
An algorithm for constructing XML Schema documents
from relational databases

ABSTRACT

The aim of this paper is to present a solution to automatically

generate an XML schema from an existing relational database

(RDB). The important goal of this translation is to enriching the

source schema using semantics that might have not been clearly

expressed in it, by acquiring as much information as possible

about objects and relationships that exist among them. The next

step is to produce an enhanced meta data model, which captures

essential characteristics of target XML schema, and is suitable for

translation. In details, we present translations of all constructs of

an RDB into an XML Schema and integrated these into an

algorithm. This process is to simplify exchange of data between

different databases, practically the import of data of RDBs into

XML documents. A prototype has been developed to realize the

algorithm and generate target schema. To validate our proposal,

we present experimental results using both schemas. The results

show that the proposed algorithm is correct.

Keywords

Re-engineering databases; XML data conversion; semantic

enrichment; schema translation.

1. INTRODUCTION
The increasing popularity of non-traditional applications (e.g.,

multimedia, geographical information systems) can be considered

to be among the most significant recent changes in information

technology. These novel technologies have been dominant in the

area of information systems due to their productivity and

flexibility. In addition, the emergence of e-technology

applications have led to the development of languages and tools

for exchanging and publishing relational database (RDB) data

over the Web. However, as the majority of databases are still

maintained in relational database management systems, therefore,

it is expected that the need to convert or publish such RDBs into

the technologies that have emerged recently will grow

substantially [4].

 XML which support diverse concepts, have been proposed in

order to fulfill the demands of complex applications that require

rich data types. XML is nowadays used as a database at content

level and as a dominant standard at hypertext level [5]. XML is a

powerful model because it extends simple user-defined tags to

more levels with complex structures and relationships such as

aggregation and inheritance. XML Schema language is a standard

that provides a sophisticated means for describing the structures

and constraints of schema and instance documents [14].

Moreover, it borrows concepts from RDB models such as key and

integrity constraints, and other concepts from object-based models

such as inheritance, references, data collections and user-defined

data types. Most existing methods for translating RDB schema

into XML focus on generating a document type definition (DTD).

As the XML Schema standard has gained a wide acceptance in

recent years for more independence, it is important that database

conversion methods generate target databases according to this

standard.

 In this paper, we present a solution to construct an XML

schema document from an existing RDB. The first step in this

translation is to enrich a source RDB semantically by acquiring as

much metadata information as possible, and produce an enhanced

metadata model called Canonical Data Model (CDM), which

captures essential characteristics of target XML schema. The

CDM then guides the translation of RDB schema into the target

XML Schema, ensuring that the conversion process is

accomplished with data integrity and consistency. We present a

set of translation rules, integrated into an algorithm, to translate all

constructs of an RDB into an XML Schema. We have developed

a prototype to realize the algorithm and proof of the concept. We

conducted an experiment to validate our approach using real

databases. The experimental results demonstrate that the proposed

algorithm is correct. Our method is more efficient in contrast to

the existing solutions as it produces XML schema and exploits the

powerful features provided by the XML Schema standard. The

generated XML schema might help in the heterogeneous systems,

publishing and sharing business data.

 The paper is organized as follows. In Section 2 we present an

overview of related works. Semantic enrichment of RDB in the

form of CDM is described in Section 3. Section 4 shows how to

translate the CDM into XML Schema. Section 5 explains the

evaluation of the approach and the experimental results. Section 6

concludes the paper.

2. RELATED WORK
There are two approaches related to converting an RDB to XML.

The first approach is for handling data stored in RDBs through

XML interfaces so that it deals with schema translation, whereas

the second approach is to migrate an RDB into XML database

where both schema and data are completely migrated into a target

database. Existing work on converting RDBs into XML

documents enforces different prerequisites and made certain

assumptions to facilitate the conversion process, which might be a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICEMIS '15, September 24-26, 2015, Istanbul, Turkey © 2015 ACM.

