here :)--------

class RawData:
 link = ""
 avgFilesPerCommit = 0
 commits = []
 filesStatue = {}
 codedFiles = {}
 codedCommits = []
 start = 0
 end = 0

 def __init__(self, link, start, end):
 self.link = link
 self.start = start
 self.end = end
 self.extractCommits()
 self.removeUnwantedFiles()
 self.codeFiles()
 self.codeCommits()
 self.commits[start:end]
 self.insertCodedFiles()

 def extractCommits(self):
 sum = 0
 for commit in
RepositoryMining(self.link).traverse_commits():
 itemsInCommit = []
 for modification in commit.modifications:
 itemsInCommit.append(modification.filename)

self.filesStatue[modification.filename]=str(modification.change_
type)
 if len(itemsInCommit)>1:
 sum+=len(itemsInCommit)
 self.commits.append(itemsInCommit)
 self.avgFilesPerCommit=round(sum/len(self.commits))
 self.commits.reverse()

 def removeUnwantedFiles(self):
 newCommits=[]

61

 for commits in self.commits:
 itemList=[]
 for item in commits:
 if
self.filesStatue[item]!="ModificationType.DELETE":
 itemList.append(item)
 if len(itemList)>2 and
len(itemList)<=self.avgFilesPerCommit:
 newCommits.append(itemList)
 self.commits=newCommits
 self.commits=self.commits[self.start:self.end]
 def codeFiles(self):
 i = 0
 for x in self.filesStatue:
 i += 1
 self.codedFiles[x] = i

 def codeCommits(self):
 for i in self.commits:
 itemlist=[]
 for j in i:
 itemlist.append(self.codedFiles[j])
 self.codedCommits.append(itemlist)

 def insertFile(self,file, code):
 mydb = mysql.connector.connect(
 host="localhost",
 user="root",
 password="",
 database="mytool"
)
 mycursor = mydb.cursor()
 sql = "INSERT INTO files (file_name, file_code) VALUES
(%s, %s)"
 val = (file, code)
 mycursor.execute(sql, val)
 mydb.commit()
 def insertCodedFiles(self):
 for i in self.codedFiles:
 self.insertFile(i,self.codedFiles[i])

class pattern: # frequent pattern list content
 def __init__(self, files, suppCount):
 self.files = files
 self.suppCount = suppCount
 suppCount = 0
 support=0
 files = []

62

 def patternSupport(self, commitsSize):
 self.support=self.suppCount/commitsSize
class patterns:
 patts=[]
 averageSupport=0
 commits=[]
 def __init__(self,commits):
 self.commits=commits
 self.patternGenerator()
 self.removeUglyOne()
 self.addSupport()
 self.calculateAvgSupport()

 def subsetter(self,l): # returns a list of all sublissts
for a given lsit
 base = []
 lists = [base]
 for i in range(len(l)):
 orig = lists[:]
 new = l[i]
 for j in range(len(lists)):
 lists[j] = lists[j] + [new]
 lists = orig + lists
 lists.remove(lists[0])
 return lists

 def calSupport(transCount, patterns):
 for i in patterns:
 i.support = round((i.suppCount - 1) / transCount, 2)
 return patterns

 def removeUglyOne(self):
 for i in self.patts:
 i.suppCount -=1

 def patternGenerator(self):
 t=pattern([],0)
 self.patts.append(t)
 for i in self.commits:
 newList=self.subsetter(i)
 for j in newList:
 c=0
 for k in self.patts:
 c+=1
 if set(k.files)==set(j):
 k.suppCount +=1
 break
 elif c == len(self.patts):
 t=pattern(j,1)

63

 self.patts.append(t)
 self.patts.remove(self.patts[0])
 def addSupport(self):
 for i in self.patts:
 i.support=i.suppCount/len(self.commits)

 def calculateAvgSupport(self):
 self.averageSupport =2
class rule:
 def __init__(self,left , right, confidence, support):
 self.left=left
 self.right=right
 self.confidence=confidence
 self.support=support
class rules:
 patterns=[]
 minconf=1
 minsup=0
 rules=[]
 lsides=[]
 rsides=[]

 def __init__(self,patterns,items,minsup):
 self.items=items
 self.minsup=minsup
 self.patterns=patterns
 self.createRules()

 def createRules(self):
 for i in self.patterns:
 if len(i.files) <= 1:
 if i.suppCount >=2:
 self.lsides.append(i)
 else:
 if i.suppCount >= 2:
 self.rsides.append(i)
 for i in self.lsides:
 for j in self.rsides:
 if i.files[0] in j.files :
 conf= j.support/i.support
 r = rule(i.files[0],j.files,conf,j.support)
 if r.confidence>=0.5:
 self.rules.append(r)

class AgRules:
 rules=[]

