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ABSTRACT  
With the emergence of new data acquisition technologies, 
large amounts of data are available in many domains. While 
a significant amount of computational research is dedicated 
to the analysis of such data, it is needed to be visualized in a 
way that is easy to analyze and understand. Recently, there 
have been significant advances in visualizing graphs; 
however, not enough tools exist for automatic visualization 
of sets. In this paper, we devise a spectral approach for 
visualizing overlapping sets, so that the underlying hierarchy 
and relations of the sets can be easily understood by visual 
inspection. The algorithm utilizes the spectral 
decomposition of the graph representation of the sets to 
compute the best coordinates for all items on the Euclidean 
plane. The experimental results were very encouraging, and 
showed positive indication on the efficiency of the proposed 
method. 
Keywords 
 Sets, visualization, sets visualization, overlapping sets, sets 
drawing. 

1. 0BINTRODUCTION 
Visualization is a mean of representing data, so that data can 
be explored and understood by visual inspection. 
Visualization utilizes the human visual ability to allow users 
to understand visualized objects and their underlying 
relations. Visual representation of data is useful in providing 
abstract information about the data at once. Visualization is 
increasingly applied in many applications, including 
software engineering [1], imaging [2], digital libraries [3] 
and others. 
   In this paper, we devise algorithms to visualize 
overlapping sets, so the users (e.g. researchers) can easily 
and quickly have information about the underlying 
relationship between the sets. The visualization of sets can 
help to classify them and make decisions for further 
analysis. For example, we can see which subsets of the sets 
are heavily overlapping, so that we can study them together 
because they share a lot of information. In contrast, disjoint 
sets can be analyzed separately.  

  This problem is closely related to graph visualization and 
multi-dimensional scaling (MDS). However, this problem is 
fundamentally different in that we are also interested in 
visualizing the sets in addition to their items. In MDS, the 
distances between items are given and a low-dimensional 
mapping of the items is sought. In graph visualization, the 
pairwise relationships between items are given and a two-
dimensional mapping of the items and the pairwise 
relationships is sought. On the other hand, this study intends 
to obtain a two-dimensional mapping of the items in such a 
way that we can visualize which items belong to which set. 
This requires optimization of the mapping of the items on 
the two-dimensional space, as well as optimization of the 
representation of the sets. Experiments of the algorithms 
were conducted on both real and synthesis datasets, and 
showed positive indication on the efficiency of the proposed 
method. 
  The rest of the paper is organized as follows. Section 2 
provides an overview of related work. The problem is 
defined formally in Section 3. Section 4 presents our 
spectral approach for sets visualization based on the 
Laplacian of co-membership and bipartite graphs generated 
from the sets. The experimental results, performance and 
evaluation metrics used are briefly discussed in Section 5. 
Section 6 concludes the paper. 