ISBN 978-1-4503-3418-1/15/09…$15.00

DOI: http://dx.doi.org/10.1145/2832987.2833007

Abdelsalam M. Maatuk

Faculty of Information Technology
Benghazi University, Libya

abdelsalam.maatuk@uob.edu.ly

M. Akhtar Ali
Faculty of Engineering and Environment

Northumbria University, UK
akhtar.ali@northumbria.ac.uk

Shadi Aljawarneh
Software Engineering Department
Jordan University of Science and

Technology, Irbid, Jordan

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2832987.2833007
http://al-isra.academia.edu/ShadiAljawarneh
http://al-isra.academia.edu/
http://al-isra.academia.edu/

point of limitations or a drawback. For example, a few work uses

data dictionaries and well-designed RDB assumed[4] whereas

other solutions consider legacy RDB for translation into XML

documents [13]. Besides, the resulting XML schemas might be a

DTD [4], XML Schema [13] or other independent XML language

[3]. However, several researchers have proposed methods for

mapping UML class diagrams to XML [12]. We have given a

detailed review of translation solutions for various directions,

which are related to database conversion in [15].

 A method in which data semantics are extracted from an RDB

schema into an EER model, which is mapped into an XSD graph

is introduced in [6]. However, the authors suggested mapping

foreign keys into a hierarchy of elements, which may cause

redundancy when an element has a relationship with more than

one element. Wang et al. [13] proposed a method for generating

XML document from legacy RDBs using an ER model. However,

inheritance and aggregation relationships are not considered. Lee

et al. [4] presented an algorithm that maps RDBs into DTDs.

However, the algorithm neither utilizes features provided by the

XML model nor considers integrity constraints. RDB data can be

published as XML documents, using special declarative

languages, to be exchanged over the Web. SEML [7],

XPERANTO [1] and XTABLES [8] are among the systems

taking this approach. Through converting an RDB into XML,

users see views that can be queried using XML query languages.

However, data in such applications is not fully materialized in

XML form, whereas the results are.

 It could be concluded that research into the translation of RDB

schemas into XML is still immature, and that therefore several

areas are in need of further attention. We have noted that most

works for converting to XML have used source-to-conceptual-to-

target techniques, focusing on a DTD schema. Some semantics

(e.g., inheritance, aggregation) are not considered in some work.

This is mainly due to their lack of support for such semantics

either in source or target data models, e.g., ER model and DTD

lack support for inheritance. Compared to DTD, the XML Schema

offers a much more extensive data types, and provides referencing

and inheritance mechanisms of attributes and elements.

3. RELATIONAL DATABASE

ENRICHMENT
The semantic enrichment process starts by extracting the metadata

information about an RDB, including relation names and attribute

properties (e.g., attribute names, data types, and whether the

attribute is nullable), and Primary Keys (PKs), Foreign Keys

(FKs) and Unique Keys (UKs). For this task, we have applied our

approach [9] for enriching RDBs. We assume that data

dependencies are represented by PKs and FKs as for each FK

value there is an existing, matched PK value. The next step is to

identify the CDM constructs based on a classification of relations,

attributes and relationships. Lastly, the CDM structure is

generated.

Definition 1: The CDM is defined as a set of classes:

CDM := {C | C := ‹cn, cls, abs, Acdm, Rel, UK›}, where each class

C has a name cn, is given a classification cls, and whether or not it

is abstract abs. Each C has a set of attributes Acdm, a set of

relationships Rel, and a set of unique keys UK.

Classification (cls): our classification scheme divides classes into

the following categories:

1. Regular Strong Class (RST): a class whose PK is not

composed of any FKs.

2. Secondary Strong Class (SST): an inherited RST.

3. Sub-class (SUB): a class that inherits another super-

class, but is not inherited by other sub-classes.

4. Secondary Sub-class (SSC): a sub-class that is inherited

by other sub-classes.

5. Secondary Relationship Class (SRC): a referenced RRC

class, an M:N relationship class with attributes, or n-ary

relationships, where n>2.

6. Regular Component Class (RCC): a weak class that

participates in a relationship with other classes rather

than its parent class.

7. Multi-valued Attribute Class (MAC): a class that

represents a multi-valued attribute.

8. Composite Attribute Class (CAC): a class that

represents a composite attribute.

9. Regular Relationship Class (RRC): an M:N relationship

class without attributes.

Abstraction (abs): A super-class is abstract (i.e., abs :=true)

when all of its objects are members of its sub-type objects.

Instances of an abstract type cannot appear in the database

extension, but are subsumed into instances of its sub-types.

