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Comparison of neural networks and neuro-fuzzy computing

techniques for prediction of peak breach outflow

Hasan G. Elmazoghi, Vail Karakale (Waiel Mowrtage) and

Lubna S. Bentaher
ABSTRACT
Accurate prediction of peak outflows from breached embankment dams is a key parameter in dam

risk assessment. In this study, efficient models were developed to predict peak breach outflows

utilizing artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS).

Historical data from 93 embankment dam failures were used to train and evaluate the applicability

of these models. Two scenarios were applied with each model by either considering the whole data

set without classification or classifying the set into small dams (48 dams) and large dams (45

dams). In this way, nine models were developed and their results were compared to each other and

to the results of the best available regression equations and recent gene expression programming.

Among the different models, the ANFIS model of the first scenario exhibited better performance

based on its higher efficiency (E¼ 0.98), higher coefficient of determination (R2 ¼ 0.98) and lower

mean absolute error (MAE¼ 840.9). Moreover, models based on classified data enhanced the

prediction of peak outflows particularly for small dams. Finally, this study indicated the potential of

the developed ANFIS and ANN models to be used as predictive tools of peak outflow rates of

embankment dams.
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INTRODUCTION
Failure of embankment dams can cause catastrophic flood-

ing and consequently present high risk to human life and

property located at the downstream. In order to prevent

and mitigate such a natural hazard, dam owners and

agencies responsible for dam safety carefully study, analyze

and inspect dams to identify significant failure modes. Over-

topping and piping are the most encountered modes of

failures causing breach of embankment dams (Wahl ).

The breach parameters: time of failure and breach width

and the peak outflow are crucial in evaluating dam risk

assessments. Accurate predictions of such parameters

remain a challenging task. Prediction of peak breach out-

flows (QP), which is the main theme of this study, is an

essential factor in preparing early emergency action plans
and designing early warning systems that might reduce or

eliminate the consequences of dam failure. Several methods

are available in the literature to predict the resulting QP

including: comparative analysis of similar case studies, pre-

dictor regression equations (RE) based on historic

embankment dam failures, and physically based breach

models using principles of hydraulics and sediment trans-

port. Many of these methods apply unrealistic assumptions

of linearity and suffer from uncertainty and lack of accurate

data on a wide variety of dams (Wahl ). In practice,

numerous studies have attempted to relate peak breach out-

flows (QP) to water height above breach invert at time of

failure (hw); some used dam height (hd), and reservoir sto-

rage at normal pool (S) or volume of water behind the
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dam at failure (Vw), or combinations of the two (Wahl ;

Pierce et al. ). Kirkpatrick (), the Soil Conservation

Service (SCS ) and the US Bureau of Reclamation

(USBR ) proposed best-fit linear REs for QP as a func-

tion of hw. Singh & Snorrason (, ) presented

relations for QP as linear functions of hw and S. Hagen

() and MacDonald & Langridge-Monopolis ()

defined the ‘breach formation factor’ as the product hw Vw

and developed equations relating the breach formation

factor to QP. Froehlich () used multiple regression for

22 case studies and introduced an equation for QP as a

power function of both hw and Vw. Wahl () performed

a literature search and produced a single database compris-

ing a total of 108 embankment dam failures. Later on, Wahl

() presented a quantitative analysis of the uncertainty of

various RE for predicting QP and stated that the equation

offered by Froehlich () had the best prediction perform-

ance. Pierce et al. () expanded the breach database of

Wahl () by collecting information about an additional

44 case studies and performed linear, curvilinear, and multi-

variable regression analyses on the composite database and

developed expressions correlating hw and Vw to QP.

Hooshyaripor & Tahershamsi () applied artificial

neural network (ANN) with different training algorithms

and developed a model to predict QP. Hooshyaripor et al.

() derived statistical expressions to predict QP based

on observed data and generated synthetic data using a

copula method. Duricic et al. () proposed a model

using the kriging approach to predict QP. Sattar () devel-

oped new empirical formulae for predicting QP using gene

expression programming (GEP). From the above literature,

it is seen that several prediction equations for QP have

been developed from the analysis of historic embankment

dam failures under various simplifying assumptions between

the considered hydraulic variables. Many of these prediction

equations are unable to accurately predict QP due to the

complexity of the phenomena involved, nonlinearity, and

uncertainty of data and parameters. The ANN and the adap-

tive neuro-fuzzy inference system (ANFIS) have been used

in several problems in engineering as alternative approaches

to traditional statistical models and proved advantages

because of their tolerance to data errors and the ability to

perform nonlinear mapping between a given input and a

desired output (Azmathullah et al. ; Azmathulla &
Ahmad ). These facts proclaimed the need for using

such improved prediction tools. As a result, this study was

initiated to develop new models for prediction of QP based

on ANN and ANFIS techniques and provide a comparison

between the results of these models and that of the best

available RE and GEP. Assessment of the model’s adequacy

was performed by using basic statistical error criteria.
MATERIALS AND METHODOLOGY

Development of the ANN and ANFIS models in this study

was based on the historical data of the 93 dam failures col-

lected and presented by Hooshyaripor & Tahershamsi

(). The dam type, material, and mode of failure were col-

lected and added to these data as presented in Table 1. This

table contains the required data for the variables to be used

in this study.

The models were developed by employing two effective

input variables that are known to have a direct effect on the

present phenomena: namely, the height (hw) and volume

(Vw) of water behind the dam at failure. The desired output

is the peak breach outflow (QP). Two scenarios were applied

with each of the ANN and ANFIS models. The first scenario

considered the whole data as one set without classification

and the second classified the data into small dams (48

dams) and large dams (45 dams). The second scenario is pro-

posed after noting that all models and RE are unable to

predict QP of small dams at a reasonable level. Just as large

dams, the small dams are not risk-free dams. From the phys-

ical standpoint, both types of dams behave differently

depending on several factors, including material compo-

sitions, compaction conditions, dam geometry (height, side

slopes, etc.), and reservoir capacity. When overtopping

occurs it often causes erosion of dam material starting at a

weak point at the dam crest. This will result in a vertically

directed breach at that point which will continue until it

faces a non-erodible layer (e.g., the dam base). The breach

then expands laterally to an extent depending on the reservoir

capacity (Singh ; Wahl ). Larger breach widths will

occur from large reservoir capacities and small dam heights.

