
 
 

    

 

Supporting Software Maintenance 

Process by Detecting Software Co-

Changing using Mining Software 

Repositories 

By: 

Ali Aljilani Khamis Ben Abdabdullah 

Supervisor: 

Dr. Abdelsalam Maatuk 

 

This Thesis was submitted in Partial Fulfillment of the 

Requirements for Master's Degree of Science in Software 

Engineering 

 

University of Benghazi 

Faculty of Information Technology 

Department of Software Engineering 

Mars 2022 



 
 

Copyright © 2022. All rights reserved, no part of this thesis may be 

reproduced in any form, electronic or mechanical, including photocopy, 

recording scanning, or any information, without the permission in writing 

from the author or the Directorate of Graduate Studies and Training 

University of Benghazi. 

 

. جميع الحقوق محفوظة ، ولا يجوز إعادة إنتاج أي جزء من هذا بأي  2022حقوق الطبع والنشر ©  

شكل ، إلكترونياً أو ميكانيكياً ، بما في ذلك التصوير أو المسح الضوئي للتسجيل أو أي معلومات ،  

.كتابي من المؤلف أو إدارة الدراسات العليا والتدريب جامعة بنغازي دون الحصول على إذن



I 
 

University of Benghazi       

Faculty of Information Technology 

 

 
 

Department of Software Engineering 

 

 

Supporting Software Maintenance Process by 

Detecting Software Co-Changing Using Mining 

Software Repositories 

By 

Ali Aljilani Khamis Ben Abdabdullah  

 

This Thesis was Successfully Defended and Approved on 

 

Supervisor 

 

Signature: ……………………….……………………………. 

 

Dr ………………...………. …..……. (Internal examiner) 

Signature: ……………………….……………………………. 

Dr……………...…………….……… (External examiner) 

Signature: …………………………………...…………………. 

 

Dean of Faculty                                       Director of Graduate studies and training 



II 
 

Acknowledgements 

It was a long journey, and no matter what the destination is, I enjoyed it so much. I walked 

through the days and nights, I faced Hills and valleys. While I am finally here, I would 

like to raise my hat and appreciate the effort of those who pulled me out of the valleys 

and pushed me up to the top of hills. Those who lit my path in the dark of night and shed 

my way in the heat of the day.  The staff members of the University of Benghazi who led 

me throughout my Master’s study, my supervisors Professor Abdelsalam M. Maatuk 

and Dr Osama Bin Omran, and of course, my family who suffered during all of those 

years and supported me with everything. Finally, I want to thank my mentor Haj Waleed 

Aldubia , the one who guided me with his wisdom and provided me with everything I 

needed since I was in primary school. I owe him all my achievements; without him, I 

would not be here submitting my master thesis.  

 

  



III 
 

Table of Content  

 
Acknowledgements ................................................................................................................... II 

Table of Content ....................................................................................................................... III 

List of Figures .......................................................................................................................... VI 

List of Tables ........................................................................................................................ VIII 

Abbreviations ........................................................................................................................... IX 

Abstract ..................................................................................................................................... X 

Chapter 1 .................................................................................................................................... 1 

Introduction ................................................................................................................................ 1 

1.1 Problem Statement ............................................................................................................... 3 

1.2 Aim of the Research ............................................................................................................. 4 

1.3 Research Questions .............................................................................................................. 4 

1.4 The Proposed Method .......................................................................................................... 5 

1.5 Dissertation Structure ........................................................................................................... 5 

Chapter 2 .................................................................................................................................... 6 

Background ................................................................................................................................ 6 

2.1 Software Maintenance .......................................................................................................... 6 

2.2 Co-change ............................................................................................................................ 7 

2.3 Software Repositories .......................................................................................................... 7 

2.3.1 Historical Repositories ...................................................................................................... 8 

2.3.1.1 Source Control Repositories .......................................................................................... 8 

2.3.1.2 Bug Repositories ............................................................................................................ 8 

2.3.1.3 Communications Archives ............................................................................................. 8 

2.3.2 Code Repositories ............................................................................................................. 9 

2.3.2.1 Git Repository ................................................................................................................ 9 

2.3.3 Deployment Logs ............................................................................................................ 10 

2.4 Mining Software Repositories ............................................................................................ 10 

2.5 Frequent Pattern Analysis .................................................................................................. 11 

2.6 Tools and Applications used in the Proposed Solution ...................................................... 13 

2.6.1 Komodo Edit ................................................................................................................... 13 

2.6.2 MAMP ............................................................................................................................ 14 

2.6.3 PyCharm.......................................................................................................................... 15 

2.6.4 Git Repository ................................................................................................................. 15 

2.6.5 MySQL and PhpMyAdmin ............................................................................................. 15 

Chapter 3 .................................................................................................................................. 17 

The Literature Review ............................................................................................................. 17 



IV 
 

Chapter 4 .................................................................................................................................. 24 

The Proposed Method .............................................................................................................. 24 

4.1 Phase I: Data Extraction ..................................................................................................... 26 

4.1.1 Tidyextractors ................................................................................................................. 27 

4.1.2 GHTorrent ....................................................................................................................... 28 

4.1.3 CVSAnalY ...................................................................................................................... 28 

4.1.4 GitPython ........................................................................................................................ 28 

4.1.5 PyDriller .......................................................................................................................... 28 

4.2 Phase II: Data Preprocessing .............................................................................................. 30 

4.2.1 Step 1: Feature Extraction ............................................................................................... 30 

4.2.2 Step 2: Removing Misleading Commits ......................................................................... 30 

4.2.3 Step 3: Coding File Names ............................................................................................. 31 

4.2.4 Step 4: Removing Deleted Files ...................................................................................... 31 

4.2.5 Step 5: Data Reduction.................................................................................................... 31 

4.3 Phase III: Analytical Processing ........................................................................................ 31 

4.3.1 Step 1:  Frequent Patterns Algorithm Applying .............................................................. 32 

4.3.2 Step 2:  Rules Generation ................................................................................................ 32 

4.3.2.1 Substep 2.1: Evaluating the Patterns ............................................................................ 32 

4.3.2.2 Substep 2.2: Creating Antecedent and Consequent Lists ............................................. 32 

4.3.2.3 Substep 2.3: Forming the Rules ................................................................................... 32 

4.3.3 Step 3: Rules Aggregation .............................................................................................. 33 

4.3.4 Step 4: Forming Change Propagation Path ..................................................................... 33 

4.5 Summary ............................................................................................................................ 33 

Chapter 5 .................................................................................................................................. 34 

The Prototype Implementation ................................................................................................. 34 

5.1 Selecting the Environment ................................................................................................. 34 

5.2 Choosing the Programming Languages ............................................................................. 35 

5.3 Phase I: Data Extraction ..................................................................................................... 35 

5.4 Phase II:  Data Preprocessing ............................................................................................. 36 

5.4.1 Step 1: Feature Extraction ............................................................................................... 36 

5.4.2 Step 2: Removing Misleading Commits ......................................................................... 37 

5.4.3 Step 3: Coding Files Names ............................................................................................ 38 

5.4.4 Step 4: Removing Deleted Files ...................................................................................... 38 

5.4.5 Step 5: Data Reduction.................................................................................................... 39 

5.5 Phase III: Analytical Processing ........................................................................................ 41 

5.5.1 Step1: Applying Frequent Patterns Generation Algorithm ............................................. 42 

5.5.2 Step 2: Rules Generation ................................................................................................. 42 

5.5.2.1 Sub-step 1: Selecting the Interesting Frequent Patterns ............................................... 43 



V 
 

5.5.2.2 Sup-step 2:  Creating Antecedents and Consequents Lists .......................................... 43 

5.5.2.3 Sup-step 3: Forming Rules ........................................................................................... 43 

5.5.3 Step 3: Rules Aggregation .............................................................................................. 44 

5.5.4 Step 4:  Change Propagation Path Creation .................................................................... 44 

5.6 Summary ............................................................................................................................ 44 

Chapter 6 .................................................................................................................................. 45 

Evaluation of The CPP Approach ............................................................................................ 45 

6.1 The WALead Tool Using Scenario .................................................................................... 45 

6.4 Experiment III:  Testing the WAlead Tool Performance ................................................... 48 

6.5.1 Data Extraction Phase Results ........................................................................................ 48 

6.5.2 Data Preprocessing Phase Results ................................................................................... 49 

6.5.3 Applying Frequent Patterns Algorithm Results .............................................................. 56 

6.6 Comparing WALead tool with the existing proposed tools ............................................... 56 

Chapter 7 .................................................................................................................................. 57 

Conclusion and Recommendations .......................................................................................... 57 

7.1 Conclusion ......................................................................................................................... 57 

7.2 Recommendations .............................................................................................................. 59 

7.3 Future Work ....................................................................................................................... 59 

Appendices ............................................................................................................................... 60 

References ................................................................................................................................ 66 

 73 ....................................................................................................................................... الخلاصة 

 

 

 

 

 

 

 

 

 

 

 



VI 
 

 

List of Figures 

Figure 1.1 direct relationship between two classes ................................................................... 2 

Figure 1.2 Hidden relationship among software entities .......................................................... 3 

Figure 2.1: A sample of Laravel framework development data stored in the Git repository .... 9 

Figure 2.2: The way that Git stores and retrieves changes data [12] ...................................... 10 

Figure 2.3: items IDs data format ............................................................................................ 13 

Figure 2.4: Transactions IDs data format ................................................................................. 13 

Figure 2.5 Komodo edit to write PHP, code ............................................................................. 14 

Figure 2.6: MAMP local web services environment ................................................................ 15 

Figure 2.7: The PyCharm IDE .................................................................................................... 15 

Figure 2.8: PhpMyAdmin the GUI of MySQL ............................................................................ 16 

Figure 4.1 The CPP Approach Framework................................................................................ 25 

Figure 4.2: The method used by Git to capture files changes ................................................. 26 

Figure 5.1 the main form of WALead tool ............................................................................... 35 

Figure 5.2: Raw data extracted from Git Repository ............................................................... 36 

Figure 5.3: Transactional database represents all commits in the git repository.................... 37 

Figure 5.4: A sample of transitions after coding ...................................................................... 38 

Figure 5.5: A plot describes the variation of commit number between releases ................... 40 

Figure 5.6: The result of applying ECLAT on our data .............................................................. 42 

Figure 6.1 shows using a locally stored repository in the WAlead tool. .................................. 46 

Figure 6.2 shows extracting data directly from GitHub using the WAlead tool. ..................... 46 

Figure 6.3 choosing the starting point of the path .................................................................. 46 

Figure 6.4 the list of the affected files by the changes made in the starting point ................. 46 

Figure 6.5 The end of the path where no more files will be changed ..................................... 46 

Figure 6.6: shows the percentage of the usable commits extracted from the project Laravel50 

Figure 6.7: shows the percentage of the usable commits extracted from the project PyDriller50 

Figure 6.8:  shows the percentage of the usable 5commits extracted from the project Hbase51 

Figure 6.9:  shows the percentage of the usable commits extracted from the project React 51 

Figure 6.10:  shows the percentage of the usable commits extracted from the project Laravel52 

Figure 6.11: shows the percentage of  the deleted files to the total files of the  PyDriller project

 .................................................................................................................................................. 53 

Figure 6.12: shows the percentage of the deleted files to the total files of the Hbase project53 



VII 
 

Figure 6.13: shows the percentage of  the deleted files to the total files of the Laravel project

 .................................................................................................................................................. 54 

Figure 6.14: shows the percentage of the deleted files to the total files of the Cassandra 

project ...................................................................................................................................... 54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

List of Tables 

Table 3.1: a summary of the software complementary change detection approaches .......... 22 

Table 4.1:  data extracting tools comparison ........................................................................... 29 

Table 5.1:  The projects extracted from Git repositories ......................................................... 35 

Table 5.2: useful commits in each project ............................................................................... 38 

Table 5.3: The deleted files in each project ............................................................................. 39 

Table 5.4:  The number of commits releases and average files number changing in commits for 

each year .................................................................................................................................. 40 

Table 6.1 The Time Consumed By Each Developer During The Experiment ............................ 47 

Table 6.2: testing the tool on locally stored repositories ........................................................ 48 

 Table 6.3: the number of used commits for each project ...................................................... 49 

Table 6.4 shows the number of files for each project and deleted files .................................. 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 
 

Abbreviations 

ICSE          International Conference of Software Engineering 

MSR          Mining Software Repositories 

MAMP      Machintosh, Apache, MySQL, PHP 

TID            Transaction Identifier  

GUI            Graphical User Interface 

IID         Item Identifier 

CCP         Changer Propagation Path 

CVS           Concurrent Versioning System 

ROSE           Reengineering of Software Evolution  

IDE              Integrated Development Environment  

DR          Development Replay  

CDG            Change Dependency Graph 

JSON           JavaScript Object Notation 

VCS          Versioning Control System  

DVCS           Distributed Versioning Control System 

ECLAT        Equivalence Class Clustering and Bottom-up Lattence Traversal 

SQL              Structured Query Language 

CP            Change Prospect  

BLOB             Binary Large Object 

WALead Wide Assisting and Leading 

DBMS             Database Management System 

PHP                Hypertext Preprocessor 

HTML            Hypertext Markup Language 



X 
 

Supporting Software Maintenance Process by Detecting Software 

Co-Changing using Mining Software Repositories 

By: Ali Aljilani Khamis Ben Abdabdullah 

Supervisor: Dr. Abdelsalam Maatuk 

Abstract 

Software maintenance is considered the costliest process in the software system 

development life cycle. The changes made in this process on a specific software entity 

may trigger co-changes in other software entities. Detecting these co-changes manually 

increases the time and the cost of the maintenance process, while ignoring those co-

changes may lead to software defects or poor software performance. Mining the historical 

data stored on software repositories may help in detecting software entities' co-changes. 

