CHAPTER 1

Introduction

1.1 Introduction

The main part of this research focuses on the stated problem of approaching dialog
boxes when SW keyboard in Ul is shown and hidden .As we all know that technology has
witnessed great a advancement in the last decade . Smart phones for example ,they are very
popular and now they are used for different purposes other than just making and receiving
calls. In fact, smart phones are equipped with so many features and applications such as
game applications ,wireless and Wi-Fi network connections and many more interactive
applications. This requires more space for interaction on mobile screens and has become a
real concern for IT experts worldwide. Due to the wide variety of inputs, small screens
tend to interrupt tasks. Finally, mobile user interfaces present big challenges that are not

present when using desktop systems.

Since designing mobile interfaces is a relatively new practice, but it is actually making
progress and gaining popularity nowadays. This fact is urging manufactures and experts to
find more effective and flexible tools to overcome many problems that might occur when
designing user interface for modern mobile phones. We must be aware that mobile phones
have built-in sensitivity and a wide variety of options and functions .One of the problems
the designers encounter in the mobile phone technology is the range of variation of the
capabilities among devices and platforms. For example, a specific type of phone can have
a touch screen and no buttons, but with a virtual keypad; however another brand can have a
number pad and a few arrows. These variances are equally different when it comes to

computing power, screen capabilities, and more. To accommodate these differences, it

likely requires building multiple designs for each platform which the interface needs to run
on [1].

In this research work, we are using Model View Controller (MVC) architecture pattern
for building a user interface for mobile devices , which is a fast and efficient way of creating
different Ul for mobile, This pattern is used as a methodology for designing the mobile user
interface [21].

Generally, design patterns can help solve complex design problems if they are properly
used, however the main advantage of using the MVC pattern is decoupling the business and
the presentation layers [23].

MVC is defined as a common design pattern to integrate a user interface with the
application domain logic. MVC separates the representation of the application domain
(Model) from the display of the application’s state (View) and user interaction control
(Controller). The MVC design pattern is comprised of three major components[23] the Model
(The Data Layer), the View (The User Interface Layer) and The Controller (The Business
Logic Layer).

1.2 The Problem Statement

The main problem in this research is how to resize Text Box to avoid making some parts of
these text dialog boxes invisible. Text Box or Dialog Box is defined as any message/text
created or looking up a contact on the Contact Log saved in your phone. Therefore ,resizing
practically prevents hiding some parts of the dialogs which eventually become invisible once
a long text is being entered. Also, the severity of this problem largely depends on the type and
style of user interface being used. To conclude, smart phones usually have small screens
which do not allow for enough space which means less interaction for users when entering

longer texts.

Main problems areas

Y

Interaction mechanisms

Utilizing screen space

Y

Screen spacein general

r

Y

Design atlarge

Flexible user interface

Y

Supporting switching between
portrait and landscape mode

Y

Uls that should run on equipment
with different screen space

Handling crowded dialogs when software kevboard is shown and hidden

Figure 1.1: The complexity of the problem statement adopted from [19]

1.3 Motivations and Objectives

1. The main objective of this study is to use an applicable and effective design pattern
for better and more convenient use of screen space of smart mobile phones.

2. Design a user interface which can help users access the system easily and enjoy
better and more interaction.

3. Understanding and analyzing the theory and practice behind using design patterns
as solutions for Ul problems in mobile applications.

4. Have an opportunity to see how we can encounter the challenges of modern
technology.

5. Reassess and reuse the proposed design patterns such as Model View Controller

which is believed to be one of the most popular among Ul designers.

1.4 Solution Approach

The steps of the proposed solution in this research work can be summarized as follows:

1. Provide a clear and specific definition of the problem related to Ul of mobile
phone devices.

2. Present a description of the system requirements and specify an effective method
to be used at the designing stage.

3. Mlustrate in detail the tool to be used for designing the user to display information
on the screen of the mobile device.

4. Determine a suitable design pattern to solve the stated problem of mobile Ul. This
is has to be done by providing clear definitions and explanation of these design
patterns.