Attributes (Acdm): A class C has a set of attributes Acdm.

 Acdm := {a | a := ‹an, t, tag, l, n, d›}, where each attribute a has a

name an, data type t and a tag, which classifies a as a non-key

'NK', 'PK', 'FK' or both PK and FK 'PF' attribute. Each a can have

a length l and may have a default value d, whereas n indicates

whether or not a is nullable ('y' | 'n').

Relationships (Rel): A class C has a set of relationships Rel. Each

relationship rel∈Rel between C and class C' is defined in C to

represent an association, aggregation or inheritance. Rel := {rel |

rel := ‹RelType, dirC, dirAs, c,invAs›}, where RelType is a

relationship type, dirC is the name of C', and dirAs denotes a set

containing the attribute names representing the relationship from

the C' side. The invAs denotes a set of inverse attribute names

representing the inverse relationship from the C side, and c is the

cardinality constraint of rel from the C side. RelType can have the

following values: 'associated with' for association, 'aggregates'

for aggregation, and 'inherits' or 'inherited by' for inheritance.

Relationships have two cases: 1:1 and 1:M, and c is defined by

min..max notation to indicate the minimum and maximum

occurrences of objects of C' within objects of C. Based on c, the

object(s) of C' can be single-valued where c := 0..1 (optional) or c

:= 1..1 (required), or set-valued where c := 0..* (optional) or c :=

1..* (required).

Unique keys (UK): A class C may have a set of UK(s) that are

preserved in UK: UK := {𝛿 | 𝛿 := {‹ua, s›}}, where 𝛿 represents

one key, ua is an attribute name, and s is a sequence number.

3.1 Constructing CDM from RDB
Using key matching, relations and their attributes are classified,

relationships among relations are identified and their cardinalities

are determined. All these are translated into equivalents in the

CDM. The semantically enriched CDM can be then translated into

the target schema. Each relation R is classified based on the

comparison of its PK with the PKs of other relations, and mapped

into one of the nine CDM classes above. After class C is

classified, it is important, if C.cls := ("SST" | "SSC"), to check

whether C is concrete or abstract. C is a concrete class (i.e., abs :=
false) when some of its corresponding RDB table rows are not

members of other sub-tables, and abstract otherwise. Attributes of

R are identified and mapped into attributes of C. The keys of R are

used to generate the relationships Rel of C. Using this

information, the relationships are identified, their cardinalities

determined, and they are mapped into Rel as association,

inheritance or aggregation. Using corresponding data, every

relationship that R participates in is identified and mapped into an

equivalent relationship rel and added to Rel.

Example 1: Consider the RDB shown in Figure 1. PKs are in

bold and FKs are in italics. Table 1 shows (partly) the resulting

CDM. Each RDB relation is mapped into a class in CDM. For
instance, the relation Emp is mapped into the CDM class Emp.

The Emp class, which is an abstract SST class, has the attributes:

ename, eno, bdate, address, spreno and dno. Other properties of
the attributes (e.g., types, tags, length) are also shown. The Emp

class is 'associated with' the classes: Dept (twice), Works on and

with itself (twice). Moreover, it 'aggregates' the Kids class and is

'inherited by' the Salaried_emp and Hourly_emp classes.

Cardinality c and unique keys are also given for each class.

Emp (eno, ename, bdate, address, spreno, dno):

spreno → Emp, dno → Dept

Kids (eno, kname, sex): eno → Emp

Salaried_emp (eno, salary): eno → Emp
Hourly_emp (eno, pay_scale): eno → Emp

Dept (dno, dname, mgr, startd): mgr → Emp

Dept_locations (dno, location): dno → Dept

Proj (pnum, pname, plocation, dnum): dnum → Dept

Works_on (eno, pno): eno → Emp,pno → Proj

Figure. 1 Sample input RBD

4. TRANSLATING CDM INTO XML

SCHEMA
This section explains how to translate CDM into an XML Schema
file (.xsd). We first define the XML target schema, and then

explain the steps of the algorithm for translating the CDM

constructs into their equivalents in the target schema.

