
Future Generation Computer Systems 60 (2016) 67–77
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Investigations of automatic methods for detecting the polymorphic
worms signatures
Shadi A. Aljawarneh a,∗, Raja A. Moftah b, Abdelsalam M. Maatuk b

a Software Engineering Department, Jordan University of Science and Technology, Irbid, Jordan
b Faculty of Information Technology, Benghazi University, Libya

h i g h l i g h t s

• An Enhanced Contiguous Substring Rewarded (ECSR) algorithm is developed.
• The signature can produce a loss of vital information such as ignoring one byte token.
• The SRE needs to be updated and accurate when compared with autograph and polygraph methods.

a r t i c l e i n f o

Article history:
Received 25 November 2015
Received in revised form
26 December 2015
Accepted 30 January 2016
Available online 15 February 2016

Keywords:
Polymorphic worms
Simplified Regular Expression
Autograph
Polygraph
Software security
Software engineering

a b s t r a c t

This paper investigates the current automaticsmethods used to generate efficient and accurate signatures
to create countermeasures against attacks by polymorphic worms. These strategies include autograph,
polygraph and Simplified Regular Expression (SRE). They rely on network-based signature detection and
filtering content network traffic, as the signature generated by these methods can be read by Intrusion
Prevention systems and firewalls. In this paper, we also present the architecture and evaluation of each
method, and the implementation used as patterns by SRE mechanism to extract accurate signatures.
Such implementation was accomplished through use of the Needleman–Wunsch algorithm, which
was inadequate to manage the invariant parts and distances restrictions of the polymorphic worm.
Consequently, an Enhanced Contiguous Substring Rewarded (ECSR) algorithm is developed to improve
the result extraction from the Needleman–Wunsch algorithm and generate accurate signatures. The
signature generation by SRE is found to be more accurate and efficient as it preserves all the important
features of polymorphic worms. The evaluation results show that the signature contains conjunctions of
tokens, or token subsequence can produce a loss of vital information such as ignoring one byte token or
neglecting the restriction distances. Furthermore, the Simplified Regular Expression needs to be updated
and accurate when compared with autograph and polygraph methods.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The incidence of security threats has increased dramatically in
recent years due to the direct connection of the computers to the
Internet [1,2]. Worms are one of the important examples of smart
design programs that can cause security threats, and can be defined
as programs, which replicate themselves and exploit various
types of vulnerabilities in the network hosts. These characteristics
mean that worms can spread within minutes to a large number
of computers, leading to network congestion ranging from file
detection to denial of system services [3]. A polymorphic worm

∗ Corresponding author.
E-mail address: saaljawarneh@just.edu.jo (S.A. Aljawarneh).

http://dx.doi.org/10.1016/j.future.2016.01.020
0167-739X/© 2016 Elsevier B.V. All rights reserved.
is a worm that can mutate its appearance with each infection,
spreading through a network via a process of self-encryption or
semantics-preserving code manipulation techniques. This affects
the detection of this type of worm [4].

The most effective method of detecting worms is by signature-
based detection, which is also known as content-based filtering.
This signature can be used to inform researchers about the
particular characteristics of the worms, for containment of the
worm on infected computers. This signature can be generated
by use of either exploit-based signatures, which illustrate the
characteristics of an individual or a number of exploits, or
vulnerability-based signatures, which illustrate the properties
of individual vulnerability along with detection of all possible
exploits employing this vulnerability [5]. However, Brumley
et al. [6] stated that the vulnerability-based signature is generally

http://dx.doi.org/10.1016/j.future.2016.01.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.01.020&domain=pdf
mailto:saaljawarneh@just.edu.jo
http://dx.doi.org/10.1016/j.future.2016.01.020

68 S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77
more efficient in making signatures if only the vulnerability-based
is disclosed. On the other hand, Arce [7] argued that both types
of signatures have equal abilities for the detection of worms in
various applications, especially in Intrusion Detection Systems
(IDSs). If malicious network traffic is detected by IDSs, an alarm
may be raised. An IDS mainly functions by detecting threats that
obstruct the remainder of the offending traffic and then preventing
future attempts from succeeding.

The speed of worms generally outbreak in zero day and the
polymorphic worm are approximately the same; they can mutate
at every copy, in addition to keeping the original algorithm un-
changed (invariant bytes).Within each exploit, theworms begin to
modify the bytes by deleting the portions of some pieces of code,
inserting or modifying some byte sequences thereby avoiding de-
tection through simple signature matching techniques. However,
the parts of code that remains unchanged can be used to char-
acterise the signature of a polychromic worm [8]. For this pur-
pose, security experts have developed a number of automatic and
faster methods to derivemore accurate and efficient signatures for
worms. Firewalls or Intrusion Prevention Systems can ultimately
read generating a signature automatically to quickly containment
the worm spread. These automatic methods can be used to ex-
tract good quality signatures which preserve all invariant bytes
and restriction distances which make identification and prevent-
ing worm easier [9].

This paper investigates the characteristics of polymorphic
worms and then explains the most common forms of pattern-
based detection, such as Autograph, Polygraph and Simplified
Regular Expression (SRE). In addition, we investigate the enhanced
algorithm in terms of accuracy only. Autograph is the earliest
system, which is used to automatically generate a signature for
a single string based on matches with this string. Meanwhile,
Polygraph is a token-based system that chooses a set of tokens
which have a high exposure to the low false positive and
the suspicious pool reaction to the ordinary traffic pool [10].
The SRE uses other automatic approaches, along with multiple
sequence alignment to discover polymorphic worm signatures by
utilising the real polymorphic worm application level (as samples)
and evaluating the accuracy of the signature arising from this
approach [5].

This paper will be structured as follows: Section 2 introduces
the anatomy of polymorphic worms and signature automatic
systems. Section 3provides characterisation of automaticmethods
that can be used to detect the signatures of polymorphic worms.
Section 4 describes the proposed methodology for polymorphic
worms utilising sequence alignment. Section 5 presents the
results, a discussion of how these fit within the context of the
paper and the limitation of the approach used. Section 6 includes a
conclusion and future work.

2. Anatomy of polymorphic worms and signature automatic
systems

The aimof this section is to: (i) provide a general introduction to
the concept of polymorphic worms and polymorphic techniques;
(ii) investigate the properties of the bodies of polymorphic
worms; (iii) introduce the concept of worm signatures and various
methods of detecting these signatures; and (iv) summarise the
advantages and disadvantages of existing polymorphic worm
detection techniques and outline the concept of pattern based
worm detection.

2.1. Polymorphic worm

Noh et al. [11] stated that most of the Internet worms
cause damage to networks through consumption of bandwidth
that threatens the security of Internet infrastructures and the
information of the platform. This threat has become increasingly
likely, with the development of advanced worms such as
polymorphic worms that can change their program code without
human interaction by replicating themselves, enabling them to
exploit operating systems and software vulnerabilities in order
to contaminate a system [12]. Xiao et al. [13] explain that the
propagation of a worm includes three stages:
• Target finding: each copy decides on the next victim by IP

address.
• Worm transferring: after finding a target, the worm sends itself

to the victim device.
• Infection stage:when theworm’s code has transferred to victim

machine, the code will be executed.