2. 1BRELATED WORK 
A great amount of research has been recently done on 
information visualization. In this section we will discuss the 
work related to set visualization, including visualizing sets, 
graph visualization, and multidimensional scaling. 
  Euler diagrams can be used to represent the relationships 
between sets. Many algorithms have been developed for 
drawing Euler diagrams. Flower and Howse [4] outlined 
well-formedness conditions on drawn diagrams and 
presented an algorithm to decide whether an abstract 
diagram is drawable under those conditions. If a diagram is 
diagnosed as drawable, then a drawing is produced. Later 
work [5] aimed to enhance the layout of an already drawn 
Euler diagram, using a hill-climbing based optimization 
approach in combination with a range of layout metrics, to 
assess the quality of the drawing.  
  Alsallakh et al. [16] proposed a technique for finding and 
analyzing different kinds of overlaps between sets using 
frequency-based representations. An algorithm based on 
shortest-path graphs to depict set membership of items on a 
map has been presented by Meulemans et al. [17] Lex et al. 
[18] introduced a novel visualization technique for the 
quantitative analysis of sets, their intersections, and 
aggregates of intersections. Simonetto et al. [6] developed 
another algorithm to generate Euler-like diagrams. These 
algorithms were mainly designed to draw diagrams for a 
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very small number of sets with small sizes. Here, in contrast 
to these approaches, we are considering the problem of 
visualizing a large number (tens to hundreds) of larger (tens 
of items) sets and we also consider undrawable cases. In 
order to handle undrawable instances, we allow errors. 
  An existing tool, daVinci [7] is used as a user interface for 
graph layout in many applications. Luo et al. [8] proposed 
an ambiguity-free edge- bundling technique to improve the 
visualization of very dense graphs. Many spectral 
approaches for graph visualization exist, that use the 
eigenvectors of the graph matrix to produce a mapping of 
the graph vertices to the Euclidean space [9, 10].  Koren[11] 
developed an algorithm that uses the eigenvectors of the 
Laplacian to visualize graphs. Here, we are using a graph-
drawing algorithm to visualize overlapping sets. The 
methods we develop are based on spectral decomposition of 
the graph representation of sets. They utilize the 
eigenvectors of the Laplacian of the graph to compute the 
best Euclidian coordinates of the items of the sets. 
  MDS methods are used to decrease the dimensionality of 
data while preserving as much information as possible about 
these data.  
  Leeuw and Mair [12] proposed a solution to the 
multidimensional scaling problem by means of the 
majorization algorithm. Their method is intended to 
minimize the stress and functions to majorize stress were 
elaborated. Agarwal et al. [13] introduced an iterative local 
improvement method for solving many variants of 
multidimensional scaling problems. The algorithm starts by 
choosing a point and moving it so that the cost function is 
locally optimal and repeats the procedure until convergence 
is achieved. Chen and Buja [14] proposed a local 
multidimensional scaling method that constructs a global 
embedding from local information. The method localizes 
versions of MDS stress functions by using force paradigm 
and a tuning parameter.  
   In this work, in addition to the two-dimensional mapping 
of the items on the Euclidian plane, we also require 
optimization of the representation of the sets, so that we can 
visualize the items and sets together. 

3. PROBLEM DEFINITION 
Formally, we have n items grouped into m sets where Si = 
{Ij}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. We want to plot these items on 
the Euclidean plane and group them in a way that makes it 
easy to see the relationship between these items. Without 
loss of generality, it is required that the co-membership 
graph produced by the sets to be visualized is connected. If 
the graph is not connected, we pre-process the data and 
provide multiple connected graphs and visualize them 
separately. This is natural because we are interested in 
visualizing the overlap between sets, so we do not have to 
visualize disjoint sets in the same drawing.  

Example 1: Consider the following group of sets and items. 
We refer to the i-th set as 𝑆𝑖 and the j-th item as 𝐼𝑗 . 

            S1= {I1, I2, I3} 

           S2= {I1, I2, I5} 

           S3= {I3, I4} 

  These sets need to be visualized, so that each item is 
represented by a point, and each group of items belong to a 
set is bounded by a circle that represents that set. 

4. PROPOSED ALGORITHMS 
This section presents our method for visualizing overlapping 
sets. The algorithm regards the sets as a graph and visualizes 
them using the Laplacian of the graph. Namely, we use the 
eigenvectors to compute the optimal position for the graph 
nodes (items) as well as the circles that represent the sets in 
the two-dimensional plane. Drawing the sets by randomly 
assigning values to the x and y coordinates of each item in 
the sets does not provide useful information about the sets 
and their relations. Even with a very small number of items 
the drawing does not represent the dataset correctly. 
   In this study, we have proposed several algorithms based 
on the spectral decomposition of the graph representation of 
sets. We first start with the algorithm, which is based on a 
co-membership graph, and then we perform some 
improvements to this algorithm. 

4.1 Algorithm based on co-membership 
graph representation of sets (CMG) 
Since many of the existing algorithms aim to visualize 
graphs, we first represent the sets to be visualized as a 
graph. For this purpose, we construct the co-membership 
graph of the sets. Figure 1 shows the co-membership graph 
of the Example 1 given in Section 3. 