4.1 XML Schema standard definition
The structure of an XML document is made up of essential

components such as annotations, element declarations and type

definitions. Moreover, the document may contain other

components such as attribute and model groups [11]. Besides, the

XML Schema language [14] standard provides declaration of

identity constraints, by which relationships and integrity

constraints can be defined. PKs, FKs and UKs can be defined
within the schema's root element using the key, refkey and

unique elements, respectively. There are several mechanisms in

the XML Schema that handle inheritance relationships such as

derived types, substitution groups and abstract type mechanisms.
Besides, a super-class complex type can be declared as abstract if

all its instances are inherited by instances of its sub-classes. The
multiplicity of elements is specified by minOccurs and

maxOccurs. From this, the potential target XML Schema can be

generated as two components. One is a global element, which

represents the root of the XML tree defined as a complex type,

containing schema elements and constraints. The second is a set,

containing all global complex types. Each type can be used as a

type of one element (or more) declared in the root or in other

complex types. An inheritance is represented using the
complexContent, extension and base keywords.

Definition 2: A target XML Schema is denoted as a 2-tuple:

‹Root, GT›, where Root is a global element declared under the

schema with its direct local elements and constraints, and GT is a

set consisting of global complex types. GT contains types of the

elements declared in Root, or to be referenced by other types in

GT. Root and GT are defined as follows:

 Root := ‹rootn, LE, PKx, FKx, UKx›, where Root has a name

rootn, a set of elements LE, and three sets of identity-

constraints PKx, FKx and UKx.

 LE represents the complex type of Root that involves a

set of local sub-element declarations:

LE := {e | e := ‹en, et, nim, max›}, where each element e

has a name en, a type et, and a minimum min and

maximum max occurrences. The et is defined globally

under the schema.

 PKxis a set of primary keys for the elements defined in

Root, where:

PKx:= {pk | pk := ‹pkn, selector, PKfield›}. Each

primary key pk has a name pkn, an element set selector

as a scope within which the key is defined, and a set of

sub-elements PKfield selected to be unique.

 FKxis a set of foreign keys, where:

FKx:= {fk | fk := ‹fkn, ref, selector, FKfield›}. Each

foreign key fk has a name fkn, an element set scope

selector, a reference constraint name ref that points to a

matched primary key name, and a set of related sub-

elements FKfield.

 UKxis a set of unique keys, where:

UK := {uk | uk := ‹ukn, selector, UKfield›}. Each unique

key uk has a name ukn, an element set scope selector,

and a set of related sub-elements UKfield selected to be

unique.

 GT := {compType | compType := ‹ctn, base, abst, LE›},

where ctn is the name of a complex type compType, base is

the name of its super-type (if it is derived from another type),

abst denotes whether or not compType is abstract type, and

LE is a set of elements that are declared locally within

compType.LE := {e | e := ‹en, et, nim, max›},is defined as for

Root; however, et can be a built-in data type (e.g., a string) or

a complex type pre-defined in the set GT.

4.2 The XML schema translation algorithm
This subsection explains how the CDM is translated into an

equivalent target XML schema using a set of translation rules,

which are described as follows:

4.2.1 Defining XML namespaces

XML Schema documents have main components, e.g., complex

types, and secondary components, e.g., namespaces, and

annotations. The secondary components must be defined in the

first step to create an XML schema. A namespace is defined

according to the standard for schema commands and assigned to a
variable, e.g., xs as an XML Schema description using the

attribute xmlns namespace. All schema tags are prefixed by xs: to

indicate the schema namespace.

4.2.2 Declaring Schema root and its elements

In this paper, the target XML Schema is produced according to

the Venetian Blind design [11], which defines complex types

globally and elements locally. This offers flexible component

reusing and nest element declarations.

 After defining the annotations, the root Root of the schema

document is created and given an appropriate name rootn. The

subsequent steps of the algorithm define the set of elements of the

root Root.LE and its identity constraints PKx, FKx and UKx, and

then specify the set of global complex types GT. The target XML

Schema document is generated from Root and GT.

 Each CDM main and concrete class Ccdm ∈ cdm (i.e., Ccdm.abs
:= false andCcdm.cls ≠ ('MAC' | 'CAC' |'RRC')) is translated as an

empty first-level element under the root - placed in Root.LE. Each

element ∈Root.LE is named with the same name as the

corresponding CDM class, i.e., Ccdm.cn and has a type specified
by adding the '_t' string to its name, i.e., Ccdm.cn+'_t'. The type

name is used as a reference to a global type that is defined

separately in the set GT. The occurrence of each element is
specified using the occurrence mn := "0" and mx :=

"unbounded".

