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ABSTRACT 

 
Accurate prediction of dam breach width is crucial in dam risk assessments because it significantly 

influences peak breach outflow, inundation levels, and flood arrival time. This paper investigates the 

abilities of Adaptive Neuro-Fuzzy Inference system (ANFIS) method to improve the accuracy of 

embankment breach width estimation. Different ANFIS models comprising various combinations of 

variables including reservoir storage, height above breach invert, dam width and dam materials are 

developed to evaluate degree of effect of each of these variables on breach width. Historical data from 

79 embankment dam failures are used in the development and testing of the ANFIS model. A 

comparison is made between the estimates provided by the ANFIS model and the available regression 

equations (RE). Uncertainty analysis and several statistical measures are also used to evaluate the 

performance of the ANFIS models. The results indicated the potential of the ANFIS model to be used 

as a predictive tool for estimating the average breach width of embankment dams. 
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1. INTRODUCTION 

 
Embankment dams are built for many purposes (water supply, power generation, irrigation, 

recreational and fishery improvement, etc.) and preferred under certain circumstances, especially 

when sufficient materials are available near the dam site, the foundation is pervious, and the ratio of 

dam length to height is high. The main problem facing this kind of dam is piping or overtopping that 

may cause erosion of materials and ultimately breaching of the embankment. Accurate estimations of 

breach characteristics are needed as a basis in dam risk assessments. In order to carry out an 

embankment failure analysis the average breach width in the dam is one of the key parameters that 

should be accurately estimated because it influences the severity of failure and affects the magnitude 

of the peak discharge. The breach shape of an embankment dam is assumed to vary from triangular to 

trapezoidal as the breach progresses, Wahl [24]. The average breach width (   ) is one-half the sum 

of the trapezoid top and bottom widths. Methods of estimating     are based on either case study data 

from past dam failures or physically-based models. In practice, the most widely applied methods to 

predict     are the regression equations (RE) based on regression analysis of recoded data from 

embankment dam failures, e.g. the Bureau of Reclamation [1], Von Thun and Gillette [23], and 

Froehlich [8 and 10]. RE provide simple and convenient algorithms, under the assumption of strong 

linear relationships between the input and output variables and when detailed simulations are not 

required. If these assumptions are violated then the linear regression approach leads to biased 

relationships. Uncertainty is also included in determining the reservoir water volume and the breach 

height at the time of failure that will be used to predict the breach width. It is not possible to consider 

such variations in the coefficients through regression analysis. The Adaptive Neuro-Fuzzy Inference 

system (ANFIS), on the other hand, can provide an alternative methodology for considering such 

uncertainties through vaguely defined membership functions. More details about the ANFIS 

modeling will be given in subsequent sections. ANFIS modeling is effectively utilized in applications 
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ranging over perhaps all branches of engineering. However, there is currently no solution to predict 

    using this technique.  

The main objective of the present paper is the development of ANFIS models to predict     as an 

alternative to the RE. The available case studies of embankment dam failures presented by Froehlich 

[10] constitute the basis for the development of these ANFIS models. This general objective includes: 

(1) developing ANFIS models for predicting     using first-order Sugeno fuzzy inference engine; (2) 

evaluating the ANFIS models by comparing its estimates with the observed values and estimates of 

best available RE for predicting    ; (3) evaluating the ANFIS models using some basic statistical 

parameters and (4) performing inter-comparisons between the estimates of ANFIS models in order to 

obtain the best model for predicted    . 
 

2. REVIEW OF AVAILABLE APPROACHES  

 
Several physically-based models are available in literature to simulate the breach of embankment 

dams, e.g. Cristofano [2]; Ponce and Tsivoglou [17]; Fread [5, 6]; Visser [22]; Froehlich [9]; Hanson 

et al. [14]. They rely on sediment erosion and water flow formulas and generally suffer from 

insufficient understanding of breach development, Wahl [24]. As the material changes, more 

uncertainties become included in the overall breaching process. For more practical and easily applied 

models, many researchers gathered detailed case studies of breached embankment dams and 

developed expressions to predict the characteristics and consequences of the breach. From those 

studies, Johnson and Illes [13], Singh and Snorrason [19] and The Federal Energy Regulatory 