In such configurations the non-erodible layer at the dam

base will be quickly reached by the vertical breach erosion,

and the breach then spreads laterally. Combination of these



Table 1 | Database from historical embankment failures

No. Dam name Vw × 106 (m3) hw (m) QP (m3/s) Dt Df De Reference

1 Apishapa, USA 22.20 28.00 6,850 HD P HE Xu & Zhang ()

2 Armando de S. Oliveira, Brazil 25.90 35.00 7,195 HD O – Tahershamsi et al. ()

3 Baldwin Hills, USA 0.91 12.20 1,130 HD P HE Wahl ()

4 Banqiao, China 607.50 31.00 78,100 DC O HE Xu & Zhang ()

5 Bayi, China 23.00 28.00 5,000 HD P ME Xu & Zhang ()

6 Big Bay, USA 17.50 13.59 4,160 ZD P ME Pierce et al. ()

7 Boystown, USA 0.36 8.96 65.13 – – – Pierce et al. ()

8 Bradfield, UK 3.20 28.96 1,150 HD P – Wahl ()

9 Break Neck Run, USA 0.05 7.00 9.20 – – – Wahl ()

10 Buffalo Creek, USA 0.48 14.02 1,420 HD P – Wahl ()

11 Butler, USA 2.38 7.16 810 HD O – Wahl ()

12 Caney Coon Creek, USA 1.32 4.57 16.99 – – – Pierce et al. ()

13 Castlewood, USA 6.17 21.60 3,570 DC O ME Xu & Zhang ()

14 Chenying, China 5.00 12.0 1,200 HD O ME Xu & Zhang ()

15 Cherokee Sandy, USA 0.44 5.18 8.50 – – – Pierce et al. ()

16 Colonial #4, USA 0.04 9.91 14.16 – – – Pierce et al. ()

17 Dam Site #8, USA 0.87 4.57 4,899 – – – Pierce et al. ()

18 Danghe, China 10.70 24.50 2,500 DC O LE Xu & Zhang ()

19 Davis Reservoir, USA 58.00 11.58 510 FD P ME Xu & Zhang ()

20 Dells, USA 13.0 18.30 5,440 DC O HE Wahl ()

21 DMAD, USA 19.70 8.80 793 HD – – Pierce et al. ()

22 Dongchuankou, China 27.00 31.00 21,000 HD O HE Xu & Zhang ()

23 Eigiau, UK 4.52 10.50 400 – – – Singh & Scarlatos ()

24 Elk City, USA 1.18 9.44 608.79 DC O ME Tahershamsi et al. ()

25 Frankfurt, Germany 0.35 8.23 79 HD P LE Xu & Zhang ()

26 Fred Burr, USA 0.75 10.20 654 HD P – Wahl ()

27 French Landing, USA 3.87 8.53 929 HD P HE Xu & Zhang ()

28 Frenchman, USA 16.00 10.80 1,420 HD P ME Xu & Zhang ()

29 Frias, Argentina 0.25 15.00 400 FD O ME Xu & Zhang ()

30 Goose Creek, USA 10.60 1.37 492 HD O ME Tahershamsi et al. ()

31 Gouhou, China 3.18 44.00 2,050 FD P LE Xu & Zhang ()

32 Grand Rapids, USA 0.26 7.50 7.50 DC O ME Singh & Scarlatos ()

33 Hatchtown, USA 14.80 16.80 3,080 ZD P HE Wahl ()

34 Hatfield, USA 12.30 6.80 3,400 DC O HE Wahl ()

35 Haymaker, USA 0.37 4.88 26.90 – – – Pierce et al. ()

36 Hell Hole, USA 30.60 35.10 7,360 HD P ME Wahl ()

37 Hemet, USA 8.63 6.09 1,600 – – – Tahershamsi et al. ()

38 Horse Creek, USA 12.80 7.01 3,890 FD P ME Xu & Zhang ()

39 Horse Creek #2, USA 4.80 12.50 311.49 – – – Pierce et al. ()

40 Huqitang, China 0.42 5.10 50 HD P LE Xu & Zhang ()

(continued)
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Table 1 | continued