4.2.3 Defining complex types

Each CDM class Ccdm, where Ccdm.cls ≠('MAC' | 'RRC') is

translated into a global complex type ct (of type compType). The

name ctnof ct is specified from the corresponding CDM class
name Ccdm.cn, concatenated with the string '_t'. If Ccdm is abstract,

i.e., Ccdm.abs := true, then ct is specified as abstract, i.e., ct.abst :=

Ccdm.abs. The set of elements ct.LE is constructed from Ccdm.Acdm

and Ccdm.REL. Each attribute a ∈ Ccdm.Acdmis translated into a

local element and added to ct.LE. Each element is given a name as

the same name of the corresponding a, and a type translated into

an equivalent data type according the target schema. The

occurrences min and max of the element, are set to default values
where each is "1" since they are all of the primitive type.

However, min is set to "0" if a accepts nulls (i.e., a.n := 'y').

Foreign key attributes are defined in ct as simple attributes if they

are specified in PKx and FKx sets; otherwise, they are dropped

from the definition of ct (e.g., foreign key attributes in CAC

classes). In other words, each a ∈ Ccdm.Acdm are mapped into a

local element, where Ccdm.cls := ('CAC' | 'SUB' | 'SSC') and a.tag

≠ 'PF'; whereas all attributes of Ccdm, where Ccdm.cls := ('RST' |

'RCC' | 'SRC') are mapped in ct into local elements.

4.2.4 Translating relationships and constraints

An XML Schema represents relationships among elements using

two techniques:

(i) by specifying nested complex types, or

(ii) constraints using the key/keyref.

We follow each of these two techniques with the aim of producing

less data redundancy in a nested document. Thus, relationships

among main CDM classes are mapped into identity constraints
using the key/keyref, whereas the MAC, CAC and RRC classes

are translated as nested elements under their parent elements.

Identity Constraints: The sets PKx, FKx and FKx are declared in

aRoot from each corresponding CDM class Ccdm using Ccdm.Acdm

and Ccdm.REL. The following functions are defined to return the

three sets:

 definePK (Ccdm) returns the primary key pk for each element

defined under Root in the form ‹pkn, selector, PKfield›, and

adds it into the PKxset. The pk element is translated from

each attribute a ∈ Ccdm.Acdm, where Ccdm.cls := ('RST' | 'SRC'

| 'RCC') and a.tag := ('PK' | 'PF'). To guarantee the

uniqueness, each key name pknis formed by concatenating

Ccdm.cn with each a.an and the string 'PK'. A selector is

assigned Ccdm.cn as a constraint element scope, whereas

PKfield is specified from each a ∈ Ccdm.Acdmwhen a.tag :=

('PK' | 'PF') as related element to the selected selector. The

PKfield can have more than one element in the case of a
composite key. For example, the primary key dno of Dept

class is translated into the XML primary key as
‹"deptDnoPK", Dept, {dno}›. However, if Ccdm.cls := ('SUB'

| 'SSC'), the set PKfield contains the key attributes of the top

super-type of the inheritance hierarchy.

 defineFKs(Ccdm) returns foreign keys for each element

defined under aRoot in the form ‹fkn, ref, selector, FKfield›

and adds them to the FKxset.XML foreign keys are mapped

from each CDM relationship rel ∈ Ccdm.REL, where

rel.relType := 'associated with', and the attribute names in

rel.invAs, which are tagged as 'FK' or 'PF'. The foreign key

name fknis formed by the concatenation of Ccdm.cn, with the

name of each attribute in rel.invAs, and the string 'FK'. The

ref is formed from concatenating the rel.dirC, with the

attribute names in rel.dirAs and the string 'PK', whereas the

selector is named as Ccdm.cn, and each element in FKfield is

assigned an attribute in rel.invAs.

 defineUKs(Ccdm) returns the unique keys for elements

defined under aRoot and adds them to the set UKx, based on

their equivalents in CDM, i.e., Ccdm.UK.

Nested Elements: The following rules are used to translate CDM

relationships into XML as sub-elements embedded within their

parent elements.