Commission [FERC 4] recommended a range for the breach width as a linear function of the dam 

height (  ). Froehlich [7] used nondimensional analysis and developed an equation that estimates the 

average breach width as a function of the non-dimensional reservoir storage (  ). Von Thun and 

Gillette [23] used the data of MacDonald and Langridge-Monopolis [15] and Froehlich [7] and 

proposed a relation for estimating     knowing the depth of water at the dam at time of failure (  ) 

and a coefficient (  ) that depends on the reservoir storage. Later on, Froehlich [8] published a 

revised equation that has better estimated coefficients to predict    . The independent variables in this 

equation are the volume of water stored above the breach invert at time of failure (  ), the breach 

height (  ) and a factor (  ) that accounts for failure mode. Wahl [24 and 25] provided a summary of 

the available RE for predicting the breach width, performed an uncertainty analysis and compared 

state-of-the-art prediction equations. Wahl stated that Froehlich's [8] equation had the best prediction 

performance for cases with observed breach widths less than 50 m. In 2008, Froehlich [10] proposed 

another equation that will likely be accurate enough in application to estimate     as a function of 

  
    

and   . Most of the RE are derived under the assumption of linear relationships between the 

input and output variables. The results of the available RE vary widely depending on the assumptions, 

variables, subsets of data used in their formulation, and internal uncertainties that are not taken 

explicitly into consideration. The linear regression approach assumes that the scatter of points around 

the best-fit line is approximately Gaussian and has the same standard deviation all along the line, and 

the data points are independent of one another. Based on the fuzzy set theory introduced by Zadeh 

[26], Elmazoghi [3] developed a fuzzy logic model to estimate the     and the simulation results 

indicated the potential of the fuzzy logic model to be used as a predictive tool. From the above cited 

researches it can be inferred that models based on conventional mathematical tools (e.g., regression) 

require several assumptions to deal with non-linear and uncertain systems. Hence, application of 

ANFIS modelling offers an alternative that allows the modeller to include imprecise data and 

parameters without the need for any assumption.  

 

 

3. AN ANFIS  

3.1 MATERIALS AND METHODOLOGY 

 
A neuro-fuzzy system combines fuzzy logic with neural networks in order to have better results for 

systems possessing nonlinear behaviour, uncertain parameters and data. The adaptive neuro-fuzzy 
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inference system ANFIS can be described as a fuzzy inference system (FIS) equipped with a training 

algorithm, Jang [11]. A FIS consists of: (1) IF-THEN fuzzy rule base, (2) membership functions to be 

used in the fuzzy rules and (3) a reasoning mechanism, which performs the inference procedure upon 

the rules to obtain the desired output. The ANFIS uses a hybrid-learning rule combining back-

propagation, gradient-descent, and a least-squares algorithm to identify and optimize the Sugeno 

system’s parameters. In this study, the breach width (   ) can be characterized as a function of the 

water height above breach invert   , the reservoir storage  , average width of the dam  , and 

presence or absence of core         .  

Two alternatives were used to train the ANFIS models as follows: 

1. Train one model using all available data from dam failure case studies with and without 

classification. The available information with complete data concerning the height of water 

above the breach invert (  ), the reservoir storage ( ) and the average breach width (   ) 

comprises 79 case studies. This data is subdivided into two groups where one is used in the 

training phase of the model and the other is used in the testing phase of the model.  

2. Train more than one model after classification of the data according to the available 

information about: the height of water above breach invert (  ), dam height (  ), reservoir 

storage ( ), dam construction material (zoned, cored or homogeneous, without core  , No  ), 

and average width of the dam ( ). The classification of dam types was based on: 

 Availability of all hydraulic information about (  ,   ,  ,     or No  ). 

 Size of the dam. According to International Committee Of Large Dams, ICOLD, If    < 15 

m then the dam is a small dam. If     > 15 m or  between 10 and 15 m but   ≥ 1 Mm
3
 then 

the dam is a large dam, Singh [20]. 