2.2. Polymorphic techniques

Polymorphic engines have published shellcode generators with
various techniques including ADMmutate, Clet and TAPiON. These
techniques have been used to write shellcode of polymorphic,
which include Garbage, register shuffling, equivalent code substi-
tution and encoding (encryption/decryption) to evade worm de-
tection. As mentioned in 2.1, the polymorphic mechanism leads to
confusion ofwormdetection approaches by concealing theworm’s
payload through the use of encoding techniques to write polymor-
phic shellcodes. If the worm mutates, its payload will generate a
different form from its copy but still have the same function. Poly-
morphicworms commonly include four parts: Decryption Routine,
Decryption Key, Encrypted WormCode and Exploit Code [12].

A polymorphic worm exploits an initial vulnerability and then
decrypts the encryptedworm code utilising the decryption routine
along with the decrypted key [12]. Various keys of encryption
and decryption are applied to encrypt the worm code for each
worm sample. Decryption Key along with Encrypted Worm Code
models vary for each worm sample, while the Decryption Routine
and Exploit code models stay unchanged [12]. So, obfuscation
mechanisms are used by each worm sample to formulate different
Decryption Routine models for each sample, which creates an
Exploit Code in the unchanged part of the polymorphic worm
code that is a source of high false positives if individually utilised
to detect the worm. In addition, Bayoglu et al. [12] argued that
encryption does not include the full code of the worm, as that
would make the code inoperative. Each worm therefore has a part
of the code that exists for the purposes of exploiting prospective
victims. The unencrypted part is used afterwards to branch the
implementation cycle to the decryption routine along with the
initial code.

2.3. Polymorphic body

Tang et al. [14] explained that the polymorphic worm sample
(infection flow) contains a string sequence. These strings include
invariant bytes and wildcard bytes. Invariant bytes contain fixed
values and should be present in each worm sample in order to
ensure that the infection is successful.Wild card bytes change their
values for each diverse worm sample. For instance, a polymorphic
Code Red II worm is presented in Fig. 1, which has a sequence
of seven invariant contents: ‘‘GET’’, ‘‘.ida?’’, ‘‘XX’’, ‘‘%u’’, ‘‘%u780’’,
‘‘=’’, along with ‘‘HTTP/1.0 r n’’. So, security professional people
attempt to extract the invariant contents of polymorphic worm
as a signature. Invariant bytes in a worm flow create a number of
invariant contents that are essential to successful worm infection.
In other words, the invariant content, ‘‘%u 7801’’ is 4 bytes
after ‘‘%u’’, which illustrates the number of characters between
two substrings. These distance restrictions are important for the
exploitation of a vulnerable server [12].

Note that, most approaches also do not take into account the all
distance restriction in the Code Red II. Despite this, each one-byte
invariant components and distance restriction are crucial in worm
detection.

S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77 69
Fig. 1. Polymorphic Code Red II worm. Shaded content exemplifies wildcard bytes, unshaded content exemplifies invariant bytes [5].
2.4. Worm detection signature

Worm detection signature is an approach used to find activities
of polymorphic worms. The key idea of an extracted signature
is to discover match invariant substrings or sequence similarities
in all difference aspects of a payload. Bayoglu et al. [12] claimed
that these methods dealing with polymorphic worms can be
further classified into content-based detection, behaviour based
detection and pattern based detection. Content based polymorphic
worm detection systems use the worm content to generate
information to facilitate matches with the worm. Behaviour based
approaches are concerned with the behaviour of the worm in the
flow of the network along with system activities. Nevertheless,
Xiao et al. [13] state that worm detection techniques should
be classified into two schemas: signature-based and anomaly-
based. Currently, automatic signature generation techniques can
be associated between two detection schemes: Signature-Based
Worm Detection and Anomaly-Based Worm Detection. Currently,
automatic signature generation has become an important issue
and numbers of techniques have been projected. These systems
are classified into two subtypes Host-based and Network-
based [13]: Host-based Signature Generation (HSG) and Network-
based Signature Generation (NSG). In this paper, we focus on the
pattern based detection since the proposed algorithm is based on
the kind of detection.

3. Pattern based detection

This section aims to: (i) Demonstrate the Autograph, which is
the early system, designed to automatically generate a signature of
polymorphic worm. This is based on a single string matching and
presently includes the architecture and evaluation. (ii) Investigate
the next design which is a Polygraph used for detecting a
polymorphic worms signature. Unlike autograph approaches, it
is based on matching multiple invariant substrings. Also, this
investigation includes most characteristics of this approach and
an evaluation. (iii) Currently, the security community exploits the
SRE system based on multiple-sequence alignment algorithms. To
resolve the problems raised from systems realised. The signature
generation of this systemdoes not depend onwell-classifiedworm
flow pool as with the two approaches in. (iv) Summarise the
SRE, methods and algorithms, followed by the security experts to
generate an accurate signature for the polymorphic worm. This
detection technique investigates and provides multiple sequence
alignment based approach to generate an SRE signature.

3.1. Autograph

Autograph is one of an early pattern, which was constructed to
automatically generate signatures for novel Internet worms. This
approach is used to generate signatures that demonstrate high true
positive rate (high sensitivity) and low false positive rate (high
specificity), using content based filtering. Kim et al. [15] restricted
their analysis to worms that propagate over TCP transport. The
signature is a tuple, including: IP protocol number, destination
port number, along with byte sequence. The content is based on
filtering and considers the payload in the network stream, when it
matches the byte sequences in the signature by utilising the same
IP protocol destined for the destination port number, and is then
classified as a worm.

All traffic crossing the Demilitarised Zone (DMZ) inputs to an
Autograph monitor and outputs a list of the worm signatures.
This system comprises of two phases: suspicious flow selection
and signature generation. The suspicious flow selection is used to
classify the network stream as a suspicious flow pool (malicious)
along with non-suspicious flow pool (innocuous). The signature
generation is found in the veracity of how worms propagate to
exploit the software vulnerability and to execute; thus all instances
consist of one or an additional common byte sequence. The worm
spreads in a bulky number, so the amount of common content
block is high. The suspicious flow is used to generate a signature
by dividing it into smaller content blocks, and the number of
suspicious flows in which every block’s content arises is counted.
This content block is ranked according as its prevalence, with
a higher prevalence achieving a higher count. The commonly
occurring content block is utilised as the signature [16].

Note that the autographing repetitively the process for the
majority of prevalent content block is chosen as signature and then
all flows found in this content block are eliminated. This process is
repetitive,with remaining flows continuing until the fraction of the
entire flows in the pool has been enclosed. Autograph will report
the set of chosen signatures in Bro’s signature feature at the end of
the process.