In this research, we propose the Change Propagation Path (CPP) approach. The CPP 

approach is a co-change detection approach that depends on mining software repositories.  

The CPP approach consists of three main phases. In the first phase, the commit data stored 

in the Git repository are gathered. In the second phase, the data gathered are prepared to 

be analyzed. The features are extracted, the misleading commits are removed, and the file 

names are coded. Then, the files that are tagged as deleted are ignored. Finally, the data 

are reduced. The output of this phase is a transactional database containing a set of coded 

file names lists. The final phase includes four main steps. The first step is generating all 

the possible patterns from the file names lists. The second step is creating rules from the 

patterns that describe the relationship between files. In the third step, the rules with the 

same antecedent are aggregated. In the fourth step, the rules are chained according to the 

software editing scenario. The output of the approach was tested manually to evaluate the 

output. A tool (Wide Assisting and Leading) was built upon the CPP concept and tested 

to prove the feasibility of the approach. Testing the CPP approach proved that mining 

software repositories may reduce the time of the maintenance process by 50%.   
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Chapter 1 

Introduction 

A software system can be defined as several separate programs along with its related 

configuration files. It may also include the documentation that describes its design, 

underlying databases, and other related files. In other words, the software system is a set 

of entities that depend on each other and evolve together. The source code elements, 

databases, and files are considered software entities [9] [10]. 

Software entities are being updated continually due to a new feature requested or to fix a 

reported bug. The changes made during the updating process may trigger other changes. 

Therefore, one change may lead to a complementary change (co-change)  or a change 

propagation through the whole software system [10] [9]. 

Co-change is the change required by another change to complete the maintenance 

process. For example, adding a new data field to an existing system requires multiple 

changes in the software system. First, the data field should be added to the database. Then, 

the code responsible for adding, reading, and editing that data field must be changed too. 

Finally, the front end of the system must be changed by adding data input to receive the 

new value and label that describes the purpose of that input. All these mentioned changes 

are the result of one single change. Hence, the co-change is the effect of the coupling 

among software entities [21].  

Coupled pairs in software engineering are the software entities that have a direct or a 

hidden relationship. For example, a global variable that is used within an object or an 

object that uses another object. This type of coupling is referred to as explicit coupling or 

direct coupling. The other type of coupling occurs when software entities are frequently 

changed together and there is no direct relationship among them. This hidden relationship 

can be referred to as logical coupling or evolutionary coupling [12][14]. Hence, 

evolutionary coupled entities are the entities that frequently change together [13]. 

Predicting co-changes makes developers aware of entities that need to be changed along 

with the entities that they are currently working on. This is to avoid defects and maintain 

system integrity [5]. Many difficulties to detect bugs are induced by developers who did 

not notice the hidden relationships among the software entities, which lead to a change 

propagation failure. Other defects come as a result of the ignorance surgeries, which are 
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modifying the source code by developers who do not have enough knowledge about its 

purpose and its structure. Predicting co-changes can also reduce the time consumed 

during the maintenance process by guiding the developers through the related changes 

[9][11]. 

In some cases, co-changes are easily recognized by the dependency browsers provided 

within the development environments. These browsers analyze the structure of the 

software system to detect the related entities (directly coupled) and consequently, detect 

the affected ones during the updating process [11] [14]. For example, when Class X uses 

an instance of Class Y as shown in Figure 1.1. However, in other cases, especially when 

there is no direct relationship between entities (logically coupled), co-changes are hard to 

be detected using structural analysis. For example, when entity A writes data in a file, and 

entity B is desired to read this data, so that any change in entity A that may affect the data 

written must be reflected in entity B. The entities A and B are not structurally related but 

there is a hidden relationship between them. Figure 1.2 visualizes this type of relationship. 

 

Figure 1.1 direct relationship between two classes 
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Figure 1.2 Hidden relationship among software entities 

 A tremendous amount of data is produced during the software system development 

process, describing the changes made in this process.  It represents which part of the 

system has changed, who made the change when this change was made and other related 

data describing each detail of the development process. These data provide a beneficial 

information source, which is helpful for many software engineering aspects, especially 

detecting co-changes. All of the mentioned data in addition to the software system itself 

and all its previous versions are stored in software repositories, which are the 

infrastructures that support software development process activities [1]. 

1.1 Problem Statement 

Most difficulties to detect software bugs are induced by developers who sometimes failed 

to detect related entities and propagate co-changes correctly. The explicitly coupled 

entities are usually detected manually by reading the source code to detect the related 

entities or using the Dependency Browsers, which are tools that are usually installed 

within the Integrated Development Environments (IDEs). These tools analyze the 

structure of the software system to detect the explicitly coupled software entities. Hidden 

relationships among entities are undetectable by manual revising or Dependency 

Browsers. These relationships can be detected by analyzing the development history of 

the software system to recognize frequently changed together entities [13]. 
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 Many approaches have been proposed to solve this problem by analyzing the data 

available in software repositories to guide the developers through the change propagation 

process. However, the developers' community has not yet adopted these approaches 

widely because of the low accuracy and the high misleading recommendations provided 

by these approaches [1] [11] [14]. In this research, we introduce a Change Propagation 

Path (CPP) approach, which is a Mining Software Repositories (MSR) approach that 

adopts the frequent patterns analysis techniques. The CPP approach provides a suggestion 

about the complementary changes depending on the data extracted from the software 

repository.    

1.2 Aim of the Research 

Since the last decade, until the recent date, researchers tried to find an optimal solution to 

predict co-changing software elements. All of these attempts are not adopted yet by the 

developer's community because of the low accuracy and the high rate of misleading 

recommendations. Hence, this research aims to propose an approach that increases the 

accuracy of detecting co-changed software entities by using the historical data stored 

within software repositories.  The approach is designed to assist the software maintenance 

process by reducing the time and cost it takes. This research also aims to prove the 

feasibility of the proposed approach by conducting an experimental study, in which we 

will apply the approach to a maintenance task and measure its effect on the maintenance 

process. The following objectives will guide this research to fulfil its aims  

1. To introduce a sufficient background about software co-changes and MSR. This 

includes the analysis of the previous work and identifies the problem related to 

the co-change prediction area,   

2. To extract and prepare the historical software development data,  

3. To apply an adapted frequent pattern analysis algorithm to produce a single entity 

antecedent rule, and process these rules to form the change propagation path, 

4. To evaluate the proposed approach and discuss the obtained results.  

1.3 Research Questions  

This research tries to answer the following questions: 
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RQ1: To what extent the cost and time are affected positively by applying CPP during 

the maintenance process? 

RQ2: What is the optimal software repository data extracting tool? 

RQ3: What are the features of the data extracted from the software repositories that will 

produce knowledge? 

RQ4: What factors are vital to selecting a data mining algorithm for producing required 

knowledge for the CPP approach? 

1.4 The Proposed Method 

In this research, we employed the quantitive methods through a deductive approach, on 

data extracted from the Git software repositories. The proposed approach consists of three 

main phases. The data extraction phase is where the data are gathered. The data preparing 

phase where the data is cleaned, transformed, and reduced. The analytical phase is where 

the data mining techniques are applied to produce knowledge from the preprocessed data. 

The output of these three phases comes as recommendations to guide the developers 

through the maintenance process.  

1.5 Dissertation Structure  

This dissertation starts with an introduction and a brief description of the context of the 

problem under the study and outlines our aims, objectives, and research questions. 

Chapter 2 provides a sufficient background about the topics, tools, and applications 

mentioned in this research. Chapter 3 previews the previous works related to our topic, 

and the contribution of this research. Chapter 4 introduces the research methodology that 

will guide this research to achieve its aim. Chapter 5 contains the implementation of the 

proposed solution and describes the experiment that we are conducted to prove the 

validity of the proposed approach. Chapter 6 represents testing the feasibility of the 

approach. Chapter 7 presents the conclusion of the research along with the 

recommendations and future work.  
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Chapter 2 

Background 

Software maintenance is the costliest process among software system life cycle processes. 

It costs about half of the total software system development budget [10]. The edits made 

during this process may require a complementary change (co-changes), which are the 

changes made to other software entities according to a previous change. Ignoring those 

co-changes may cause defects or software poor performance. Co-change is the result of 

software entities coupling that may be explicit and easily detected, or implicit and difficult 

to be noticed manually. Co-changes can be detected by revising the historical data of the 

software system development. A vast amount of data is produced during the software 

development process. This data describes each detail in the software system history, and 

is stored in the software repository along with the software itself and its previous versions. 

The data stored in software repositories are a valuable source of knowledge that serves 

many aspects of software engineering. Software repositories store a huge amount of data 

in unstructured form, gaining knowledge from big unstructured data requires applying 

data mining techniques to produce the desired knowledge [1].   

This chapter gives a sufficient background about the topics of this research. In the 

beginning, this chapter introduces the software maintenance process, then it discusses the 

co-changes, which is the side effect of the changes made during the software maintenance 

process, and why it is important to predict those co-changes. After that, this chapter talks 

about software repositories and their categories and how knowledge is extracted from 

software repositories using data mining. Finally, the chapter describes the tools and 

programs used to accomplish this research aims. 

2.1 Software Maintenance 

Software maintenance is the process of updating the software system after being 

delivered. This update may be required as a result of a software defect occurring after 

system delivery, adapting the system to a new environment, or a new feature requested 

by the customer. After the software system is delivered, development team members 

usually break up, opening the way for new members who have no experience of the 

software system to do the maintenance tasks [10]. The new team members might spend a 

long time to be familiar with the system, and be able to propagate changes correctly. The 
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maintenance contract is usually separated from the development contract, leading to 

assigning the development process to one company, and the maintenance process to 

another company.  As a result of this poor practice, more time might be consumed to 

understand the system by the new company team members. The maintenance process is 

considered a less-skilled process than the development process, so it is usually assigned 

to junior developers who do not have enough experience, which induces more defects in 

the system. Due to incomplete changes, more time is consumed and higher costs to 

maintain. Consequentially, maintaining a software system costs two times as much higher 

than the developing process [10]. 

2.2 Co-change 

Changing a software system entity may lead to changing another entity, or a change 

propagation through the whole system. This change is also referred to as co-change. 

Failing to propagate changes correctly is the main reason for software defects and poor 

performance so that predicting these changes can reduce the time and cost spent on 

software maintenance. In some cases, when software entities are structurally related, co-

changes are easily detected. In other cases, when there is no direct relationship among 

software entities, co-changes require more effort to be detected by revising the software 

development history and relating the frequently changing together software entities 

[1][9][22].  

2.3 Software Repositories 

According to Hassan et al [12], software repositories have three main categories 

depending on the data that is stored in them: historical repositories, code repositories, and 

deployment logs. These repositories provide the infrastructure that supports the software 

development process, forms a collaborative environment where development teams can 

host their projects, keeps the track of those projects, and works remotely in a collaborative 

way.  The following subsections describes each type of software repositories:   
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2.3.1 Historical Repositories 

 The purpose of the historical repositories is to be used as an archive for software systems 

and the data, which illustrate the software development process. This category of 

repositories has different types according to the data stored in them.  