5. Choose a corresponding programming language such as J2EE or ASP.NET.

6. Finally, present a case study to examine how the proposed approach works when
applied.

1.5 Structure of The Thesis

The remaining chapters of this thesis are organized as follows:
Chapter 1: Introduction
This chapter gives a short overview about design patterns , Model View Controller
(MVC) and it also includes the motivation , objectives and the proposed solution

approach.

Chapter 2:Background
This chapter presents a background and a general overview of Design patterns
including families of MVC design pattern. It also introduces the ICONIX Methodology

and the literature survey that are related to the proposed approach.

Chapter 3: The Proposed Solution for Designing a Mobile User Interface Using MVC

Design Pattern

This chapter presents the proposed approach for solving the problem. It also explains
in detail all the steps to be taken when using MVC design pattern and ICONX
Methodology.

Chapter 4: implementation
This chapter presents the actual application of the proposed approach and the steps
involved . it aims at solving the stated problem by designing a prototype with ASP.NET

programming language.

Chapter 5: Conclusion

Presents findings, results and future work.

CHAPTER 2

Background

2.1 Introduction

This chapter is organized into five sections. In section 2.2 presents an overview of design
patterns , the definition of the essential elements of patterns , Section 2.3 introduces the
families of Model View * (MV¥*) design pattern .Section 2.4 presents ICONIX Methodology
and finally Section 2.5 includes the literature survey that is related to the current research

work.

2.2 Overview of Design Pattern

Design Patterns were first introduced as a defined concept by Christopher Alexander in
his two books "A Pattern Language" in 1977, and "The Timeless Way of Building™ in 1979
(Seffah 2010). Alexander is an architect who envisioned a way to capture all of the best
aspects of architectural design in an easy-to-understand collection of what he termed
“Patterns.” Doing so enables engineers, architects, and even the laymen who would be using
the buildings to communicate design ideas easily, and understand the problems facing each
design [16].

Ultimately, Alexander wanted his pattern library to be used to help improve the quality of
life for the people who would be living in or using the buildings. He hoped to capture what he
refers to as the quality without a name, which he defined as follows: “there is a central quality
which is the root criterion of life and spirit in a man, a town, a building, a wilderness. This
quality is objective and precise, but it cannot be named” (Wania and Atwood 2009).
Effectively, what this quality describes is those thoughtful designs that, whether obvious or

subtle, make inhabiting a space a more pleasant, usable, or relaxing experience. What makes

this emphasis so important is where the focus of the design is placed.

The first appearance of patterns at a conference was in 1997 at the CHI conference,
sponsored by ACM SIGCHI. Since then, there have been numerous published articles and
books furthering the discussion, refining the definition of what a user interface pattern consists
of, and introducing new patterns to the community. In 2010, patterns were given center stage
with the PEICS conference, which focused explicitly on issues surrounding designing and
engineering user interfaces using design patterns. Amongst the things that have been discussed
were how to define and structure patterns, and how to take the patterns and implement them in

an automated fashion.

Design patterns represent a highly effective way to improve the quality of software
engineering. Due to its ability to a capture the best practices and design knowledge based on
real experience of software design, making it available to all software engineers [2]. It presents

a generic proven solution to a common recurring design problem.

A design pattern in software engineering is a general repeatable solution to a commonly
occurring problem in software design [3]. A design pattern isn't a finished design that can be
transformed directly into code. It is a description or template for how to solve a problem that
can be used in many different situations. Object-oriented design patterns typically show
relationships and interactions between classes or objects, without specifying the final
application classes or objects that are involved. Many patterns imply object-orientation or
more generally mutable state, and so may not be as applicable in functional

programming languages, in which data is immutable or treated as such.

A design pattern in architecture and computer science is a formal way of documenting a
solution to a design problem in a particular field of expertise. The idea was introduced by the
architect Christopher Alexander in the field of architecture[4] and has been adapted for

various other disciplines, including computer science. An organized collection of design

http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Interaction
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Architecture
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Christopher_Alexander
http://en.wikipedia.org/wiki/Architecture
http://en.wikipedia.org/wiki/Architecture
http://en.wikipedia.org/wiki/Computer_science

patterns that relate to a particular field is called a pattern language .The elements of this

language are entities called patterns.

The patterns demonstrated Design Patterns focused around two keys attributes; they had to

be reusable and they had to be flexible.