Table 1 Results of CDM Generation
cn cls abs Acdm REL UK

an t tag l N d relType dirC dirAs C invAs ua s
Emp

SST

true

eno

ename
bdate

address

spreno
dno

int

char
date

char

int
int

PK

FK
FK

25

40

40

25

N

n
y

y

y
n

asso

asso
asso

asso

asso
aggr

inherBy

inherBy

Dept

Dept

Emp

Emp

Works_on

Kids

Salaried_emp

Hourly_emp

dno

mgr
eno

spreno

eno
eno

eno

eno

1..1

0..1
1..1

0..*

1..*
0..*

1..1

1..1

dno

eno
spreno

eno

eno
eno

eno

eno

Salaried_emp

SUB

false

eno

salary

int

int

PF

25

n

y

inherts

Emp eno 1..1

eno

Dept

RST

false

dno

dname
mgr

startd

int

char
int

date

PK

FK

40
25

N

n
n

y

asso

asso
asso

aggr

Emp

Emp

Proj

Dept_locations

eno

dno
dnum

dno

1..1

1..*
1..*

1..*

mgr

dno
dno

dno

mgr

1

Works_on RRC false eno

pno
int
int

PF
PF

25 N
n

asso
asso

Emp

Proj
eno
pnum

1..1
1..1

eno
pno

asso: associated with aggr: aggregates inherBy : inherited by

 Each rel ∈ Ccdm.REL between Ccdm and another CDM class

C'cdm, where C'cdm.cls := 'RRC', is translated into a multi-

valued element in a complex type ct of the element translated

from Ccdm. As C'cdm participates in only two M:1 associations

with Ccdm and another CDM class C''cdm, rel is mapped in ct

into a multi-valued element, referencing a complex type ct'',

corresponding to C''cdm. A foreign key is defined for the new

sub-element through its parent element and added to FKx,

referencing the primary key of the element corresponding to

C''cdm. Similarly, a multi-valued element with its foreign key

is defined in ct'', referencing ct.

 There are two different mapping rules that can be applied

when rel ∈ Ccdm.REL represents an aggregation relationship,

i.e., where rel.relType := 'aggregates', between a parent class

Ccdm and a component class C'cdm. A sub-element

corresponding to C'cdm is defined and embedded in the parent

complex type ct, mapped from Ccdm, representing this

relationship. The sub-element occurrences min and max are

declared according to the corresponding cardinality rel.c. If

C'cdm.cls := 'MAC', rel is mapped into a simple multi-valued

sub-element. However, if C'cdm.cls := 'CAC', rel is mapped

into a multi-valued sub-element, the type of which is defined

as a global complex type ct' and added into GT.

Inheritance: Each rel ∈ Ccdm.REL defined in a class Ccdm that

inherits another class C'cdm where rel.relType := 'inherits', is

mapped as an inheritance. A complex type ct corresponding to

Ccdmis defined as an extension of its complex type ct'

corresponding to C'cdm. This realizes an XML inheritance between

ct and ct', where ct.base := C'cdm.cn.

Example 2: Figure 2 shows a portion of the XML Schema

document generated from the CDM given in Table 1, according to

the rules presented in Section 4.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name= "XMLSchema">

<xs:complexType><xs:sequence>

<xs:element name="Dept" type="Dept_t" maxOccurs= "unbounded"/>

<xs:element name= "Hourly_emp" type= "Hourly_emp_t"

 maxOccurs = "unbounded"/>

<xs:element name= "Salaried_emp" type="Salaried_emp_t"

 maxOccurs = "unbounded"/>

<xs:element name="Proj" type="Proj_t" maxOccurs= "unbounded"/>

</xs:sequence></xs:complexType>

<xs:key name= "salaried empEnoPK">

<xs:selector xpath= ".//Salaried_emp"/>

<xs:field xpath= "eno"/>

</xs:key>

...

<xs:keyref name= "projDnumFK" refer= "deptDnoPK">

<xs:selector xpath= ".//Proj"/>

<xs:field xpath= "dnum"/>

</xs:keyref>

...