2.3.1.1 Source Control Repositories 

Source control repositories or version control systems track the project's development 

history by recording each change made in the software along with a meta-data that 

describes each change. For example, which part of the software was changed, who made 

the change, and when the change was made. Source control repositories provide a short 

message sent by the developer to describe the purpose of the change.  They also provide 

the ability of parallel development by branching features. Some of these repositories work 

in centralized style, where the repository is hosted on a single server, i.e., Concurrent 

Versioning System (CVS) and Subversion, while other repositories work in distributed 

style by mirroring the whole repository among clients like Git and Mercurial [17][12].  

2.3.1.2 Bug Repositories 

Bug tracking is the process of tracking and monitoring the bugs and issues that occur 

during the development process.  Issue tracking systems (also known as bug repositories) 

are responsible for storing developers' bug reports and the features requested by users. It 

categorizes, describes, and tracks the problem to enable the developers to suggest 

enhancements of the reported bugs. The Jira and Bugzilla are examples of this type [18] 

[17]. 

2.3.1.3 Communications Archives  

 Communications archives record all the discussions and communications among the 

development team members about the development process. Communications archives 

contain Emails, instant messages, and other types of communications [12]. 
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2.3.2 Code Repositories 

Code repositories are storage spaces where developers can store and share their project 

releases. These repositories are usually integrated with other software development 

support systems to create a collaborative development environment such as 

sourceforge.com, GitHub, and Google code [1]. 

2.3.2.1 Git Repository 

Git is a distributed version control system that allows developers to work remotely. Also, 

keeps track of all the changes made during the development process, along with the 

related data, such as who made these changes, when these changes were made and a 

message that describes why these changes were made. Figure 2.1 shows a sample of 

Laravel framework data stored on Git repository. 

 

 

Figure 2.1: A sample of Laravel framework development data stored in the Git repository 

 

In 2002, the Linux kernel project started to use a DVCS called BitKeeper as a free-of-

charge product, to keep the track of changes they made [12]. After three years, the free-

of-charge deal was cancelled due to some issues between the Linux community and the 

company producing BitKeeper DVCS. This forced Linus Torvalds, the inventor of the 

Linux operating system, to create a new tool named Git. This new tool is focused on 



10 
 

fixing the issues they faced with BitKeeper. The new tool aimed to work faster with a 

simpler design and support for parallel development. Also, fully distributed and able to 

handle large projects [12].   

Git works in a simple style as described in Figure 2.2. After the repository is initiated, the 

first step is making changes to the projects file, the changes are snapshotted on the staging 

area, and then the changes are committed to the Git repository. The commits made on the 

Git repository can be pushed to the remote server later. Git Commit contains all the data 

describing the changes made, besides the affected files. Each commit has a unique 

identifier that allows the developer to retrieve the data within the commit, and also to 

revert the changes made to a certain point of time [12]. 

 

Figure 2.2: The way that Git stores and retrieves changes data [12] 

2.3.3 Deployment Logs  

Deployment logs repository contains data about the software execution and usages such 

as error messages and software performance. The data stored in logs is used to diagnose 

failures and poor performance and helps to propose solutions [19] [12]. 

2.4 Mining Software Repositories  

 Since the last decade, software repositories have taken a vital role in the software 

development process. The data stored in these repositories started to attract the attention 
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of the scientific community. Analyzing this data can produce valuable information, which 

can be acted upon. This process is known as Mining Software Repositories (MSR) [37]. 

Due to the importance of the MSR field, the first workshop about MSR was held in 2004 

by the International Conference of Software Engineering (ICSE), and after four years of 

working in this field, the first MSR conference was held [12]. MSR is helpful in many 

aspects of software engineering. It can help the development team to understand software 

systems. Predicting and identifying bugs can be more effective by analyzing the previous 

versions of the software systems stored within the repositories. Revising the historical 

data of a software system conveys vital information about the pairs of entities that change 

together and how and why the change was made. This can guide developers while 

propagating changes in future versions of the systems [12]. 

2.5 Frequent Pattern Analysis  

 Frequent pattern analysis is the analytical process of detecting the frequently occurring 

data sets. This process is applied to a transactional database, which is a set of transactions, 

each transaction has a unique identifier and contains a set of items [28]. A frequent pattern 

is the item set that satisfies the minimum support threshold assigned by the data analyst. 

Those patterns are considered interesting patterns. The support means that the percentage 

of transactions that contains a particular data set in a given transaction set [29]. Let T be 

a set of transactions and X is a set of items, the support (SUPP) of X is calculated as 

shown in the following equation. 

SUPP(X) =  
|{𝑋}∈𝑇|

|𝑇|
 

Interesting patterns are the raw material to create association rules, which are the rules 

that describe the relationships among items. This type of rule is usually used to predict 

consumer behaviour, in the manner of consumers who bought this item also bought that 

other item. This can be useful in making offers, promotions, and ordering items on market 

shelves.  Each rule has a left side (antecedent) and a right side (consequent). The rule is 

considered interesting if it satisfies a minimum confidence measure [28]. Let X and Y be 

disjoint item sets, where T is the set of transactions so that the confidence (CONF) of the 

rule X → Y is calculated by the following equation  

CONF(𝑋 → 𝑌) =
𝑆𝑈𝑃𝑃(𝑋∪𝑌)

𝑆𝑈𝑃𝑃(𝑋)
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In the same way, the frequent pattern analysis can be used to predict the co-changing 

software entities, developers who changed this entity also changed that other entity, which 

reveals the hidden relationships among software entities.  

In 1966, Petr Hájek and chytil [30] introduced the General Unary Hypothesis Automation 

(GUHA) method. This method is aimed to analyze the properties of a set of objects to 

convey if a combination of properties is the cause of another combination of properties. 

For example, a combination of symptoms is an indicator of diseases. GUHA was the first 

attempt to analyze the frequent patterns [30].    

In 1994, Agrawal and Skrikant [31] have proposed the Apriori algorithm that follows the 

candidate itemset generation approach, by applying a breadth-first search to generate all 

the possible itemsets within a transaction, where k-frequent itemsets are used to find the 

k+1 item set. Generating all the candidate itemsets makes the Apriori algorithm unable to 

handle large transactions or big databases. 

Later in 2000, Han et al [32], have proposed another method to generate frequent patterns, 

called the FP-Growth algorithm, to generate frequent itemsets without candidate 

generation. By using a prefix-tree structure called   FP-tree (Frequent-Pattern tree), FP-

growth solved several issues in the Apriori algorithm, such as the repeated scanning of 

database FP-growth only scans the database twice the time consumed generating the 

candidate itemsets also reduced in FP-growth. However, the FP-growth algorithm suffers 

from memory consumption when applied to large data sets.  

Another algorithm was introduced in 1997, which is called Equivalence Class Clustering 

and bottom-up Lattice (ECLAT) was proposed by MJ Zaki, et al [33]. ECLAT is a 

scalable algorithm that uses the depth-first search approach, which consumes less 

memory than the Apriori algorithm, also the ECLAT does not involve multiple database 

scans, which makes it work faster than the other approaches[33]. Candidate Generation 

and FP-growth approaches use item-id data sets, where each transaction is a set of items 

with a transaction id as shown in Figure 2.3. The ECLAT algorithm uses a different data 

format, where each item is associated with a set of (TIDs) transaction ids. Figure 2.4 

describes the TID data format, which is helpful in the manner of scalability, but 

sometimes TID gets quite long and expensive to compute. This problem was solved by 

using the Diffset technique [29]. 
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Figure 2.3: items IDs data format 

 

Figure 2.4: Transactions IDs data format 

2.6 Tools and Applications used in the Proposed Solution 

In this section, we describe a set of tools and applications that were used to accomplish 

our study. First, we introduce Komodo Edit, which is a text editor that was used to write 

the front end of the suggestion tool. After that, we give a brief description of MAMP, the 

local web services environment that was used to host the suggestion tool on the local 

server. Then, we describe PyCharm, which is an integrated development environment that 

was used to write the back end of the suggestion tool. After that, we introduce Ali 

Research Tool (ART), a web-based tool, which is designed by the researcher to 

summarize the information gathered from books and research papers. We also mention 

the Git repository, the source of the data that was used to prove the feasibility of our 

approach. Finally, we describe MySQL relational database management system, and its 

graphical user interfaces PhpMyAdmin, which was used to store the output of the 

processed data.  

2.6.1 Komodo Edit 

Komodo edit as shown in Figure 2.5, is a text editor developed by Active State [53]. 

Komodo Edit provides the ability of managing source code, by colouring different parts 

of the source code and giving the code a proper layout. It also auto-corrects syntax errors 

and auto-completes the code therefore, the code writing using Komodo is a faster and 

more accurate process. We used Komodo Edit to write the Php source code of the WAlead 

tool [53].  
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Figure 2.5 Komodo edit to write PHP, code 

2.6.2 MAMP 

The MAMP is a local web services environment as described in Figure 2.6. It contains all 

the necessary tools and apps to test web applications on local machines. MAMP contains 

apache and Nginx webservers, MySQL database management system, and supports most 

back-end web development languages [54]. We used MAMP to test the WAlead tool on 

a local machine and we managed to use it as a server on a local network during the 

experiment. 
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Figure 2.6: MAMP local web services environment 

2.6.3 PyCharm  

PyCharm is an (Integrated Development Environment) IDE Designed specifically for 

Python language as shown in Figure 2.7. It provides all the required tools to write and run 

python code [55]. We used PyCharm to write python code in data extraction, 

preprocessing, and analyzing phases. Also, we used it to write the python part of the 

WAlead tool. 

 

Figure 2.7: The PyCharm IDE 

2.6.4 Git Repository 

Git repository is one of the most popular software repositories, as it is considered a 

software changes tracker. Git repository provides the ability to store the software itself 

along with all the previous versions and the metadata that describes the development 

process [56]. We used Git to keep track of the changes of the WAlead tool. Also, Git is 

the data source for our research. 

2.6.5 MySQL and PhpMyAdmin 

MySQL is a database management system that adopts the concept of the relational 

database. MySQL databases is a reliable storage system that is suitable for small and 

medium projects, and it is also compatible with PHP and python the languages used in 
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this research's practical part [57]. MySQL is usually accessed and manipulated through 

the command line, which is a complex and time-consuming process. Hence, we used 

PhpMyAdmin, the graphical user interface of MySQL to create and manage the 

databases. Figure 2.8 describes the PhpMyAdmin user interface. 

 

Figure 2.8: PhpMyAdmin the GUI of MySQL 
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Chapter 3 

The Literature Review 

 

As a time-consuming process, searching for hiddenly related software entities during the 

maintenance process has gained the attention of many researchers since the last decade. 

The aim was to find an optimal approach for automating this process and providing 

accurate suggestions for developers to assist the maintenance process. 

Thomas Zimmerman [13] applied the Apriori algorithm on historical data extracted from 

the Concurrent Versioning System (CVS). The rules produced by the algorithm are used 

to build a Reengineering of Software Evolution (ROSE) recommendation tool to guide 

developers while propagating changes. The ROSE was designed to be used as a plugin 

for Eclipse IDE, which can only be applied to a specific type of software project. The 

Apriori algorithm that was used to build ROSE has some drawbacks, where it consumes 

a long time scanning the database (N times) and spends time while creating candidate 

itemsets.  

Thomas Zimmerman et al [21] has investigated the co-change among lines of code. Using 

the annotation graph to visualize how lines of code co-change over time. An annotation 

graph is a multipartite graph, where every part represents a version of a file. The nodes in 

the graph represent a line of code, and the line connecting two nodes means that a line of 

code is produced by editing another line of code. The approach concluded that searching 

for a co-changing line of code is a quite expensive and infeasible method to be applied in 

supporting the development process.  

 An approach for extracting data of over 40 years of software development and applying 

the Development Replay (DR) approach to these data has been proposed in [9]. The 

empirical results convey that the historical data of software development are extremely 

useful in predicting complementary changes. This can assist developers in propagating 

changes in the future. 

Ramadani  [14] proposed a recommendation system for co-changed by applying the FP-

Growth algorithm on data extracted from Git versioning repositories. However, this 
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approach was only applicable to detect co-changes on coarse granular software 

entities(files). 