2.2.1 Design Patterns Definition
Christopher Alexander in (1977) defined the patterns as follows:

= Each pattern describes a problem that occurs repeatedly in our environment,
and then presents the core of the solution to that problem in a way that you
can reuse this solution a million times , without ever doing it the same way
twice. [5]

= Design patterns gained popularity in Software engineering by the Gang of
Four (GOF) book (1995).

= The design patterns are descriptions of communicating objects and classes that

are customized to solve a general design problem in a particular context [6].

There are four essential elements of design patterns according to the GOF’s

structure.[7,16]:

1. Pattern name: The name of the pattern is the identity or the description of the design
problem, the solutions and the consequences in a word or two. Giving names to
patterns allows us to get a higher level of abstraction.

2. Problem: describes when the pattern should be applied including its context and what
it solves.

3. Solution: describes the elements of the design, the responsibilities and collaborations.
It does not describe a concrete solution. It is simply a template or a package that can

be applied in different contexts.

http://en.wikipedia.org/wiki/Pattern_language
http://en.wikipedia.org/wiki/Design_pattern#cite_note-Alexander.2C_A_Pattern_Language-0

4. Consequences: are the results expected after applying the pattern to solve problems.
They expose the advantages and disadvantages of the solution proposed. They also

include the impact on flexibility, extensibility and portability of the system.

2.2.2 Design Pattern Catalog

Design Patterns are described in graphical notation with Unified Modeling Language
(UML) diagrams which capture the end product of design processes[34]. To reuse the
design, record the designs, alternatives by describing them with a pattern name and
classification, intent, motivation, applicability, structures, participants, collaboration,
implementation and their uses in real systems. Design Patterns vary in their granularity and
level of abstraction. Creational design Patterns concern the process of object creation,
Structural patterns deal with composition of classes or objects while Behavioral patterns

deal with the way in which classes or objects intent and distribute responsibilities [26].

The Gang of Four (GOF) patterns are ultimately considered as the foundation for all
other patterns [8]. They are categorized in three groups: Creational, Structural, and

Behavioral.

1- Creational Patterns
Creational design patterns deal with object creation mechanisms and to try create
objects in a suitable manner to the situation. The basic form of object creation could

result in design problems and increase the complexity to the design [35].

Recommend the way that objects should be created. In fact, these patterns are used
when a decision must be made at the time a class is instantiated.
= Abstract Factory: Creates an instance of several families of

classes.

http://sourcemaking.com/design_patterns/abstract_factory

= Builder: Separates object construction from its representation.
= Factory Method: Creates an instance 0090f several derived classes.
= Prototype: A fully initialized instance -to be copied or cloned.

= Singleton: A class of which only a single instance can exist.

2- Structural patterns
Structural design patterns basically eases the designing process by identifying a

simple way to realize relationships between entities [35].

These patterns are concerned with how classes inherit from each other or how they are
composed from other classes[8].

= Adapter: matches interfaces of different classes.

= Bridge: separates an interface of an object from its
implementation.

= Composite: atree structure of simple and composite objects.

= Decorator: add responsibilities of objects dynamically .

® Facade: a single class that represents an entire subsystem.

= Flyweight: a fine-grained instance used for efficient sharing.

®= Proxy: an object representing another object.

3- Behavioral patterns
Behavioral design patterns identify common communication patterns between
objects and realize these patterns. These patterns increase flexibility in the

communication among objects [35].

They also prescribe the way objects interact with each other. They help make
complex behaviors manageable by specifying the responsibilities of objects and the

way they communicate with each other.

10

http://sourcemaking.com/design_patterns/builder
http://sourcemaking.com/design_patterns/factory_method
http://sourcemaking.com/design_patterns/prototype
http://sourcemaking.com/design_patterns/singleton
http://www.dofactory.com/Patterns/PatternBridge.aspx
http://www.dofactory.com/Patterns/PatternComposite.aspx
http://www.dofactory.com/Patterns/PatternDecorator.aspx
http://www.dofactory.com/Patterns/PatternFacade.aspx
http://www.dofactory.com/Patterns/PatternFlyweight.aspx
http://www.dofactory.com/Patterns/PatternProxy.aspx

Chain of Resp: a way of passing a request between a chain of
objects.
Command: encapsulate a command request as an object.
Interpreter: a way to include language elements in a program.
Iterator: sequentially access the elements of a collection.
Mediator: defines simplified communication between classes.
Memento: captures and restores the internal state of an object.
Observer : a way of notifying change/s to a number of classes.
State :alters the behavior of an object when its state changes.
Strategy : encapsulates an algorithm inside a class.
Template Method: defers the exact steps of an algorithm to a
subclass.