 
Figure 1. Co-membership graph of the three sets in Example 1 

  To construct the graph, we first construct the membership 
matrix M of the group of items. M is an 𝑚 ×  𝑛 matrix, 
where m is the number of sets and n is the number of items. 
If item Ij is contained by set Si, the entry Mij is set to one, 
otherwise, it is set to zero. For example, the membership 
matrix for the sample instance given in the previous section 
is the following: 

 𝑀 =  �
1 1 1 0 0
1 1 0 0 1
0 0 1 1 0

� (1) 

  From the membership matrix, we can construct the 
adjacency matrix U of the co-membership graph G. U is an  
𝑛 ×  𝑛  matrix, where each entry Uij is set to one if both 
items i and j appear together in at least one set, or it is set to 
zero if the two items do not share a set.   Besides, all the 
diagonal entries Uii are set to zero.  The adjacency matrix of 
Example 1 is as follows: 

 𝑈 =  

⎣
⎢
⎢
⎢
⎡
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0
0 0 1 0 0
1 1 0 0 0⎦

⎥
⎥
⎥
⎤
 (2) 

  This matrix is called the unweighted adjacency matrix, and 
it can be computed directly from M using the following 
equation: 

 𝑈 = 𝑀𝑇  ⊗𝑀 (3) 

   Here, the operator ⊗ specifies a modified matrix 
multiplication, in which multiplication is replaced by logical 



"AND” and the addition is replaced by logical “OR”.  If both 
items i and j appear in the same set more than once (appear 
together in more than one set), it might be useful to include 
that information in the co-membership matrix, since the 
items that appear in many sets together should be located 
close to each other in the two-dimensional plane. Therefore, 
we define a weighted co-membership matrix W, in which the 
entry Wij will be equal to the number of sets that contain the 
two elements together.  Once more, all the diagonal entries 
Wii are set to zero. We can easily compute W directly from 
M by the following equation:  
 𝑊 = 𝑀𝑇  × 𝑀 (4) 

  The weighted adjacency matrix for Example 1 is the 
following: 

 𝑊 =

⎣
⎢
⎢
⎢
⎡
0 2 1 0 1
2 0 1 0 1
1 1 0 1 0
0 0 1 0 0
1 1 0 0 0⎦

⎥
⎥
⎥
⎤
 (5) 

 We then construct the Laplacian matrix L of the co-
membership graph. The Laplacian matrix is an 𝑛 × 𝑛  
matrix where  𝐿 = 𝐷 − 𝐴 and D is the degree matrix, which 
is an 𝑛 × 𝑛  diagonal matrix where Dii = deg(i). The 
Laplacian L can be computed from the unweighted 
adjacency matrix U as follows: 

 𝐿𝑖𝑗
(𝑈) =  �

deg(𝑖)   𝑖 = 𝑗
−𝑈𝑖𝑗    𝑖 ≠ 𝑗

�    𝑖, 𝑗

= 1,2, … ,𝑛 
(6) 

  Where deg(i) in this equation denotes the degree of item i 
(the number of items that appear with item i in at least one 
set). Similarly, the Laplacian can be computed from the 
weighted adjacency matrix W as follow: 

 𝐿𝑖𝑗
(𝑊) =  �

wdeg(𝑖)   𝑖 = 𝑗
−𝑊𝑖𝑗    𝑖 ≠ 𝑗

�    𝑖, 𝑗

= 1,2, … ,𝑛 
(7) 

  Where wdeg(i) in this equation denotes the weighted 
degree of item i (the sum of the weights of the edges 
incident to i). 
  Using the Laplacian is very useful in that we convert the 
problem to an optimization problem.  Consider the problem 
of mapping the nodes of a graph onto one-dimensional 
Euclidian space such that the nodes, which are connected 
with heavier edges are closer to each other in the space. This 
problem can be formulated as follows: 

 
min
𝑥
𝐸(𝑥) ≝  � 𝑤𝑖𝑗(𝑥(𝑖)

〈𝑖,𝑗〉∈𝐸
− 𝑥(𝑗))2 

(8) 

   The right-hand-side of the above equation can be written 
in matrix form as follows: 

 𝑥𝑇𝐿𝑥 =  �𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)2
𝑖<𝑗

 (9) 