No. Dam name Vw × 106 (m3) hw (m) QP (m3/s) Dt Df De Reference

41 Ireland No. 5, USA 0.16 3.81 110 HD P – Froehlich ()

42 Johnstown, USA 18.90 22.25 7,079.20 ZD O ME Wahl ()

43 Kelly Barnes, USA 0.78 11.30 680 HD O HE Xu & Zhang ()

44 Knife Lake, USA 9.86 6.10 1,098.66 – – – Tahershamsi et al. ()

45 Kodaganar, India 12.30 11.50 1,280 HD O ME Xu & Zhang ()

46 Lake Avalon, USA 31.50 13.70 2,321.90 HD P – Tahershamsi et al. ()

47 Lake Latonka, USA 4.09 6.25 290 HD P ME Xu & Zhang ()

48 Lake Tanglewood, USA 4.85 16.76 1,351 – – – Pierce et al. ()

49 Laurel Run, USA 0.56 14.10 1,050 HD O – Froehlich ()

50 Lawn Lake, USA 0.80 6.71 510 HD P HE Wahl ()

51 Lijiaju, China 1.14 25.00 2,950 HD O ME Xu & Zhang ()

52 Lily Lake, USA 0.09 3.35 71 HD P – Froehlich ()

53 Little Deer Creek, USA 1.36 22.90 1,330 HD P HE Xu & Zhang ()

54 Little Wewoka, USA 0.99 9.45 42.48 – – – Pierce et al. ()

55 Liujiatai, China 40.54 35.90 28,000 DC O ME Xu & Zhang ()

56 Lower Latham, USA 7.08 5.79 340 HD P – Froehlich ()

57 Lower Reservoir, USA 0.60 9.60 157.44 DC O – Pierce et al. ()

58 Lower T. Medicine, USA 19.60 11.30 1,800 HD O HE Xu & Zhang ()

59 Mahe, China 23.40 19.50 4,950 HD O HE Xu & Zhang ()

60 Mammoth, USA 13.60 21.30 2,520 DC O ME Xu & Zhang ()

61 Martin Cooling, USA 136.00 8.53 3,115 FD P HE Wahl ()

62 Middle Clear Boggy, USA 0.44 4.57 36.81 – – – Pierce et al. ()

63 Mill River, USA 2.50 13.10 1,645 – – – Wahl ()

64 Murnion, USA 0.32 4.27 17.50 – – – Pierce et al. ()

65 Nanaksagar, India 210.00 15.85 9,709.50 – – – Tahershamsi et al. ()

66 North Branch, USA 0.02 5.49 29.50 HD – – Wahl ()

67 Oros, Brazil 660.00 35.80 9,630 ZD O LE Xu & Zhang ()

68 Otto Run, USA 0.01 5.79 60 HD – – Singh & Scarlatos ()

69 Owl Creek, USA 0.12 4.88 31.15 – – – Pierce et al. ()

70 Peter Green, USA 0.02 3.96 4.42 – – – Pierce et al. ()

71 Prospect, USA 3.54 1.68 116 HD P HE Xu & Zhang ()

72 Puddingstone, USA 0.62 15.20 480 HD O – Froehlich ()

73 Qielinggou, China 0.70 18.00 2,000 HD O HE Xu & Zhang ()

74 Quail Creek, USA 30.80 16.70 3,110 HD P ME Xu & Zhang ()

75 Salles Oliveira, Brazil 71.50 38.40 7,200 HD O – Wahl ()

76 Sandy Run, USA 0.06 8.53 435 HD O – Singh & Scarlatos ()

77 Schaeffer Reservoir, USA 4.44 30.50 4,500 DC O HE Xu & Zhang ()

78 Shimantan, China 117.00 27.40 30,000 HD O HE Xu & Zhang ()

79 Sinker Creek, USA 3.33 21.34 926 HD P – Pierce et al. ()

80 Site Y-30–95, USA 0.14 7.47 144.42 – – – Pierce et al. ()

(continued)
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Table 1 | continued

No. Dam name Vw × 106 (m3) hw (m) QP (m3/s) Dt Df De Reference

81 Site Y-31 A–5, USA 0.39 9.45 36.98 – – – Pierce et al. ()

82 Site Y-36–25, USA 0.04 9.75 2.12 – – – Tahershamsi et al. ()

83 South Fork, USA 18.90 24.60 8,500 – – – Froehlich ()

84 S. Fork Tributary, USA 0.0037 1.83 122 HD – – Pierce et al. ()

85 Stevens Dam, USA 0.08 4.27 5.92 – – – Pierce et al. ()

86 Swift, USA 37.00 47.85 24,947 FD O ME Xu & Zhang ()

87 Taum S. Reservoir, USA 5.39 31.46 7,743 HD O – Wahl ()

88 Teton, USA 310.0 77.40 65,120 ZD P ME Xu & Zhang ()

89 Upper Clear Boggy, USA 0.86 6.10 70.79 – – – Pierce et al. ()

90 Upper Red Rock, USA 0.25 4.57 8.50 – – – Pierce et al. ()

91 Weatland No. 1, USA 11.60 12.20 566.34 HD P – Pierce et al. ()

92 Zhugou, China 18.43 23.50 11,200 DC O HE Xu & Zhang ()

93 Zuocun, China 40.0 35.00 23,600 DC O HE Xu & Zhang ()

Dt ¼ dam type; Df ¼ failure mode; O¼ overtopping; P¼ seepage erosion/piping; HD¼ homogenous dams; DC¼ dams with corewalls; FD¼ concrete-faced dams; ZD¼ zoned-fill dams; De ¼
dam erodibility; LE¼ low erodibility; ME¼medium erodibility; HE¼ high erodibility.
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two factors (dam height and reservoir capacity) is usually con-

sidered as ameasure of potential risk downstream of the dam.

The failure of a higher dam usually generates a larger QP due

to its higher potential energy compared with a small dam

having the same storage capacity (Xu&Zhang ). Conver-

sely, for both types of dams, the design of the riprap protection

against wave action over the upstream slopes is independent

of dam height. It essentially depends on the reservoir size

(fetch and location). In this study, the ANN models were

trained using two network types: the neural networks tool

(NNTool) and neural networks fitting tool (NNFTool). The

ANFIS model considered the Takagi–Sugeno-type fuzzy

model (Takagi & Sugeno ) of which the antecedent part

is a fuzzy proposition using Gaussian membership functions

and the consequent part is a first-order polynomial linear func-

tion. The data vectors of the input and output variables in this

study were uploaded on ANN (NNTool and NNFTool) com-

prising two models for the first scenario and four models for

the second scenario; and on ANFIS, as one model for the

first scenario and two models for the second scenario. In

this way, nine models were developed and analyzed. The

results of the training and testing phases were judged against

separate sets of the observed QP values. Basic error criteria

were calculated to assess the adequacy of the developed

models.
ANFIS

An ANFIS combines fuzzy logic with neural networks in

order to get better results for systems possessing nonlinear

behavior and uncertain variables and data. The ANFIS can

be described as a fuzzy inference system equipped with a

training algorithm (Jang ). ANFIS consists of IF-THEN

fuzzy rule base, membership functions to be used in the

fuzzy rules, and a reasoning mechanism which performs

the inference procedure upon the rules in order to obtain

the desired output. The ANFIS uses a hybrid-learning rule

combining back-propagation, gradient-descent, and a least-

squares algorithm to identify and optimize the Sugeno sys-

tem’s parameters. ANFIS modeling is effectively utilized in

applications ranging over perhaps all branches of engineer-

ing, however, there is currently no solution to predict the

QP using this technique. In the present study, an ANFIS

model is developed to predict QP as a function of hw and

Vw under two scenarios, as given in Table 2, as follows:

1. One model is developed using all available data vectors of

(hw), (Vw), and (QP) from the historical 93 dam failures in

Table 1 without classification. This database is randomly

subdivided into two sets without any pre-selection pro-

cess. The bigger set (73 dams) is used in the training



Table 2 | The scenarios used to train the ANFIS models for prediction of QP

Scenarios Inputs Custom ANFIS

S1 hw, Vw 93 case
studies

Membership function type:
Gaussian MF; Number of MFs:
(4, 4) functions; Learning
algorithm: hybrid learning
algorithms; Sugeno type-system:
first order; Output type: linear

S2 hw, Vw small
dams 48 case
studies

Membership function type:
Gaussian MF; Number of MFs:
(3,3) functions; Learning
algorithm: hybrid learning
algorithms; Sugeno type-system:
first order; Output type: linear

hw, Vw large dam
45 case studies

Membership function type:
Gaussian MF; Number of MFs:
(4,4) functions; Learning
algorithm: hybrid learning
algorithms; Sugeno type-system:
first order; Output type: linear
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phase of the model and the smaller set (20 dams) is used

in its testing phase.

2. Two models were developed after classification of the data

into large dams (45 dams) and small dams (48 dams) where

a model is prepared for each class. According to the Inter-

national Committee of Large Dams: if a dam height hd <

15 mthenthedamisasmalldamandifhd > 15 morbetween

10 and 15 m but Vw � 1 × 106 m3 then the dam is a large

dam (Singh ). The data in each class are further subdi-

vided into two sets where one is used in the training phase

of the models (39 small dams and 37 large dams) and the

other is used in their testing phase (nine small dams and

eight large dams). The ANFIS models were trained and

tested with the ANFIS editor. The ANFIS toolbox

employed is the MATLAB®V7.10 (R2010a). The models

were developed using the following steps at the ANFIS
Table 3 | The linguistic labels for fuzzy membership functions of input variables

Scenarios The variable

S1 (hw) m; Range of data 1.37 to 77.4 m
(Vw) Mm3; Range of data 0.0037 to 660

S2 For small dams:
(hw) m; Range of data 1.37 to 15m
(Vw) Mm3; Range of data 0.0037 to 136
For large dams:
(hw) m; Range of data 10.5 to 77.4 m
(Vw) Mm3; Range of data 0.617 to 660
graphical user interface (GUI): (1) obtaining training

data, (2) data sizing, (3) data partitioning, and (4) loading

the data set. Table 3 presents the ranges and the linguistic

labels of the fuzzy membership functions (MFs) of the

input variables. It takes several trials in order to reach the

optimum number and shape of MFs that result in reliable

estimates for the output. Figures 1–3 show the MFs of the

ANFIS developedmodels to predictQP for both scenarios.

To illustrate the ANFISmethod using a first-order Takagi–

Sugeno fuzzymodel, consider a rule base consisting of two

fuzzy IF-THEN rules expressed as follows:

Rule 1: If hw is A1 and Vw is B1 then

f1 ¼ p1hw þ q1Vw þ r1
Rule 2: If hw is A2 and Vw is B2 then

f2 ¼ p2hw þ q2Vw þ r2

where A1, A2 and B1, B2 are the MFs of hw and Vw,

respectively; pi, qi, and ri (i¼ 1 or 2) are linear par-

ameters in the consequent part of the first-order

Takagi–Sugeno model.

These parameters have to be determined in the training

process besides premise parameters which belong to MFs.

The ANFIS architecture consists of five layers as illustrated

in Figure 4.

In Figure 4, Layer 1 consists of adaptive nodes that

assign membership degrees (μAi
or μBi�2

) for linguistic

labels (small, medium, large, etc.) depending on premise

input variables. For generalized bell MFs, the output node

function in layer 1, O1,i, is given by:

O1,i ¼ μAi
hwð Þ ¼ e

� hw�δið Þ2
2σ2

i , for i ¼ 1, 2 or

O1,i ¼ μBi�2
Vwð Þ ¼ e

� Vw�δið Þ2
2σ2

i , for i ¼ 3, 4
The linguistic variable

SH; M; H; VH (Short; Medium; High; Very High)
L; M; H; VH (Low; Medium; High; Very High)

SH; M; MH; H (Short; Medium; MedHigh; High)
L; M; MH; H (Low; Medium; MedHigh; High)

SH; M; H (Short; Medium; High)
L; M; H (Low; Medium; High)



Figure 2 | MFs for input variables (second scenario – small dams).

Figure 1 | MFs for input variables (first scenario). Figure 3 | MFs for input variables (second scenario – large dams).
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where {δI, σI} is the parameter set of the MFs in the premise

part of fuzzy IF-THEN rules that adjusts the shapes of the

MFs. Table 4 shows the rule base of one of theANFISmodels.

Layer 2 presents the firing strength of each rule. The output

of each node is the fuzzy AND (Minimum) of all membership

degrees: O2,i ¼ wi ¼ μA{
(hw) × μB{

(Vw), i ¼ 1, 2
Layer 3 outputs are the normalized firing strengths.

Each node is a fixed rule labeled N. The output of the ith

node is calculated as: O3,i ¼ �wi ¼ wi=
X

i
wi, i ¼ 1, 2

Layer 4 consists of adaptive nodes that calculate the rule

outputs based upon consequent parameters using the func-

tion: O4,i ¼ �wi fi ¼ �wi( pihw þ qiVw þ ri), i ¼ 1, 2

Layer 5 transforms (defuzzifies) each rule’s fuzzy results

to a crisp output: O5,i ¼ Qp ¼ P
i
�wi fi ¼

X
i
wi fi=

X
i
wi.

In each iteration during the training of the ANFISmodel,

the node outputs are calculated up to layer 4. At layer 5, the

consequent parameters are calculated using a least-squares

regression method. The output of the ANFIS is calculated

and the errors propagated back through the layers in order

to determine the premise parameter (layer 1) updates (Jang

et al. ). The criterion chosen for the development of the

ANFISmodel as shown in Table 2 was based on the selection

of the number and type of MFs, learning algorithm, iteration

size, and data size. The modeling criterion adopted was to

effectively tune the MFs to minimize the output error and

maximize performance index.