The quality of the signature generated by this system depends
upon the size of the content block. When the size of the
content block has been made small, it is in most cases autograph
signature generating. Then, the suspicious flow after that passes
through the generator signatures, which automatically generates
various classes of signatures. The authors provide more details
about the evolution of the generation of signatures in their
paper through Autograph, and they also describe their prototype
implementation. However, the client can easily guess from the
performed experiments that a prototype exists. Initially, they have
explored the effect of the content size on the quality of signature
generation. In their experiment, Autograph is supplied with
packets traces from DMZ from two different research labs, each of
the research’s 29 IP address include the complete packet payload.
For computing Autograph’s true positive rate, the identical trace
was experimented with initially by applying Bro with well-known
signatures—the scanning-based HTTP worms Code-Red, Code-
RedII, Nimda, and this was followed by applying Autograph’s
signatures [13,15,16].

3.2. Polygraph

Polygraph is a pattern of detection constructed to automatically
generate signatures for polymorphic worms. This pattern is based
on how all the instances of the polymorphic worm integrate
multiple invariant substrings [17]; in contrast to the autograph
approach, which is based on matching a single substring. Multiple
substrings are applied in the polygraph approach, which makes it
perfect for extracting a signature for the polymorphic that leans
towards altering the sequence of the byte flow in each sample.

70 S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77
However, this mechanism is based on the content of the payload
of the worms as in the autograph mechanism.

Newsome et al. [17] concluded that the single substring
signature is able to robustlymatch the polymorphicworm through
a low false positive, alongwith a low false negative. Also, they have
created the signatures from tokens (substrings) and classified the
signatures for polymorphic worm signatures into:

• Conjunction signatures: A signature, which consists of a set
of tokens, and the signature match a payload when entire
tokens in the set are found in it unordered. This kind of
signature matches the multiple invariant tokens provided in a
polymorphic worm payload. Here, matching multiple tokens is
more exact than matching one of these tokens only.

• Token-subsequence signature: A signature that consists of an
ordered set of tokens. A stream matches a token-subsequence
signature when the flow has the same sequence of tokens in
the signature with identical ordering. Signatures of this kind
are simply expressed as regular expressions and allowed to
be used in current IDSs. For the equivalent set of tokens, a
token subsequence signature ismore precise than a conjunction
signature due to the presence of order constraints in a token-
subsequence signature.

• Bayes signature: Bayes signature distinguishes a worm from
an innocuous stream by probabilistic matching, distinct from
conjunction and token subsequence signature, which are based
on the exact prototype match. Signatures consist of a set of
tokens, which are each associated with a score and overall
threshold. It provides probabilistic matching for a given flow by
computing the probability that the flow is a worm by the scores
of the tokens provided in the flow. When the probability of the
result is more, the threshold of the flow is classified as a worm.
The advantage of Bayes signature is that it allows learning from
suspicious stream pools that include patterns from unrelated
worms and innocuous flow.

Polygraph is performed for experimental evolution while
considering various scenarios. These are: the flow pool has flows
of only one worm, the flow pool has flows of one worm along
with innocuous flows, and the flow pool has flows of multiple
worms as well as innocuous flows. The authors [17] stated that a
polygraph evaluated by several networks traces input. The authors
detected that the quality of the signatures generated depends on
the number of worm patterns provided in the trace. The initial
consideration is for one kind of worm and some innocuous flow
outcomes from the limitation of the flow classifier, and then amore
practical case where a suspicious case could have flowed from
various misclassified innocuous worms.

3.3. Generating simplified regular expression signature

Recently, this mechanism is circuital to automatically creating
an effective and accurate signature to protect against the
polymorphic worm. Simplified Regular Expression (SRE) is
extended fromPolygraph’s token-subsequence signature category.
The authors’ assert the previous mechanisms, autograph and
polygraph, use of conjunction or subsequence token can lose
essential information such as ignoring or neglecting one byte token
of the distance in the sequential token. The authors propose the
Simplified Regular Expression (SRE) signature, and provide their
mechanismswhich are based on themultiple sequences alignment
algorithms. This method is extended from the pairwise sequence
alignment algorithm that encourages contiguous substring (token)
extraction and it can keep the distance of invariant content parts
as well as sustain the wildcard string alignment in generated
SRE signatures. In addition, the authors found that the signature
generated using SRE can express the distance information for byte
invariant contentwhich is important and valuable for detecting the
polymorphic worm [5].

In this scenario, they verify that for all their experiments
on the several approaches of detection of polymorphic worm
signatures, compared with present network-based signature
generation systems (NSGs) approaches, the SRE mechanism
produced signatures with more precise and perfect matches to
polymorphicworms. The previous approaches, whether autograph
which generates a single contiguous byte string signature,
or polygraph which generates token-based signature (bytes
sequence), occur in significant numbers of suspicious flow
pools. The autograph approach proves that the signature is not
effective to match polymorphic worms. Polygraph proves that the
signature depends on a token-based signature and it can lose
vital information associated with any sequential token such as
distances [14].

An SRE signature is a simplified version of the regular
expression, where there are just three reiterated qualifiers. These
are: ‘‘*’’, ‘‘[k1, K2]’’ and ‘‘[k]’’. The authors have substitute the ‘‘.*’’
within regular expression using ‘‘*’’ to characterise an arbitrary
string also it is including zero-length string. In addition, to
characterise any string with a length from k1 to K2, they replaced
‘‘. {k1, k2}’’ by using ‘‘[k1, k2]’’. As well as, replacing. ‘‘{K}’’
by using ‘‘[k]’’ to characterise a string contain of k number of
arbitrary character. For instance; ‘‘‘one’*‘two’[3]‘three’[2, 5]’’ is
an SRE signature which is equivalent to the regular expression
‘‘one.*two.{3}three.{2, 5}’’ [14].

In this case, the SRE signature is still a regular expression,
but contains less syntax rules. In a restricted sense, the set of
SRE signatures are subsets of the set of regular expressions. Thus,
an arbitrary SRE signature satisfies the description of regular
expression and it can be used for detection in any IDS which
supports regular expression [5].

4. Methodology and implementation

We have developed the Enhanced Contiguous Substring
Rewarded (ECSR) algorithm to improve the result extraction
from the Needleman–Wunsch algorithm and generate accurate
signatures. Our aim is to implement a program to detect accurate
and efficient signature for a single polymorphic worm. The
implementation process includes: (i) a brief introduction related
to construction of the SRE mechanism; and (ii) execution of SRE
procedures to generate signatures for single polymorphic worms.

4.1. SRE mechanism design

The first step in implementing the SRE mechanism is to
obtain the network flows as patterns from the polymorphic
worm and convert these into character sequences, which are
indicated to the worm samples. These samples were used to
verify the performance of the implementation provided by the
authors. The samples provided that were exploited in this study
contain from two sequences, (oxnxexzxtwox) and (ytwoyoneyz),
which are used to generate signatures for a single polymorphic
worm. The SRE process is used to detect invariant bytes of string
in the network flow and extract wildcards for the sequences
given. All the results will be achieved using the bioinformatics
approach, which is a sequence alignment that will be carried out
by the Needleman/Wunsch algorithm [18]. Needleman–Wunsch is
a model of dynamic programming based on a divide-and-conquer
strategy [5].