Rolfsnes et al[4] have used a frequent pattern analysis on the data of 15 open-source 

software systems and introduced the concept of hyper-rules, which is the result of 

aggregating multi-applicable rules. The results showed that the hyper-rules can improve 

the accuracy of the suggestions by 13% to 90% compared with previous works. 

 Rolfsnes et al [27] introduced what so-called TARMAQ algorithm for mining 

evolutionary coupling. The algorithm focuses on the drawbacks of using off-shelf mining 

algorithms and worked file-level granularity. The TARMAQ algorithm has achieved a 

higher accuracy rather than the ROSE tool [13].  

 Islam [5] introduced the concept of the transitive evolutionary coupling, which is a 

relationship among software entities that never changed together in the past and are likely 

to change in the future. The traditional association rules cannot detect that kind of 

relationship. Therefore,  a set of transitive association rules have been proposed. 

Compared to the TARMAQ tool that depends on the regular association rules, the 

transitive association rules achieved 13.96% recall and a 5.56% precision higher.  

Ajienka et al [3] have investigated the hidden relationships among software classes 

according to the semantic coupling of its identifiers. However, this approach was 

applicable only on OO-designed systems and on the class-level entities. The solution 

concludes that there is no correlation between semantic coupling and change coupling 

although 70% of semantic dependencies are linked to change coupling but not vice versa. 

Wiese, et al [11] have proposed a prediction model for each pair of software entities, 

based on relevant association rules. Those rules are produced from the contextual 

information extracted from issues tracking systems, developers' communications, and 

commits metadata. Later, Wiese, et al [20] have compared suggestions based on 

contextual information with suggestions based on association analysis and concluded that 

the contextual information provided fewer false recommendations.  

 Tosun and Romero [7] extended the work of Wiese et al [11] by building a prediction 

model to predict the co-changing files using the contextual records on software 

repositories. This approach achieved a 20% to 45% less accuracy than the previous work. 

Similar to [14] this approach applies to coarse granular entities. 
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Vidács, L., and Pinzger [8] investigated the co-evolution patterns between production 

code entities and their test code entities.  

Stana and Şora [16] analyzed the relationships among logical dependencies and the 

structural dependencies on data extracted from 27 open-source software projects written 

in Java and C#. The work concluded that including structural dependencies along with 

logical dependencies improves the applications based on dependency models and co-

change detection is one of them. 

Wang et al [6] conducted an empirical study on bug fixes including multi-entities to 

discover the frequently fixed together entities and based on syntactic dependencies among 

changed entities. The approach suggested creating a Change Dependency Graph (CDG), 

which can be used to guide developers through the entities that are meant to be fixed. 

 Jiang, et al [2] proposed the CMSuggester approach, which is aimed to predict co-

changing software entity pairs during maintenance tasks that require multiple changes. 

The most majority of the proposed approaches depends on the historical data of the 

software development, where the frequently changing together entities in the past is likely 

will change in the future. The CMSuggester approach provides recommendations based 

on analyzing the structure of the software code, where the methods that access the same 

data field are clustered, and the produced recommendations are based on method clusters. 

This approach has achieved 70% of suggestions accuracy. However, this approach can 

only suggest co-changing methods. 

Beyre and Noak [26]introduced a method that  clusteres software artefacts into 

subsystems using a co-change graph, which is a model that represents software artefacts 

as vertices and the co-changes among these entities as edges between vertices. 

Kouroshfar [34] investigated the impact of software entities co-change on the software 

quality. They applied a subsystem decomposition model on four different open-source 

projects. The results showed that the co-changes among software entities in the same 

subsystem can improve the bugs prediction process. 

Kagdi et al [35] have used the log-entries data in the Subversion repository to investigate 

the sequence of files changing the results. A set of tools have been built to discover the 

correct sequence of file changing, to help developers in predicting future changes, and 

analyze the evolution process of software systems. 
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Martinez and Monperrus [44] have designed a tool called Coming, which is a tool that 

extracts the commits data from the Git repository. The data extracted are revised to 

convey the change patterns of the fine-grained software entities (Classes, Methods, etc.). 

The result of this process is stored in JSON format. However, this tool does not provide 

any recommendations, since it is only applicable as a plugin in a larger mining approach. 

Alali et al [46] introduced two new ranking patterns measures, i.e., pattern age and 

coupled files distance. Those new measures are used to reduce the false positives in co-

changes recommendations. To extract the patterns from sub-version VCS, the srcMiner 

tool has been designed and built upon the vertical data format pattern generation 

algorithm ECLAT. The tool was applied on eleven different projects using file-level 

granularity and concluded that about 75% of co-changes are localized. 

Agrawal et al [47] introduced a tool called Ruffle that was used to produce change 

recommendations using software revision history by calculating the changing proximity 

for each pair of classes. The Ruffle tool was built using Java and Python programming 

languages. Each software entity was stored along with the revision id that includes it, then 

an SQL query was applied to generate changing pairs. To evaluate the Ruffle tool 

performance, five different project histories have been used. However, the tool has 

achieved accuracy between 0.7 and 0.8. 

The ability of the commit data to provide predictions for co-changes decreases by time 

[49] [50] [51]. To avoid this problem, Agrawal et al [48] proposed Change Prospect (CP) 

to measure the feasibility of a commit to increase the accuracy of predicting the co-

changing pair of classes.    

In conclusion, the previous work investigated the co-change occurrence or the occurrence 

of the factors responsible for making software entities evolve together by using different 

methods and approaches. Table 3.1 provides a summary of this related research work. 

However, it seems that none of these approaches was widely adopted by developers yet. 

This is because of the lack of accuracy or during the high rate of false recommendations. 

Some of these works focused on one level of granularity so that it cannot be generalized 

on the other levels of granularity. Other works have proposed expensive to apply 

approaches, therefore, increase the cost of the maintenance process. Hence, a usable 

automated co-change detecting approach requires to be accurate enough, stable  and cost 

effective in manner of time and computation effort. While the software development is  a 
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continues process, the co-change detection approach output must be scalable to cover the 

changes without reanalyzing the old data. 

In this research, we introduce the CPP approach, which tries to avoid the weak points in 

the previous works, and employs some of the proposed techniques to produce more 

reliable recommendations. Therefore, this will serve the main aim of this research, which 

is decreasing the cost of the maintenance process  
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Table 3.1: a summary of the software complementary change detection approaches 

Approach Tool Data 

format 

Data source Mining 

algorithm 

Granularity 

level 

Main Findings 

Thomas 

Zimmerman 

[13] 

ROSE tool Commits CVS Apriori Code elements 

level 

ROSE tool employees’ unfeasible algorithm that 

is expensive to apply and provides unscalable 

output. 

Thomas 

Zimmerman 

[21] 

Annotation 

graph 

Lines of 

code 

CVS - Lines of code Detecting co-changes among lines of code is an 

expensive process. 

Ahmad Hassan 

et al [9] 

Developme

nt replay 

Commits CVS - Files Proved that historical data is a significant source 

for detecting co-changes  

Ramadani, J 

[14] 

Recommend

ation system 

Commits Git repository FP-Growth Files This approach is only applicable on file level only  

Rolfsnes, T et 

al[4] 

Hyper rules - 16 open source 

projects 

Association 

rules 

Files Aggregating applicable rules can increase the 

accuracy of the co-change detection process 

Rolfsnes et al 

[27] 

TARMAQ Commits - TARMAQ Files TARMAQ is a mining algorithm that was 

exclusively designed to detect co-changes  

     Islam, 

M.A[5] 

Transitive 

rules 

Commits - Association 

analysis 

Files Spotted the light on the relationship among 

software entities that have never changed together 

in the history 

Wiese, I.S et al 

[11] 

Prediction 

model 

Contextual 

data/Commi

ts metadata 

Communication 

archive, issue 

tracking 

systems 

Association 

analysis 

- Using the contextual data along with the 

traditional methods may increase the accuracy of 

the co-change detection process. 

Tosun, A. and 

Romero, B [7] 

Prediction 

model 

Contextual 

data/Commi

ts metadata 

Communication 

archive, issue 

tracking 

systems 

Association 

analysis 

Files Using the contextual data only may decrease the 

accuracy of the predicting process by 20% to 

45% less than the work in 7 

Wang, Y et al 

[6] 

CDR 

(Change 

Contextual 

data 

Bug tracking 

systems 

- Code entities Using bug fixing data can help in detecting co-

changes 
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propagation 

graph) 

Jiang, Zet al[2] CMSuggest

er 

Source code CVS clustering Code entities Co-changing methods that access the same data 

field are likely to co-change  

Kouroshfar 

[34] 

Subsystem 

decompositi

on model 

Source code Four different 

open-source 

projects 

- Code entities Artifacts in the same subsystem are more likely to 

co-change 

Kagdi et al 

[35] 

Sequence 

file change 

correcting 

tools 

Historical 

data 

Subversion 

repository 

analyze the 

evolution 

process of 

software 

systems 

Code entities The correct sequence of software entities 

changing may affect the accuracy of the co-

change detection process  

Martinez and 

Monperrus[44] 

Coming tool Commits Git repository - Software releases Provided a plugin that can be used in larger 

mining software repositories projects  

[47] Agrawal  Ruffle tool Source code Five different 

projects 

SQL queries classes Investigated the change proximity for each pair of 

software entities  
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Chapter 4 

The Proposed Method 

This chapter describes the design of the CPP approach and its phases. The CPP is an 

approach for detecting co-changes among software entities. The CPP approach employs 

frequent patterns analysis techniques to search in the historical data of software 

development for frequently changing together software entities. The frequent patterns 

generated are used to create association rules, which predict the co-changes for a set of 

software entities based on a change on one single software entity. The created rules are 

aggregated to form a larger rule based on the same antecedent. The larger rules create the 

Change Propagation Path depending on the software editing scenario, which leads the 

developers through the related changes. Using the CPP approach may decrease the time 

consumed while searching for related changes manually during the maintenance process. 

It also may eliminate the cost of hiring highly paid senior developers. 

The aim of this research is achieved by employing quantitative methods, through a 

deductive approach [58] [61]. The aim is reached by applying a data mining framework, 

on the data generated during the development process and stored in software repositories.  

Figure 4.1 describes the three phases of the proposed approach. Phase I is concerned with 

gathering data from the Git software repository. The data collected in Phase I are prepared 

and cleaned in Phase II. Finally, in Phase III, the required knowledge is produced using 

data mining techniques. 
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Figure 4.1 The CPP Approach Framework 
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The following subsections describe the three phases of the CPP approach. The process 

starts with extracting data from the software repository, cleaning and preparing the 

extracted data., and finally, analyzing the data and producing the required knowledge in 

the form of a change path.  

4.1 Phase I: Data Extraction 

 In this phase, the data stored within the Git software repository are extracted. This data 

should be covering a long period of development time to enable the mining method to 

convey relationships among software entities. The commits stored within the Git 

repository that is stored on a local machine, or the commits pushed to GitHub are pulled 

using one of the available commit extraction tools. We conducted a comparative study 

among data extracting tools and frameworks. To decide which extraction tool is suitable 

for our purpose. 

 The Git repository stores the software system versions and records the changes made on 

its entities. Also, it records the metadata describing those changes in the following three 

different objects as shown in Figure 4.2. 

 

Figure 4.2: The method used by Git to capture files changes 
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1. BLOB (Binary Large Object):  stores the content of each file as a string without 

the file metadata (filename, creation date, ... etc.). Each BLOB is identified with a 

SHA1-hash referring to its content. 

2. Tree Object: represents a directory that refers to BLOBs and other trees 

(directories), trees are identified by SHA1-hash that are produced according to the 

tree content.  

3. Commit Object: represents the status of the system at a point in time (snapshot of 

the system). The commit points to the main tree hash and contains the metadata about 

the latest changes (i.e., who made the latest changes, when the latest changes were 

made, … etc.). Each commit has a parent commit describing the previous statutes of 

the system. 

When a developer makes a change to a file, the hash of the related BLOB will be changed 

according to the new content of the file. This change will be reflected on the tree hash 

containing that BLOB. The new tree will contain the edited BLOB and the references to 

the untouched BLOBs. This process produces a new commit with a new hash and new 

metadata [12].   