 

  Therefore, since L is a positive semi-definite matrix, the 
eigenvector corresponding to the second smallest eigenvalue 
of the Laplacian provides the optimal solution to this 
problem.  Similarly, the optimal solution to the problem of 
mapping graph nodes can be computed into two-
dimensional Euclidean space by taking the eigenvectors that 
correspond to the second and third smallest eigenvalues of 

the Laplacian. In Example 1, if we use the unweighted 
adjacency matrix for the co-membership graph, the 
Laplacian will be as follows:  

 𝐿𝑈 =

⎣
⎢
⎢
⎢
⎡

3 −1 −1 0 −1
−1 3 −1 0 −1
−1 −1 3 −1 0
0 0 −1 1 0
−1 −1 0 0 2 ⎦

⎥
⎥
⎥
⎤
 (10) 

  For the weighted adjacency matrix, the Laplacian is the 
following: 

 𝐿𝑊 =

⎣
⎢
⎢
⎢
⎡

4 −2 −1 0 −1
−2 4 −1 0 −1
−1 −1 3 −1 0
0 0 −1 1 0
−1 −1 0 0 2 ⎦

⎥
⎥
⎥
⎤
. (11) 

   Koren [11] showed that the eigenvectors of the Laplacian 
are very useful in providing a comprehensible visualization 
of graphs. Koren [11] also showed that using the degree-
normalized eigenvectors of the Laplacian provided more 
natural visualization than using just the eigenvectors of the 
Laplacian. Normalization means that we consider the degree 
when we compute the eigenvectors from the Laplacian. Here 
we require that  

 𝑥𝑇𝐷𝑥 = 1 and 𝑦𝑇𝐷𝑦 = 1 (12) 

   Further details on deriving the eigenvectors from the 
Laplacian matrix can be found in [11]. In order to 
comprehensively investigate the use of co-membership 
graphs in visualizing sets, we use four variants of the co-
membership graph G: unweighted, weighted, unweighted 
normalized and weighted normalized. 
   After computing the optimal x and y coordinates for all the 
nodes (items) of the graph, Circles are used to represent the 
sets. Each group of items belonging to one set is bounded by 
a circle. In order to draw these circles, we need two 
quantities: the center of each circle and the radii of the 
circles. For each circle (set), the average of the x coordinates 
of the items that belong to that set is computed and used as 
the x coordinate of the center of the circle representing that 
set. Similarly, the y coordinates for each circle (set) are 
computed. The radius of the circle is the distance between 
the center and the furthest item from the center in the set. 
Computing the radii in such way guarantees that all the 
items in a set are bounded by the circle representing that set, 
allowing no false negatives, but allowing some items that 
are not in the set to be visualized as if they have been in the 
set.   

4.2 Algorithm based on bipartite graph 
representation of sets (BPG) 
In the CMG algorithm, there are some cases, in which two 
instances of different datasets produce the same co-
membership graph. For instance, consider the following 
group of sets:  

S1= {I1, I2, I3}, S2= {I1, I5}, S3= {I2, I5}, S4= {I3, I4}. 

  This instance produces the same co-membership graph as 
in Example 1 shown in Figure 1. In other words, different 
distribution of items to sets might give rise to the same co-
membership graph, causing loss of information. To 
overcome this problem, we proposed an algorithm that is 
based on the bipartite graph representation of the sets to be 
visualized, and then compute the Laplacian and 
eigenvectors. Consequently, the coordinates for the items 



and the centers of the circles representing the sets can be 
directly computed. In this algorithm, we use the following 
equation to compute the adjacency matrix of the bipartite 
graph: 

 𝐴𝑇 =  � 0 𝑀
𝑀𝑇 0 � (13) 

   Where M is the membership matrix and the size of A 
is 𝑚 + 𝑛 × 𝑚 + 𝑛. Note that the zero in the upper left 
corner of the matrix is an 𝑚 × 𝑚 zero matrix and the zero in 
the lower right corner is 𝑛 × 𝑛 zero matrix. The adjacency 
matrix of the bipartite graph in our example is 