Visitor: defines a new operation to a class without change.

The table below shows a description of the design pattern .

Creational Design Structural Design Behavioral Design Patterns
Patterns Patterns
Class Object Class Obiject Class Object
Factory Abstract Adapter Bridge Template Chain of
Method Factory Composite | Method Responsibility
Builder Decorator Interpreter Command
Prototype Facade Iterator
Singleton Flyweight Mediator
Proxy Memento
Observer
State
Strategy
Visitor

Table 2.1: Description of design pattern [26].

11

http://www.dofactory.com/Patterns/PatternInterpreter.aspx
http://www.dofactory.com/Patterns/PatternIterator.aspx
http://www.dofactory.com/Patterns/PatternMediator.aspx
http://www.dofactory.com/Patterns/PatternTemplate.aspx
http://www.dofactory.com/Patterns/PatternVisitor.aspx

2.2.3 Essential Elements of Pattern

A pattern is considered as a basic tool of contact between designers, so describing patterns
becomes a very important issue. The effectiveness of this contact leads to the usability and

presentation of the template patterns. Also, the patterns are always documented in a template

format, making the readers understand patterns easily [27].

The template below describes elements of a pattern template. The template does not display
any details about the solution, but only describes information about the template and template

implementation in general , which is dependent on the used programming language [27].

Content

Description

Pattern name

Describes the identity

Intent

Describes what the pattern does

Also known as

The list any synonyms for the pattern

Motivation provides an example of a problem and how

Motivation
the pattern solves that problem
Applicability Lists the situation where the pattern is applicable
Set of diagrams of the classes and objects related to the
Structure

pattern

Participants

Describes the classes and objects their responsibilities

that participate in the design pattern

Collaborations

Describes how the participants collaborate to carry out

their responsibilities

Consequences

Describes the forces that exist with the pattern ,the
benefits, and the variable that is isolated by the pattern

Table 2.2: Template of design patterns [27]

12

2.2.4 Benefits of Design Patterns

As we know that design patterns have many benefits. The following states the main
benefits of design patterns. [9]:

1- They can speed up the development process by providing tested, proven
development paradigms.

2- Effective software design requires considering issues that may not become visible
until later in the implementation.

3- Reusing design patterns helps prevent subtle issues that can cause major problems.
Therefore, design patterns improve code readability for coders and architects
familiar with such patterns.

4- Design patterns provide general solutions, documented in a format that does not
seek specific requirements to tackle a particular problem.

5- - Common design patterns can be improved over time, making them more robust

than ad-hoc designs

2.3 Families of Model-View-*(MV*) Design Patterns

The main goal of this section is to introduce the different families of MV* design patterns
and illustrate any differences between and also explore the various patterns within those
families.

Generally speaking, MV* design patterns provide applicable and reusable solutions to the
frequently emerging problem of synchronizing user interfaces with domain data, as in Widget-
based user interfaces (which is not strictly a MV* pattern family).They are easy to implement
for simple applications. However, as the approach does not separate domain and interface
concerns, maintainability may become problematic when the complexity of the user interface

grows [29].

13

MV* patterns are in fact, classified in three main categories: Model View Controller

(MVC), Model-View-Presenter (MVP)[30] and Model-View-View Model (or Presentation
Model) (MVVM). [31].Moreover with the ongoing evolution of programming languages and
software technology, the MV* design patterns were changing too, and different families of

patterns were born.