This algorithm performs alignment on two sequences as
pairwise characters of the sequences by maximising a similarity
score. Pairwise alignment describes when the characters are
written by one sequence on the top of another [5]. The
Needleman–Wunsch alignment process includes three steps [18]:

S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77 71
Fig. 2. The value of cell S(1, 1) resulting from S(0, 0), S(i, 0) and S(0, j).

(a) Initialisation step: initialisation matrix score is used to
compare characters between two sequences;

(b) Matrix fill step: filling matrix values to select the maximum
number;

(c) Traceback step: the path is followed back to the beginning of
the matrix, where each branch of the traceback will represent
an optimal alignment. These stages will be described in detail
in the following section. Initially, a manual process is used to
initialise, fill the matrix and extract the maximum score [19].
After that the study will use Perl script to deal with the
sequences given to extract the optimal alignment score, which
is anticipated will produce various outputs. This will lead to
analysis of each result and development of the performance of
SRE using the CRS algorithm, which has been converted in this
study to Java script in order to obtain an accurate and efficient
signature for a single polymorphic worm.

4.2. Implementation of the SRE

The global alignment process for two sequences: Seq1 = oxnx-
exzxtwox and Seq2 = ytwoyoneyz. Using a substation matrix
S {where S(i, j)} is the score to align i and j. {i = 0, 1, 2 . . . n, j =

0, 1, 2, . . . , n} with a linear gap penalty {w}. There are three ways
to characterise the alignment between two sequences [20], as fol-
lows:

– Si and Sj are aligned, in which case, Si,j = {Si−1,j−1 + Mi,j}.
– Si is aligned with a gap, in which case, Si, j = {Si−1,j + W }.
– Sj is aligned with a gap, in which case, Si,j = {Si,j−1 + W }

whereM(i, j) = S(i, j), the score to align Si and Sj, if there is match
between the bases the M(i, j) = 1. If there is no match between
the bases, the M(i, j) = 0 and W represent the gap penalty = −1.
While S(i, j) is by definition the maximum score as formula 1 [20].
Three steps include:

Si,j = Max[{Si−1,j−1 + Mi,j}; {Si−1,j + W }; {Si,j−1 + w}]. (1)

- Initialisation thematrix step: This paper also explains theway in
which theNeedleman–Wunsch algorithmoperates using amanual
system in order to ensure understanding of how this algorithm
is constructed. The matrix S(i, j) is created with i + 1 row and
j + 1 column, where i and j correspond to write the bases of one
sequence as the initial row of the matrix, and bases of another
sequence as the initial column of the matrix. The algorithm works
by aligning two sequences Seq1 and Seq2 using the formula (1) to
fill the entire matrix, working from the upper left-hand corner and
finding the maximum score S(i, j) for each position in the matrix.
Fig. 2 shows how each cell value computes [21] and as shown in
Fig. 3.

Diagonally S(i − 1, j − 1) indicates to S(0, 0) = 0 {score to
alignment 0 elements from every sequence}. Vertically, S(i − 1, j)
indicates to S(i, 0) = i×w {score to alignment the first i elements
from Si with 0 elements from j with gap penalty w = −1}.
Horizontally, S(i, j − 1) indicates to S(0, j) = j × w score to
alignment of 0 elements from Sj with 0 elements from Si with a
gap penalty of w = −1.
-Matrix fill step:

After finding all parameters S(i−1, j−1), (Si−1,j) and (i, j−1),
the process to fill matrix will be started until the end of this matrix
by use of formula 3. Last score will determine the best score for
global alignment of i and j. Note that in Fig. 4 for each S(i, j), it is
essential to keep pointer back to the previous score from which
parameters were derived [21].
-Traceback step:

Traceback captures the current last cell value and observes the
neighbour cells, which can direct predecessors. The traceback then
begins from the lower right corner of the matrix [21] as shown in
Fig. 4.

By following these rules, the matrix will be constructed. For
example in Fig. 3, after initialising the matrix using a grey colour,
the fill matrix occurs at the first cell by following the formula (1).

Si,j = Max[{Si−1,j−1 + Mi,j}; {Si−1,j + W }; {Si,j−1 + w}] (1)
S(1, 1) = Max[{S(0, 0) + M(O, Y)}; {S(0, 1) + (−1)};

{S(1, 0) + (−1)}]
= Max[{0 + 0}; {−1 − 1}; {−1 − 1}]
= Max[0].

So S(1, 1) = 0, and should keep a pointer back to S(0,0) as this is
shown in cell S(1, 1)with colour dark grey and pointer with colour
blue. Suppose the next cell requires filling is S(3, 1), then according
to formula (3):

S(3, 1) = Max[{S(2, 0) + M(O,W)}; {S(3, 0) + (−1)};
{S(2, 1) + (−1)}]

= Max[{−2 + 0}; {−3 − 1}; {−1 − 1}]
= Max[−2].

So S(3, 1) = −2, and also keeps a pointer back to S(2, 0) and
(2, 1) as shown in cell S(3, 1), which has been coloured dark grey
and with pointers in blue.

In following to the path back to the beginning of the matrix,
the branch of the traceback represents an optimal alignment [22]
with a maximum score equal to zero. Fig. 5 shows the traceback
with blue arrows and maximum score cells in dark grey. In
addition, each cell has aligned with another cell, which will
take the same colour as Fig. 4; while Fig. 5 illustrates the final
alignment sequences by using Perl script (see Fig. 6). So from the
manual application of theNeedleman/Wunsch generate characters
without any match among them with optimal scores of zero.
Needleman et al. [18] assigned that the characters substitution
matrices may be adjusted in different ways to compensate for
the character compositions of the sequences. This is attempted
by inserting a gap penalty to improve the significance of the
maximummatch (see Fig. 7).

The author exchanged the order of two sequences using Perl
script, but the study still obtains the same result mismatched
alignment with a maximum score equalling zero, as shown in
Fig. 8. This paper also seeks to generate accurate signatures of
the polymorphic worm that should contain contiguous substrings
and preserve wildcards. To repeat the comparison process
between two sequences given, using gaps since attempts to
obtain similar characters between them. As shown in Fig. 9, the
Needleman–Wunsch algorithm resulted in alignments that consist
of four parts (‘o’, ‘n’, ‘e’, ‘z’). Then this algorithm also generates
numerous trivial or useless parts that will prevent the discovery
of contiguous invariant content and wildcards. The formula (2)
produces maximum score = −6.

SC (i, j) = −6 (1 × 4 + 0 × 3 + 10 × −1)

where Wd indicates the score to character mismatch, kgaps
indicates the number of gaps, δ indicates to the penalty score for a
gap. Tang et al. [5] indicate that settingWm = 1,Wd = 0, δ = −1.