</xs:element>

 …

<xs:complexType name= "Emp_t"> abstract= "true"

<xs:sequence>

<xs:element name= "ename" type= "xs:string"/>

<xs:element name= "eno" type= "xs:int"/>

<xs:element name= "bdate" type= "xs:date" minOccurs= "0"/>

<xs:element name= "address" type= "xs:string"/>

<xs:element name= "spreno" type= "xs:int" minOccurs= "0"/>

<xs:element name= "dno" type= "xs:int"/>

<xs:element name= "hasKids" type= "Kids_t"

 minOccurs= "0" maxOccurs= "unbounded"/>

<xs:element name="Projects" type="Project_t"

maxOccurs="unbounded"/>

</xs:sequence></xs:complexType>

<xs:complexType name = "Salaried_emp_t"><xs:complexContent>

<xs:extension base= "Emp_t"><xs:sequence>

<xs:element name = "salary" type= "xs:int" minOccurs= "0"/>

</xs:sequence></xs:extension>

</xs:complexContent></xs:complexType>

<xs:complexType name = "Kids_t"><xs:sequence>

<xs:element name = "kname" type= "xs:string"/>

<xs:element name = "sex" type= "xs:string" minOccurs= "0"/>

</xs:sequence></xs:complexType>

...

</xs:schema>

Figure 2. Sample output XML Schema

5. EXPERIMENTAL STUDY
The proposed solution is implemented as a prototype to realize its

algorithm and demonstrate its effectiveness and validity. An

experiment conducted to evaluate our approach by examining the

differences between the source RDB and the XML documents

generated by the prototype. The experiment tests schema

information preservation by comparing target schema generated

from the prototype with that translated from the same source

schemas using existing manual mapping technique, i.e., [3], which

gives the user an opportunity to use all features of an XML model

and its conceptual schemas, resulting in well-designed schemas.

The evaluation includes comparisons of the schema structures,

data semantics and integrity constraints.

 Elmasri and Navathe [3] described a general algorithm for

mapping an EER into an RDB schema and then into XML
Schema using a database called Company. We used the Company

RDB as input for our prototype, aiming to generate an XML

document from it. The XML Schema file generated from this

database is comparable to the XML Schema file mapped from [3].

The schema generated by our prototype is given in Figure 3. The

two XML schemas generated by both approaches can be found in

[3, 10]. The description of both schemas, including elements and

their types, occurrences, keys and attributes, are specified

similarly in both approaches. Elements are specified with a type

attribute so that the structure of the elements are defined

separately. In terms of semantic information preservations, it was

found that both schemas were comparable. However, our

prototype maps more precisely the attributes and their types and

whether each attribute is optional or required.

 The resulting schemas show our algorithm and existing manual

algorithm to be equivalence-preserving translations. Furthermore,

our proposal is a fully-automatic approach and has the ability to

generate more accurate target schemas. Therefore, the CDM,

which preserves an enhanced structure of an existing RDB, is

translatable into the target schema. The algorithm is correct in the

sense that it has preserved the original information of the RDBs.

Many implicit semantics have been converted from an RDB into

the target database, e.g., association, aggregation and inheritance.

Moreover, the main type of constraints that can be extracted from

an RDB, including key constraints, constraints on NULLs and

entity and referential integrity constraints, are all translated

explicitly into the equivalent target schema.

<xs:complexType name = "Employee_t">

<xs:sequence>

<xs:element name = "fname" type= "xs:string"/>

<xs:element name = "minit" type= "xs:string" minOccurs= "0"/>

<xs:element name = "lname" type= "xs:string"/>

<xs:element name = "ssn" type= "xs:int"/>

<xs:element name = "bdate" type= "xs:date" minOccurs= "0"/>

<xs:element name = "address" type= "xs:string" minOccurs= "0"/>

<xs:element name = "salary" type= "xs:int" minOccurs= "0"/>

<xs:element name = "superssn" type= "xs:int" minOccurs= "0"/>

<xs:element name = "dno" type= "xs:int"/>

<xs:element name="hasDependent" type= "Dependent_t"

 minOccurs= "0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

...

<xs:complexType name = "Dependent_t">

<xs:sequence>

<xs:element name = "dependent_name" type= "xs:string"/>

<xs:element name = "sex" type= "xs:string"/>

<xs:element name = "bdate" type= "xs:date" minOccurs= "0"/>

<xs:element name = "relationship" type= "xs:string"

minOccurs= "0"/>

</xs:sequence>

</xs:complexType>

Figure. 3 Fragment of XML Company schema generated by

our prototype.

