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Abstract 
The logistic regression model has been become commonly used to study the 
association between a binary response variable; it is widespread application 
rests on its easy application and interpretation. The subject of assessment of 
goodness-of-fit in logistic regression model has attracted the attention of 
many scientists and researchers. Goodness-of-fit tests are methods to deter-
mine the suitability of the fitted model. Many of methods proposed and dis-
cussed for assessing goodness-of fit in logistic regression model, however, the 
asymptotic distribution of goodness-of-fit statistics are less examine, it is need 
more investigated. This work, will focus on assessing the behavior of asymp-
totic distribution of goodness-of-fit tests, also make comparison between 
global goodness-of-fit tests, and evaluate it by simulation. 
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1. Introduction 

The goal of a logistic regression analysis is to find the best fitting model to de-
scribe the relationship between an outcome and covariates where the outcome is 
dichotomous, [1] considered the logistic regression model is a member of the 
class of the generalized linear models. Many assumptions and more details con-
sidered about the behavior of logistic model see [2] [3], also for more application 
see [4] [5] [6] [7]. The goodness-of-fit is very important to decide if the more 
succinct model is adequate. After fitting the logistic regression model, the next 
step is to examine the proposed model how well fits the observation data and to 
know how effective the model is; this is called as its goodness-of-fit. Good-
ness-of-fit tests for the logistic regression can be split into three types: 1) Those 
based an examination of residuals; 2) Those based a test which groups the ob-
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servation; 3) Those which do not group observation. Methods in 1) are more 
general and subjective assessments of a model and are not considered in this 
work. This is not to undervalue then they are often the most valuable approach 
to model assessment. The observed values for Bernoulli regression are just 0 s 
and 1 s and this makes graphical approaches less easy to handle. The focus of 
this work is the test statistics. In next section, tests using grouping are consi-
dered, with those that do not need to group the data being discussed in section 3. 
Investigate the behavior of the asymptotic distribution of goodness-of-fit tests is 
considered in section 4 with comparisons between some goodness-of-fit tests, 
evaluated by simulation data with two different sample sizes. The simulation in 
this work was designed according to simulation that made by [8], which made 
comparisons between some goodness-of-fit tests in logistic regression models 
with sparse data. The results of his simulation showed that some goodness-of-fit 
tests have reasonable power compared with other tests. However, Kuss did not 
give information about the asymptotic distribution of these statistics. This paper 
supposes to show the behavior of the asymptotic distribution of goodness-of-fit 
tests for logistic regression model. Finally, conclusion and further discussion 
made in the last section. 

2. Goodness-of-Fit Tests with Grouping 

[9] proposed and developed approaches involving grouping based on the values 
of the estimated probabilities obtained from the fitted logistic model. Two 
grouping methods were proposed. The first approach is based on grouping the 
data according to percentiles of the estimated probabilities, and the second ap-
proach is based on grouping the data according to fixed cutoff values of the es-
timated probabilities. Tests with grouping based on estimated probabilities were 
proposed and developed by [9] [10] [11]. [12] developed a score test statistic 
which essentially compares two fitted model. 

Hosmer and Lemeshow Test Ĉ  The calculation of this test dependent upon 
grouping of estimated probabilities ( )π̂ ix  which use g groups. The first group 
contains the 1 =n n g  observations which have the smallest estimated probabil-
ities, the second group contains 2 =n n g  values have the next smallest esti-
mated probabilities and the last group contains the =gn n g  observation with 
the largest ( )π̂ ix : here n is the size of the sample and g the total number of 
groups. Before defining a formulae to calculate Ĉ  we will consider some no-
tions. The statistic test Ĉ  is obtained by calculating Pearson chi-square statistic 
from the 2× g  table with two rows and g columns of observed and expected 
frequencies. In the row with y = 1 summing of the all estimated probabilities in a 
group give the estimated expected value. In the row with y = 0 estimated ex-
pected value is obtained by summing one minus the estimated probabilities over 
all subjects in the group. We can denotes the observed number of subjects have 
had the event present ( )1=y  and absent ( )0=y  respectively in each group 
columns g ( )1, 2,3, ,= s g : 
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( )1 0
1 1