64

 agrules={}
 codedItems={}

 def __init__(self,rules):
 self.rules=rules
 self.agit()
 self.insertRules()

 def agit(self):
 for i in self.rules:
 if i.left in self.agrules.keys():
 self.agrules[i.left] += i.right
 else:
 self.agrules[i.left] = i.right

 def insertRule(self,lside,rside):
 res = []
 for i in rside:
 if i not in res and i != lside:
 res.append(i)
 mydb = mysql.connector.connect(
 host="localhost",
 user="root",
 password="",
 database="mytool"
)

 mycursor = mydb.cursor()
 rr=[str(int) for int in res]
 r= ','.join(rr)
 sql = "INSERT INTO rules (lside, rside) VALUES (%s, %s)"
 val = (lside, r)
 mycursor.execute(sql, val)

 mydb.commit()
 def insertRules(self):
 for i in self.agrules:
 self.insertRule(i,self.agrules[i])

The implementation of the web services portion of WALead tool written in Php

programming language and HTML:

<?php
function viewMain()
{
 ?>
 <form action="<?php echo $_SERVER['self']; ?>"
method="post">
 <input type="text" name="link">

65

 <input type="hidden" name="act" value="link">
 <input type="submit" value="Go">
 </form>
 <?php
}
function insertLink()
{
$myfile = fopen("link.txt", "w") or die("Unable to open file!");
$txt = $_POST['link'];
fwrite($myfile, $txt);
fclose($myfile);
}
function runTool()
{
$command = escapeshellcmd('python
C:/Users/Soft/research/venv/extracting.py');
$output = shell_exec($command);
echo $output;
}
?>
<!DOCTYPE html>
<html>
 <?php
 include('code.php');
 $act=$_POST['act'];
 switch($act)
 {
 case "":
 viewMain();
 break;
 case "link":
 insertLink();
 runTool();
 break;
 default:
 echo"<h1>something went wrong</h1>";
 }
 ?>
</html>

66

References

[1] D. Güemes-Peña, C. López-Nozal, R. Marticorena-Sánchez and J. Maudes-

Raedo, "Emerging topics in mining software repositories", Progress in Artificial

Intelligence, vol. 7, no. 3, pp. 237-247, 2018. Available: 10.1007/s13748-018-

0147-7 [Accessed 13 September 2021].

[2] Z. Jiang, Y. Wang, H. Zhong and N. Meng, "Automatic method change

suggestion to complement multi-entity edits", Journal of Systems and Software,

vol. 159, p. 110441, 2020. Available: 10.1016/j.jss.2019.110441 [Accessed 13

September 2021].

[3] N. Ajienka, A. Capiluppi and S. Counsell, "An empirical study on the interplay

between semantic coupling and co-change of software classes", Empirical

Software Engineering, vol. 23, no. 3, pp. 1791-1825, 2017. Available:

10.1007/s10664-017-9569-2 [Accessed 13 September 2021].

[4] T. Rolfsnes, L. Moonen, S. Alesio, R. Behjati and D. Binkley, "Aggregating

Association Rules to Improve Change Recommendation", Empirical Software

Engineering, vol. 23, no. 2, pp. 987-1035, 2017. Available: 10.1007/s10664-017-

9560-y [Accessed 14 September 2021].

[5] M. Islam, M. Islam, M. Mondal, B. Roy, C. Roy and K. Schneider, "[Research

Paper] Detecting Evolutionary Coupling Using Transitive Association Rules",

2018 IEEE 18th International Working Conference on Source Code Analysis and

Manipulation (SCAM), 2018. Available: 10.1109/scam.2018.00020 [Accessed

14 September 2021].

[6] Y. Wang, N. Meng and H. Zhong, "An Empirical Study of Multi-entity Changes

in Real Bug Fixes", 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2018. Available:

10.1109/icsme.2018.00038 [Accessed 14 September 2021].