 𝐴 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (14) 

  Note that, here, we do not need edge weights since each 
entry in the adjacency matrix corresponds to exactly one set-
member relation.  After we construct our adjacency matrix, 
the Laplacian and the eigenvectors can be computed. The 
Laplacian for this adjacency matrix becomes: 

 𝐿 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

3 0 0 −1 −1 −1 0 0
0 3 0 −1 −1 0 0 −1
0 0 2 0 0 −1 −1 0
−1 −1 0 2 0 0 0 0
−1 −1 0 0 2 0 0 0
−1 0 −1 0 0 2 0 0
0 0 −1 0 0 0 1 0
0 −1 0 0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (15) 

  After this step, we compute the degree-normalized 
eigenvectors of the Laplacian. Subsequently, we compute 
the centers of the circles directly from the resulting 
eigenvectors of the Laplacian. Namely, we use the first m 
elements of the eigenvector that corresponds to the second 
smallest eigenvalue as the x coordinates of the centers of the 
sets and the first m elements of the eigenvector that 
corresponds to the third smallest eigenvalue as the y 
coordinates for the set centers. The remaining elements from 
the second and third low eigenvectors are used to compute 
the x and y coordinates for the items respectively, as in the 
CMG algorithm. We compute the radii of the circles in a 
way that is similar to CMG; hence, BPG is also guaranteed 
to have no false negatives.  

4.3 Improved bipartite graph based 
algorithm (IBPG) 
When drawing the circles, there might be items that lie far 
away from the center of the circle that represents a set and 
most of the other items seem to be clustered around the 
center. The number of those items that lie far from the center 
is usually small, and including them in the circle increase 
the radius of the circle, which subsequently increases the 
size of the circle allowing for more false positives (items 
that appear to be in the circle but do not actually belong to 
the set represented by that circle). As a tradeoff, we try to 
exclude those items as an effort to keep the number of false 
positives low. Note that, BPG outperforms CMG, thus we 
build IBPG on top of BPG. After we compute the x and y 
coordinates for the items and circles, for each circle we 
construct the table shown in Table 1. 

 

Table 1. Computing best radius 
R Tp fp Fn T 
r1 tp1 fp1 fn1 t1 
r2 tp2 fp2 fn2 t2 

⋮ ⋮ ⋮ ⋮ ⋮ 
rk tpk fpk fnk tk 

  Here, k is the size of the set, tp is the number of true 
positives (i.e., number of the items that belong to a set and 
are bounded by the circle representing that set), fp is the 
number of false positives (i.e., number of items that do not 
belong to a set and visualized as they were in that set), fn is 
the number of false negatives (i.e., number of items that 
belong to a set and visualized as they were not in the set), 
and ri represents candidate radii.  The way we generate 
candidate radii is as follows: we start with one item in the 
set and compute the distance between that item and the 
center of the circle, and compute all the tp, fp, and fn 
associated with that radius. Then, we add the next closest 
item to the center, in the circle and choose the candidate 
radius as the distance between the center of the circle and 
the farthest item so far. Similarly, we compute the entries of 
the table of the chosen radius, and so on, until we compute 
all the table entries for all candidate radii. Using this table, 
we compute the optimal radius of each circle that produces 
the best value in the following equation: 

 𝑡(𝑖) =  
𝑡𝑝(𝑖) − 𝑓𝑝(𝑖)
𝑠𝑖𝑧𝑒(𝑆)  (16) 

   Obviously, this equation is trying to maximize the number 
of true positives and minimize the number of false positives, 
and this is what our algorithm intends to do, (we desire to 
include the items that belong to the set in the circle and 
exclude the items that do not belong to the set from the 
circle). There are some cases, in which various radii have 
the same t value. In such cases, we choose the radius that 
minimizes the number of false negatives. In other words, we 
pick the radius that includes more items in the circle without 
increasing the false positive rate. 

