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ABSTRACT 

The aim of this paper is to present a solution to automatically 

generate an XML schema from an existing relational database 

(RDB). The important goal of this translation is to enriching the 

source schema using semantics that might have not been clearly 

expressed in it, by acquiring as much information as possible 

about objects and relationships that exist among them. The next 

step is to produce an enhanced meta data model, which captures 

essential characteristics of target XML schema, and is suitable for 

translation. In details, we present translations of all constructs of 

an RDB into an XML Schema and integrated these into an 

algorithm. This process is to simplify exchange of data between 

different databases, practically the import of data of RDBs into 

XML documents.  A prototype has been developed to realize the 

algorithm and generate target schema. To validate our proposal, 

we present experimental results using both schemas. The results 

show that the proposed algorithm is correct. 
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1. INTRODUCTION 
The increasing popularity of non-traditional applications (e.g., 

multimedia, geographical information systems) can be considered 

to be among the most significant recent changes in information 

technology. These novel technologies have been dominant in the 

area of information systems due to their productivity and 

flexibility. In addition, the emergence of e-technology 

applications have led to the development of languages and tools 

for exchanging and publishing relational database (RDB) data 

over the Web. However, as the majority of databases are still 

maintained in relational database management systems, therefore, 

it is expected that the need to convert or publish such RDBs into 

the technologies that have emerged recently will grow 

substantially [4].  

  XML which support diverse concepts, have been proposed in 

order to fulfill the demands of complex applications that require 

rich data types. XML is nowadays used as a database at content 

level and as a dominant standard at hypertext level [5]. XML is a 

powerful model because it extends simple user-defined tags to 

more levels with complex structures and relationships such as 

aggregation and inheritance. XML Schema language is a standard 

that provides a sophisticated means for describing the structures 

and constraints of schema and instance documents [14]. 

Moreover, it borrows concepts from RDB models such as key and 

integrity constraints, and other concepts from object-based models 

such as inheritance, references, data collections and user-defined 

data types. Most existing methods for translating RDB schema 

into XML  focus on generating a document type definition (DTD). 

As the XML Schema standard has gained a wide acceptance in 

recent years for more independence, it is important that database 

conversion methods generate target databases according to this 

standard.  

    In this paper, we present a solution to construct an XML 

schema document from an existing RDB. The first step in this 

translation is to enrich a source RDB semantically by acquiring as 

much metadata information as possible, and produce an enhanced 

metadata model called Canonical Data Model (CDM), which 

captures essential characteristics of target XML schema. The 

CDM then guides the translation of RDB schema into the target 

XML Schema, ensuring that the conversion process is 

accomplished with data integrity and consistency. We present a 

set of translation rules, integrated into an algorithm, to translate all 

constructs of an RDB into an XML Schema.  We have developed 

a prototype to realize the algorithm and proof of the concept. We 

conducted an experiment to validate our approach using real 

databases. The experimental results demonstrate that the proposed 

algorithm is correct. Our method  is more efficient in contrast to 

the existing solutions as it produces XML schema and exploits the 

powerful features provided by the XML Schema standard. The 

generated XML schema might help in the heterogeneous systems, 

publishing and sharing business data. 

   The paper is organized as follows. In Section 2 we present an 

overview of related works.  Semantic enrichment of RDB in the 

form of CDM is described in Section 3. Section 4 shows how to 

translate  the CDM into XML Schema. Section 5 explains the 

evaluation of the approach and the experimental results. Section 6 

concludes the paper. 

2. RELATED WORK 
There are two approaches related to converting an RDB to XML. 

The first approach is for handling data stored in RDBs through 

XML interfaces so that it deals with schema translation, whereas  

the second approach is to migrate an RDB into XML database 

where both schema and data are completely migrated into a target 

database. Existing work on converting RDBs into XML 

documents enforces different prerequisites and made certain 

assumptions to facilitate the conversion process, which might be a 
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point of limitations or a drawback. For example, a few work uses 

data dictionaries and well-designed RDB assumed[4] whereas 

other solutions consider legacy RDB for translation into XML 

documents [13]. Besides, the resulting XML schemas might be a 

DTD [4], XML Schema [13] or other independent XML language 

[3]. However, several researchers have proposed methods for 

mapping UML class diagrams to XML [12]. We have given a 

detailed review of translation solutions for various directions, 

which are related to database conversion in [15].  