, 1
= =

= = −∑ ∑
s sn n

s i s i
i i

O y O y  

where sn  is the number of the observation in group g. The expected number of 
subjects of present and absent respectively is denoted by: 

( )1 0
1 1

ˆ ˆ, 1π π
= =

= = −∑ ∑
s sn n

s i s i
i i

E E  

Then Ĉ  is simply obtained by calculation the Pearson 2χ  statistic for the 
observed and expected frequencies from the 2× g  table as: 

( )2
1

1 0

ˆ
g

js js

s j js

O E
C

E= =

−
= ∑∑  

from which it following 

( ) ( )2 2
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and finally we get 

( )
( )
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1
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1
π

π π=

−
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s s s
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where, sn  is the total number of values in sth group, sO  is the number of res-
ponses for the number of covariates in the sth group, defining as 

1=
= ∑

sn

s i
i

O y  

where, 1 0= +s s sO O O , and π s  is the average of the estimated probabilities 
which are defined as: 

1

ˆ
.

sn
i i

s
i s

m
n
π

π
=

= ∑  

Here, the number of observations within covariate pattern i is denoted by im . 
Use of an extensive set of simulations proved that when 1=im , where im  is 
the individual binomial denominator and the fitted logistic model is the correct 
model, then the distribution of Ĉ  is approximated by the 2χ  distribution 
with ( )2−g  degrees of freedom [9]. 

Hosmer and Lemeshow Test Ĥ  
The second grouping strategy was proposed from Hosmer and Lemeshow 

denoted by Ĥ , this method depends upon grouping the estimated probabilities 
in groups based on fixed cutpoint, so each group contains all subjects with fitted 
probability located in specific intervals. For example, the cutpoint of the first 
group is ( )ˆ0.0 0.1π≤ <ix , then this group contains all subjects with estimated 
probabilities located in this interval; the second group contains all subjects with 
estimated probabilities located between cutpoint ( )ˆ0.1 0.2π≤ <ix  and the last 
group has interval ( )ˆ0.9 1.0π≤ <ix . 

The calculation of Ĥ  uses exactly the same formulae used to calculate Ĉ : 
the only difference between the two approaches is in the construction of the 



N. H. S. Badi 
 

437 

groups. The distribution of Ĥ  is approximated by the 2χ  distribution with 
( )2−g  degrees of freedom. 

Although Hosmer and Lemeshow tests are good, it requires grouping, and 
choice of g is 
• g is arbitrary but almost everywhere in the literature and in software a value 

of 10, or very similar is chosen. 
• Smaller values of g might be chosen for smaller n. 
• Sparse data causes a problem for H and lead to uneven group widths for C. 

3. Goodness-of-Fit Tests without Grouping 

Deviance and Pearson Chi-Square Tests 
Two of the most commonly used goodness-of-fit measures, are the Pearson’s 

chi-squared 2χ  and the deviance D goodness-of-fit test statistics but the beha-
viour of these tests are unstable with bernoulli data; see [13]. The general idea of 
the deviance is make comparison between two models the first model is full 
model with p parameters and the second model is a model with q parameters, 
where ( )<q p . The deviance can write as 

( )
ˆ

2 log 2 ,ˆ
 

= − = − −  
 

 

s
s r

r

LD
L

 

where ˆ
rL , ˆ

sL  are the likelihoods for the full and small model and  r ,  s  
denoted to the log-likelihood: Asymptotically this is 2χ  in −p q  df. The re-
sidual deviance is the case when the large model is saturated and has n parame-
ters. In case of the logistic regression model [13] introduced specific form when 

1=im ; the residual deviance can then be found as 

( ) ( ){ }
1

ˆ ˆ ˆ ˆ2 log 1 log 1 ,π π π π
=

= − + − −∑
n

i i i i
i

D  

In this case the deviance is invalid as a goodness-of-fit test, because it is a 
function of π̂ i , which does not compare the observed values with fitted values. 