The results from Fig. 8 are clearly better in terms of alignment as
the substring ‘two’ is semantically meaningful because it is likely

72 S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77
Fig. 3. Initialisation and filling matrix S(i, j). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Maximum score and the tracesback branch. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 5. Final alignment of the samples by using Needleman–Wunsch.
to be an invariant part of polymorphic worm (*******?two*******).
According to formula (2): SC (i, j) = −11 (1×3+0×2+−1−×14),
but as a signature for polymorphic worm this is still not accurate
enough because the restrict distance variable is not clear. After
a number of experiments, this study found that it is relatively
unimportant whether the parameters have been adjusted; the
Needleman–Wunsch algorithm continually leans to create a great
number of parts and then loses an amount of invariant content in
polymorphic worms and distance restrictions, meaning that it is
still not clear enough. Additionally, the maximum score resulting
from the manual application of the algorithm is equal to zero,
after which the maximum score accumulates in various values −6
and −11. The highest value is not account matching between two
sequences, whereas the small one (−11) gives better alignment.
The Needleman–Wunsch algorithm failed to generate contiguous
substringswhich are essential inworm traffic detection. Limitation
in using this algorithm maximises the total number of matches as
an alternative to match consecutive substring. To overcome this
matter the CSR algorithm is used, which is based on matching
strings for the longest common substring (LCS). The LCS algorithm

S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77 73
Fig. 6. Final sequence after change the order of the samples by using Needleman–Wunsch.
Fig. 7. Perl script result alignment with four-character match between two sequences.
Fig. 8. Perl script result alignment with four character match between two sequences.
accumulates the longest shared byte sequences across pairs of
connections.

4.3. The CSR algorithm

The CSR algorithm gathers the longest shared byte sequences
across pairs of connections rather attempting tomatch the optimal
score between two sequences. Tang et al. [5] stated that the
CSR is extended from the Needleman–Wunsch algorithm. CSR
exploits the design of the optimal alignment, whichmaximises the
similarity score in formula (2). The maximum similarity score is
performed through iteratively computing two matrices: the score
matrix F with the traceback matrix PTR. Providing two sequences
X and Y , assumeX (1 . . . i) and Y (1 . . . j) are prefix subsequences of
X and Y , Fi, j and supply the maximum similarity score for the two
prefix subsequences. The PTR i, j records the traceback number to
obtain the matching optimal alignment with the maximum score
Fi, j. The optimal alignment of X along with Y will accumulate
within FN,M and PTR N,M after that F and PTR are accomplished.

This algorithm includes three stages, in the same way as
Needleman/Wunsch Algorithms. The first step is to initialise the
iterative matrix F and PTR. The score matrix F along with the
traceback matrix PTR is iteratively computed. From line 10 the
CSR algorithm illustrated that Fi, j is calculated from Fi − 1, j − 1,
Fi − 1, j, and Fi, j − 1 in three cases respectively. In a restricted
sense, the optimal alignment of subsequence X (1 . . . i) along with
Y (1 . . . j) is designedwithin three cases: Case 1, optimal alignment
of subsequence X (1 . . . i−1) and Y (1 . . . j−1), X (i) to Y (j); Case

74 S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77
Fig. 9. Run Java script of CSR algorithm.
Fig. 10. Final results represent the polymorphic worm signature.
2, optimal alignment of subsequence X (1 . . . i − 1) and Y (1 . . . j),
X (i) to a gap; Case 3, optimal alignment of subsequenceX (1..i) and
Y (1..j−1), Y (j) to a gap. Tang et al. [14] have used the enc() in Case
2, utility to reward consecutive matches, which is the core range
of their CSR algorithm from the Needleman–Wunsch algorithm.
Finally, the alignment is reduced from the traceback matrix PTR.

In this paper the CSR algorithm was converted by using java
script. This was done after typing the run command, as illustrated
in Fig. 10.

This CSR is based on iterative LCS computed in its process until
the result is obtained. To understand the steps in the CSR and java
script with sequences, the following explanation is needed. Seq1
(string1) → oxnxexzxtwox, and Seq2 (string2) → ytwoyoynyeyz.
The first step is to compute the longest common substring (LCS)
which is LCS → ‘‘two’’. The second step will test the length of LSC
is=0, the answer to which here is no. the third step is to divide the
strings into two parts, left and right of LCS ‘‘two’’. Substring to Left
of LCS in String 1 = ‘‘oxnxexzx’’ and on the right ‘‘x’’. Substring
to left of LCS in String 2 = ‘‘y’’ and on the right ‘‘yoynyeyz’’. The
fourth step is to compare the Left Substrings of both the strings
for LCS i.e. ‘‘oxnxexzx’’ and ‘‘y’’, and to compare right substrings of
both the strings for LCS i.e. ‘‘x’’ and ‘‘yoynyeyz’’. ‘‘oxnxexzx’’ and
‘‘y’’ there is no common substring. The length of ‘‘oxnxexzx’’ is 8
whereas length of ‘‘y’’ is 1. So to match the sequences add 8 ‘‘-’’ to
the second string and repeats the same process with right string.
Finally, the result is determined as:
Note if LCS is not zero in the left or right string this requires
more computation of the LCS until it becomes zero. This requires
repeating steps 2–4 until these two strings reach a length of LCS
zero. Comparing strings character wise produces the following
results: In case character at position (n) in string 1 and 2 are same
then the same character appears at position (n) in the matching
string. This is said to be a ‘‘match’’ i.e. at position 9 in string 1 and
2, we have ‘‘t ’’ so the matching result will have ‘‘t ’’ at position 2. If
the character at position (n) in string 1 or string 2 is ‘‘-’’ then ‘‘*’’
appears at position (n) in the matching string. This is said to be a
gap, e.g. at position 1 in string 1 and 2, they contain ‘‘o’’ and ‘‘-’’ so
the matching result will have ‘‘-’’ at position 1. In the case where
the character at position (n) in string 1 and 2 are not the same
and neither is ‘‘-’’ then ‘‘?’’ character appears at position (n) in the
matching string, this is said to be a ‘‘mismatch’’. Fig. 10 explains the
final signature derived by RCS algorithm for polymorphic worm.

Tang et al. [14] modified the similarity score function of the
Needleman–Wunsch algorithm from formula (1) to formula (2):

SC(x, y) = km × Wm + kd × Wd + kg × δ

+

s is substring

in alignment result

Enc(|s|). (2)

S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77 75
Fig. 11. Another signature example of sequence alignment by using CRS algorithm.
Tang et al. [15] recommend providing a score function enc() for
rewarding contiguous substrings. In instance for sequences, they
have defined as enc(x) = 3(x − 1) and set Wm = 0.5, Wd = 0,
δ = −1, the match score is −6.5(0.5 × 3 + 0 × 2 + −1 ×

14 + 3 × (3 − 1)). Therefore, the CSR algorithm will result in
the enhanced alignment for two sequences givenwith amaximum
score −6.5. For the purpose of supporting the wildcard the CSR
algorithm allows wildcard ‘?’ and ‘*’ in the sequence input and the
sequence result will follow the comparison rules. For preserving
distance restrictions this algorithm has a supposition for every
character in sequences in a length area [Min,Max]wheremin is the
low-bound and max is the up-bound. According to the alignment
result from Fig. 10 the length range of each ‘‘*’’ is [0, 1], the length
range of each ‘‘?’’ is [1, 1]. Combine the eight previous wildcards to
substring ‘‘two’’ to one reiterating qualifier, and then calculate its
low-bound length range to 0×7+1 = 1, up-bound to 1×7+1 = 8.
Therefore, the reiterating qualifier previous to the substring ‘two’
is ‘[1, 8]’. Repeat this procedure, then convert the resulted to SRE
signature ‘‘[1, 8] ‘two’ [1, 8]’’, as shown in Fig. 11.