ANN

Based on the literature, the ANN technique can easily be

applied to nonlinear complex systems that involve pattern



Figure 4 | Architecture of the ANFIS model.

Table 4 | Rule base of one of the ANFIS models (first scenario)

Rule no. Rule

1 If hw(m) is SH and Vw(Mm3) is L then (QP(m
3/sec) is

out1mf1)(1)

2 If hw(m) is M and Vw(Mm3) is L then (QP(m
3/sec) is

out1mf2)(1)

3 If hw(m) is H and Vw(Mm3) is L then (QP(m
3/sec) is

out1mf3)(1)

4 If hw(m) is VH and Vw (Mm3) is L then (QP(m
3/sec) is

out1mf4)(1)

5 If hw(m) is SH and Vw(Mm3) is M then (QP(m
3/sec) is

out1mf5)(1)

6 If hw(m) is M and Vw(Mm3) is M then (QP(m
3/sec) is

out1mf6)(1)

7 If hw(m) is H and Vw(Mm3) is M then (QP(m
3/sec) is

out1mf7)(1)

8 If hw(m) is VH and Vw(Mm3) is M then (QP(m
3/sec) is

out1mf8)(1)

9 If hw(m) is SH and Vw(Mm3) is H then (QP(m
3/sec) is

out1mf9)(1)

10 If hw(m) is M and Vw(Mm3) is H then (QP(m
3/sec) is

out1mf10)(1)

11 If hw(m) is H and Vw(Mm3) is H then (QP(m
3/sec) is

out1mf11)(1)

12 If hw(m) is VH and Vw(Mm3) is H then (QP(m
3/sec) is

out1mf12)(1)

13 If hw(m) is SH and Vw(Mm3) is VH then (QP(m
3/sec)

is out1mf13)(1)

14 If hw(m) is M and Vw(Mm3) is VH then (QP(m
3/sec) is

out1mf14)(1)

15 If hw(m) is H and Vw(Mm3) is VH then (QP(m
3/sec) is

out1mf15)(1)

16 If hw(m) is VH and Vw(Mm3) is VH then (QP(m
3/sec)

is out1mf16)(1)

731 H. G. Elmazoghi et al. | Comparison of neural networks and neuro-fuzzy computing techniques Journal of Hydroinformatics | 18.4 | 2016
recognition. ANNs have similarities to human brain func-

tioning and are built to form complex interconnected sets

of units taking a number of real–valued inputs and produ-

cing a single real–valued output. Neural Network

Toolbox™ helps in creating training and simulating neural

networks by providing many functions and applications.

NNTool and NNFTool are the GUI tools included in

Neural Network Toolbox. In this study, by using these

tools, first input and output data are loaded to the system.

Then, network type, training function, adaption learning

function, performance function, and number of layers are

chosen. As a result, a neural network is created. A multi-

layer feed forward perceptron neural network with back-

propagation training method was used in this study (Rojas

). In the present ANN models there is an input layer

for hw and Vw, one processing hidden layer, and a final pro-

cessing layer for QP. Figure 5 shows the three-layer topology

of the ANN model.

Each node in the hidden layer receives and processes

weighted input from the input layer and transmits its

output to the QP layer through links. Each link is assigned

a weight, which is a numerical estimate of the connection

strength. The weighted summation of inputs to a node is

converted to an output according to a transfer function,
Figure 5 | Structure of ANN model.
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sigmoid function (SIG) for the NNFTool and logarithmic

sigmoid function (LOGSIG) function for NNTool. The acti-

vation pattern of input variables (hw, Vw) is propagated

through the network to produce output target (QP). Two

scenarios as described before were applied. The first scen-

ario uses the data as one set without classification and the

second scenario is applied after classification of the data

into small dams and large dams. Accordingly, two models

for the first scenario and four models for the second scen-

ario were developed. The inputs and target data vectors

from the 93 embankment dam failures are randomly divided

into three sets where ∼70% of the vectors are used to train

the network and ∼30% of the vectors are used to validate

and test how well the network generalized. Training on

the training vectors continues as long as the training reduces

the network’s error on the validation vectors. After the net-

work memorizes the training set, training is stopped. This

technique automatically avoids the problem of overfitting

encountered in many optimization and learning algorithms.

The structures of the ANN models together with data div-

ision for both scenarios are presented in Tables 5 and 6,

respectively. The network used the Levenberg–Marquardt

algorithm (LMA) as the learning function. The LOGSIG is

selected as the transfer function. In order to avoid running

out of memory in the case of a very large network, the

scaled conjugate gradient back-propagation (trainscg) was
Table 6 | ANN model’s structure (after classification of data: S2)

ANN type Training algorithm Transfer function Learning functi

NNFTool BP SIGMOID SIGMOID

NNTool BP LOGSIG LMA
TANSIG

SD¼ small dams; LD¼ large dams.

Table 5 | ANN model’s structure (without classification of data: S1)

ANN type Training algorithm Transfer function Learning functi

NNFTool BP SIGMOID SIGMOID

NNtool BP LOG-SIG LMA
used in this study as the training function of large dams’

models.

The predicted peak breach outflows (Qppred ) is com-

pared with the observed peak breach outflows (Qpobs ) to

determine the mean square error of the prediction of both

models, with

MSE ¼ 1
n

Xn

i¼1

(Qpobs �Qppred )
2 (1)

where n is number of data points. The backward compu-

tation including calculation of the MSE of Qppred and Qpobs

is back-propagated through the network from the Qppred

layer to the input layer, at which time the weights of the

connections are modified according to the delta learning

rule. This rule is defined as a type of learning using the gra-

dient descent to search the weights that best reduce the

difference between Qppred and Qpobs . The previous two

steps are repeated until the error of the network is mini-

mized. The delta learning rule controls the learning

process by changing the present weight based on past

weight changes.