Also, [13] discussed that Pearson chi-square goodness of fit statistic when 
1=im ; can be written: 

( )
( )

2
2

1

ˆ
ˆ ˆ1

π
π π=

−
= =

−∑
n

i

i

y
X n  

which is equal to the sample size: this is not a useful goodness-of-fit test. 
Residual Sum of Squares Test 
[14] proposed a method, which used the unweighted residual sum of squares a 

goodness-of-fit test to assess the model adequacy. The idea of this approach is to 
keep all the individual values of mi but to give less weight in cases of mi are small. 
The unweighted residual sum of squares statistic considers only the numerator 
of the Pearson chi-squares statistic, which is the summation again over the indi-
vidual observations, the statistic can be written: 

( )2

1
ˆ .π

=

= −∑
n

i i
i

RSS y  
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Of course, the relative weighting for varying mi is not relevant for our case 
where mi = 1. [11] discussed how to compute the moments and asymptotic distri-
bution of the RSS statistic. They give useful expressions for the mean and variance 
which are easier to compute than the expressions given by [14]. The proposed 
asymptotic mean and variance of RSS are respectively, ( ) 0− ≅  E RSS S W  
and var ( ) ( )T− ≅ −  RSS S W d I M Wd , where ( ) 1T T−

=M WX X WX X , 
( )diag 1π π = − i iW , ( ) ( )( )1 diag 1π π

=
 = − ∑ n

i iiS W  and d is vector with 

elements ( )1 2π= −i id . Used the standardized statistic to assess significance by 
referring the following to the standard normal 

( )
( )

.
var

−  
−  

RSS S W

RSS S W
 

2R  Test 
Several 2R  type statistics have been used for goodness-of-fit in logistic re-

gression, such as that proposed by [15]. 
2

2

0

ˆ
1 ˆ

 
= −   

 

n

c
g

LR
L

 

where, ˆ
cL  represents the log-likelihood evaluated at the ML estimation para-

meters and 0L̂  represents the log-likelihood of the model containing only an 
intercept. Another version due to [16] is 

( )
2

2
2max

= g
g

g

R
R

R
 

where, ( ) ( )22
0

ˆmax 1= −
n

gR L . 
Information Matrix tests: IMT and IMTDIAG 
The Information Matrix test (IMT) is a test for general mis-specification, 

proposed by [17]. The two well-known expressions for the information matrix 
coincide only if the correct model has been specified and the IMT takes advan-
tage of this fact. The IMT avoids the grouping necessary for tests like the Hos-
mer-Lemeshow test. Many researchers, [18] [19] [20] [21] pointed out the beha-
viour of the asymptotic distribution of IMT statistic and dispersion matrix. [22] 
discussed the information matrix test and showed that it is useful with binary 
data models. [8] claimed that, the IMT has reasonable power compared with 
other tests, without information about the behaviour of the asymptomatic dis-
tribution of IMT. The idea of the information matrix test is to compare  

2

TE
θ θ

 −∂
 
∂ ∂ 



 and Tθ θ
∂ ∂ 

 ∂ ∂ 
 E , as these differ when the model is mis-specified  

but not when the model is correct. 
Let, consider binary regression, where the outcome for individual i, i = 1, ···, n 

is a random variable { }0,1∈iY . Also ( ) ( )TPr | π β= =i i i iY x f x  where ix  is a 
1×p  dimensional vector of covariates and β  is a p-dimensional vector of pa-

rameters. It will be convenient to write Tβ=i ia x  and  i  to be the contribution 
to the log-likelihood 


 from unit i. 
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We have 

( ) ( ) ( ) ( )
1 1

log 1 log 1β β π π
= =

= = + − −∑ ∑ 

n n

i i i i i
i i

Y Y  

The p-dimensional likelihood equations 0β∂ ∂ =  can be written: 

( )
( )1

0
1
π π

β π π=

 − ∂∂
= = ∂ − ∂  
∑
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i i i i

Y
x

a
                   (1) 

We can also derive the ×p p  matrix 2 Tβ β∂ ∂ ∂  as: 

( )
( )

( )
( )