[7] A. TOSUN and B. Romero, "Predicting Co-Changed Files: An External,

Conceptual Replication", Celal Bayar Üniversitesi Fen Bilimleri Dergisi, pp.

161-169, 2019. Available: 10.18466/cbayarfbe.489291 [Accessed 14 September

2021].

[8] L. Vidacs and M. Pinzger, "Co-evolution analysis of production and test code by

learning association rules of changes", 2018 IEEE Workshop on Machine

67

Learning Techniques for Software Quality Evaluation (MaLTeSQuE), 2018.

Available: 10.1109/maltesque.2018.8368456 [Accessed 14 September 2021].

[9] A. Hassan and R. Holt, "Replaying development history to assess the

effectiveness of change propagation tools", Empirical Software Engineering, vol.

11, no. 3, pp. 335-367, 2006. Available: 10.1007/s10664-006-9006-4 [Accessed

14 September 2021].

[10] I. Sommerville, Software engineering. Boston, Massachusetts: Addison-

Wesley, 2011

[11] I. Wiese et al., "Using contextual information to predict co-changes", Journal of

Systems and Software, vol. 128, pp. 220-235, 2017. Available:

10.1016/j.jss.2016.07.016 [Accessed 14 September 2021].

[12] S. Chacon and B. Straub, Pro Git, 2nd ed. New York: Springer Natuer..

[13] T. Zimmermann, A. Zeller, P. Weissgerber and S. Diehl, "Mining version

histories to guide software changes", IEEE Transactions on Software

Engineering, vol. 31, no. 6, pp. 429-445, 2005. Available: 10.1109/tse.2005.72

[Accessed 14 September 2021].

[14] J. Ramadani, "Mining software repositories for coupled changes", Elib.uni-

stuttgart.de, 2021. [Online]. Available: https://elib.uni-

stuttgart.de/handle/11682/9264. [Accessed: 14- Sep- 2021].

[15] "What is bug tracking? | IBM", Ibm.com, 2021. [Online]. Available:

https://www.ibm.com/topics/bug-tracking. [Accessed: 13- Sep- 2021].

[16] A. Hindle and D. German, "SCQL", Proceedings of the 2005 international

workshop on Mining software repositories - MSR '05, 2005. Available:

10.1145/1083142.1083161 [Accessed 14 September 2021].

[17] A. Hassan, "The road ahead for Mining Software Repositories", 2008 Frontiers

of Software Maintenance, 2008. Available: 10.1109/fosm.2008.4659248

[Accessed 13 September 2021].

[18] J. Anvik, L. Hiew and G. Murphy, "Coping with an open bug

repository", Proceedings of the 2005 OOPSLA workshop on Eclipse technology

eXchange - eclipse '05, 2005. Available: 10.1145/1117696.1117704 [Accessed

13 September 2021].

[19] D. Yuan, J. Zheng, S. Park, Y. Zhou and S. Savage, "Improving Software

Diagnosability via Log Enhancement", ACM Transactions on Computer

68

Systems, vol. 30, no. 1, pp. 1-28, 2012. Available: 10.1145/2110356.2110360

[Accessed 13 September 2021].

[20] I. Wiese et al., "Pieces of contextual information suitable for predicting co-changes?

An empirical study", Software Quality Journal, vol. 27, no. 4, pp. 1481-1503, 2019.

Available: 10.1007/s11219-019-09456-3.

[21] T. Zimmermann, S. Kim, A. Zeller and E. Whitehead, "Mining version archives

for co-changed lines", Proceedings of the 2006 international workshop on

Mining software repositories - MSR '06, 2006. Available:

10.1145/1137983.1138001 [Accessed 14 September 2021].

[22] T. Zimmermann, A. Zeller, P. Weissgerber and S. Diehl, "Mining version

histories to guide software changes", IEEE Transactions on Software

Engineering, vol. 31, no. 6, pp. 429-445, 2005. Available: 10.1109/tse.2005.72

[Accessed 14 September 2021].