Available RE and GEP

Based on his uncertainty analysis, Wahl () concluded

that the Froehlich () equation performed better than
on Network architecture

No. of dams in:

Training Validation Testing

2-5-1 28 SD 10 SD 10 SD
27 LD 9 LD 9 LD

2-5-1 28 SD 10 SD 10 SD
27 LD 9 LD 9 LD

on Network architecture

No. of dams in:

Training Validation Testing

2-5-1 55 19 19

2-5-1 65 14 14
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other available RE for prediction of QP. Recently, Wahl

() evaluated and compared new RE for predicting QP

and stated that application of the erodibility factor, as pro-

posed by Xu & Zhang (), in addition to other physical

and geometrical input parameters significantly increased

the accuracy of the predictions. Hence, it is proposed to

compare the predictions of the present ANN and ANFIS

models with these equations. The predictions were also

compared with the results of recent RE developed by

Hooshyaripor et al. () and GEP developed by Sattar

(). These equations have the following forms.

Froehlich () RE:

Qp ¼ 0:607(V0:295
w × h1:24

w ) (2)

Xu & Zhang () ‘best’ RE:

Qpffiffiffiffiffiffiffiffiffiffiffiffi
gV5=3

w

q ¼ 0:175 (hd=hr)
0:199 (V

1
3
w=hw)

�1:274eB4 (3)

where g¼ 9.806 m/s2 is acceleration of gravity; hr ¼15 m is

a reference height; B4 ¼b3þ b4þ b5, in which b3¼∼0.503,
∼0.591, and ∼0.649 for DC, FD, and HD/ZD dams type,

respectively, b4¼∼0.705 and ∼1.039 for overtopping and

seepage erosion/piping, respectively, b5¼∼0.007, ∼0.375
and ∼1.362 for HE, ME, and LE dam erodibility,

respectively.

Hooshyaripor et al. () RE:

Qp ¼ 0:0454(V0:448
w × h1:156

w ) (4)

Sattar () GEP:

Qpffiffiffiffiffiffiffiffiffiffiffiffi
gV5=3

w

q ¼ c1
RS2

(DtDe þDfRS)(Df þ c2)(Df þ c3) (5)

where RS ¼ V1=3
w =hw is the reservoir shape factor,

c1 ¼ 0:083, c2 ¼ �0:87, c3 ¼ �0:80. For Dt, 4 is given for

HD, 3 for DC, 2 for ZD, and 1 for FD. For De, 3 is assigned

for HE, 2 for ME, and 1 for LE. For Df , 1.1 denotes piping

failure, and 1.2 overtopping failure. The variables QP, Vw,

and hw in these equations are measured in m3/s, m3, and

m, respectively.
Reliability of the ANN and ANFIS models

The best performances of the ANN and ANFIS models

versus the available RE and GEP were conducted according

to basic statistical evaluation criteria such as the mean

absolute error (MAE) in m3/s, Nash & Sutcliffe () coef-

ficient of efficiency (E), and coefficient of determination

(R2), with

MAE ¼ 1
n

Xn

i¼1
Qpobs �Qppred

�� ��, (6)

E ¼ 1�
Pn

i¼1 (Qpobs �Qppred )
2

Pn
i¼1 (Qpobs � μQpobs

)2
(7)

where μQpobs
is the mean of the observed peak breach out-

flow. These can help in comparisons between observed

versus predicted peak outflows obtained by the developed

models, RE and GEP. Since the uncertainty of prediction

of such a phenomenon is large, the 95% confidence

interval¼ μQp
± z(

σffiffiffi
n

p ) can be used as a quantitative assess-

ment to analyze such uncertainty, where z¼ 1.96 and σ is

the standard deviation of Qpobs .
RESULTS AND DISCUSSION

In this study, two models based on the first scenario and four

models based on the second scenario were developed by

ANN in order to predict QP. Similarly, one model using

the first scenario and two models using the second scenario

were developed by the ANFIS technique. The results of

these models are presented here.
Results of first scenario (S1)

The ANN and ANFIS models in this scenario were

developed using unclassified separate sets of data vectors

for hw, Vw, and QP from the available 93 dam failures.

1. The ANN were feed-forward neural networks employing

a SIG and LOGSIG transfer function as activator with a

back-propagation algorithm for network learning. Inputs

and output data vectors in the ANN models were
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randomly separated into three sub-sets as training set for

each trial (65 dams), validation set (14 dams) and testing

set (14 dams) for the NNTool; and training set (55 dams),

validation set (19 dams) and testing set (19 dams) for the

NNFTool. The ANNmodels had three layers: input layer,

hidden layer(s), and output layer. The optimal number of

neurons in the hidden layer(s) was obtained by trial and

error.

2. In the ANFIS model the available data are subdivided

into two sets. The bigger set (73 dams) is used in the train-

ing phase of the model and the smaller set (20 dams) is

used in its testing phase. The ANFIS models used first-

order Sugeno-system with four Gaussian MFs for each

input variable (Figure 1), hybrid as learning algorithm,

and a linear function for the output.

Judgment of the models’ adequacy was carried out by

calculating the selected error criteria and drawing the scat-

ter plots (Figure 6) of the predicted versus observed peak

outflow values. A trend line is added to each plot to confirm

the match between predicted and observed values. It should

be noted that data points for ANN and ANFIS models

follow a tight function with a high R2 although it has

some bias at some points (outliers) along the curve at low

QP values. That is maybe due to the relatively large data

set and the small number of those points. In fact, those
Figure 6 | Scatter plots of the best models and Froehlich (1995) RE in the first scenario.
points may not be considered as outlier observations

because outliers are defined as points on a scatter diagram

that have a large gap containing no points between them

and the vast majority of the other points. While a high R2

is required for precise predictions, it is not sufficient by

itself. Normally, we should evaluate R2 in conjunction

with other model statistics and residual plots to measure

how well the model fits the observations. Figures 7 and 8

show the performance of the ANN and ANFIS models

with unclassified sets of data. They represent the best

models of the training and testing phases.