    A method in which data semantics are extracted from an RDB 

schema into an EER model, which is mapped into an XSD graph 

is introduced in [6]. However, the authors suggested mapping 

foreign keys into a hierarchy of elements, which may cause 

redundancy when an element has a relationship with more than 

one element.  Wang et al. [13] proposed a method for generating 

XML document from legacy RDBs using an ER model. However, 

inheritance and aggregation relationships are not considered. Lee 

et al. [4] presented an algorithm that maps RDBs into DTDs. 

However, the algorithm neither utilizes features provided by the 

XML model nor considers integrity constraints. RDB data can be 

published as XML documents, using special declarative 

languages, to be exchanged over the Web. SEML [7],  

XPERANTO [1] and XTABLES [8] are among the systems 

taking this approach. Through converting an RDB into XML, 

users see views that can be queried using XML query languages. 

However, data in such applications is not fully materialized in 

XML form, whereas the results are.  

 It could be concluded that research into the translation of RDB 

schemas into XML is still immature, and that therefore several 

areas are in need of further attention. We have noted that most 

works for converting to XML have used source-to-conceptual-to-

target techniques, focusing on a DTD schema. Some semantics 

(e.g., inheritance, aggregation) are not considered in some work. 

This is mainly due to their lack of support for such semantics 

either in source or target data models, e.g., ER model and DTD 

lack support for inheritance. Compared to DTD, the XML Schema 

offers a much more extensive data types, and provides referencing 

and inheritance mechanisms of attributes and elements. 

3. RELATIONAL DATABASE 

ENRICHMENT 
The semantic enrichment process starts by extracting the metadata 

information about an RDB, including relation names and attribute 

properties (e.g., attribute names, data types, and whether the 

attribute is nullable), and Primary Keys (PKs), Foreign Keys 

(FKs) and Unique Keys (UKs). For this task, we have applied our 

approach [9] for enriching RDBs. We assume that data 

dependencies are represented by PKs and FKs as for each FK 

value there is an existing, matched PK value. The next step is to 

identify the CDM constructs based on a classification of relations, 

attributes and relationships. Lastly, the CDM structure is 

generated. 

Definition 1: The CDM is defined as a set of classes:  

CDM := {C | C := ‹cn, cls, abs, Acdm, Rel, UK›}, where each class 

C has a name cn, is given a classification cls, and whether or not it 

is abstract abs. Each C has a set of attributes Acdm, a set of 

relationships Rel, and a set of unique keys UK. 

Classification (cls): our classification scheme divides classes into 

the following categories: 

1. Regular Strong Class (RST): a class whose PK is not 

composed of any FKs. 

2. Secondary Strong Class (SST): an inherited RST. 

3. Sub-class (SUB): a class that inherits another super-

class, but is not inherited by other sub-classes. 

4. Secondary Sub-class (SSC): a sub-class that is inherited 

by other sub-classes. 

5. Secondary Relationship Class (SRC): a referenced RRC 

class, an M:N relationship class with attributes, or n-ary 

relationships, where n>2. 

6. Regular Component Class (RCC): a weak class that 

participates in a relationship with other classes rather 

than its parent class. 

7. Multi-valued Attribute Class (MAC): a class that 

represents a multi-valued attribute. 

8. Composite Attribute Class (CAC): a class that 

represents a composite attribute. 

9. Regular Relationship Class (RRC): an M:N relationship 

class without attributes. 

Abstraction (abs): A super-class is abstract (i.e., abs :=true) 

when all of its objects are members of its sub-type objects. 

Instances of an abstract type cannot appear in the database 

extension, but are subsumed into instances of its sub-types.  

Attributes (Acdm): A class C has a set of attributes Acdm. 

 Acdm := {a | a := ‹an, t, tag, l, n, d›}, where each attribute a has a 

name an, data type t and a tag, which classifies a as a non-key 

'NK', 'PK', 'FK' or both PK and FK 'PF' attribute. Each a can have 

a length l and may have a default value d, whereas n indicates 

whether or not a is nullable ('y' | 'n'). 