With the purpose of performing the training and testing phases of the different models, the number of 

observations with complete data according to the above classifications are counted and taken into 

consideration. Different scenarios with different inputs and number of observations are proposed in 

this study as given in Table 1. The number of case studies in each scenario depends on the availability 

of equal information about the selected hydraulic variables in that scenario. The relationships between 

the breach width and the input variables for the various scenarios can be expressed by: 
  

             
               

                        
 

Table 2 presents the ranges and the linguistic labels of the fuzzy membership functions (MF) for the 

input variables. From 3 to 7 curves are generally appropriate to cover the required range of a fuzzy 

variable, Ross [18]. Triangular and Gaussian membership functions are used in the ANFIS models. It 

takes several trials in order to reach the optimum number and shape of membership functions that 

result in reliable estimates for the output. Figures 1, 2 and 3 show the MF for the different ANFIS 

models developed in this study to predict the average breach width. 
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Table 1 Scenarios used to Train the ANFIS models to predict the average breach width (   ) of 

embankment Dams 

 

Scenarios Inputs Custom ANFIS 

S1   ,   

79 case studies 

Membership function type: triangular MF 

Number of memberships: (6, 6) functions 

Learning algorithm: Hybrid learning algorithms 

Sugeno type-system: First order 

Output type: Linear 

S2   ,  ,   

56 case studies 

Membership function type: triangular MF 

Number of memberships: (4, 4, 4) functions 

Learning algorithm: Hybrid learning algorithms 

Sugeno type-system: First order 

Output type: Linear 

S3   ,  ,             

56 case studies 

Membership function type: Gaussian MF 

Number of memberships: (4, 4, 2, 4) functions 

Learning algorithm: Hybrid learning algorithms 

Sugeno type-system: First order 

Output type: Linear 

 

 

 

Table 2 The linguistic labels for fuzzy membership functions of input variables  

 

The variable The linguistic variable 

Depth above breach (  ) m 

Range of data 

1.68 to 77.4 m 

VSH Very Short 

SH Short 

M Medium 

MH Medium High 

H High 

VH Very High 

Reservoir storage ( )  10
6 
m

3
  

Range of data 

0.0234 to 356  

VL Very Low 

L Low 

M Medium 

MH Medium High 

H High 

VH Very High 

Existence or absence of core 

Range of data 0 or 1 
  Dam With Core 

No   Dam Without Core 

Dam average width ( ) m 

Rage of data 

7.6 to 250 m 

VS Very Short 

S Short 

M Medium 

MH Medium High 

H High 

VH Very High 
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Fig. 1 Membership functions of input variables, scenario:             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Membership functions of input variables, scenario:               
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To illustrate the ANFIS method, consider the first model including two inputs: the height of water 

above breach invert (  ) and the reservoir storage ( ), and one output, the average breach width 

(   ). Suppose that the rule base contains two fuzzy IF-THEN rules. For the first-order Sugeno FIS, 

Takagi and Sugeno [20], the two rules can be expressed as: 

 

Rule 1:                                              

Rule 2:                                              

 

where       and       are the membership functions (MF) for inputs    and  , respectively;        

and    ( = 1 or 2) are linear parameters in the consequent part of the first-order Sugeno FIS. These 

parameters have to be determined in the training process besides premise parameters which belong to 

membership functions. The architecture of the ANFIS is illustrated in Fig. 4. The ANFIS architecture 

consists of five layers, namely, a fuzzy layer, a product layer, a normalized layer, a defuzzy layer and 

a total output layer. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Membership functions of input variables, scenario:                        
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Layer 1: consists of adaptive nodes that assign membership grades for linguistic labels (such as small, 

medium, large, etc.) depending on premise parameters. For generalized bell membership functions, 

the node function is given by: 

 

        
      

       
 

   
 

 , for  =1, 2 or 

          
     

       
 

   
 

 , for  =3, 4 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Architecture of ANFIS  

 

 
Where:      is the membership grade of a fuzzy set   (=      ,       ) and it specifies the degree to 

which a given input    (or  ) satisfies the quantifier  , {     } is the parameter set of the 

membership functions in the premise part of fuzzy IF-THEN rules that adjusts the shapes of the 

membership functions. Figure 5 shows a part of the rule base of one of the ANFIS models. 