Widget-based
User Interfaces

]
' MVC patferns
1
No Separation '
of Concerns h Smalltalk'80 MVC
rl G.E.Krasner, S.T.Pope Web MVC
Microsoft ASP.NET,
Spring, Grails

Passive View

M. Feathers

Application Model
VisualWorks

Microsoft MVVM

Microsoft

Dolphin Smalltalk MVP

A. Bower, B. McGlashan

Supervising Presenter

M. Fowler

Figure 2.1: The Land of MV* Design Patterns [29]

2.3.1 Model View Controller (MVC) Design Pattern:
The term MVC has been in use since the late 1970s. It is made from Smalltalk, which is a

programming language that was particularly designed to support the concepts of object-
oriented programming. In the early 1970's, Alan Kay led a team of researchers at Xerox to

invent a language that let programmers modify the data objects they intended to

manipulate[45].

14

Model View Controller design pattern is also an architectural design that helps in making a
user interface mobile applications modify-able with future requirements by splitting the whole
application into three components, model, view and controller [42]. Each of these components

handles discrete set of tasks.

o Model: is the core of the application. This maintains the state and data that the
application represents. When significant changes occur in the model, it updates all of
its views

« Controller: basically takes the role of a vocal point between the model and the view.

e View: The user interface which displays information about the Model to the user. Any
object that needs information about the Model needs to be a registered View with
the Model.

Figure 2.2: Component of MVC design pattern[57]

MVC is the most influential family of design patterns for synchronizing a user interface
with the state of the application domain. The approach was first introduced in the 1980s, even
before widget-based user interfaces were used [32]. Initially, MVC was used for designing
and building desktop applications with rich graphical user interfaces. Over time, the original

MVC pattern evolved and variants emerged driven by technological evolutions and new

15

needs. Nowadays, MVC is used for integrating interface logic with domain logic in
development of various domains, such as Web applications and Mobile systems [33].

Central to MVC is the separation of the representation of the application domain (the
model) from the display of the application’s state (the view) and the user interaction

processing (the controller)[29]

Since the late 1980s when MVC was documented, numerous new MV* design patterns

emerged that aimed to eliminate the drawbacks of their predecessors.

The table below shows a brief description of the main characteristics of two different

programming languages for MVC.

16

Intent Motivation Structure | Collaborations | Consequences
Smalltalk’80 | Separates the Support the design The three The cooperation | The division of
MVC concerns of the and development of key between Model, responsibilities
application highly maintainable components | View and of the MVC
domain and its applications with rich | of the MVC | Controller relies | pattern has
representation in | user interfaces by pattern are on observer proven to be
three modules, maintaining a strict Model, View | synchronization | very effective.
each handling a separation between and
specific task domain logic and Controller.
presentation logic
Web MVC Separates the Due to specifics of the | The general | The Web is The MVC
domain logic way the Web works, it | principles of | stateless and design pattern
from the matches well with the | the MVC operates as a set | supports
presentation logic | principles of the MVC | family apply | of requests and clear separation
for the domain of | design pattern. to the MVVC | responses, SO of
Web applications pattern: there is no need responsibilities

in three
components with
distinct

responsibilities

Model stores
data, View
displays
data, and
Controller
handles user

input.

of strong

synchronization.

of web
application
logic, which
leads to better-
organized code
that is easy to
understand

and maintain.

Table 2.3: Smalltalk’80 MVC &Web MVC adapted from [29]

17

View displays data
from the Model

View

View observes the Model
and redraws itself when
some data is changed

! Controller handles
user input

Controller

Model

Controller observes the Model
and triggers Model methods on
certain user actions

Domain Model ‘

1 User l:l Pattern component —<&&» Reference with observer -------- » User interaction
synchmmzal\on
Figure 2.3: Smalltalk’80 MVC pattern [29]
LeemTTTTT) ----- - A‘.--"-
"y
View > Model |« Controller

View displays
the data to user

Model contains data to be
rendered on the View

Controller handles user
input and provides Model
with data to be rendered

2 User

‘:l Pattern component

—> R

eference .------- » User interaction

Figure 2.4: Web MVC pattern [29]

18

2.3.1.1 MVC Interaction Cycle

In this section we illustrate the MV C Interaction Cycle in four steps [43][44]:

» The first step: The user interacts with the view through a user input such as clicking a
button or a link on a user interface. The view sends the user input event to the
controller. The controller handles this request.