6. CONCLUSION
This paper contributes a solution to the problem of translating

RDBs into XML schema documents. The approach is beneficial

compared to existing work as it generates the XML schema and

exploiting the range of powerful features provided by XML

Schema standard. A prototype has been developed to realize the

algorithm of the solution, which is also validated by comparing

results from the input and output schemas. We have conducted an

experiment to evaluate our approach by examining the differences

between the source RDB and the XML Schema generated by the

prototype. The inputs and outputs of the prototype are evaluated

in terms of schema structures, data semantics and integrity

constraints. The experimental results obtained from both

databases have been analyzed and found that both sets of results

were identical. Therefore, we conclude that the source and target

database schemas are equivalent. Moreover, the results obtained

demonstrate that the solution, conceptually and practically, is

feasible, efficient and correct.

7. REFERENCES
[1] Carey, M., Florescu, D., Ives, Z., Lu, Y.,

Shanmugasundaram, J., Shekita, E., and Subramanian,

S.2000. XPERANTO: Publishing object-relational data as

XML. In Proceedings ofWebDB, pp. 105-110.

[2] Dobbie, G., Wu, X., Ling, T., and Lee, M. 2000. ORA-SS.

Object-relationship attribute model for semi-structured data.

Technical Report TR21/00, National University of

Singapore, Department of Computer Science.

[3] Elmasri, R. and Navathe, S. B. 2010. Fundamentals of

database systems (6th Edition). Addison-Wesley Longman

Publishing Co., Inc., Boston, USA.

[4] Lee, D., Mani, M., Chiu, F., and Chu, W. W. 2001. Nesting-

based relational to XML schema translation. In Proceedings

ofWebDB, pp. 61-66.

[5] Kappel, G., Kapsammer, E., and Retschitzegger, W.2004.

Integrating XML and relational database systems. In World

Wide Web, vol. 7(4), pp. 343-384.

[6] Fong, J. and Cheung, S. K.2005. Translating relational

schema into XML schema definition with data semantic

preservation and XSD graph. InInformation &

SoftwareTechnology, vol. 47(7), pp. 437-462.

[7] Fong J. and Shiu H. 2012. An Interpreter approach for

exporting relational data into XML documents with

structured export markup language. InJournal of Database

Management, vol. 23(1), pp. 49-77.

[8] Funderburk, J. E., Kiernan, G., Shanmugasundaram, J.,

Shekita, E. J., and Wei, C.2002. XTABLES: Bridging

relational technology and XML. InIBM Systems Journal, vol.

41(4), pp. 616-641.

[9] Maatuk, A., Ali, M. A. and Rossiter, N.2010. Semantic

enrichment: The first phase of relational database migration,

Tarek Sobh (ed). InInnovations and Advances in Computer

Sciences and Engineering, Springer, pp. 373-378.

[10] Maatuk, A. 2009.Migrating Relational Databases into

Object-based/XML Databases, PhD Thesis, Northumbria

University, UK.

[11] Valentine, C., Tittel, E., and Dykes, L.2002.XML Schemas.

SYBEX Inc., Alameda, CA, USA.

[12] Vela, B. and Marcos, E.2003. Extending UML to represent

XML schemas. In Eder, J. and Welzer, T., editors, CAiSE

Short Paper Proceedings, vol. 74 of CEURWorkshop

Proceedings.

[13] Wang, C., Lo, A., Alhajj, R. and Barker, K.2005. Novel

approach for reengineering relational databases into XML. In

ICDE Workshops, pp. 1284.

[14] W3C. 2014. World Wide Web Consortium (W3C). XML

Schema. [Online]. Available: http://www.w3.org/XML/Schema.

[15] Maatuk, A., Ali, M. A. and Rossiter, N. 2011. Re-

engineering relational databases: the way forward. In

Proceedings of the Int. Conf. on Intelligent Semantic Web-

Services and Applications (ISWSA '11). ACM, New York,

10 pages. DOI=http://doi.acm.org/10.1145/1980822.1980839

http://www.w3.org/XML/Schema
http://doi.acm.org/10.1145/1980822.1980839