Extracting data from the GIT objects is a quite complex process that requires extra 

programming effort and consumes more time. To accomplish this task, we examined five 

different data extraction tools that were designed to deal with software repositories shown 

in Table 4.1. These data extraction tools are described as follows: 

4.1.1 Tidyextractors  

The Tidyextractors is a python framework introduced by Becker et al [40]. This 

framework was built on the tidy data conceptual framework [43]. The Tidyextractors 

aimed to extract data from local Git repositories, Twitter user data, and email data with 

minimal effort and in a "tidy data format", which is the cleaned reshaped data that is ready 

for analysis. We followed the installation instructions through the pip package manager 

and by cloning the Tidyextractors repository to our local machine, and we tried to install 

the framework on different operating systems. Unfortunately, the installation process did 

not complete successfully for an unknown reason. 
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4.1.2 GHTorrent  

The GHTorrent provides a scalable mirror of GitHub repositories in the form of 

MongoDB incremental data dumps. This mirror is distributed in a peer-to-peer BitTorrent 

network. The latest data reflected in the GHTorrent mirror was on 30-6-2019, which is 

outdated data and cannot be used to predict co-changing software entities [41]. 

4.1.3 CVSAnalY  

 The CVSAnaly is a data extraction tool that aimed to extract relevant data from software 

repositories. This tool was used by several researchers to collect data from software 

repositories [11][20]. This tool depends on the 2. x python version, which is replaced 

lately with the 3. x version [42]. 

4.1.4 GitPython  

The GitPython is a python library that was created to deal with Git repositories. It 

simplifies the access of Git objects by reflecting the content of these objects into databases 

to be ready for use [36]. 

4.1.5 PyDriller  

 In our research, we used the PyDriller framework, which is a python framework Built 

upon the GitPython [36] framework to make the commit data extraction simpler. The 

PyDriller achieved 50% less LOC than GitPython to produce the same results. The result 

of this phase is a set of commits containing all the data related to the software system 

development process [24]. 
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Table 4.1:  data extracting tools comparison 

Tool Extracting 

method 

Advantages Drawbacks Environment  

Tidyextractors General data 

extracting 

framework 

● Provides cleaned formatted data. 

● Provides data with minimum 

effort. 

● Extract data from multiple 

sources. 

Suffers from bugs and errors  Python code 

GHTorrent Repository 

mirroring  
● Provides a database of Git 

objects ready to use. 

● Data stored in a peer-to-peer 

BitTorrent network which 

provides fast access and 

scalability  

The database is out of date Online 

service 

CVSAnaly  Extracting tool A reliable tool that was used in 

previous works successfully  

Works on an old version of 

python 

Stand-alone 

tool 

GitPython Extracting 

framework 
● Reliable  

● Fast relatively to other methods 

 

Requires extra effort to 

produce outputs 

Python code 

PyDriller Extracting 

framework 
● Reliable 

● Fewer lines of code to produce 

results 

Slower respectively to other 

methods  

Python code 
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4.2 Phase II: Data Preprocessing  

The raw data extracted from software repositories requires several steps to be suitable for 

the mining process. Relevant data must be extracted, then cleaned by removing noise. 

After that, the relevant data should be transformed in a shape suited to the used algorithm. 

The data preprocessing phase includes the following steps [28]. 

4.2.1 Step 1: Feature Extraction 

Git commit is an action made by the developer. To preserve the changes made on the 

system as a snapshot in the repository. Git Commits contain several attributes describing 

the event when the commit was made, i.e., the commit date, the author, the affected files 

...etc. Some specific attributes form the features that will convey relationships among 

software entities. In this step, the relevant attributes, which are the set of affected files in 

each commit are extracted and then inserted into a relational database to be cleaned and 

preprocessed. 

4.2.2 Step 2: Removing Misleading Commits 

Some of the extracted commits are considered noise or misleading commits. In this step, 

the extracted commits from Phase I are revised to remove the commits considered as 

misleading data. Commits with one file edited do not represent any relationship among 

files. Also, commits with no affected files do not provide any knowledge and will affect 

the accuracy of calculating support and confidence. The other type of misleading commits 

is the commits with an extra-long affected files list. These commits come as a result of a 

software developer's bad practices. When a developer makes changes in a software 

system for a long period without committing the changes, the commit will contain an 

extra-long affected file list. The files in this list are might not be related therefore will 

produce misleading knowledge. We assigned the average number of files that the 

developer change for each software project to be a threshold of the commits that were 

considered useful. Commits with affected files numbers equal to or less than the 

threshold, and more than one file are considered as useful commits, and other commits 

will be removed. 
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4.2.3 Step 3: Coding File Names 

File names are usually long strings that require a large portion of the main memory and 

so that require extra processing effort during the mining process. In this step, file names 

are replaced with integers. The original file names and their integer codes are stored in a 

relational database table to be retrieved later after the mining process. 

 4.2.4 Step 4: Removing Deleted Files 

Commit data records each detail in the development process. Deleting files is one of the 

main operations made during the development process. The recorded deleted files in the 

commit data may lead to suggesting none existing files, which are false recommendations. 

In this step, the files tagged as deleted are removed to enhance the accuracy of the 

produced recommendations. 

 4.2.5 Step 5: Data Reduction 

Old commits are less valuable than new commits for the knowledge-producing process 

[48]. Also, the vast amount of commits in the large projects are expensive to analyze and 

will increase the time of the co-change detection. In this step, the total amount of the 

commits is reduced to remove the valueless old commits and to reduce the time consumed 

during the analyzing phase. 

4.3 Phase III: Analytical Processing 

The final phase of the data mining framework is gaining valuable knowledge out of the 

cleaned data. After extracting and preprocessing the data, the altered frequent patterns 

analysis algorithm is applied to the preprocessed data. The applied algorithm produced 

rules with a single software entity on the antecedent side. After that, the rules with the 

same antecedent are aggregated to create larger consequent side rules, containing all the 

entities that frequently change with the entity in the antecedent. Later, these rules are 

chained to create the co-change path, which will guide the change propagation process. 

The following steps clarify each part of Phase III. 
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4.3.1 Step 1:  Frequent Patterns Algorithm Applying  

The final output of the preprocessing phase is a transactional database that contains sets 

of codes that represents the names of affected files in each commit. In this step, a frequent 

pattern algorithm is applied to generate patterns from each set of codes. The generated 

patterns are stored in a relational database along with its support count, which is the 

frequency number of that pattern in the whole transactional database.  

4.3.2 Step 2:  Rules Generation  

After generating all the possible patterns from the transactional database, the generated 

patterns are used to create the rules that represent the relationships among software 

entities. The generating rules consist of the following sub-steps:  

4.3.2.1 Substep 2.1: Evaluating the Patterns 

 In this step, the patterns are evaluated according to their support count threshold. Patterns 

with support counts less than the threshold specified are ignored.  

4.3.2.2 Substep 2.2: Creating Antecedent and Consequent Lists 

The frequent patterns generated and evaluated as an interesting pattern contain a set of 

items. The number of items per pattern ranges from one item to N number of items. The 

patterns with one item that satisfy the minimum evaluation criteria threshold are selected 

and inserted into the antecedents list. Patterns with more than one item and have a support 

count equal to or higher than the threshold are inserted in the consequent list.  

4.3.2.3 Substep 2.3: Forming the Rules 

In this step, the rules are created from the antecedent and consequent lists. A rule is a 

statement that describes the relationship between two disjoint sets of software entities.  

The rules produced in this step contain one item on the left side and one or more items on 

the right side. Forming a rule starts with a loop through the antecedent list, and another 

loop starts on the consequent list, to select patterns that contain the current antecedent and 

form a rule. The rules will be stored in permanent storage to be accessed in the following 

steps.   
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4.3.3 Step 3: Rules Aggregation  

Not all of the generated rules are applicable [28]. The generated rules must be evaluated 

to avoid misleading recommendations. There are several criteria to evaluate rules 

(Support, confidence ...etc.). In this process, an evaluation criterion is chosen to pick the 

rules that may form valuable recommendations. The rules that satisfy the minimum 

evaluation criteria threshold and have the same antecedent are aggregated into a larger 

rule.  

4.3.4 Step 4: Forming Change Propagation Path 

The consequence of the aggregated rules is a set of software entities, some of which have 

their own rules. Therefore, a rule may trigger other rules and so on. In this process, we 

will create a path of changes depending on a starting point the software developer will 

choose during the maintenance process. The algorithm will chain all the affected rules 

and merge them as a long path of suggestions. The developer will change another entity 

and move to the entities affected and so on till the path ends. 

4.5 Summary  

In this chapter, we introduced the CPP approach and described each of its phases. The 

next chapter will describe the prototype implementation of the CPP approach. 
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Chapter 5  

The Prototype Implementation 

All the proposed tools in the literature are plugins or stand-alone desktop tools, which 

make them only available on one device at a time. However, being a plugin within an 

IDE makes it aimed at a narrow range of programming languages. In this chapter, we 

introduce the design of the Wide Assisting and Leading (WALead) tool as an 

implementation of the CPP approach. The WAlead is a web-based tool that can be 

accessed online from everywhere. The WAlead tool does not require previous installation 

or any other requirements. It only requires a stable internet connection and a machine 

with a web browser.  After building the tool, we tested the correctness of its output. The 

output of the tool is unique (one item antecedent rules) it cannot be compared with other 

tools and approaches. Hence, we tested it manually by inserting a small dataset into the 

tool and testing the same dataset manually and comparing the output. 

The following subsections describe the implementation of each phase in the CPP 

approach. Each phase is applied to the sample data extracted from the Git software 

repository, to examine the actual effect of each process on actual data. 

5.1 Selecting the Environment  

 After revising several maintenance recommendation tools, we found that the tools were 

designed to work as plugins within another software, making it applicable to a specific 

type of software or a few programming languages. The other type of recommendation 

tool works as a stand-alone desktop application that requires pre-installation on the 

machine and requires locally stored data to work with. To overcome this insufficiency, 

we designed the WAlead tool to be hosted on a server and accessed online. The tool can 

receive a compressed file containing a Git repository or extract the data directly from 

Github. This feature will enable the developers’ team to work remotely and share 

suggestions about software changes with no need to install applications or programs on 

their machines.   
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5.2 Choosing the Programming Languages 

In the data extracting phase, we used PyDriller as a data-gathering tool, which is a sturdy 

data extraction python framework. Using PyDriller forced us to use python as a data 

processing language and python provides wide support for data mining tasks in the form 

of libraries and frameworks. The output of the data processing phase is stored in a 

relational database,  where we chose the MySQL DBMS to be the data storage. The online 

tool requires a web-developing language. Therefore, we used PHP to be the back end of 

our tool along with python language. The PHP script receives the user requests, processes 

the request and provides outputs from the MySQL database as HTML layout.   Figure 5.1 

shows the main form of the WALead tool. 

 

Figure 5.1 the main form of WALead tool 

5.3 Phase I: Data Extraction 

By using the Pydriller framework we extracted the commits data of five open-source 

projects with different sizes of development history, different purposes and, different 

programming languages. Table 5.1 describes the extracted projects and the differences 

among them. 

Table 5.1:  The projects extracted from Git repositories 

Project 

name 

Launching 

date 

Number of 

commits 

Number 

of files 

Programming 

language 

project purpose 

Laravel 2011 6441 673 Php, Blade, Shell Web application 

framework 

Hbase 2007 18258 8920 Java, Ruby, Perl, 

Shell, Python, 

Thrift 

Distributed 

datastore  

Pydriller 2018 630 134 Python Data mining 

framework 

Cassandra 2009 25908 6157 Java, Python, 

HTML, Shell, 

GAP, Lex 

Scalable row-store 

React 2013 13776 3853 JavaScript, 

HTML, CSS, 

C++, TypeScript, 

CoffeeScript 

User interface 

JavaScript library 
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5.4 Phase II:  Data Preprocessing 

The raw data collected in the data extraction phase in Figure 5.2 is not suitable for any 

type of data mining, therefore this data requires multiple preparation processes.  

 

Figure 5.2: Raw data extracted from Git Repository 

The pre-processing phase consists of five different activities. These activities will 

guarantee the quality of the data passed to the analytical phase. The following steps 

describe the preprocessing activities:  

5.4.1 Step 1: Feature Extraction  

To detect hiddenly related software entities, we applied a frequent pattern analysis 

algorithm on the data extracted from the git repository. Frequent pattern analysis requires 

a Transactional database [29]. A transactional database is a set of transactions that are 

collected over a period. Each transaction contains a set of items that occur together. This 

set of items determines the relationships among items. The raw commit data collected 

from the git repository contains a similar format shown in Figure 5.3. The entire history 

of the software development process is stored as a set of commits, and each commit 
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contains a set of filenames that changed together. Hence, we created a transactional 

database from the extracted commits Figure 5.3.   