To verify the results extract by the CSR algorithm, it has
been used with other samples to generate accurate signatures.
Additionally, all steps above have been repeated, showing that
this algorithm preserves all the features of polymorphic worms
because it grasps the length of the common sequence rather
than being concerned with computing the optimal score between
sequences. Fig. 11 reveals the signature match for two sequences.
This algorithm is successful in deriving contiguous sequences and
keeps all wildcards of the polymorphic worm.

5. Discussions

This paper investigated the architecture and evaluation for each
method and demonstrated possibleways to overcome the problem
raised from using these methods to generate accurate signatures.
The signature should have high efficiency and reliability. The
accuracy of the polymorphic worm signature is ensured by
explaining all the possible features of the worm, as a result
of which, the level of false positive results can be reduced.
Additionally, the signature should not include any incorrect or
useless features of the worm, which can also be helpful in avoiding
false negative results. We have focused on the automatic methods
used to generate accurate signatures. All signatures were based on
filtering contents sequences of polymorphic worms.

Initially, the autograph method was used to infer the worm
signature, which is based on matching single substring. The
signature resulting from the autograph method was shown to
be good for worm with invariant strings; however it was less
useful for polymorphicworms since the signature contains a single
contiguous string only. Additionally, the quality of the signature
generated by the autograph method depended on the size of the
content block. Small content sizes produced high levels of false
positive results and large sizes increased the sensitivity of the
performance of the autograph method. Various authors [5,16,19]
argued that the main disadvantage of the autograph method is
that it lacks the ability to detect large classes of worm as well
as being relatively inefficient in detecting polymorphic worms as
they do not contain enough common substrings. The autograph
method also failed to preserve the distance restrictions between
the invariant parts in the signature results. Furthermore, the single
signaturewas not sufficiently qualified tomatch all worm patterns
with low false negatives and low false positive results. Thus, the
signature generated byusing autograph is too inefficient, and failed
to generate sufficiently accurate signatures for the polymorphic
worm.

In contrast to the previous approach, the polygraph approach
works effectivelywith polymorphicworms. The polygraphmethod
is based onmultiple invariant stringmatching and is considered to
be more effective as it does not result in large quantities of false
positives. However the signature generated by this approach is
inaccurate because it does not take into its account all the invariant
parts of the worm. This method can extract most invariant parts
and distance restrictions, but ignores one byte invariant parts as
‘‘=’’ in the Code RedII worm. Tang et al. [14] explained that the
polygraph approach relies on a well-classified worm flow pool and
explicit protocol testing. The polygraph mechanism is also known
to be complicated and may suffer from some false anomalous flow
attacks. Additionally, it is based on extracting multiple invariants
from the polymorphic worm payload, which changes appearance
with each infection. This system captures the payload packet
from a router; therefore in a worst case scenario may discover

76 S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77
multiple polymorphic worms, each potentially exploiting different
vulnerabilities. This could complicate the process of finding the
invariant parts shared among these polymorphic worms. A hacker
can send a pattern of the worm to the network and this worm
change its payload automatically in each infection to produce other
patterns. Security experts using this method therefore need to
provide the polymorphic worm a chance to interact with hosts
without any recital effect in order to capture all the polymorphic
worm instances.

The final method, SRE, preserves the length of substrings
with all lengths of distance restrictions. Thus, the SRE system
has the ability to capture the polymorphic worm signatures
more accurately and efficiently if compared with the two
systems explained previously. While SRE extends polygraph’s
token subsequence signature model with length constraints, it
still works well with all the sequences of the polymorphic worm.
This system relies on a bioinformatics mechanism to detect the
worm signature to extract the alignment sequences from the
polymorphic worms by using Needleman–Wunsch algorithm. This
algorithmwas further improved by using CRS algorithm to capture
contiguous invariant fixed parts in the worm patterns. Tang
et al. [5,14] claimed that this system does not rely on a well-
classified worm flow pool and explicitly protocol analysis. Overall,
the SRE generates efficient and accurate signatures to match
polymorphic worms.

The results show that the SER approach is successful as it
preserved all the invariant parts and emphasised the order of
distance restrictions between these invariants. However, these
results require more understanding of complex algorithms and
using other branches of science and methods in this field.

Furthermore, the results in the previous chapter demonstrated
the transformation of a set of polymorphic worm patterns to a set
of character sequences. A Needleman–Wunsch matrix was used
to find the maximum alignment score that detects the common
characters between two sequences. However, the significant
limitation in this algorithm is that the data is misrepresented due
to its computing misinterpretation of the optimal score. The goal
was to match the similarities between the characters. A manual
way was used to retrieve the maxim score, which was zero. This
resultwas unsuitable for the polymorphicworm signature because
the algorithmmaximised the scorewithout taking into account the
alignment between the characters. To overcome this problem, a
gap was inserted to align the matching character. Perl script was
used to produce sequences between the characters revealed in
Figs. 9 and 10.

The result proved that this algorithm is unsuitable to produce
consecutive matches; in Fig. 9, the maximum similarity score was
−6, while it was −11 in Fig. 10. However, the smallest value was
observed to contain a contiguous substring ‘two’ which is seman-
tically significant, and similar to the invariant parts of polymor-
phic worms. Despite this, it was still unsuitable for polymorphic
worm detection because it does not take into account restriction
distance. So the Needleman–Wunsch algorithm emphasised the
overallmaximumnumber ofmatches alternatively concernedwith
consecutive matches. The Needleman–Wunsch algorithm failed to
produce contiguous substrings,which are important forworm traf-
fic detection. The result was enhanced by preserving the invariant
parts and keeping restriction distance using CRS algorithm con-
verted to java script. The power of CRS comes from its ability to
match strings for the longest common substring between two se-
quences. The CRS algorithm proved that the sequence result has an
optimised alignment.

The results of this study verify the results obtained by Tang
et al. [14]. Tang et al. [14] evaluated quality of the signature
generated by SRE and proved that it is more accurate than
the conjunction signature created by the polygraph method.
SRE generates signatures and simultaneously keeps the distance
restrictions for invariant content by the reiterating qualifiers.
They verified that in all their experiments on the approaches of
detecting polymorphic worm signatures, compared with present
network-based signature generation systems approaches, the SRE
mechanism produced more precise and effective signatures to
match polymorphic worms. Polymorphic worm detection using
SRE was shown to be successful automatic signature generation
to find accurate signatures by detecting the longest substring
common in a set of suspicious samples.

The previous approaches were shown to be less effective,
whether autograph that generates single contiguous byte string
signature, or polygraph that generates token-based signature
(bytes sequence) occurring in significant numbers of suspicious
flows pool. The single string signature technique is not effective
at matching polymorphic worms and the signature generation
signature depends on the token-based signature which can lose
vital information associated with any sequential token such as
restriction distances.