 

 

Fig. 5 Part of the rule base of one of the ANFIS models 
 

Layer2: nodes in layer 2 are fixed nodes designated Π, which represent the firing strength of each 

rule. The output of each node is the fuzzy AND (Minimum) of all membership degrees. 
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Layer3: outputs of layer 3 are the normalized firing strengths. Each node is a fixed rule labeled  . 

The output of the i
th
 node is the ratio of the i

th
 rule’s firing strength to the sum of all the rules firing 

strengths: 

 

         
  

∑    
        

 

Layer4: adaptive nodes in layer 4 calculate the rule outputs based upon consequent parameters using 

the function: 

 

                                   

 

where     is the normalized firing strength obtained from layer 3, and (      and   ) is the consequent 

parameter set of the node.  

 

Layer5: the single node in layer 5, labeled ∑, calculates the overall ANFIS output by summing all the 

incoming signals. The defuzzification process transforms each rule’s fuzzy results into a crisp output: 

 

         ∑        
∑      

∑    
  

 

Training the ANFIS is a two-pass process over a number of epochs. During each epoch, the node 

outputs are calculated up to layer 4. At layer 5, the consequent parameters are calculated using a least-

squares regression method. The output of the ANFIS is calculated and the errors propagated back 

through the layers in order to determine the premise parameter (layer 1) updates. 

 

 

3.2 DEVELOPMENT OF ANFIS-BASED MODEL  

 
The criterion chosen for the development of the ANFIS model as shown in Table 1 was based on the 

selection of the following: Membership Function Type, Number of Membership Functions, Learning 

Algorithm, Epoch Size and Data Size (training, testing). Data normalization is performed because it 

can speed up training time by starting the training process for each feature within the same scale. It is 

especially useful for modeling application where the inputs are generally on widely different scales. 

Min-Max Normalization method rescales the inputs or outputs from one range of values 𝑣 to a new 

range of values     𝑣. More often, the features are rescaled to lie within a range of 0.0 to 1.0. The 

rescaling is often accomplished by using a linear interpretation formula such as: 

 

    𝑣  
      

         
  

 

Min-max normalization has the advantage of preserving exactly all relationships in the data. It will 

encounter an “out-of-bounds” error if a future input case for normalization fails. Once the output 

values (the average breach width,    ) were obtained from the model, transform them back to the 

original scale using the inverse transformation:          𝑣                . The modeling 

criterion adopted is to effectively tune the membership functions so as to minimize the output error 

measure and maximize performance index. The Adaptive Neuro-Fuzzy Inference Systems models 

were trained and tested with the ANFIS editor. The ANFIS toolbox employed is the MATLAB 

®V7.10 (R2010a). The models were developed using the following steps at the ANFIS Graphical 

User Interface (GUI): (1) Obtaining training data, (2) Data sizing, (3) Data partitioning, (4) Loading 

the data sets. 
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3.3 EXAMINATION OF THE RELIABILITY OF THE ANFIS MODEL  

 
The performances of the developed ANFIS models were evaluated by using a variety of standard 

statistical performance evaluation measures. To limit the space in this paper, only four statistical 

performance indices are presented: Mean Absolute Error (    , Root mean square error (     , 
Nash-Sutcliffe efficiency ( ) and the coefficient of determination (  ). These statistical parameters 

are calculated during the training and the testing phases using the observed and estimated breach 

width data from the ANFIS and RE models. 

1. Mean Absolute Error (    : measures the mean absolute error between The observed and the 

predicted values. 

 

    
∑ |      

  | 
   

 
  

 

Where:   = The observed value,   
 = The predicted value and  = the total number of observations. 

 

2. Root mean square error (     : measures the root square of the mean error  

  

     √
∑       

    
   

 
  

 

3. Nash-Sutcliffe efficiency (coefficient of efficiency,  ) 

The efficiency factor ( ) proposed by Nash and Sutcliffe [16] is defined as follows: 

 

      
∑ (     

 )
  

   

∑      ̅   
   

   

 

Where:  ̅ is the average of observed values. 