» The second step: The controller sends calls to the model to modify its state according
to the request

» The third step: The controller sends calls to the view to modify its state. In fact, when
the controller receives a request from the view, it may need to modify the view state;
for example, the controller could enable or disable certain buttons or menu items in the
user interface.

= The fourth step: The model updates the view representation when its state is changed.
Actually, something changes in the model. This change is based on some requests by
user input, such as clicking a button, or some other internal changes. The model
updates the view that makes its display and eventually the user interface changes.

This means that the view updates its state directly from the model.

View messagas
lﬂ Controller View
Userinput Display
-_[E!?" device P layout'and
——— interaction interaction)
=== | input views Display
sensors output

Macel
access and

eciting \\
massages

" Dependants
change
messages

Dependants
e /

messages

Model

Application
domain
state and
behavior

Figure 2.5: Interaction between components of MVC [38]

19

2.3.1.2 Advantage of MVC Design Pattern

1- The biggest advantage of the MV C design pattern is that it separates the model from
the view. As stated earlier that the model represents the data and the business rules
and the view represents elements of the user interface such as texts, images, and form
inputs.

= This separation allows for easy changes for each object without affecting
each other. It also leads to easier maintenance and modification of the
ul[46].

= Separates the three objects that lead designers to work on the Ul of mobile
devices without worrying about the underlying data .It also helps developers
focus on the data instead of being too concerned about data presentation
and avoid code repetition[44].

2- MVC has the ability to reduce designing time because programmers who focus on
the controller object can work independently while designers are responsible only for
the view object or model object.

3- MVC has the ability to bring about changes in the view object without recompiling

the code of the model objects or the object of the controller[46].

2.3.1.3 MVC Architectural Pattern of Mobile Web Application

It was already mentioned in the introduction, that mobile technologies is one of the swiftly
evolving areas in information technology. Mobile technologies are a perspective and a well
suited investment for many reasons. Most electronic devices are becoming smaller, requiring

less energy and a lower data transfer rate.

Nowadays, more and more people start to use mobile devices because they are simply
very useful tools in for a wide range of purposes and fields. At the same time, the performance

of these devices increases rapidly and extends the possibilities of using such devices. Based on

20

innovations, new and more smart devices are produced , which means using mobile devices is

becoming inevitably prevailing and handy in so many fields.[41]

As we all know that there are so many types and brands of mobile devices and different
ways to present website content to them. In 1997 ,there was a Wireless Application Protocol
(WAP) Forum established and one year later , WAP 1.0 standard was introduced , which

described complete software stack for mobile internet access [25].

Since 2004, WAP disappeared from handsets as there is now support for full HTML even
in low-end market phones. Before WAP in Europe there were similar technologies, most
notably was Japanese i-Mode which also used cut-down version of HTML back in late 90’
[24].

The market of mobile devices will be increasing in the next few years. So using an
effective method to easily transfer existing applications into the new market will be very
valuable as mobile web application using MV C architectural pattern ,which is a very fast and
efficient way to build different end-user sites without the need of redeveloping the core

application .

2.3.2 Model View Presentation (MVP) Design Pattern

MVP was first described by Mike Potel from Taligent (IBM) in 1996. Potel in his work on
MVP [36] questioned the need for the Controller class in MVC. He noticed that modern
Operating System user interfaces already provide most of the Controller functionality in the
View class and therefore the Controller seems slightly redundant [29].

MVP patterns provide flexibility for designers who can allocate responsibilities in different
ways, so the patterns can be adjusted into a wide range of application scenarios. On the
counter side, MVP patterns are not very strict regarding separation of concerns, which may

increase the complexity of the code and hamper maintainability.

21

MVC

% User % User

$ Umply input
Presentation View View
Wiew notifications :
Application control = , t|
logic ontroller resentation
: (Presenter) e =< Controller
A

: notifications

Domain

Model
{Business objects)

{Business objects)

Figure 2.6: Differences between MVC & MVP [29].

2.3.3 Model View View Model (MVVM) Design Pattern

The term MVVM was first introduced by the WPF Architect, John Gossman, on his blog

in 2005 [37]. It was then described in depths by Josh Smith in his MSDN article “WPF Apps
with the Model-View-View Model Design Pattern” [38].