This paper demonstrates that the signature generation by SRE
is more useful. As shown in Fig. 11, this method is successful
in preserving the most important features of the worms, namely
invariant parts and restriction distances. These are critical for the
purpose of exploiting the vulnerability in victim devices. However,
the SRE also has shortcomings, as it only generate signature
for single polymorphic worm and may fail when attempting to
generate signatures for a mixed number of various worms.

However, the overall limitations of these methods are that it
is possible to generate polymorphic shellcode, which does not
have invariant bytes. All these approaches may fail to generate
signatures for polymorphic worms that do not have invariant
bytes [23] and they would then be unable to explain any
exploit-based signature because all methods are effective for a
considerable portion of polymorphic worm. However, Newsome
et al. [17] observed that polymorphic worm should contain
invariant bytes, as they are significant to exploit vulnerable
server. These approachesmay issue limitations of all exploit-based
signature generation approaches, sine generated signatures are not
able to identify all prospective exploits of a vulnerability.

All approaches mentioned above tested their mechanisms
offline on synthetically produced polymorphic worms, as they do
not know polymorphic worms on the real Internet, so evaluation
is not possible. Most of the techniques mentioned above rely on
the classification of the network flow, hence if they are classified
between the malicious and normal traffic this may affect the final
accuracy of the signature generation because the content filtering
could include noise.

The most critical recommendation that can be extracted from
this study is that the dealing with the countermeasures against
this type of worm by generating accurate signatures could bemore
complex andmayneed toworkwith various intricate algorithmsor
static algorithm forms in order to extract the accurate and efficient
signature to be used with protection applications such as IDSs
or firewalls. The accurate signature should describe all features
(body) of the worms, including invariant parts and restricted
distance.

The implementation accomplishes with several algorithms
such as manual Needleman–Wunsch and after numerous experi-
ments using Perl computer language script the result is that this is
not efficient enough to represent the polymorphic worm. Further-
more, it was necessarily to develop this algorithm by extending it
with the CRS algorithm. In order to preserve time and improve the
result, this study converted the CRS algorithm to Java script. That
mean deals with this type of mechanism may account complex.
Also, as mentioned in Section 2 these types of worm exploit the
vulnerability on the victimmachine so, with their ability to change

S.A. Aljawarneh et al. / Future Generation Computer Systems 60 (2016) 67–77 77
appearance in each attack. The patch works against its exploit and
that by itself a time consuming process. Each automatic technique
used to generate signatures should also be able to work on or off-
line.

It should be noted that the developed algorithm could be ap-
plied in the Cloud services and systems with the same consider-
ations and limitations. The conceptual similarity between the de-
veloped algorithmwith the Cloud computing adoption framework
(CCAF) security [24,25] are multilayer security approaches. For ex-
ample, our security approach suitable for some levels such as Dat-
acenter software security level and Hypervisor software security
level.

6. Conclusions and future work

This aim was achieved by providing an overview of polymor-
phic worms and investigating existing automatic methods based
on contents detection of polymorphic worm signatures in order
to create accurate and efficient signatures. These methods are
autograph, polygraph and SRE. Using SRE technique to generate ef-
ficiently polymorphic worm signatures carried out the actual de-
velopment in this study. This exploited various algorithms, such
as Needleman–Wunsch and CRS algorithm, and also used Perl and
Java script to increase the accuracy of the results. Finally, the eval-
uation quality of the signatures resulted from automated methods
of polymorphic worm signature detection.

Consequently, this study has discussed the seriousness of the
threat that polymorphic worms pose to the security of Internet
infrastructures. This is particularly problematic as this type of
virus does not require human interaction and is able to spread
across very large networks quickly, changing its appearance with
every attack. In this study the automatic methods have been used
to detect accurate signature for polymorphic worm core in NSG
were successfully able to identify worm patterns on networks
at early stages before they were able to quickly spread to other
targets. To overcome the problem of the Needleman Wunsch
algorithm generating a large number of useless characters, it
proposes a novel pairwise sequence alignment algorithm CSR
that extends from Needleman–Wunsch. The results indicated that
the SRE approach is effective for automatically generating the
signature of polymorphic worms, since it preserved all worm
characteristics. Therefore, the proposed algorithmhas investigated
and the evaluation showed a significant accuracy and effect
signatures.

As a part of future work, investigating the extraction of
signatures online with rapid detection in the Cloud Environment.
Furthermore, some research is being carried out in order
to discover new approaches that provide additional powerful
methods of accurately investigating the intrinsic similarities of
worm patterns.

References

[1] A. Moftah, A. Maatuk, Plasmann, S. Aljawarneh, An Overview about
the Polymorphic Worms Signatures, in: ICEMIS ’15 September 24–26,
2015, Istanbul, Turkey©2015, ACM, 2015, ISBN 978-1-4503-3418-1/15/09,
http://dx.doi.org/10.1145/2832987.2833031.

[2] S. Aljawarneh, A web engineering security methodology for e-learning
systems, in: Network Security, Vol. 2011, Elsevier, 2011, pp. 12–15. http://dx.
doi.org/10.1016/S1353-4858(11)70026-5.

[3] S. Aljawarneh, Cloud security engineering: avoiding security threats the right
way, Int. J. Cloud Appl. Comput. 1 (2) (2011) 64–70. http://dx.doi.org/10.4018/
ijcac.2011040105.

[4] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, G. Vigna, Polymorphic worm
detection using structural information of executables, 2006 [Online]. Available
from: http://www.springerlink.com/content/f1k63052u27p6438/ (accessed
6.07.2010).
[5] Y. Tang, X. Lu, B. Xiao, Using a bioinformatics approach to generate accurate
exploit-based signatures for polymorphic worms, 2009 [Online]. Available
from: http://www.springerlink.com/content/f1k63052u27p6438/ (accessed
6.07.2010).

[6] D. Brumley, J. Newsome, D. Song, H. Wang, S. Jha, Towards automatic
generation of vulnerability-based signatures, in: the 2006 IEEE Symposium on
Security and Privacy, 2006, pp. 2–16.

[7] I. Arce, Vulnerability, 2005 [Online]. Available from: http://archives.neohapsis.
com/archives/sf/ids/2005-q2/0130.html (accessed 14.07.2010).

[8] M.M. Saudi, E.M. Tamil, S.A.M. Nor, M.Y.I. Idris, K. Seman, EDOWA worm
classification, in: Proceedings of the World Congress on Engineering 2008 Vol
I.WCE 2008, 2008, ISBN: 978-988-98671-9-5.

[9] J. Wang, I. Hamadeh, G. Kesidis, D. Miller, Polymorphic worm detec-
tion and defense: system design, experimental methodology, and data re-
sources, 2006 [Online]. Available from: http://portal.acm.org/citation.cfm?id=
1162666.1162676 (accessed 15.08.2010).

[10] M.V. Gundy, H. Chen, Z. Su, G. Vigna, FeatureOmissionVulnerabilities: Thwart-
ing Signature Generation for Polymorphic Worms, 2007 [Online]. Avail-
able from: http://www.cs.ucdavis.edu/~hchen/paper/acsac07.pdf (accessed
15.08.2010).