222
1 1 T

2 22
1 1 1

π ππ π
π π π π=

 − −  ∂ ∂ −  − ∂∂ −   
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n
i ii i
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            (2) 

The idea behind the information matrix test is that if the model is correctly 
specified then the quantity: 

2

T T
1 ˆ ˆβ β

β β β β=

 ∂ ∂ ∂ = +
 ∂ ∂ ∂ ∂ 

∑   

n
i i i

i
IM  

has zero mean. By comparing (1) and (2) we can compute this quantity, for a 
general value of β , as the sum of: 

( )
( )

2 2
T

T T 21
π π

β π πβ β β
−∂ ∂ ∂ ∂

+ =
∂ −∂ ∂ ∂ ∂
   i ii i i i

i i
i i i

Y
x x

a
              (3) 

We can test the null hypothesis that IM has zero mean by computing the va-
riance of IM and then constructing a standard 2χ  statistic. The first step is to  

compute the variance of 
1
2

−

∑ in d  where we write id  for essentially the right  

hand side of (3): 
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( )

2

21
π π

π π
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a
 

where we have changed the ×p p  symmetric matrix into a vector iz  in order 
to be able to use standard methods. As T

i ix x  is symmetric we do not wish to  

duplicate entries, so iz  is the ( )1 1
2

+p p -dimensional vector: 

( ) ( ) ( )( )T
11 21 1 22 32 2 1 , 1 , 1, , , , , , , , , , ,− − −

      =         i p p ppp p p pz x x x x x x x x x  

where stx  is the ( ), ths t  element of T
i ix x . If we write: 
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then because the different terms are independent we obtain: 

( ) ( )

22
T
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1 1var .
1

π
π π=
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which is a ×q q  dimensional matrix where ( )1 1
2

= +q p p . 

We should also note that if B is defined as essentially the log-likelihood, i.e. 

( )
( ) ( )

1 1
2 2

1 11
π π

π
π π

− −

= =

− ∂
= = −

− ∂∑ ∑
n n

i i i
i i i i

i ii i i

Y
B n x n Y x

a
 

then the variance of B is the ×p p  matrix Ω : 

( )

2
T

1

1 1
1

π
π π=

 ∂
Ω =  − ∂ 

∑
n

i
i i

i i i i

x x
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Before compute the covariance of A and B, we get, using 

( ) ( ) ( ) ( )2 1 1 2π π π π π− − = − −i i i i i i iy y  

Now, 

( ) ( ) ( ) ( )cov , = −A B E AB E A E B  

For independently and identically random variables and under the 0H  the 
second term of the ( )cov ,A B  is zero, and covariance of A and B in this case is 
the ×q p  matrix, and so 

( ) ( )
2

T
2

1

1 1cov ,
1

π π
π π=

  ∂ ∂
∆ = =   − ∂ ∂  

∑
n

i i
i i

i i i i i

A B z x
n a a

 

Central limit arguments suggest that asymptotically ( )T T,A B  is a +q p  
dimensional normal variable. However, the IM-test requires A to be evaluated at 
β̂ , Â , say, and at this value we know that B = 0. Consequently the variance of 
Â  is the variance of A conditional on B = 0 which is 1 T−Ψ − ∆Ω ∆ . 

Assuming a logistic regression we have ( )1π π π∂ ∂ = −i i i ia  and 2 2
i iaπ∂ ∂  

( )( )1 1 2i i iπ π π= − −  so we can evaluate the dispersion matrices at the MLEs as: 

( ) T

1

1ˆ ˆ ˆ1π π
=

Ω = −∑
n

i i i i
i

x x
n

 

( ) ( )2 T

1

1ˆ ˆ ˆ ˆ1 1 2π π π
=

Ψ = − −∑
n

i i i i i
i

z z
n

 

( ) ( ) T

1

1ˆ ˆ ˆ ˆ1 1 2π π π
=

∆ = − −∑
n

i i i i i
i

z x
n

 

If we write 1 Tˆ ˆ ˆ ˆ ˆ−= Ψ − ∆Ω ∆V  then one version of the IM test is found by re-
ferring T 1ˆ ˆˆ −A V A  to a 2χ  variable with degrees of freedom equal to the rank of 
V̂ . 