MVVM patterns support simultaneous representation of multiple views on the same data

State of the art frameworks that support MVVVM provide support for declarative specification
of parts of the synchronization and its automatic execution. MVVM emphasizes separation of

concerns, which Support understandability and maintainability. On the other hand, extensive

22

use of observer synchronization combined with multiple views can have a negative effect on

system [29].

Y

Y

------- >
! View <o View Model Model
‘

View is bound to View Model
in a declarative manner.
‘ Contains no extra logic

work with domain data

Handles view state and]

1 User ——>» Directaccess = ------- » User interaction
:' Pattern component —<&@>—» Observer synchronization

Figure 2.7: MVVM pattern [29]

The table below illustrates the main differences between MVC and MVVVM.

MVC MVVM

The controller determines the Application | View Model encapsulates presentation

Flow logic and state

Controller is a must View Model is an optional pattern

User hits the controller first User hits the view first

The view knows about the Model View can not see the Model

View obtains an instance of the Model View has an instance of the View Model

Table 2.4: Differences between MVC & MVVM

23

2.4 ICONIX Methodology

ICONIX is an object oriented software development methodology, consists of dynamic and
static workflows [47], and it uses UML diagrams in a four-step process that transfers from use

case to code.

o] omo |k
Al * '
A= Code
f— " "
Use Case
Made

Figure 2.8: ICONIX Methodology [48]

ICONX process is very suitable for MVC and focuses on the area that lies in between use

cases and code. It also describes the core logical analysis and design process.

This essential logical analysis is designed to move the user from requirement analysis to

implementation in a quick and efficient manner.
A very essential element of the ICONIX Process is the use of Jacobson's Robustness

Analysis technique to bridge the gap between requirements analysis and detailed design. In

fact, this analysis approach is the most convenient for MVC.

24

2.4.1 ICONX Process

The ICONIX process is divided into four milestones or founding steps .At every

stage; all steps are carefully reviewed and updated.

Milestone 1: Requirements Review
This step is considered as requirements analysis, which is performed by
identifying a problem statement and real-world domain objects in a domain model.
It also includes identified functions requirement by Use Case diagram, which
generates some prototypes for each use case. From this analysis, use cases can be

identified, a domain model is produced and some prototype GUIs are made.

Milestone 2: Preliminary Design Review

Another very important milestone is Robustness Analysis. It is considered as a
middle ground between analysis and design as it discovers objects for each use case
and updates the domain model according to the objects discovered.

Once use cases are identified, texts can be entered to see how users and the system
will interact. Then, robustness analysis is done to find any potential errors in the
use case text which means the domain model is updated accordingly.

The use case text is important to observe how users will interact with the

proposed system.

Milestone 3: Detailed Design Review
This step is mainly concerned with the design. We use objects which are
discovered from the robustness analysis to make sequence diagrams, and we use the
domain model as explained in the previous step to design the class diagrams.
During this stage of the ICONIX process, the domain model and use case text
from milestone 2 are used to design the system . In this step ,class diagrams are
produced from the domain model and the use case texts are used to make sequence

diagrams.

25

https://en.wikipedia.org/wiki/Domain_model
https://en.wikipedia.org/wiki/Prototype
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Sequence_diagrams
https://en.wikipedia.org/wiki/Sequence_diagrams

Milestone 4: Deployment
The final step is the execution of all the desired system .Unit tests are written to
verify if the system matches to the use case text and sequence diagrams. Finally, the

code is written using the class and sequence diagrams as a guide.

- Dynamic 2
= = ‘ Vo TH =m '
| —]] — = :
GUI Storyboard '

Mode g ’O_S;:; D,ag,am
\> Rob

)

'

'

'

'

'

= <o -
Use Case Sequence '
'

)

'

]

ustness Diagra n '
)

)

' Static e
1 |
: = E,_lr_ = 3
: % - % :
+ Domain Updated .
. Model Domain Mode! Class Model '

Figure 2.9: The phases of the ICONIX process [48]

2.4.2 Robustness Analysis
Robustness analysis intends to fill the gap between analysis (the what) and design (the
how). Actually, robustness analysis is considered as a preliminary design when designers
make assumptions on the design structure and start thinking of any possible technical

solutions.