[11] H. Noh, J. Kim, C.Y. Yeun, K. Kim, New polymorphic worm detection based
on instruction distribution and signature, 2008 [Online]. Available from:
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.
pdf (accessed 18.08.2010).

[12] B. Bayoglu, I. Sogukpinar, Polymorphic worm detection using token–pair
signatures, 2008 [Online]. Available from: http://www.pdffact.com/worm-
detection-using-local-networks.pdf (accessed 27.08.2010).

[13] B. Xiao, Y. Tang, J. Luo, G. Wei, Concept, characteristics and defending
mechanism of worms, IEICE Trans. Inf. Syst. E92-D (5) (2009) 799–809.

[14] Y. Tang, B. Xiao, X. Lu, Generating simplified regular expression signatures for
polymorphic worms, in: The 4th International Conference on Autonomic and
Trusted Computing, ATC-07, 2007, pp. 478–88.

[15] H.A. Kim, B. Karp, Autograph: Toward automated, distributed worm signature
detection, in: USENIX Security Symposium, 2004, pp. 271–286.

[16] H.A. Kim, Privacy-preserving distributed, automated signature-based
detection of new internet worms, 2010 [Online]. Available from:
http://reports-archive.adm.cs.cmu.edu/anon/2010/CMU-CS-10-122.pdf (ac-
cessed 12.10.2010).

[17] J. Newsome, B. Karp, D. Song, Polygraph: Automatically generating signatures
for polymorphic worms, in: Proceedings of the 2005 IEEE Symposium
on Security and Privacy, IEEE Computer Society Press, Washington, 2005,
pp. 226–241.

[18] S.B. Needleman, C.D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48 (1970)
443–453.

[19] S.K. Singh, K.C. Roy, V. pathak, Channels reallocation in cognitive radio
networks based on dna sequence alignment, 2010 [Online]. Available from:
http://airccse.org/journal/ijngn/papers/0610jngn3.pdf (accessed 14.09.2010).

[20] Z. Du, F. Lin, Improvement of the Needleman–Wunsch algorithm,
2004 [Online]. Available from: http://www.springerlink.com/content/
ln7af6d0bpvgqp14/ (accessed 15.09.2010).

[21] A.M. Lesk, Introduction to Bioinformatics, third ed., Oxford University Press,
2008.

[22] W.K. Sung, Algorithms in Bioinformatics: A Practical Introduction, Chapman &
Hall/CRC, 2009.

[23] Y. Song, M.E. Locasto, A. Stavrou, A.D. Keromytis, S.J. Stolfo, On the infeasibility
of modeling polymorphic shellcode, 2007.

[24] V. Chang, Y. Kuo, M. Ramachandran, Cloud computing adoption framework: A
security framework for business clouds, Future Gener. Comput. Syst. 57 (2016)
24–41. http://dx.doi.org/10.1016/j.future.2015.09.031.

[25] V. Chang, M. Ramachandran, Towards achieving data security with the cloud
computing adoption framework. services computing, IEEE Trans. Comput.
Serv. 99 (2015).

Shadi A. Aljawarneh is an associate professor, Software
Engineering, at Jordan University of Science and Tech-
nology, Jordan. He holds a BS.c. degree in Computer Sci-
ence from Jordan Yarmouk University, a M.Sc. degree in
Information Technology from Western Sydney University
and a Ph.D. in Software Engineering from Northumbria
University-England. He is currently an associate profes-
sor in faculty of IT in Isra University, Jordan, where he has
worked since 2008. His research is centred inweb and net-
work security, e-learning, bioinformatics, Cloud Comput-
ing and ICT fields. Aljawarneh has presented at and been

on the organising committees for a number of international conferences and is a
board member of the International Community for ACM, Jordan ACM Chapter, ACS,
and others. A number of his papers have been selected as ‘‘Best Papers’’ in confer-
ences and journals.

http://dx.doi.org/10.1145/2832987.2833031
http://dx.doi.org/10.1016/S1353-4858(11)70026-5
http://dx.doi.org/10.1016/S1353-4858(11)70026-5
http://dx.doi.org/10.1016/S1353-4858(11)70026-5
http://dx.doi.org/10.1016/S1353-4858(11)70026-5
http://dx.doi.org/10.1016/S1353-4858(11)70026-5
http://dx.doi.org/10.1016/S1353-4858(11)70026-5
http://dx.doi.org/10.1016/S1353-4858(11)70026-5
http://dx.doi.org/10.4018/ijcac.2011040105
http://dx.doi.org/10.4018/ijcac.2011040105
http://dx.doi.org/10.4018/ijcac.2011040105
http://dx.doi.org/10.4018/ijcac.2011040105
http://dx.doi.org/10.4018/ijcac.2011040105
http://dx.doi.org/10.4018/ijcac.2011040105
http://dx.doi.org/10.4018/ijcac.2011040105
http://dx.doi.org/10.4018/ijcac.2011040105
http://www.springerlink.com/content/f1k63052u27p6438/
http://www.springerlink.com/content/f1k63052u27p6438/
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://archives.neohapsis.com/archives/sf/ids/2005-q2/0130.html
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://portal.acm.org/citation.cfm?id=1162666.1162676
http://www.cs.ucdavis.edu/%7Ehchen/paper/acsac07.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
www.caislab.kaist.ac.kr/publication/paper_files/2008/SCIS08_Hanyoung.pdf
http://www.pdffact.com/worm-detection-using-local-networks.pdf
http://www.pdffact.com/worm-detection-using-local-networks.pdf
http://www.pdffact.com/worm-detection-using-local-networks.pdf
http://refhub.elsevier.com/S0167-739X(16)30004-8/sbref13
http://reports-archive.adm.cs.cmu.edu/anon/2010/CMU-CS-10-122.pdf
http://refhub.elsevier.com/S0167-739X(16)30004-8/sbref17
http://refhub.elsevier.com/S0167-739X(16)30004-8/sbref18
http://airccse.org/journal/ijngn/papers/0610jngn3.pdf
http://www.springerlink.com/content/ln7af6d0bpvgqp14/
http://www.springerlink.com/content/ln7af6d0bpvgqp14/
http://www.springerlink.com/content/ln7af6d0bpvgqp14/
http://www.springerlink.com/content/ln7af6d0bpvgqp14/
http://www.springerlink.com/content/ln7af6d0bpvgqp14/
http://www.springerlink.com/content/ln7af6d0bpvgqp14/
http://refhub.elsevier.com/S0167-739X(16)30004-8/sbref21
http://refhub.elsevier.com/S0167-739X(16)30004-8/sbref22
http://dx.doi.org/10.1016/j.future.2015.09.031
http://refhub.elsevier.com/S0167-739X(16)30004-8/sbref25

	Investigations of automatic methods for detecting the polymorphic worms signatures
	Introduction
	Anatomy of polymorphic worms and signature automatic systems
	Polymorphic worm
	Polymorphic techniques
	Polymorphic body
	Worm detection signature

	Pattern based detection
	Autograph
	Polygraph
	Generating simplified regular expression signature

	Methodology and implementation
	SRE mechanism design
	Implementation of the SRE
	The CSR algorithm

	Discussions
	Conclusions and future work
	References