The idea of the IMDIAG test and IM test are the same, the only difference is that 
for the former the elements of iz  are just the diagonal elements of T

i ix x , so iz  
is the p dimensional vector: 

( )T 2 2 2
1 2, , , .= i i i ipz x x x  

To explain the difference in size of vector iz  in the two cases of IM test and 
IMDIAG test, let us consider a simple example. Suppose we have a symmetric ma-
trix with elements T

i ix x  and 3 3×  dimension as: 
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11 12 13

21 22 23

31 32 33

,
 
 
 
  

x x x
x x x
x x x

 

where, =rs ri six x x . Then in the case of the IM test, the dimension of vector T
iz  

is 1 6×  and elements are: 

[ ]T
11 12 13 22 23 33, , , , , ,=iz x x x x x x  

whereas in the case of IMDIAG test, iz  is the 1 3×  dimensional vector: 

[ ]T
11 22 33, , .=iz x x x  

4. Simulation Study 

Our work, focus on behaviour of goodness of fit tests under alternative hypo-
theses in case of missing covariate model and in case of the wrong model, be-
cause these cases we could not reproduce Kuss’s work in. We will focus on four 
goodness-of-fit tests ( )ˆ , , ,g DIAGC RSS IM IM . Therefore, we examine in more 
depth the behaviour of the tests and determine more information about asymp-
totic MLE distribution in case of the wrong model 

( )2expit 0.405 ,π =i ix  

or in the case of the missing covariate, 

( )expit 0.405 0.223 ,π = +i i ix u  

where ( ), ~ 6,6−X U U , X and U independent. 
Simulation study designed as Kuss’s work: 

• The sample sizes are n = 100 and n = 500. 
• Applied only on extreme sparseness when 1=im . 
• number of simulation is 1000. 
• distribution of the predictor variables X, U is ( )6,6−U , X and U indepen-

dent chosen to confirm with Kuss’s work. 
• Use four of goodness-of-fit tests from the simulation study under three dif-

ferent alternative hypotheses: 
(a) True covariate. 
(b) Missing covariate. 
(c) Wrong functional form of the covariate. 

• Fitted model in all cases is a standard logistic model with an intercept and 
one covariate. 

• All the tests on the null hypothesis under 0.05α = . 

Results and Discussion of Tests under Correct Model 

In Table 2, reported some results, the mean, variance and the empirical power of 
four goodness-of-fit tests from simulation study under correct model, namely 

( )expit 0.693 .π =i ix  

Statistics used in the simulation as goodness-of fit tests are: Hosmer- 
Lemeshow ( )ˆ

gC , Information matrix ( )IM , Information matrix Diagonal 
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( )DIAGIM  and residual sum of squares (RSS). The asymptotic distribution of 
statistics is 2

dfχ  distribution, where the mean and variance equal df and 2df 
respectively. In case of ( )ˆ

gC  statistic we chosen the number of group is g = 10 
so, degree of freedom is 2= −df g . The results shown in Table 1, the mean 
and variance of all statistics appeared close to df and 2df. Moreover, the simula-
tion study appeared reasonable results when fit the model with sample size n = 
500. However, there is slightly large variance of ( )ˆ

gC  in case of sample size n = 
100. Overall, the empirical power and type I error looks good. 

In the second case, the results reported the mean, variance and the power to 
detect a mis-specified model for same goodness-of-fit tests under missing cova-
riate model, when the model is: 

( ) ( )logit expit 0.405 0.223 ,π = +i i ix u  

and fit standard logistic regression model with ix . 
Table 2, showed results from simulation study under alternative hypotheses 

missing covariate model. The mean and variance of all statistics close to df and  
2df, but we have slightly smaller variance in case of ˆ

gC . However, we have low 
power when used IM statistics in case of sample size n = 500, IMDIAG statistic and 
RSS in case of sample size n = 100 and ˆ

gC  statistic in both cases of sample size. 
The final case we will show the results of power to detect a mis-specified 

model for four goodness-of-fit tests under the wrong functional form of the co-
variate model 

( ) ( )2logit expit 0.405π =i ix  

and fit the model as previous cases. 
 