 

 

Figure 5.3: Transactional database represents all commits in the git repository 

5.4.2 Step 2: Removing Misleading Commits 

 In this step, the commits that may affect the final result are eliminated. The commit with 

one file does not represent a relationship between files and will affect that certain file’s 

support. Also, a commit with no files changed will produce empty items in the database 

and will also increase the total number of commits and induce misleading support for all 

files. As a bad practice, developers may make changes for a long period without 

committing them to the repository, after making a commit all the files changed in that 

long time will be added in one commit. Some of those files are unrelated to each other 

and the long transaction extracted from that commit requires a long time to produce 

subsets. In [13], the ROSE tool ignores commits with more than 30 files. In this step, we 

take the average number of files that the developer’s team changes in all commits and 

make it a threshold for the considered commits. After applying this step to the five 

projects data the results shown in Table 5.2,  only 11.83% to 47.65% are considered useful 

commits. 
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Table 5.2: useful commits in each project 

project All commits Used commits percentage 

Laravel 6441 762 11.83% 

Pydriller 630 205 32.50% 

HBase 18258 8700 47.65% 

React 13776 4452 32% 

Cassandra 25908 7081 27% 

5.4.3 Step 3: Coding Files Names 

File names require a relatively large space of storage to save, also take a massive portion 

of the main memory while processed, leading to a delay in the mining process, especially 

when those names are long. 

To solve this problem, we created a table containing file names and a serial number for 

each file name as shown in Figure 5.4. This table will be used to code and decode the file 

name during processing and storing. Numbers take less memory than file names and it is 

faster to process. In addition, in matters of scalability, adding new files to this table is 

easier than other coding methods. 

 

Figure 5.4: A sample of transitions after coding 

5.4.4 Step 4: Removing Deleted Files 

During the software system lifetime, new files are added and other files are deleted. As 

we mentioned in Chapter 1, we attempt to create a co-change path that will guide the 

change propagation process. This process will be stopped if a deleted file appears in that 

path, preventing the rest of the files to be changed. In addition, if a commit contains only 

removed files, it will affect the pattern support calculation. 
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The examination of the five projects extracted data proved that 28% to 73% of the files 

mentioned in the developing history are deleted and must be ignored in the mining process 

Table 5.3 

                Table 5.3: The deleted files in each project 

project deleted files active files Total 

Pydriller 52 82 134 

Hbase 3525 5395 8920 

Laravel 489 184 673 

Cassandra 1744 4413 6157 

React 2045 1808 3853 

5.4.5 Step 5: Data Reduction 

 After the previous data preparation process, the amount of data is significantly reduced. 

However, for large projects, it is still large and expensive to generate patterns out of it. 

Furthermore, the older commits are less valuable for producing frequent patterns [48]. 

Therefore, a reduction process must be applied to reduce the time consumed during the 

mining process. 

Reducing the data requires a unit to be used as a breaking point to divide data. We 

examined different units for data reduction. The first unit  we examined was the Git tag 

(Git release). The Git tag is used to specify a point of time when an important event occurs 

in the project's developing history. After examining the releases in each project, we found 

that the number of commits in each release ranges between 0 and 40 commits as shown 

in Figure 5.5. The huge variation in the number of commits makes the release unusable 

as a data reduction unit. 
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Figure 5.5: A plot describes the variation of commit number between releases  

The second data reduction unit we examined is the year of development. The data in Table 

5.4 presents each year of the developing history of the software system. In each year, 

there is a different number of commits, a different number of releases, and the behaviour 

of developers changes from time to time in each project. Hence the year cannot be used 

as a unit to divide the data. Also, the average changing files in each commit is not the 

same for each time in the same project, therefore the threshold of the considered number 

of files in each commit should be dynamic according to the developer’s behaviour at each 

time. 

In this step, we considered the number of commits as a dividing unit for data reduction. 

The number of considered commits is 1000 commits since it requires an acceptable time 

to generate frequent patterns. 

 

Table 5.4:  The number of commits releases and average files number changing in commits for each year 

project year Commits average files in a commit releases in each year 

HBASE 2007 235 9 2 

HBASE 2008 559 7 0 

HBASE 2009 664 6 0 

HBASE 2010 769 8 55 

HBASE 2011 1015 6 32 



41 
 

HBASE 2012 792 16 72 

HBASE 2013 1059 10 97 

HBASE 2014 924 12 65 

HBASE 2015 898 9 44 

HBASE 2016 947 9 37 

HBASE 2017 1027 20 21 

HBASE 2018 819 9 43 

HBASE 2019 657 9 63 

HBASE 2020 637 10 37 

Pydriller 2018 117 4 17 

Pydriller 2019 62 4 9 

Pydriller 2020 95 5 10 

Laravel 2012 445 6 31 

Laravel 2013 43 15 12 

Laravel 2014 128 6 4 

Laravel 2015 54 8 11 

Laravel 2016 57 3 13 

Laravel 2017 19 3 12 

Laravel 2018 18 3 10 

Laravel 2019 30 3 16 

Laravel 2020 15 4 43 

react 2013 507 6 10 

react 2014 507 6 12 

react 2015 713 8 16 

react 2016 800 6 18 

react 2017 826 12 26 

react 2018 594 8 27 

react 2019 1359 8 20 

react 2020 779 10 8 

Cassandra 2009 666 8 1 

Cassandra 2010 1134 7 36 

Cassandra 2011 1545 6 41 

Cassandra 2012 1012 9 36 

Cassandra 2013 1020 7 49 

Cassandra 2014 1164 7 44 

Cassandra 2015 1257 8 54 

Cassandra 2016 918 9 50 

Cassandra 2017 487 7 28 

Cassandra 2018 331 10 12 

Cassandra 2019 190 12 15 

Cassandra 2020 396 7 57 

             

5.5 Phase III: Analytical Processing  

This research aims to support the maintenance process by decreasing the cost and the time 

consumed while applying the required changes to the software system. Hence, the speed 

of the frequent pattern algorithm is a vital factor to achieve our goal. The algorithm used 
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should be fast and the output is suitable to generate single item antecedent rules. 

Moreover, scalability is an important feature to ensure continued maintenance support for 

the software system. The analytical phase in  the CPP approach consists of the following 

four steps: 

5.5.1 Step1: Applying Frequent Patterns Generation Algorithm  

According to the comparative studies [38] [39] [45] on frequent pattern algorithms, the 

ECLAT algorithm achieved higher speed respectively to FP-growth and Apriori 

algorithm. Also, it is suitable for large databases, since there is no database scan in the 

ECLAT algorithm. We applied the ECLAT algorithm on the pre-processed data to 

generate frequent itemsets, each item set is presented with its frequency in the 

transactional database shown in Figure 5.6. 

 

Figure 5.6: The result of applying ECLAT on our data 

5.5.2 Step 2: Rules Generation 

While applying changes to a software file, the software developer performs those changes 

on one file per time. Hence, we need a rule that describes the effect of changing one file 

on the other files in the software system. The off-shelf data mining algorithms produce 

rules that contain multiple items on the left side and another set of items on the right side. 
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This form of rules is not suitable for describing the effect of changing one file, because 

software developers cannot change multiple files at the same time. 

In this process, we will produce rules with a single item in the antecedent (left-side) and 

a set of items in the consequence (right-side), by performing the following sub-steps: 

5.5.2.1 Sub-step 1: Selecting the Interesting Frequent Patterns 

In this step, we select the patterns that have support equal to or higher than the support 

threshold specified. Support threshold is usually set manually by revising the data 

characteristics [48]. After revising the data of five different projects. We discovered that 

each data sample has its characteristics, and applying a support threshold according to 

one project data on other projects' data is not feasible. In [13], the Support Count was 

used to measure the interestingness of the generated patterns. The Support Count of a 

pattern is the number of the transactions (commits) that contain that pattern. The Support 

count is easier for developers to understand rather than support. On the other hand, it 

applies to different projects data. To determine the Support Count threshold, we grouped 

the patterns with the same support to select the largest group. We found that the largest 

group has a support count of 2. Hence, we considered each pattern with a support count 

of 2 an interesting pattern.    

5.5.2.2 Sup-step 2:  Creating Antecedents and Consequents Lists 

After selecting the interesting patterns, we extract the patterns that contain one item that 

satisfies the minimum support count threshold and insert it into a list along with their 

support count. This list will form the antecedents of the rules. The other patterns that 

contain more than one item and satisfy the support count threshold, are inserted in the 

candidate consequent list. 

5.5.2.3 Sup-step 3: Forming Rules  

The final step in this process is creating rules. We scan the antecedents list and search for 

each item we reach in the consequent list. If the item in the antecedents list appears in any 

patterns in the consequent, we form a rule out of the two patterns and calculate the 

confidence of the rule using the support of the two patterns. 
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5.5.3 Step 3: Rules Aggregation 

 "The confidence of an association rule is a percentage value that shows how 

frequently the rule head occurs among all the groups containing the rule body. The 

confidence value indicates how reliable this rule is." IBM [62].  

To select the valuable rules, we assigned 50% as a confidence threshold to filter the 

generated rules. This means that the rules are 50% accurate. Setting a high confidence 

threshold will extremely reduce the number of recommendations, also setting a low 

confidence threshold will produce misleading recommendations.  

After assigning the confidence threshold, we looped through the rules table, and 

combined the rules with the same antecedent, and satisfied the minimum confidence 

threshold to create a large rule. 

5.5.4 Step 4:  Change Propagation Path Creation  

The final step in the CPP approach is to create the path that the developer will follow 

during the maintenance process. In this step, the developer will select a starting point, a 

software entity from the antecedents list. A list of the software entities affected by the 

starting point will be shown. The developer will examine, which file deserves to be 

changed. After that, the developer can choose one of the affected entities to continue the 

path. This process will be repeated till the path ends.   

5.6 Summary  

This chapter described the practical effort to implement the three phases of the CPP 

approach. Firstly, the data extracting, then preprocessing the data after that, analyzing the 

preprocessed data.  
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Chapter 6 

Evaluation of The CPP Approach  

This research aims to develop an approach to support the software development process 

by reducing the time and the cost of the maintenance process. To accomplish this aim, we 

proposed the CPP approach, which is a path created using the historical data of the 

software development process recorded on the Git repository. The path is the result of 

chaining multiple aggregated rules that describe the effect of changing a particular 

software entity. To prove the feasibility of the approach, we put it under test. We 

employed this approach in developing a software maintenance recommendation tool 

called WAlead tool. This tool can guide developers through the related changes after 

editing a software entity in a software system. To examine the feasibility of the WALead 

tool, we put it under three different tests. First, we compared the actual output of the tool 

with the theoretical description of the algorithm. Then, we tested the performance of the 

tool by measuring the time required for the tool to produce recommendations. Finally, we 

examined the effect of using the WALead tool during the maintenance process. This 

chapte describes the three experiments and the results of each test. 

6.1 The WALead Tool Using Scenario 

Using the WAlead tool is quite simple, the user requests the main form of the tool, and 

inserts the repository link as shown in Figures 6.1 and 6.2. The tool receives and processes 

the request. After that, the tool provides a list of files so the developer chose a starting 

point along with the time consumed and the number of the usable commits as shown in 

Figure 6.3. Then, the tool will show a list of affected files in Figure 6.4. The developer 

will check the files and change the files that should be changed. The next step is choosing 

one of the changed files and this process will be repeated till the end of the path as shown 

in Figure 6.5.  
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Figure 6.1 shows using a locally stored repository in the WAlead tool. 

 

Figure 6.2 shows extracting data directly from GitHub using the WAlead tool. 

 

Figure 6.3 choosing the starting point of the path 

 

           Figure 6.4 the list of the affected files by the changes made in the starting point 

 

Figure 6.5 The end of the path where no more files will be changed 
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6.2 Experiment I: CPP Approach Validation 

Before employing the WALead tool in supporting the software maintenance process. We 

have to validate the output of the tool. To perform this task, we applied the three phases 

of the CPP approach manually on a small dummy data set. Then, we used the same data 

set and inserted it into the WALead tool. After that, we compared the output of the 

manually generated recommendations and the onces produced by the WALead tool. The 

results revealed that the output of the WALead tool is identical to the output of the 

manually performed CPP approach phases. 