Relationships (Rel): A class C has a set of relationships Rel. Each 

relationship rel∈Rel between C and class C' is defined in C to 

represent an association, aggregation or inheritance. Rel := {rel | 

rel := ‹RelType, dirC, dirAs, c,invAs›}, where RelType is a 

relationship type, dirC is the name of C', and dirAs denotes a set 

containing the attribute names representing the relationship from 

the C' side. The invAs denotes a set of inverse attribute names 

representing the inverse relationship from the C side, and c is the 

cardinality constraint of rel from the C side. RelType can have the 

following values: 'associated with' for association, 'aggregates' 

for aggregation, and 'inherits' or 'inherited by' for inheritance. 

Relationships have two cases: 1:1 and 1:M, and c is defined by 

min..max notation to indicate the minimum and maximum 

occurrences of objects of C' within objects of C. Based on c, the 

object(s) of C' can be single-valued where c := 0..1 (optional) or c 

:= 1..1 (required), or set-valued where c := 0..* (optional) or c := 

1..* (required). 

Unique keys (UK): A class C may have a set of UK(s) that are 

preserved in UK: UK := {𝛿 | 𝛿 := {‹ua, s›}}, where 𝛿 represents 

one key, ua is an attribute name, and s is a sequence number. 

3.1 Constructing CDM from RDB 
Using key matching, relations and their attributes are classified, 

relationships among relations are identified and their cardinalities 

are determined. All these are translated into equivalents in the 

CDM. The semantically enriched CDM can be then translated into 

the target schema. Each relation R is classified based on the 

comparison of its PK with the PKs of other relations, and mapped 

into one of the nine CDM classes above. After class C is 

classified, it is important, if C.cls := ("SST" | "SSC"), to check 



whether C is concrete or abstract. C is a concrete class (i.e., abs := 
false) when some of its corresponding RDB table rows are not 

members of other sub-tables, and abstract otherwise. Attributes of 

R are identified and mapped into attributes of C. The keys of R are 

used to generate the relationships Rel of C. Using this 

information, the relationships are identified, their cardinalities 

determined, and they are mapped into Rel as association, 

inheritance or aggregation. Using corresponding data, every 

relationship that R participates in is identified and mapped into an 

equivalent relationship rel and added to Rel. 

Example 1: Consider the RDB shown in Figure 1. PKs are in 

bold and FKs are in italics. Table 1 shows (partly) the resulting 

CDM. Each RDB relation is mapped into a class in CDM. For 
instance, the relation Emp is mapped into the CDM class Emp. 

The Emp class, which is an abstract SST class, has the attributes: 

ename, eno, bdate, address, spreno and dno. Other properties of 
the attributes (e.g., types, tags, length) are also shown. The Emp 

class is 'associated with' the classes: Dept (twice), Works on and 

with itself (twice). Moreover, it 'aggregates' the Kids class and is 

'inherited by' the Salaried_emp and Hourly_emp classes. 

Cardinality c and unique keys are also given for each class. 

Emp (eno, ename, bdate, address, spreno, dno):  

spreno → Emp, dno → Dept 

Kids (eno, kname, sex): eno → Emp 

Salaried_emp (eno, salary): eno → Emp 
Hourly_emp (eno, pay_scale): eno → Emp 

Dept (dno, dname, mgr, startd): mgr → Emp 

Dept_locations (dno, location): dno → Dept 

Proj (pnum, pname, plocation, dnum): dnum → Dept 

Works_on (eno, pno): eno → Emp,pno → Proj 

Figure. 1 Sample input RBD 

4. TRANSLATING CDM INTO XML 

SCHEMA 
This section explains how to translate CDM into an XML Schema 
file (.xsd). We first define the XML target schema, and then 

explain the steps of the algorithm for translating the CDM 

constructs into their equivalents in the target schema. 

4.1 XML Schema standard definition 
The structure of an XML document is made up of essential 

components such as annotations, element declarations and type 

definitions. Moreover, the document may contain other 

components such as attribute and model groups [11]. Besides, the 

XML Schema language [14] standard provides declaration of 

identity constraints, by which relationships and integrity 

constraints can be defined. PKs, FKs and UKs can be defined 
within the schema's root element using the key, refkey and 

unique elements, respectively. There are several mechanisms in 

the XML Schema that handle inheritance relationships such as 

derived types, substitution groups and abstract type mechanisms. 
Besides, a super-class complex type can be declared as abstract if 

all its instances are inherited by instances of its sub-classes. The 
multiplicity of elements is specified by minOccurs and 

maxOccurs. From this, the potential target XML Schema can be 

generated as two components. One is a global element, which 

represents the root of the XML tree defined as a complex type, 

containing schema elements and constraints. The second is a set, 

containing all global complex types. Each type can be used as a 

type of one element (or more) declared in the root or in other 

complex types. An inheritance is represented using the 
complexContent, extension and base keywords. 