[23] D. Spadini, M. Aniche and A. Bacchelli, "PyDriller: Python framework for

mining software repositories", Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2018. Available:

10.1145/3236024.3264598 [Accessed 13 September 2021].

[24] Jelber Sayyad Shirabad, T. Lethbridge and S. Matwin, "Mining the maintenance

history of a legacy software system", International Conference on Software

Maintenance, 2003. ICSM 2003. Proceedings.. Available:

10.1109/icsm.2003.1235410 [Accessed 14 September 2021].

[25] Bohner, "Impact analysis in the software change process: a year 2000

perspective", Proceedings of International Conference on Software Maintenance

ICSM-96, 1996. Available: 10.1109/icsm.1996.564987 [Accessed 14 September

2021].

[26] D, Beyer. And A, Noack., 2005. Mining co-change clusters from version

repositories (No. REP_WORK).

[27] T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen and D. Binkley, "Generalizing

the Analysis of Evolutionary Coupling for Software Change Impact

Analysis", 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), 2016. Available:

10.1109/saner.2016.101 [Accessed 14 September 2021].

[28] C. Aggarwal, Data mining, 1st ed. New York: Springer.

69

[29] J. Han, M. Kamber and J. Pei, Data mining, 2nd ed. Amsterdam: Elsevier,

Morgan Kaufmann, 2012.

[30] P. Hájek, I. Havel and M. Chytil, "The GUHA method of automatic hypotheses

determination", Computing, vol. 1, no. 4, pp. 293-308, 1966. Available:

10.1007/bf02345483 [Accessed 13 September 2021].

[31] Agrawal, R. and Srikant, R., 1994, September. Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol.

1215, pp. 487-499).

[32] J. Han, J. Pei and Y. Yin, "Mining frequent patterns without candidate

generation", ACM SIGMOD Record, vol. 29, no. 2, pp. 1-12, 2000. Available:

10.1145/335191.335372 [Accessed 13 September 2021].

[33] M. Zaki, S. Parthasarathy, M. Ogihara and W. Li, Data Mining and Knowledge

Discovery, vol. 1, no. 4, pp. 343-373, 1997. Available:

10.1023/a:1009773317876 [Accessed 13 September 2021].

[34] E. Kouroshfar, "Studying the effect of co-change dispersion on software

quality", 2013 35th International Conference on Software Engineering (ICSE),

2013. Available: 10.1109/icse.2013.6606741 [Accessed 14 September 2021].

[35] H. Kagdi, S. Yusuf and J. Maletic, "Mining sequences of changed-files from

version histories", Proceedings of the 2006 international workshop on Mining

software repositories - MSR '06, 2006. Available: 10.1145/1137983.1137996

[Accessed 14 September 2021].

[36] "GitPython Documentation — GitPython 3.1.23

documentation", Gitpython.readthedocs.io, 2021. [Online]. Available:

https://gitpython.readthedocs.io/en/stable/. [Accessed: 13- Sep- 2021].

[37] H. Gall, M. Lanza and T. Zimmermann, "4th International Workshop on Mining

Software Repositories (MSR 2007)", 29th International Conference on Software

Engineering (ICSE'07 Companion), 2007. Available:

10.1109/icsecompanion.2007.8 [Accessed 13 September 2021].

[38] C. Chee, J. Jaafar, I. Aziz, M. Hasan and W. Yeoh, "Algorithms for frequent

itemset mining: a literature review", Artificial Intelligence Review, vol. 52, no. 4,

pp. 2603-2621, 2018. Available: 10.1007/s10462-018-9629-z [Accessed 13

September 2021].

70

[39] H. Khanali and B. Vaziri, "A Survey on Improved Algorithms for Mining

Association Rules", International Journal of Computer Applications, vol. 165,

no. 9, pp. 6-11, 2017. Available: 10.5120/ijca2017913985.

[40] "BaseExtractor tidyextractors 0.2.1 documentation ",

Tidyextractors.readthedocs.io, 2021. [Online]. Available:

https://tidyextractors.readthedocs.io/en/latest/base.html. [Accessed: 13- Sep-

2021].

[41] G. Gousios and D. Spinellis, "GHTorrent: Github's data from a firehose", 2012

9th IEEE Working Conference on Mining Software Repositories (MSR), 2012.