6.3 Experiment II: Testing the Effect of CPP on Maintenance Process 

WAlead tool is a recommendation tool that provides change suggestions built on the CPP 

approach and using the historical data of the development process. To prove the feasibility 

of the WAlead tool we put it under test by using it to support the maintenance process of 

a simple attending registration system. We invited six junior PHP developers to add a 

feature to an existing system built using PHP language. 

We prepared a simulation for the World Wide Web environment. First, we prepared a 

server to client network containing seven computers. After that, we installed the WAlead 

tool on one machine to be the service provider. Then, we installed the Komodo text editor 

and MAMP server on the other six machines. Later, we installed a copy of the system 

that will be edited during the experiment in the MAMP server.  

We made the experiment in 24-5-2021 at the Higher Institute of Engineering Professions 

Almajory in Lab-2 the experiment started at 10:15 am. We split the developers into two 

groups. The first group was allowed to use the WAlead tool. The second group was asked 

to figure the related changes on their own. We gave the developers a simple task, which 

is adding a feature to an existing system. The experiment ended at 11:40, and we recorded 

the time consumed by each developer. Table 6.1  shows the results of the conducted 

experiment. 

Table 6.1 The Time Consumed By Each Developer During The Experiment 

Developer name Tool Start time Ending time Time consumed 

Rela Yes 10:15 10:52 00:30 

Aya Yes 10:15 10:40 00:25  

Asma Yes 10:15 10:30 0:15 
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Monia No 10:15 11:13 0:58 

Aisha No 10:15 10:40 0:25 

Amal No 10:15 11:10 00:55 

6.4 Experiment III:  Testing the WAlead Tool Performance 

This research aims to find an approach to reduce the time and cost of the maintenance 

process. The performance of the CPP approach can be measured by the time used during 

the recommendation production process. During this experiment, we tested the 

performance of the WAlead tool. The experiment was conducted on the data of the five 

projects we used previously in this research. The time consumed during the whole three 

phases depends on three main factors: number of the used commits, the number of files 

in each commit, the number of characters in the names of the files.  The results are shown 

in Table 6.2. After that, we tested the tool on fresh copy extracted directly from GitHub 

and found that the efficiency of the tool in this scenario depends on the quality of the 

network. 

Table 6.2: testing the tool on locally stored repositories 

Project Number of 

usable commits 

average files in a 

commit 
Time consumed 

PyDriller 82 4 1 minute 

Laravel 229 6 7 minutes 

React 1000 8 24 minutes 

Hbase 1000 10 1 hour 

Cassandra 1000 8 34 minutes 

 

6.5 Results Discussion  

After implementing and testing the CPP approach. We review and discuss the results of 

each phase and try to answer the research questions. We show the results of each phase 

starting with the data gathering phase and ending with the experiment conducting. 

6.5.1 Data Extraction Phase Results  

In this phase, we made a comparative study among five different software repository data 

extracting tools in Table 4.1 and concluded that PyDriller is the most suitable tool for this 

task. Using the PyDriller tool, we extracted the data of five different open source projects 
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Table 5.1. The data extracted in this phase is raw commits data containing a massive 

amount of information, some of this information is useful for our purpose and other 

information are useful for other tasks. Hence, the data extracted requires several 

preprocessing stages to produce knowledge. 

6.5.2 Data Preprocessing Phase Results 

This phase prepares the extracted data to be analyzed by a data mining technique. First, 

the features were extracted from the raw data. to make the data suitable for frequent 

pattern analysis in the analytical phase. Most of the data attached to each commit such as 

date, committer, message ...etc. was abandoned.  The names of the files edited in each 

commit were kept to create a transactional database. After that, the extra-long commits 

were removed along with the commits with one file edited. Then the files that were tagged 

as deleted from each commit were discarded. Later the number of transactions was 

reduced to minimize the time consumed by the analytical phase. The final step is coding 

the names of the files to optimize the mining process performance. 

During the preprocessing of the data extracted from the five different projects we 

concluded the following: 

After removing the extra-long and short commits. We discovered that the useful commits 

are between 11.83% to 47.65% of the total number of commits. Table 6.3 presents the 

number of extracted and discarded commits. Figures 6.6, 6.7, 6.8, 6.9, 6.10 show pie 

charts for the percentage of the commits used in each project. Hence, we conclude that 

the number of usable commits differs from one software project to another. 

Table 6.3: the number of used commits for each project 

project all commits used commits percentage 

laravel 6441 762 11.83% 

pydriller 630 205 32.50% 

hbase 18258 8700 47.65% 

react 13776 4452 32% 

Cassandra 25908 7081 27% 
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Figure 6.6: shows the percentage of the usable commits extracted from the project Laravel 

 

 

Figure 6.7: shows the percentage of the usable commits extracted from the project PyDriller 
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Figure 6.8:  shows the percentage of the usable 5commits extracted from the project Hbase 

 

 

Figure 6.9:  shows the percentage of the usable commits extracted from the project React 
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Figure 6.10:  shows the percentage of the usable commits extracted from the project Laravel 

 

Discarding the deleted files from the extracted commits revealed that 28% to 73% of the 

files recorded within the commits metadata are deleted during the development process. 

Table 6.4 presents the number of files of each project and the deleted files. Figures 6.11, 

6.12, 6.13, 6.14 show pie charts for the deleted files of each project. 

Table 6.4 shows the number of files for each project and deleted files 

Project Deleted Files Active Files Total 

Pydriller 52 82 134 

Hbase 3525 5395 8920 

Laravel 489 184 673 

Cassandra 1744 4413 6157 

React 2045 1808 3853 
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Figure 6.11: shows the percentage of  the deleted files to the total files of the  PyDriller project 

 

 

 

Figure 6.12: shows the percentage of the deleted files to the total files of the Hbase project 
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Figure 6.13: shows the percentage of  the deleted files to the total files of the Laravel project 

 

 

Figure 6.14: shows the percentage of the deleted files to the total files of the Cassandra project 
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Figure 6.15: shows the percentage of the deleted files to the total files of the React project 

The next preprocessing step is data reduction. In this step, we concluded that old commits 

are not useful and the huge amount of data requires a long time to be analyzed. While we 

aim to reduce the time consumed and provide proper accuracy. We reduced the number 

of commits analyzed to the last 1000 commits. Before that, we tested several units to use 

it for data reduction. First, we tested the releases. Release or tag is a point of the project 

history when a major event occurs. We found that the number of commits in each release 

differs from project to project and from release to release. Figure 5.5  presents a chart of 

each release's commit number in our five projects, which varies from 1 commit per release 

to 40 commits per release. After revising the number of commits in each release we 

concluded that the release is not suitable for reducing the number of commits  

The next reduction unit we tested was the year of development. We revised the number 

of commits in each year of software development. We found that the number of commits 

in each year is extremely varying and cannot be used as a reduction unit. Table 5.4 shows 

the number of commits, the number of releases and the average number of files changed 

in each year of development. 

Finally, we used the number of commits as a data reduction unit and we set the latest 

1000 commits hence 1000 commits requires a maximum of 1 hour to be analyzed and 

contain enough commits to produce knowledge. 

The final step of the preprocessing phase is coding. File names preserve a huge portion 

of the main memory during the processing. To reduce the memory usage, we gave every 
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file a code this code maximumly contains 5 digits. Coding file names reduced the time 

consumed during analyzing from 15 hours to 1 hour in worst cases. 

In a conclusion, the relevant data that is useful in co-change prediction is the list of 

changed file names in each commit discarding the deleted files, the latest 1000 commits 

and the commits that contain changed files less than or equal to the average number of 

files changed in each commits and, greater than one file. 

6.5.3 Applying Frequent Patterns Algorithm Results 

In this phase, we revised previous comparative studies [38][39][45] and concluded that 

the ECLAT algorithm is the optimal algorithm for our task. ECLAT scans the database 1 

time, the output of ECLAT is scalable and, the variation we made of ECLAT provides a 

single item antecedent rule, which is the main component in our approach (Change 

Propagation Path). 

6.6 Comparing WALead tool with the existing proposed tools 

In this research we proposed the CPP approach to be a usable approach in detecting co-

changing software entities. We built WALead tool to prove the feasibility of the CPP 

approach, while designing this tool we tried to avoid the shortcomings of the existing 

tools. In table 6.5 a comparison preview among the proposed tools and WALead tool 

Table 6.5: A comparison among the proposed tools and WALead tool 

Tool Accuracy  Scalable Availability Cost effectiveness  Granularity level Data 

source 

Algorithm 

ROSE [13] Depends on the 

support 

threshold 

No Eclips IDE 

Plugin 

Consumes long time to 

produce patterns 

Code level elements CVS Apriori 

Ramadhani 

[14] 

Depends on the 

support 

threshold 

No Standalone 

tool 

Scans the database twice 

to produce patterns 

File level Git FP-growth 

Hyper-rules 

[4] 

13% to 90% 

higher than 

previous work 

No Standalone 

tool 

Yes File level Git Hyper-rules 

TARMAQ 

[27] 

- No Standalone 

tool 

Yes File level Git TARMAQ 

Coming [44] - No Plugin within 

other tools 

- Code level elements Git Frequent 

patterns 

analysis 

Ruffle [47] 70% to 80% No Standalone 

tool 

- Code level elements - - 

WALead Depends on the 

support 

threshold 

Yes Web based 

system 

Yes File level Git ECLAT 
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Chapter 7 

Conclusion and Recommendations 

7.1 Conclusion  

The main aim of this research is to find a solution to support software maintenance 

processes by reducing the time and cost of this process. To reach the aim of this research 

we employed MSR to detect co-changes among software entities, which will reduce the 

time consumed while searching for related changes and eliminate the cost of hiring highly 

paid senior developers to guide the development team through the change propagation 

process. We conducted deductive research on quantities data to test the effect of detecting 

co-changes using our proposed CPP approach. 

 The CPP approach consists of three main phases. In Phase  I, the commits’ data stored 

within the Git repository is extracted. We conducted a comparative study among five 

different data extraction tools, from which we selected the appropoarte tool to do this 

task. The study revealed that PyDriller is the most compatible tool for our task. Phase II 

is the data preparation phase, in which we eliminated the noise, transformed the data and 

reduced the data amount. The output of Phase II is a transactional database that contains 

lists of coded file names. Phase III is the core of the CPP approach, where the 

preprocessed data is transformed into recommendations that guide developers to 

propagate changes correctly. In Phase III, the data within the transactional database are 

transformed into patterns using the ECLAT algorithm. After that, the patterns are 

evaluated to select the interesting patterns that may form knowledge. Then, interesting 

patterns are used to create rules that describe the relationships among files. The rules 

produced in this stage contains one item on the antecedent side. The interesting rules with 

the same antecedent are aggregated to create larger rules. Finally, the aggregated rules 

are used according to the editing scenario to create the change propagation path. 

 To prove the feasibility of the CPP approach we built a recommendations tool, which is 

called the WALead tool. The tool is a web-based tool that uses the data stored in the Git 

repository and provides recommendations to the software developers during the 

maintenance process. These recommendations are produced according to the software 

editing scenario. After building the WALead tool, we conducted three different 
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experiments to prove the feasibility of the CPP approach. First, we tested the output of 

the WALead tool and compared it with the expected output using dummy data. After that, 

we tested the effect of using the WALead tool during the maintenance process. We 

managed to reduce the time consumed by 50% and eliminated the cost of hiring highly 

paid a senior developers to guide the development process. Finally, we tested the 

performance of the WALead tool by recording the time required to produce 

recommendations for five different software projects. The results revealed that the time 

consumed during the production of the recommendation is affected by three factors the 

number of commits extracted from the software repository, the average number of files 

in each commit and the size of the string the presents the file names.   

We attemped to answer the following questions during the conduction of this research. 

 RQ1: To what extent the time and cost can be reduced by detecting co-changes 

during the maintenance processes? 

The results of the experiment show that our approach reduced the time of the software 

maintenance process by 50%. In addition, the cost was reduced by eliminating the role of 

the guiding senior developer.  

RQ2: What is the optimal software repository data extracting tool? 

Extracting data from software repositories is a complex process and is out of the scope of 

this research. Hence, we conducted a comparative study among six different extracting 

tools. We concluded that the PyDriller is the most suitable tool for our purpose. 

RQ3: What are the features of the data extracted from the software repositories that 

will produce knowledge? 