Definition 2: A target XML Schema is denoted as a 2-tuple:    

‹Root, GT›, where Root is a global element declared under the 

schema with its direct local elements and constraints, and GT is a 

set consisting of global complex types. GT contains types of the 

elements declared in Root, or to be referenced by other types in 

GT. Root and GT are defined as follows: 

 Root := ‹rootn, LE, PKx, FKx, UKx›, where Root has a name 

rootn, a set of elements LE, and three sets of identity-

constraints PKx, FKx and UKx. 

 LE represents the complex type of Root that involves a 

set of local sub-element declarations:  

LE := {e | e := ‹en, et, nim, max›}, where each element e 

has a name en, a type et, and a minimum min and 

maximum max occurrences. The et is defined globally 

under the schema. 

 PKxis a set of primary keys for the elements defined in 

Root, where: 

PKx:= {pk | pk := ‹pkn, selector, PKfield›}. Each 

primary key pk has a name pkn, an element set selector 

as a scope within which the key is defined, and a set of 

sub-elements PKfield selected to be unique. 

 FKxis a set of foreign keys, where: 

FKx:= {fk | fk := ‹fkn, ref, selector, FKfield›}. Each 

foreign key fk has a name fkn, an element set scope 

selector, a reference constraint name ref that points to a 

matched primary key name, and a set of related sub-

elements FKfield. 

 UKxis a set of unique keys, where: 

UK := {uk | uk := ‹ukn, selector, UKfield›}. Each unique 

key uk has a name ukn, an element set scope selector, 

and a set of related sub-elements UKfield selected to be 

unique. 

 GT := {compType | compType := ‹ctn, base, abst, LE›}, 

where ctn is the name of a complex type compType, base is 

the name of its super-type (if it is derived from another type), 

abst denotes whether or not compType is abstract type, and 

LE is a set of elements that are declared locally within 

compType.LE := {e | e := ‹en, et, nim, max›},is defined as for 

Root; however, et can be a built-in data type (e.g., a string) or 

a complex type pre-defined in the set GT. 

4.2 The XML schema translation algorithm 
This subsection explains how the CDM is translated into an 

equivalent target XML schema using a set of translation rules, 

which are described as follows: 

4.2.1 Defining XML namespaces 

XML Schema documents have main components, e.g., complex 

types, and secondary components, e.g., namespaces, and 

annotations. The secondary components must be defined in the 

first step to create an XML schema. A namespace is defined 

according to the standard for schema commands and assigned to a 
variable, e.g., xs as an XML Schema description using the 

attribute xmlns namespace. All schema tags are prefixed by xs: to 

indicate the schema namespace. 

 

4.2.2  Declaring Schema root and its elements 

In this paper, the target XML Schema is produced according to 

the Venetian Blind design [11], which defines complex types 

globally and elements locally. This offers flexible component 

reusing and nest element declarations. 



   After defining the annotations, the root Root of the schema 

document is created and given an appropriate  name rootn. The 

subsequent steps of the algorithm define the set of elements of the 

root Root.LE and its identity constraints PKx, FKx and UKx, and 

then specify the set of global complex types GT. The target XML 

Schema document is generated from Root and GT. 

    Each CDM main and concrete class Ccdm ∈ cdm (i.e., Ccdm.abs 
:= false andCcdm.cls ≠ ('MAC' | 'CAC' |'RRC')) is translated as an 

empty first-level element under the root - placed in Root.LE. Each 

element ∈Root.LE is named with the same name as the 

corresponding CDM class, i.e., Ccdm.cn and has a type specified 
by adding the '_t' string to its name, i.e., Ccdm.cn+'_t'. The type 

name is used as a reference to a global type that is defined 

separately in the set GT. The occurrence of each element is 
specified using the occurrence mn := "0" and mx := 

"unbounded".  