Table 1. Results of N = 1000 simulation with sample size n = 100 and n = 500 under 
correct model. 

n = 100 n = 500 

- df Mean Var %Rej Mean Var %Rej 

ˆ
gC  8 8.06 20.47 4.6 7.96 17.12 5.70 

IM  3 3.06 7.23 5.10 3.00 6.33 4.70 

DIAGIM  2 2.04 3.97 5.50 1.94 3.63 4.20 

RSS  1 0.98 1.81 4.60 0.99 1.83 4.10 

 
Table 2. Results of N = 1000 simulation with sample size n = 100 and n = 500 under 
missing covariate model. 

n = 100 n = 500 

- df Mean Var %Rej Mean Var %Rej 

ˆ
gC  8 7.44 11.13 1.50 7.35 12.62 3.20 

IM  3 3.01 6.05 5.50 2.38 4.15 1.90 

DIAGIM  2 1.82 3.06 3.3 2.05 3.46 4.80 

RSS  1 0.92 1.51 4.10 0.99 1.73 4.50 
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In Table 3, reported results for goodness-of-fit tests from simulation study 
under wrong model. The mean and variance of all statistics appeared very larger 
in two cases of sample size comparing with degree of freedom of statistics. How- 
ever, high power in all goodness-of-fit tests in both sample size were found, that 
is meaning this tests have rejected all the null hypothesis. On the other hand, 
Kuss’s results appeared low power in case of sample size n = 100 compared with 
our results. 

In Figure 1, we plot π  vs x  and we show the true model (continues line). 
If we fit ( )expitπ α β= + x , these putative approximation are shown for 0β < , 

0β >  and 0β =  (dot and dash, dash and dot) line respectively. 
 

Table 3. Results of N = 1000 simulation with sample size n = 100 and n = 500 under 
wrong model. 

n = 100 n = 500 

- df Mean Var %Rej Mean Var %Rej 

ˆ
gC  8 31.50 75.73 98.8 133.73 382.62 100 

IM  3 17.33 17.97 100 75.57 72.70 100 

DIM  2 16.85 16.64 100 76.28 71.82 100 

RSS  1 17.07 17.16 100 76.17 163.84 99.5 

 

 
Figure 1. Plots of the different logistic model π i  given ( )~ 6,6−X U . 

5. Conclusion and Further Work 

The work considered in this paper was centered on the asymptotic distribution 
of goodness-of-fit tests in logistic regression model. We also consider the com-
parison between some global goodness-of-fit tests, which compared with Kuss’s 
results. Application of simulation apply in two types of goodness-of-fit tests, 
those based a test which groups the observation and those which do not group 
observation. Our results of study confirm the work of Kuss’s regarding  
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the power of goodness-of-fit tests, which related the Rss , Hosmer-Lemeshow, 
IM and IMDIAG tests under correct and missing model. However, our results 
about the asymptomatic distribution of goodness-of-fit tests show, various com-
binations of behavior on the mean and variance of statistics, which, the asymp-
totic distribution of statistics is Chi-square 2χdf . The results under correct mod-
el show reasonable power for all methods, slightly larger variance found in case 
of Hosmer-Lemeshow test, and smaller variance under missing covariate model. 
As we know the goodness-of-fit statistics are distributed asymptotically as 
central 2χ  distribution under H0 when the model is correctly specified, and is 
non-central 2χ  under H1 when the model mis-specificed. However, under 
wrong model the results show strange behavior, which all the means and va-
riances are not satisfy the assumption on asymptotic distribution 2χdf  with men 
df and variance 2df, also, it is appeared with high power. The problem means 
that in some circumstances properties of the distribution of the statistics of tests 
(e.g mean and variance) are far away from the properties of 2χ  distribution. In 
fact, the interesting point here, some of goodness-of-fit tests seem affected by 
assumption on covariance matrix. So, many issues about the mean and variance 
of the asymptotic distribution of goodness-of-fit statistic should also be ex-
amined. 
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