Data is the base that our research is built on. Selecting the right pieces of data guarantees 

more accurate results. After reviewing the data of five different projects. We concluded 

that the relevant data (the features) are the list of the edited entities in each commit 

regardless of the entities that are tagged as deleted in the development history. On the 

other hand, a huge portion of the commits is considered as noise. Extralong commits with 

one edit entity and old commits. We set 1000 commits as a limit for the extracted commits 

because the old commits are not valuable and more than 1000 commits require a long 

time to be processed. 
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RQ4: What factors are vital to selecting a data mining algorithm for producing 

required knowledge for the CPP approach? 

This research aims to propose a solution to reduce the time of co-changed software 

entities. Therefore, the speed of the algorithm is a vital factor to select the data mining 

algorithm. Software development processes are usually continuous processes. Changes 

on the software system are continually made to add a new feature or to fix defects. Hence, 

the output of the mining algorithm must be scalable to support continual development. 

After revising several mining algorithms and according to previous studies, we selected 

the ECLAT algorithm.  The ECLAT algorithm scans the database on time, therefore, it is 

considered faster relatively compared to the other mining algorithms. The ECLAT 

algorithm produces a scalable output, which can be used incrementally to support 

continual development. The output of the ECLAT algorithm is suitable to produce single 

item antecedent association rules which is the main component to create the Change 

Propagation Path. 

7.2 Recommendations  

Given the results discussed in Chapter 6, and to obtain accurate results from the commit 

metadata, we recommend developers avoid editing and committing unrelated files. 

Moreover, to avoid editing files for a long time without committing. Finally, we 

recommend developers avoid committing after editing one file on its own. Those 

practices that we recommend to avoid, forms valueless commits that will produce 

misleading change suggestions.    

7.3 Future Work 

In this research, we tested the feasibility of our approach on file-level software entities. 

As future work, we attend to add code parsers to test the validity of the CPP approach on 

the source code entity level. While we aim to reduce the time of the maintenance process, 

we attend to design a software repository data extracting tool based on a compiled 

language to avoid the latency induced by interpreted language such as Python.  
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 Appendices  

The data mining portion of the WALead tool written in Python programming language : 

from pydriller import RepositoryMining 
import time 
import mysql.connector 
start = time.time() 
# -------------Real Shit goes here :)-------- 
 
 
class RawData: 
    link = "" 
    avgFilesPerCommit = 0 
    commits = [] 
    filesStatue = {} 
    codedFiles = {} 
    codedCommits = [] 
    start = 0 
    end = 0 
 
    def __init__(self, link, start, end): 
        self.link = link 
        self.start = start 
        self.end = end 
        self.extractCommits() 
        self.removeUnwantedFiles() 
        self.codeFiles() 
        self.codeCommits() 
        self.commits[start:end] 
        self.insertCodedFiles() 
 
    def extractCommits(self): 
        sum = 0 
        for commit in 
RepositoryMining(self.link).traverse_commits(): 
            itemsInCommit = [] 
            for modification in commit.modifications: 
                itemsInCommit.append(modification.filename) 
                
self.filesStatue[modification.filename]=str(modification.change_
type) 
            if len(itemsInCommit)>1: 
                sum+=len(itemsInCommit) 
                self.commits.append(itemsInCommit) 
        self.avgFilesPerCommit=round(sum/len(self.commits)) 
        self.commits.reverse() 
 
    def removeUnwantedFiles(self): 
        newCommits=[] 
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        for commits in self.commits: 
            itemList=[] 
            for item in commits: 
               if 
self.filesStatue[item]!="ModificationType.DELETE": 
                   itemList.append(item) 
            if len(itemList)>2 and 
len(itemList)<=self.avgFilesPerCommit: 
                newCommits.append(itemList) 
        self.commits=newCommits 
        self.commits=self.commits[self.start:self.end] 
    def codeFiles(self): 
        i = 0 
        for x in self.filesStatue: 
            i += 1 
            self.codedFiles[x] = i 
 
    def codeCommits(self): 
        for i in self.commits: 
            itemlist=[] 
            for j in i: 
                itemlist.append(self.codedFiles[j]) 
            self.codedCommits.append(itemlist) 
 
 
    def insertFile(self,file, code): 
        mydb = mysql.connector.connect( 
            host="localhost", 
            user="root", 
            password="", 
            database="mytool" 
        ) 
        mycursor = mydb.cursor() 
        sql = "INSERT INTO files (file_name, file_code) VALUES 
(%s, %s)" 
        val = (file, code) 
        mycursor.execute(sql, val) 
        mydb.commit() 
    def insertCodedFiles(self): 
        for i in self.codedFiles: 
            self.insertFile(i,self.codedFiles[i]) 
 
class pattern: # frequent pattern list content 
    def __init__(self, files, suppCount): 
        self.files = files 
        self.suppCount = suppCount 
    suppCount = 0 
    support=0 
    files = [] 
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    def patternSupport(self, commitsSize): 
        self.support=self.suppCount/commitsSize 
class patterns: 
    patts=[] 
    averageSupport=0 
    commits=[] 
    def __init__(self,commits): 
        self.commits=commits 
        self.patternGenerator() 
        self.removeUglyOne() 
        self.addSupport() 
        self.calculateAvgSupport() 
 
    def subsetter(self,l):  # returns a list of all sublissts 
for a given lsit 
        base = [] 
        lists = [base] 
        for i in range(len(l)): 
            orig = lists[:] 
            new = l[i] 
            for j in range(len(lists)): 
                lists[j] = lists[j] + [new] 
            lists = orig + lists 
        lists.remove(lists[0]) 
        return lists 
 
    def calSupport(transCount, patterns): 
        for i in patterns: 
            i.support = round((i.suppCount - 1) / transCount, 2) 
        return patterns 
 
    def removeUglyOne(self): 
        for i in self.patts: 
            i.suppCount -=1 
 
    def patternGenerator(self): 
        t=pattern([],0) 
        self.patts.append(t) 
        for i in self.commits: 
            newList=self.subsetter(i) 
            for j in newList: 
                c=0 
                for k in self.patts: 
                    c+=1 
                    if set(k.files)==set(j): 
                        k.suppCount +=1 
                        break 
                    elif c == len(self.patts): 
                        t=pattern(j,1) 
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                        self.patts.append(t) 
        self.patts.remove(self.patts[0]) 
    def addSupport(self): 
        for i in self.patts: 
            i.support=i.suppCount/len(self.commits) 
 
    def calculateAvgSupport(self): 
        self.averageSupport =2 
class rule: 
    def __init__(self,left , right, confidence, support): 
        self.left=left 
        self.right=right 
        self.confidence=confidence 
        self.support=support 
class rules: 
    patterns=[] 
    minconf=1 
    minsup=0 
    rules=[] 
    lsides=[] 
    rsides=[] 
 
    def __init__(self,patterns,items,minsup): 
        self.items=items 
        self.minsup=minsup 
        self.patterns=patterns 
        self.createRules() 
 
    def createRules(self): 
        for i in self.patterns: 
                if len(i.files) <= 1: 
                    if i.suppCount >=2: 
                        self.lsides.append(i) 
                else: 
                    if i.suppCount >= 2: 
                     self.rsides.append(i) 
        for i in self.lsides: 
            for j in self.rsides: 
                if i.files[0] in j.files : 
                    conf= j.support/i.support 
                    r = rule(i.files[0],j.files,conf,j.support) 
                    if r.confidence>=0.5: 
                        self.rules.append(r) 
 
 
 
 
class AgRules: 
    rules=[] 
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    agrules={} 
    codedItems={} 
 
    def __init__(self,rules): 
        self.rules=rules 
        self.agit() 
        self.insertRules() 
 
    def agit(self): 
        for i in self.rules: 
            if i.left in self.agrules.keys(): 
                self.agrules[i.left] += i.right 
            else: 
                self.agrules[i.left] = i.right 
 
    def insertRule(self,lside,rside): 
        res = [] 
        for i in rside: 
            if i not in res and i != lside: 
                res.append(i) 
        mydb = mysql.connector.connect( 
            host="localhost", 
            user="root", 
            password="", 
            database="mytool" 
        ) 
 
        mycursor = mydb.cursor() 
        rr=[str(int) for int in res] 
        r= ','.join(rr) 
        sql = "INSERT INTO rules (lside, rside) VALUES (%s, %s)" 
        val = (lside, r) 
        mycursor.execute(sql, val) 
 
        mydb.commit() 
    def insertRules(self): 
        for i in self.agrules: 
            self.insertRule(i,self.agrules[i]) 

 

The implementation of the web services portion of WALead tool written in Php 

programming language and HTML: 

<?php 
function viewMain() 
{ 
    ?> 
    <form action="<?php echo $_SERVER['self']; ?>" 
method="post"> 
        <input type="text" name="link"> 
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        <input type="hidden" name="act" value="link"> 
        <input type="submit" value="Go"> 
    </form> 
    <?php 
} 
function insertLink() 
{ 
$myfile = fopen("link.txt", "w") or die("Unable to open file!"); 
$txt = $_POST['link']; 
fwrite($myfile, $txt); 
fclose($myfile); 
} 
function runTool() 
{ 
$command = escapeshellcmd('python 
C:/Users/Soft/research/venv/extracting.py');  
$output = shell_exec($command);  
echo $output;  
} 
?> 
<!DOCTYPE html> 
<html> 
    <?php 
    include('code.php'); 
    $act=$_POST['act']; 
    switch($act) 
    { 
        case "": 
            viewMain(); 
            break; 
        case "link": 
            insertLink(); 
            runTool(); 
            break; 
        default: 
            echo"<h1>something went wrong</h1>"; 
    } 
    ?> 
</html> 
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دعم عملية صيانة البرمجيات عبر اكتشاف التغييرات المصاحبة باستخدام 
 التنقيب في مستودعات البيانات 

 علي الجيلاني خميس بن عبد الل  قدمت من قبل : 

 عبد السلام معتوق د.  تحت إشراف : 

 ملخص ال
دورة   في  تكلفة  الأكثر  العملية  البرمجيات  صيانة  تؤدي تعتبر  قد  البرمجيات.  نظام  تطوير  حياة 

التغييرات التي يتم إجراؤها في هذه العملية على كيان برمجي معين إلى إحداث تغييرات مصاحبة في  
كيانات برمجية أخرى. يؤدي اكتشاف هذه التغييرات المشتركة يدويًا إلى زيادة وقت وتكلفة عملية  

ت المشتركة إلى حدوث عيوب في البرامج أو ضعف  الصيانة ، بينما قد يؤدي تجاهل تلك التغييرا
اكتشاف   في  البرامج  مستودعات  في  المخزنة  التاريخية  البيانات  تعدين  يساعد  قد  البرنامج.  أداء 

(.  CPPالتغييرات المصاحبة للكيانات البرمجية. في هذا البحث ، نقترح نهج تغيير مسار الانتشار )
هو نهج الكشف عن التغيير المصاحب الذي يعتمد على تعدين مستودعات البرمجيات.   CPPنهج 

من ثلاث مراحل رئيسية. في المرحلة الأولى ، يتم جمع بيانات العمليات المخزنة   CPPيتكون نهج  
 . في المرحلة الثانية ، يتم إعداد البيانات المجمعة لتحليلها. يتم استخراج الميزات Gitفي مستودعات  

وإزالة العمليات المضللة وترميز أسماء الملفات. بعد ذلك ، يتم تجاهل الملفات التي تم وضع  علامة  
محذوف عليها. أخيرًا ، يتم تقليل البيانات. ناتج هذه المرحلة هو قاعدة بيانات تحويلية تحتوي على  

أربع خط النهائية  المرحلة  تتضمن  المشفرة.  الملفات  أسماء  قوائم  من  تتمثل  مجموعة  رئيسية.  وات 
الخطوة الأولى في إنشاء جميع الأنماط الممكنة من قوائم أسماء الملفات. الخطوة الثانية هي إنشاء  
قواعد من الأنماط التي تصف العلاقة بين الملفات. في الخطوة الثالثة ، يتم تجميع القواعد التي لها  

فقًا لسيناريو تحرير البرنامج. تم اختبار مخرجات  نفس السوابق. في الخطوة الرابعة ، يتم تقييد القواعد و 
  CPP( بناءً على مفهوم  Assisting and Leadingالنهج يدويًا لتقييم المخرجات. تم بناء أداة )

أن مستودعات برامج التعدين قد تقلل    CPPواختبارها لإثبات جدوى هذا النهج. أثبت اختبار نهج  
 ٪.50من وقت عملية الصيانة بنسبة 
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