4.2.3 Defining complex types 

Each CDM class Ccdm, where Ccdm.cls ≠('MAC' | 'RRC') is 

translated into a global complex type ct (of type compType). The 

name ctnof ct is specified from the corresponding CDM class 
name Ccdm.cn, concatenated with the string '_t'. If Ccdm is abstract, 

i.e., Ccdm.abs := true, then ct is specified as abstract, i.e., ct.abst := 

Ccdm.abs. The set of elements ct.LE is constructed from Ccdm.Acdm 

and Ccdm.REL. Each attribute a ∈ Ccdm.Acdmis translated into a 

local element and added to ct.LE. Each element is given a name as 

the same name of the corresponding a, and a type translated into 

an equivalent data type according the target schema. The 

occurrences min and max of the element, are set to default values 
where each is "1" since they are all of the primitive type. 

However, min is set to "0" if a accepts nulls (i.e., a.n := 'y'). 

Foreign key attributes are defined in ct as simple attributes if they 

are specified in PKx and FKx sets; otherwise, they are dropped 

from the definition of ct (e.g., foreign key attributes in CAC 

classes). In other words, each a ∈ Ccdm.Acdm are mapped into a 

local element, where Ccdm.cls := ('CAC' | 'SUB' | 'SSC') and a.tag 

≠ 'PF'; whereas all attributes of Ccdm, where Ccdm.cls := ('RST' | 

'RCC' | 'SRC') are mapped in ct into local elements.  

 

4.2.4 Translating relationships and constraints 

An XML Schema represents relationships among elements using 

two techniques:  

(i) by specifying nested complex types, or 

(ii) constraints using the key/keyref.  

We follow each of these two techniques with the aim of producing 

less data redundancy in a nested document. Thus, relationships 

among main CDM classes are mapped into identity constraints 
using the key/keyref, whereas the MAC, CAC and RRC classes 

are translated as nested elements under their parent elements. 

Identity Constraints: The sets PKx, FKx and FKx are declared in 

aRoot from each corresponding CDM class Ccdm using Ccdm.Acdm 

and Ccdm.REL. The following functions are defined to return the 

three sets: 

 definePK (Ccdm) returns the primary key pk for each element 

defined under Root in the form ‹pkn, selector, PKfield›, and 

adds it into the PKxset. The pk element is translated from 

each attribute a ∈ Ccdm.Acdm, where Ccdm.cls := ('RST' | 'SRC' 

| 'RCC') and a.tag := ('PK' | 'PF'). To guarantee the 

uniqueness, each key name pknis formed by concatenating 

Ccdm.cn with each a.an and the string 'PK'. A selector is 

assigned Ccdm.cn as a constraint element scope, whereas 

PKfield is specified from each a ∈ Ccdm.Acdmwhen a.tag := 

('PK' | 'PF') as related element to the selected selector. The 

PKfield can have more than one element in the case of a 
composite key. For example, the primary key dno of Dept 

class is translated into the XML primary key as 
‹"deptDnoPK", Dept, {dno}›. However, if Ccdm.cls := ('SUB' 

| 'SSC'), the set PKfield contains the key attributes of the top 

super-type of the inheritance hierarchy. 

 defineFKs(Ccdm) returns foreign keys for each element 

defined under aRoot in the form ‹fkn, ref, selector, FKfield› 

and adds them to the FKxset.XML foreign keys are mapped 

from each CDM relationship rel ∈ Ccdm.REL, where 

rel.relType := 'associated with', and the attribute names in 

rel.invAs, which are tagged as 'FK' or 'PF'. The foreign key 

name fknis formed by the concatenation of Ccdm.cn, with the 

name of each attribute in rel.invAs, and the string 'FK'. The 

ref is formed from concatenating the rel.dirC, with the 

attribute names in rel.dirAs and the string 'PK', whereas the 

selector is named as Ccdm.cn, and each element in FKfield is 

assigned an attribute in rel.invAs.  

 defineUKs(Ccdm) returns the unique keys for elements 

defined under aRoot and adds them to the set UKx, based on 

their equivalents in CDM, i.e., Ccdm.UK. 

Nested Elements: The following rules are used to translate CDM 

relationships into XML as sub-elements embedded within their 

parent elements. 