Table 7 presents the magnitudes of the error criteria used

to compare between the first scenario models. The ANN and

ANFIS models showed a significant improvement in predict-

ing QP values compared to Froehlich () RE. They

presented high efficiency, high coefficient of determination

(bothE andR2 > 0.93), and lowMAE compared to the Froeh-

lich () RE. Themean value ofQP by the present ANN and

ANFISmodels is given in Table 7. It is within the range of the

95% confidence interval and too close to the observed value.

The ANFIS model had the highest fitting criteria with E¼
0.98, R2 ¼ 0.98, and MAE¼ 890.4. Therefore, it presents

the best performance among all models. The higher MAE

and the lower E and R2 of the RE may be attributed to the

influence of the large number of small dams included in the

database resulting in a skewed distribution of the values.



Figure 7 | Schematic performance of the best ANN models in the first scenario.

Figure 8 | Schematic performance of the best ANFIS models in the first scenario.

Table 7 | Error criteria using the results of the models in the first scenario

Peak breach outflow QP m3/s

NNTool NNFTool ANFIS Froehlich 95% CI μQpobs

MAE 1,359.9 1,339.3 840.9 2,677.1 2,338.6–7,140.8 4,739.7

E 0.96 0.94 0.98 0.53

R2 0.95 0.93 0.98 0.67

Mean (μQppred
) 4,762.3 4,541.4 4,757.1 2,906.2
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Moreover, RE cannot reasonably handle nonlinearity, com-

plexity, and uncertainty of data and variables. The scatter

plots of Figure 6 show that there are some outliers in predict-

ingQP by all models. Most outliers correspond to small dams

(e.g., Boystown, PA.; Caney Coon Creek, OK.; Haymaker,
MT.; Horse Creek #2, CO) whose methods of determining

peak outflows are unknown (Wahl ). Accordingly, one

can conclude that lack of historical data from a wide range

of breached dams might be the reason for improper and

lower training of the network. This can be evidenced from
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Table 8 which shows the calculated error criteria after separ-

ating the results of the first scenario models into small and

large dams. The results of small dams by all models showed

very low E and R2 in comparison to large dams.
Results of second scenario (S2)

In this scenario the data vectors from the 93 dam failures

were classified as 48 small dams and 45 large dams, which

were used for building four models using ANN and two

models using ANFIS techniques.

1. The ANN employed a SIG, LOGSIG, and TANSIG trans-

fer function as activator with a back-propagation algorithm

for learning. An important role in ANN model develop-

ment is to ensure the generalization ability of the trained

models to produce accurate predictions for testing data sub-

sets. This is often achieved by dividing the available data

into training, validation, and test sets. The training set is

used to calibrate the model, the validation set is used in

cross-validation during the training process to avoid over-

fitting, and the test set is used to test the performance of

the model on the testing data set which was not used by

the model during its training phase. Classified input and

output data vectors were further separated by the network

into three sets for each trial as: training set (28 small dams,

27 large dams), validation set (10 small dams, nine large

dams), and testing set (10 small dams, nine large dams)

for both NNTool and NNFTool, respectively.

2. Training and testing the two ANFIS models were per-

formed after dividing the classified data into two sets

as: training set (39 small dams, 37 large dams) and testing

set (nine small dams, eight large dams). The ANFIS

models were developed using first-order Sugeno type-
Table 8 | Error criteria after classification of the results of the models in the first scenario

Peak breach outflow QP m3/s

NNTool NNFTool

Small dams Large dams Small dams Large dams

MAE 456.0 2,866.5 362.6 2,381.1

E 0.11 0.90 0.25 0.93

R2 0.24 0.89 0.39 0.93
system with four Gaussian MFs for small dams’ class

(Figure 2) and three Gaussian MFs for large dams’ class

(Figure 3), hybrid as learning algorithm, and linear MF

type for the output. The results of the models in each

class were combined together and the scatter plots of

the combined results are drawn in Figure 9.

The schematic performance of only the NNFTool model

were drawn in Figure 10 for small dams’ class and in

Figure 11 for large dams’ class as it gave the best results in

this scenario either for training or testing data. The quanti-

tative results of the utilized error criteria are presented in

Table 9 for the second scenario models. The ANN and

ANFIS models showed the higher E and R2 (both are

>0.9) and lower MAE for both classes of small and large

dams. Based on the error criteria given in Tables 8 and 9,

one can see that the MAE is reduced by about 65% for

small dams’ class after classification of data and building

the models accordingly.

Moreover, E and R2 remarkably improved, e.g., the

NNFTool model of small dams gave E¼ 0.96 and MAE¼
90.1 in the second scenario compared to 0.25 and 364.6

before classification in the first scenario. Application of

the RE on the same database in this scenario produced rela-

tively less accurate results (R2 ¼ 0.67 and MAE¼ 2677.1)

especially for large dams.

Another separate set from the testing database was

selected in order to evaluate the performance of the developed

models in the first scenario and compare their results with the

Froehlich (), Xu & Zhang (), and Hooshyaripor et al.

() RE and Sattar () GEP. This testing set consists only

of eight case studies (Qielinggou, China; Quail Creek, USA;

Schaeffer Reservoir, USA; Shimantan, China; Swift, USA;

Teton, USA; Zhugou, China; and Zuocun, China) because
ANFIS Froehlich

Small dams Large dams Small dams Large dams

388.5 1,525.6 350.3 5,268.3

0.59 0.98 0.43 0.45

0.55 0.98 0.50 0.61



Figure 9 | Schematic performance of the best ANN and ANFIS models in the second scenario using the combined results of small and large dams’ models.

Figure 10 | Schematic performance of the best NNFTool model (second scenario – small

dams).

Figure 11 | Schematic performance of the best NNFTool model (second scenario – large

dams).
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they were the only cases in the testing database having all the

required data to perform the calculations of the mentioned

models. Figure 12 shows the comparison and the performance

of the various models in predicting QP using this testing set.