Available: 10.1109/msr.2012.6224294 [Accessed 13 September 2021].

[42] "CVSAnalY by MetricsGrimoire", Metricsgrimoire.github.io, 2021. [Online].

Available: https://metricsgrimoire.github.io/CVSAnalY/. [Accessed: 13- Sep-

2021].

[43] H. Wickham, "Tidy Data", Journal of Statistical Software, vol. 59, no. 10, 2014.

Available: 10.18637/jss.v059.i10 [Accessed 13 September 2021].

[44] M. Martinez and M. Monperrus, "Coming: A Tool for Mining Change Pattern

Instances from Git Commits", 2019 IEEE/ACM 41st International Conference

on Software Engineering: Companion Proceedings (ICSE-Companion), 2019.

Available: 10.1109/icse-companion.2019.00043 [Accessed 14 September 2021].

[45] J. Heaton, "Comparing dataset characteristics that favor the Apriori, Eclat or FP-

Growth frequent itemset mining algorithms", SoutheastCon 2016, 2016.

Available: 10.1109/secon.2016.7506659 [Accessed 13 September 2021].

[46] A. Alali, B. Bartman, C. Newman and J. Maletic, "A preliminary investigation

of using age and distance measures in the detection of evolutionary

couplings", 2013 10th Working Conference on Mining Software Repositories

(MSR), 2013. Available: 10.1109/msr.2013.6624024 [Accessed 14 September

2021].

[47] A. Agrawal and R. Singh, "Ruffle: Extracting co-change information from

Software Project Repositories", 2018 International Conference on Smart Systems

and Inventive Technology (ICSSIT), 2018. Available:

10.1109/icssit.2018.8748406 [Accessed 14 September 2021].

[48] A. Agrawal and R. Singh, "Identification of Co-change Patterns in Software

Evolution", 2020 8th International Conference on Reliability, Infocom

71

Technologies and Optimization (Trends and Future Directions) (ICRITO), 2020.

Available: 10.1109/icrito48877.2020.9197979 [Accessed 14 September 2021].

[49] S. Zhang, X. Wu, C. Zhang and J. Lu, "Computing the minimum-support for

mining frequent patterns", Knowledge and Information Systems, vol. 15, no. 2,

pp. 233-257, 2007. Available: 10.1007/s10115-007-0081-7 [Accessed 14

September 2021].

[50] T. Mens and S. Demeyer, "Future trends in software evolution

metrics", Proceedings of the 4th international workshop on Principles of

software evolution - IWPSE '01, 2002. Available: 10.1145/602461.602476

[Accessed 14 September 2021].

[51] L. Moonen, S. Alesio, T. Rolfsnes and D. Binkley, "Exploring the Effects of

History Length and Age on Mining Software Change Impact", 2016 IEEE 16th

International Working Conference on Source Code Analysis and Manipulation

(SCAM), 2016. Available: 10.1109/scam.2016.9 [Accessed 14 September 2021].

[52] D. Zhou et al., "Understanding Evolutionary Coupling by Fine-Grained Co-

Change Relationship Analysis", 2019 IEEE/ACM 27th International Conference

on Program Comprehension (ICPC), 2019. Available: 10.1109/icpc.2019.00046

[Accessed 14 September 2021].

[53] "Komodo Edit - ActiveState", ActiveState, 2021. [Online]. Available:

https://www.activestate.com/products/komodo-edit/. [Accessed: 14- Sep- 2021].

[54] M. GmbH, "MAMP & MAMP PRO - your local web development solution for

PHP and WordPress development", MAMP & MAMP PRO - Your local web

development solution, 2021. [Online]. Available:

https://www.mamp.info/en/windows/. [Accessed: 14- Sep- 2021].

[55] "Download PyCharm: Python IDE for Professional Developers by

JetBrains", JetBrains, 2021. [Online]. Available:

https://www.jetbrains.com/pycharm/download/#section=windows. [Accessed:

14- Sep- 2021].

[56] "Git", Git-scm.com, 2021. [Online]. Available: https://git-scm.com/. [Accessed:

14- Sep- 2021].

[57] "MySQL", Mysql.com, 2021. [Online]. Available: https://www.mysql.com/.

[Accessed: 14- Sep- 2021].