Table 1 Results of CDM Generation 
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 Each rel ∈ Ccdm.REL between Ccdm and another CDM class 

C'cdm, where C'cdm.cls := 'RRC', is translated into a multi-

valued element in a complex type ct of the element translated 

from Ccdm. As C'cdm participates in only two M:1 associations 

with Ccdm and another CDM class C''cdm, rel is mapped in ct 

into a multi-valued element, referencing a complex type ct'', 

corresponding to C''cdm. A foreign key is defined for the new 

sub-element through its parent element and added to FKx, 

referencing the primary key of the element corresponding to 

C''cdm. Similarly, a multi-valued element with its foreign key 

is defined in ct'', referencing ct. 

 There are two different mapping rules that can be applied 

when rel ∈ Ccdm.REL represents an aggregation relationship, 

i.e., where rel.relType := 'aggregates', between a parent class 

Ccdm and a component class C'cdm. A sub-element 

corresponding to C'cdm is defined and embedded in the parent 

complex type ct, mapped from Ccdm, representing this 

relationship. The sub-element occurrences min and max are 

declared according to the corresponding cardinality rel.c. If 

C'cdm.cls := 'MAC', rel is mapped into a simple multi-valued 

sub-element. However, if C'cdm.cls := 'CAC', rel is mapped 

into a multi-valued sub-element, the type of which is defined 

as a global complex type ct' and added into GT. 

Inheritance: Each rel ∈ Ccdm.REL defined in a class Ccdm that 

inherits another class C'cdm where rel.relType := 'inherits', is 

mapped as an inheritance. A complex type ct corresponding to 

Ccdmis defined as an extension of its complex type ct' 

corresponding to C'cdm. This realizes an XML inheritance between 

ct and ct', where ct.base := C'cdm.cn. 

 

Example 2: Figure 2 shows a portion of the XML Schema 

document generated from the CDM given in Table 1, according to 

the rules presented in Section 4.  
 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xs:element name= "XMLSchema"> 

<xs:complexType><xs:sequence> 

<xs:element name="Dept" type="Dept_t" maxOccurs= "unbounded"/> 

<xs:element name= "Hourly_emp" type= "Hourly_emp_t"  

         maxOccurs = "unbounded"/> 

<xs:element name= "Salaried_emp" type="Salaried_emp_t"  

         maxOccurs = "unbounded"/> 

<xs:element name="Proj" type="Proj_t" maxOccurs= "unbounded"/> 

</xs:sequence></xs:complexType> 

<xs:key name= "salaried empEnoPK"> 

<xs:selector xpath= ".//Salaried_emp"/> 

<xs:field xpath= "eno"/> 

</xs:key> 

... 

<xs:keyref name= "projDnumFK" refer= "deptDnoPK"> 

<xs:selector xpath= ".//Proj"/> 

<xs:field xpath= "dnum"/> 

</xs:keyref> 

... 

</xs:element> 

 … 

<xs:complexType name= "Emp_t"> abstract= "true"  

<xs:sequence> 

<xs:element name= "ename" type= "xs:string"/> 

<xs:element name= "eno" type= "xs:int"/> 

<xs:element name= "bdate" type= "xs:date" minOccurs= "0"/> 

<xs:element name= "address" type= "xs:string"/> 

<xs:element name= "spreno" type= "xs:int" minOccurs= "0"/> 

<xs:element name= "dno" type= "xs:int"/> 

<xs:element name= "hasKids" type= "Kids_t" 

       minOccurs= "0"    maxOccurs= "unbounded"/> 

<xs:element name="Projects" type="Project_t" 

maxOccurs="unbounded"/> 

</xs:sequence></xs:complexType> 

<xs:complexType name = "Salaried_emp_t"><xs:complexContent> 

<xs:extension base= "Emp_t"><xs:sequence> 

<xs:element name = "salary" type= "xs:int" minOccurs= "0"/> 

</xs:sequence></xs:extension> 

</xs:complexContent></xs:complexType> 

<xs:complexType name = "Kids_t"><xs:sequence> 

<xs:element name = "kname" type= "xs:string"/> 

<xs:element name = "sex" type= "xs:string" minOccurs= "0"/> 

</xs:sequence></xs:complexType> 

... 