The ANFIS and the Xu & Zhang () models confirmed a
better match between the predicted and observed peak out-

flow values in comparison to Hooshyaripor & Tahershamsi

() ANN model; Hooshyaripor et al. () and Froehlich

() RE; and Sattar () GEP. From the error criteria and

the scatter plots in Figure 12, it is observed that the predicted

QP values by the ANN and ANFIS models and the Xu &

Zhang () RE were 90% closer to the observed QP

values. However, the predicted QP values by Sattar ()

GEP, Froehlich () and Hooshyaripor et al. () RE

were 71%, 68%, and 62% closer to the observed QP values,

respectively.

It should be recognized that the above RE and GEP

benefited from the selected testing data set. That is because

several dams in this testing set were used in their derivation.

Hence, this would add advantages to their predictions. On

the contrary, this testing data set was not a part of the

data used to train the developed ANN and ANFIS models.

Despite these facts the developed ANN and ANFIS

models provided a quite reasonable match between the pre-

dicted and observed peak outflow values in comparison to

RE and GEP. In Figure 12, the trend line and the coefficient

of determination R2 were inserted in addition to the 1:1 line

of agreement between the predicted and the observed peak

outflow values. Although the R2 value in Sattar () GEP

is large (very close to 1), it does not indicate that this is the

best model. The square root of R2 indicated the scatter of the



Table 9 | Error criteria of the models in the second scenario

NNTool NNFTool ANFIS

FroehlichSmall dams Large dams All dams Small dams Large dams All dams Small dams Large dams All dams

MAE 187.7 3,166.0 1,628.9 90.1 2,457.6 1,235.8 162.7 2,344.8 1,408.4 2,677.1

E 0.90 0.90 0.91 0.96 0.94 0.95 0.92 0.92 0.93 0.53

R2 0.90 0.90 0.91 0.96 0.94 0.95 0.92 0.91 0.93 0.67

Figure 12 | Schematic performance of best ANN, ANFIS, RE, and GEP models.
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predicted values around the regression line. However, the

modeler is interested in the degree of scatter of the predicted

values about the line of perfect prediction (i.e., the 1:1 line of

agreement). For this reason, other statistical error criteria
such as the MAE, mean square error, and Nash & Sutcliffe

() coefficient of efficiency may be used in addition to the

coefficient of determination. Models are considered ade-

quate for prediction if they satisfy some or all of these



Table 10 | Statistical error criteria of various models using testing data set of eight dams

Model MAE E R2

Present ANN model (NNTool) 2,707.8 0.97 0.97

Present ANN model (NNFTool) 2,637.5 0.95 0.96

Present ANFIS model 1,493.5 0.98 0.98

Froehlich () RE 9,933.0 0.62 0.90

Xu & Zhang () ‘best’ RE 3,457.0 0.94 0.95

Hooshyaripor et al. () RE 10,799.6 0.60 0.89

Sattar () GEP 7,800.8 0.71 0.99
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criteria. From the scatter plots of Figure 12 it is evident that

the models’ performance is not reflected by only R2 values.

For example, the Sattar () GEP and the Froehlich ()

and Hooshyaripor et al. () RE showed high R2 values

although they grossly overpredicted most of the peak out-

flow rates. To quantify the results of the developed models

and the best available RE and GEP, three statistical par-

ameters, MAE, Nash & Sutcliffe () coefficient of

efficiency E and coefficient of determination R2 were used.

The high E and R2 values and the lowMAE of the developed

ANN and ANFIS models in the testing phase demonstrated

the potential of these models in predicting the peak outflow

rates from breached embankment dams. Comparing the

results of Table 10 showed that MAE¼ 1,493.5, E¼ 0.98,

and R2 ¼ 0.98 for the ANFIS model which are good indi-

cators for the accuracy and efficiency of this model than

the other ANN, RE, and GEP models. The Xu and Zhang

‘best’ RE comes second with MAE¼ 3,457, E¼ 0.94, and

R2 ¼ 0.95 and produced almost similar results as the

NNTool and the NNFTool models.

Although the application of the developed ANN and

ANFIS models for predicting peak breach outflows is prom-

ising, the proposed models can further be enhanced by

increasing the database, searching for optimum key vari-

ables, and tuning the membership functions.
SUMMARY AND CONCLUSIONS

This study provides a comparison between two ANN GUI

performances and an ANFIS for predicting peak breach out-

flows based on historical data from 93 breached
embankments. Two scenarios were proposed in order to

obtain the most effective model. In the first scenario, all

the available data from the 93 case studies were used as

one set without classification. The second scenario classifies

the data into small and large dams. Nine models were devel-

oped and their results were analyzed. Extensive comparison

was also made between the results of the developed models

and the best available RE by Froehlich (), Xu & Zhang

() and Hooshyaripor et al. () and GEP by Sattar

(). In general, the following can be concluded:

1. By considering the statistical error criteria, the results of

this study showed that all ANN and ANFIS models pre-

dicted the peak outflow rates very well because of their

high coefficient of determination (R2), high coefficient

of efficiency (E), and low MAE in comparison to the

best available RE and GEP models.

2. Among the models, the ANFIS model in the first scenario

gave the best results with E¼ 0.98, R2 ¼ 0.98, and

MAE¼ 890.4; however, in the second scenario, the

NNFTool model produces the best results (E¼ 0.96,

R2 ¼ 0.96, and MAE¼ 90.1 for small dams and E¼
0.94, R2 ¼ 0.94, and MAE¼ 2,457.6 for large dams).

3. The Xu & Zhang () RE produced quite reasonable

results and came second after the ANFIS model. It pro-

duced similar results as the ANN models.

4. The RE by Froehlich () and Hooshyaripor et al. ()

and GEP by Sattar () overpredicted the peak outflow

rates and presented less accurate results than the ANFIS

and the ANN models.

5. Classification of data into small and large dams and

building the models accordingly enhanced the perform-

ance of the models, particularly for the small dams’ class.

6. The minimum value of MAE and maximum values of R2

and E showed the potential of the ANFIS methodology to

be used in the future as a predictive tool for predicting the

peak outflow rates from breached embankments.
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