4.4 Improving visualization 
There are some cases, in which some items might be plotted 
over each other, and this is natural because if two items 
occur in the same set of sets, they are mapped to the same 
point in the Euclidean space. We have isolated those items 
and plotted them separately using a discretization process, 
so that they can be easily identified on the drawing. 
Precisely, we sort the x and y coordinates of the items and 
map them to integers from 1 to n in increasing order. 
Subsequently, we plot these integer vectors that are derived 
from the real-valued vectors.  

5. EXPERIMENTAL STUDY 
In order to measure the performance of the proposed 
algorithms, two indicators are used. The first indicator is the 
total number of errors produced by the algorithm. We 
compute the membership of the items in the sets indicated 
by the visualization and compare them with the actual 
membership of the items in the sets. As a result, we can tell 
which algorithm represents the true membership of the items 
more accurately. The second indicator is the total area of the 
circles we use to represent sets. A smaller area means that 
the algorithm utilizes the plot area more efficiently. In 
addition, we focus on the aesthetic aspect of the drawing 



produced by the methods, as the aim of these algorithms is 
to produce a drawing that is easy to understand.  
  To evaluate the performance of the algorithms, we use 
three classes of randomly generated datasets. We consider 
three factors when we generate the data, the number of 
items, the number of sets, and the average set cardinality. 
For each dataset, we fix two factors at a time, and vary the 
other factor to see how that factor affects the performance. 
Besides, we have tested our algorithms on three real 
datasets. The first one is set of the prime factors of the 
numbers between 100 and 200. The second dataset is subset 
of publications list obtained from the web page of Mehmet 
Koyuturk, from Case Western Reserve University. The third 
dataset is a group of six biological annotation datasets 
consisting of genes and their functional annotation 
according to Gene Ontology (GO). Further details on the 
datasets, metrics used, and how the experiments were 
conducted can be found in [15].  
6. CONCLUSION 
In this paper, we presented spectral algorithms for 
visualizing overlapping sets using the eigenvectors of the 
Laplacian of two different graph representations: co-
membership graph and bipartite graph. We first introduced 
an algorithm that is based on the co-membership graph of 
the sets to be visualized, CMG. We have introduced four 
different versions of the algorithm. The weighted 
normalized version of the algorithm performed the other 
versions. That is because the normalization takes into 
account the degree of each node in the graph produced from 
the sets, and for this reason, treats each item equally (the 
degree of an item means that which items share membership 
with that particular item). Besides, when weights are 
considered, we actually are considering the number of times 
that any two items appear in the same set together, and this 
affects the relation between those two items. After 
introducing the CMG algorithm, another algorithm, i.e., the 
BPG algorithm has been presented. The power of BPG 
comes from the use of a bipartite graph instead of the co-
membership graph, where the set membership information 
can be directly represented. Furthermore, using this model, 
the centers of the circles that we use to represent the sets can 
be directly computed. 
  IBPG is a further improvement to BPG that optimizes radii 
of circles that represent sets, and it has demonstrated better 
performance. However, the use of IBPG depends on whether 
or not the user wants to allow false negatives. Although 
IBPG produces some false negatives, it still provides what is 
required from a drawing algorithm: initial basic information 
about the structure of the dataset. Besides, the performance 
of the algorithm can be improved by feeding back subsets of 
data based on the outputs of the algorithm. Here, the input 
size would be smaller, allowing the algorithm to produce 
better looking results. Finally, a discretization procedure is 
applied to IBPG to help isolating the items that lay over 
each other, so that they can be easily identified in the 
drawing. 
   A major limitation of the proposed methods is the use of 
circles to represent the sets. A potentially useful 
improvement in this regard, would be to use the convex hull 
of the points that represent the items in a set. Since a convex 
shape would still cause errors, this can be further improved 
by refining the bounding shape by allowing non-convex 
shapes as well. However, such an approach would lead to 
more complicated optimization problems. Moreover, it is   
more beneficial to compute the center of the circle 
dynamically as we add items to the circle. The current 

approach computes the center first and then starts adding 
items and computes the candidate radii and errors. Since the 
centers are fixed, there is not much to do to keep the items 
close to the center. Computing the centers dynamically, 
though, allow us to cluster the items around the center and 
produce better drawing. 
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