</xs:schema> 

Figure 2. Sample output XML Schema 

5. EXPERIMENTAL STUDY 
The proposed solution is implemented as a prototype to realize its 

algorithm and demonstrate its effectiveness and validity. An 

experiment conducted to evaluate our approach by examining the 

differences between the source RDB and the XML documents 

generated by the prototype. The experiment tests schema 

information preservation by comparing target schema generated 

from the prototype with that translated from the same source 

schemas using existing manual mapping technique, i.e., [3], which 

gives the user an opportunity to use all features of an XML model 

and its conceptual schemas, resulting in well-designed schemas. 

The evaluation includes comparisons of the schema structures, 

data semantics and integrity constraints. 

    Elmasri and Navathe [3] described a general algorithm for 

mapping an EER into an RDB schema and then into XML 
Schema using a database called Company. We used the Company 

RDB as input for our prototype, aiming to generate an XML 

document from it. The XML Schema file generated from this 

database is comparable to the XML Schema file mapped from [3]. 

The schema generated by our prototype is given in Figure 3. The 

two XML schemas generated by both approaches can be found in 

[3, 10]. The description of both schemas, including elements and 

their types, occurrences, keys and attributes, are specified 

similarly in both approaches. Elements are specified with a type 

attribute so that the structure of the elements are defined 

separately. In terms of semantic information preservations, it was 

found that both schemas were comparable. However, our 

prototype maps more precisely the attributes and their types and 

whether each attribute is optional or required. 

   The resulting schemas show our algorithm and existing manual 

algorithm to be equivalence-preserving translations. Furthermore, 

our proposal is a fully-automatic approach and has the ability to 

generate more accurate target schemas. Therefore, the CDM, 

which preserves an enhanced structure of an existing RDB, is 

translatable into the target schema. The algorithm is correct in the 

sense that it has preserved the original information of the RDBs. 

Many implicit semantics have been converted from an RDB into 

the target database, e.g., association, aggregation and inheritance. 

Moreover, the main type of constraints that can be extracted from 

an RDB, including key constraints, constraints on NULLs and 

entity and referential integrity constraints, are all translated 

explicitly into the equivalent target schema. 

<xs:complexType name = "Employee_t"> 

<xs:sequence> 

<xs:element name = "fname" type= "xs:string"/> 

<xs:element name = "minit" type= "xs:string" minOccurs= "0"/> 



<xs:element name = "lname" type= "xs:string"/> 

<xs:element name = "ssn" type= "xs:int"/> 

<xs:element name = "bdate" type= "xs:date" minOccurs= "0"/> 

<xs:element name = "address" type= "xs:string" minOccurs= "0"/> 

<xs:element name = "salary" type= "xs:int" minOccurs= "0"/> 

<xs:element name = "superssn" type= "xs:int" minOccurs= "0"/> 

<xs:element name = "dno" type= "xs:int"/> 

<xs:element name="hasDependent" type= "Dependent_t"  

       minOccurs= "0" maxOccurs="unbounded"/> 

</xs:sequence> 

</xs:complexType> 

... 

<xs:complexType name = "Dependent_t"> 

<xs:sequence> 

<xs:element name = "dependent_name" type= "xs:string"/> 

<xs:element name = "sex" type= "xs:string"/> 

<xs:element name = "bdate" type= "xs:date" minOccurs= "0"/> 

<xs:element  name = "relationship" type= "xs:string"  

minOccurs= "0"/> 

</xs:sequence> 

</xs:complexType> 

Figure. 3 Fragment of XML Company schema generated by 

our prototype. 

 

6. CONCLUSION 
This paper contributes a solution to the problem of translating 

RDBs into XML schema documents. The approach is beneficial 

compared to existing work as it generates the XML schema and 

exploiting the range of powerful features provided by XML 

Schema standard. A prototype has been developed to realize the 

algorithm of the solution, which is also validated by comparing 

results from the input and output schemas. We have conducted an 

experiment to evaluate our approach by examining the differences 

between the source RDB and the XML Schema generated by the 

prototype. The inputs and outputs of the prototype are evaluated 

in terms of schema structures, data semantics and integrity 

constraints. The experimental results obtained from both 

databases have been analyzed and found that both sets of results 

were identical. Therefore, we conclude that the source and target 

database schemas are equivalent. Moreover, the results obtained 

demonstrate that the solution, conceptually and practically, is 

feasible, efficient and correct. 
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