The range of E lies between 1.0 (perfect fit) and −. However, an efficiency of lower than zero 

indicates that the mean value of the observed phenomenon would have been a better predictor than the 

model. The uncertainty analysis that one can express a confidence band around the predicted value of 

a parameter as: { ̂      ̅      ̂      ̅    }. The use of      approximately yields a 95% 

confidence band. For the calculation of the above statistics, the Microsoft Excel Statistical Package is 

employed. The Root Mean Square Error is the measurement of the models performance during the 

training phase. The RMSE indicates how “close” one data series is to another. In  our case, the data 

series are the Target (actual) output values and the corresponding predicted output values generated by 

the model.  

 

 
4. ANALYSIS OF THE RESULTS 

 
Figure 6 compares the results of the best ANFIS model with observation data for the first scenario 

using    and   as inputs to predict the average breach width    . The figure shows the estimates of 

two ANFIS models: (1) a model without classification of the input data, (2) another model after 

classification of the input data depending on the size of the dam (small or large). The results indicated 

that the model using classification of the data gives estimates that reasonably match the observed 

breach widths more closely relative to the estimates of that without classification. The  

   ,     ,    and   for entire data set without classification and for data after classification 

according to dam size are 15.52, 23.25, 0.80 and 0.80; 8.8, 16.3, 0.89 and 0.84, respectively, which 

are satisfactory in common model applications. 

In order to assess the ability of the ANFIS model relative to that of the RE, the comparison was 

performed between their estimates using models having the same inputs and the same number of 

observations. The performances of ANFIS and RE in terms of the performance indices are presented 
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in Table 3. From the results given  in Table 3, the ANFIS shows an improvement in predicting the 

average breach width. 

Figure 7 present the ANFIS estimates compared to the actual observations for the scenarios using 

(    ), (      ) and (               ) as input variables, respectively. These ANFIS models 

were constructed using the same number of observation data (total=56 observations) in both the 

training and testing phases. ANFIS models for the same scenarios are conducted after classification of 

the data depending on the size of the dam (small or large).  

As seen in Table 4, the same statistical indices as before were calculated for all the scenarios. To limit 

the space in this paper, only the results of ANFIS models using all data without classification are 

presented. Obviously, the performance of ANFIS model number 3 which uses all the hydraulic 

parameters (               ) as input variables is better than those of other models. The    and   

values of scenario 3 are higher than those of other models and     and      values of scenario 3 

are smaller than those of other models either for entire data set or testing data. 

The minimum values of     and      indices and maximum values of    and   
show the 

potential of the ANFIS methodology as a predictive tool for estimating the average breach width.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Comparison between ANFIS estimates and observed data: a) model using all data without 

classification and b) model using data classification based on dam size 
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Table 3 Error criteria using the estimates of the ANFIS model and RE 

 Inputs to ANFIS are   ,   

Using data from 79 case studies 
 

 
without classification 

with classification 
Froehlich (2008) 

Small Large 

    15.52 5.98 11.66 14.0 

     23.25 12.59 20.13 16.5 

   0.80 0.93 0.85 0.70 

  0.80 0.82 0.85 0.67 

 
Table 4 Error criteria using the estimates of ANFIS models with different inputs 

 Using data from 56 case studies 

Inputs to ANFIS are  

   ,     ,  ,     ,  , 

            

    8.03 10.9 5.07 

     14.8.0 17.0 13.0 

   0.88 0.85 0.92 

  0.89 0.90 0.91 
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Fig. 7 Comparison between ANFIS estimates and observed data:  

a)            , b)               and c)                        
 

 

5. CONCLUSSIONS 

 
Applicability of ANFIS method for predicting the average breach width of embankment dams was 

investigated. Models with different hydraulic parameters were constructed, trained and tested by the 

ANFIS method. Comparing the performance of ANFIS and RE models, the ANFIS model with 

triangular or Gaussian membership function and using all the hydraulic parameters 

(               ) as input variables had better performance and was selected as the best fitting 

model. moreover, the ANFIS model using classified data depending on the dam size and using (    ) 

as input variables performs quite similar as that using all the hydraulic parameters. Those ANFIS 

models performed better than RE model and can estimate more accurate breach widths. The minimum 

values of     and      indices and maximum values of    and   
show the potential of the ANFIS 

methodology as a predictive tool for estimating the average breach width. the combination of 

linguistic rules of fuzzy logic with the training algorithm used in neural networks, contribute in more 

qualitative prediction results. 
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