[58] C. W. Dawson, Projects in Computing and Information Systems A Student ’ s

Guide. Pearson Prentice Hall, 2009.

72

[59] Sadc.int, 2021. [Online]. Available:

https://www.sadc.int/files/3713/7821/2867/Dissertation_PDF.pdf. [Accessed:

14- Sep- 2021].

[60] L. Blaxter, How to research. Maidenhead: Open University Press, 2011.

[61] A. Tolmie, D. Muijs and E. McAteer, Quantitative methods in educational and

social research using SPSS. Maidenhead: Open University Press, 2011.

[62] "IBM Docs", Ibm.com, 2021. [Online]. Available:

https://www.ibm.com/docs/en/db2/9.7?topic=associations-confidence-in-

association-rule. [Accessed: 14- Sep- 2021].

https://www.sadc.int/files/3713/7821/2867/Dissertation_PDF.pdf

دعم عملية صيانة البرمجيات عبر اكتشاف التغييرات المصاحبة باستخدام
 التنقيب في مستودعات البيانات

 علي الجيلاني خميس بن عبد الل قدمت من قبل :

 عبد السلام معتوق د. تحت إشراف :

 ملخص ال
دورة في تكلفة الأكثر العملية البرمجيات صيانة تؤدي تعتبر قد البرمجيات. نظام تطوير حياة

التغييرات التي يتم إجراؤها في هذه العملية على كيان برمجي معين إلى إحداث تغييرات مصاحبة في
كيانات برمجية أخرى. يؤدي اكتشاف هذه التغييرات المشتركة يدويًا إلى زيادة وقت وتكلفة عملية

ت المشتركة إلى حدوث عيوب في البرامج أو ضعف الصيانة ، بينما قد يؤدي تجاهل تلك التغييرا
اكتشاف في البرامج مستودعات في المخزنة التاريخية البيانات تعدين يساعد قد البرنامج. أداء

(. CPPالتغييرات المصاحبة للكيانات البرمجية. في هذا البحث ، نقترح نهج تغيير مسار الانتشار)
هو نهج الكشف عن التغيير المصاحب الذي يعتمد على تعدين مستودعات البرمجيات. CPPنهج

من ثلاث مراحل رئيسية. في المرحلة الأولى ، يتم جمع بيانات العمليات المخزنة CPPيتكون نهج
 . في المرحلة الثانية ، يتم إعداد البيانات المجمعة لتحليلها. يتم استخراج الميزات Gitفي مستودعات

وإزالة العمليات المضللة وترميز أسماء الملفات. بعد ذلك ، يتم تجاهل الملفات التي تم وضع علامة
محذوف عليها. أخيرًا ، يتم تقليل البيانات. ناتج هذه المرحلة هو قاعدة بيانات تحويلية تحتوي على

أربع خط النهائية المرحلة تتضمن المشفرة. الملفات أسماء قوائم من تتمثل مجموعة رئيسية. وات
الخطوة الأولى في إنشاء جميع الأنماط الممكنة من قوائم أسماء الملفات. الخطوة الثانية هي إنشاء
قواعد من الأنماط التي تصف العلاقة بين الملفات. في الخطوة الثالثة ، يتم تجميع القواعد التي لها

فقًا لسيناريو تحرير البرنامج. تم اختبار مخرجات نفس السوابق. في الخطوة الرابعة ، يتم تقييد القواعد و
 CPP(بناءً على مفهوم Assisting and Leadingالنهج يدويًا لتقييم المخرجات. تم بناء أداة)

أن مستودعات برامج التعدين قد تقلل CPPواختبارها لإثبات جدوى هذا النهج. أثبت اختبار نهج
 ٪.50من وقت عملية الصيانة بنسبة

دعم عملية صيانة البرمجيات عبر اكتشاف التغييرات
 المصاحبة باستخدام التنقيب في مستودعات البيانات

 قدمت من قبل :

 علي الجيلاني خميس بن عبد الل

 تحت إشراف :

 عبد السلام معتوق د.

قدمت هذه الرسالة استكمالا لمتطلبات الحصول على درجة الماجستير في
 . هندسة البرمجيات

 جامعة بنغازي

 كلية تقنية المعلومات

 قسم هندسة البرمجيات

 2022مارس