For supporting robustness analysis, they use robustness diagrams. it uses UML concepts.

and also It is a specialized communication diagram that uses stereotyped objects.

26

It was Introduced by Jacobson and it basically analyzes use cases and estimates
the first set of objects that participate with those use cases. It also classifies objects
according to the roles that use cases play. Robustness analysis helps discover

objects and identify the main domain classes before design or implementation [49].

Robustness Analysis consists three of elements
= Entity objects: describe objects dealing with persisting states.
» Boundary objects: describe links between the system and environment.

= Controller objects: describe use-case specific behavior

nouns (objects) verb (action)
> 4 <
Boundary Entity object Controller
object

Figure 2.10: Robustness diagram symbols (EBC) [49]

2.4.2.1 Robustness Analysis in MVC Design Pattern

MVC objects are related to EBC objects in one-to-one mapping. Thus, entity object

maps onto model object, boundary object maps onto view object, and controller is the
same in MVVC and EBC [50].

The MVC and EBC are techniques that separate responsibilities in software to avoid
potential coupling [51].

27

1 O—CO—0)

User

Boundarny Control Entity
User View Controller Model

Figure 2.11: Robustness analysis in MVC [50]

ICONIX is a methodology approach that uses entity, boundary, and controller
objects that presents a fundamental approach for modeling software systems , and also
it is the most convenient for GUI-based Object-Oriented (OO) applications.

The figure below shows Entity Boundary Controller pattern:

— - T~ T
~ ~
! Boundary-control-entity A
\ pattern
. e
- -~
o~ -
s T
<<parificipates>x> | ==zparticipates==>
4 |
:fV |
The @ Entity
Interface The Object
Manager

Figure 2.12: EBC pattern
28

Since the analysis use cases consider matters such as “what”, and design “how,”

robustness analysis is therefore really preliminary design[49].

AT

i,

R
D

—
\
\

>4'. }

what
(analysis)

Figure 2.13: Robustness analysis mediates between analysis and design [48]

2.4.2.2 Robustness Diagrams Rules:

Robustness analysis describe how actors use boundary (interface) objects to

communication with the system[52] .

Actor Boundary Controller entity
Object

e e

Figure 2.14: Actors communication with the system

29

When we start extracting objects, analyze use cases and attempt to ignite interaction
among diagrams through these objects, there are four primary rules that must be followed:

= Actors are allowed only to interact with the boundary objects.

= Boundary objects are allowed only to deal with controllers and actors.

= Entity objects controllers are allowed to engage in the same interaction.

= Controllers basically interact with boundary objects and entity objects, and to other

controllers, but not with actors.

Generally, there is one basic map between the actor and the boundary objects. In this
context, The controller objects can merely interact with all the objects, but not allowed to
access the actor. Also, the entity objects can interact with each other through the controller
object. Thus, the controller object is considered the route of communication between objects
[50].

A Boundany1 Control1 Entity1
User / 1 ‘ /

Boundan2 Control2 Entity2

Figure 2.15: Robustness diagram rules [50]

30

2.5 Related work

Erik G. Nilsson [15]: has proposed a set of important guidelines on how to solve various and complex
problems. This set was mainly used as means for facilitating development of more user friendly
applications on mobile devices (PDAs/Smart Phones).His work has explicitly provided practical
advice for each single problem in different contexts.The main focus was given to three problems
which were categorized as follows : utilizing screen space ,interaction mechanism and design at

large .Each was described in more detail.

Eric Magnuson[16]: attempted to provide a clearer definition for design patterns, find out how
effective they are and why they have not been utilized to their full potential .Additionally, the
use of design patterns in practice is demonstrated by using patterns to design a user interface.
The interface was then implemented in a prototype application for Nokia N 900 mobile as a
model. Examples for the prototype were the Two Panel selector , Card Stack and Hub and
Spoke applications for the mentioned device .In his detailed work , there was a great effort to

demonstrate the full process involved in developing user interfaces with design patterns.

Amin A.Rasooli[17]: has clearly presented the real-world challenges faced by users of mobile
devices like Visibility of system status, Flexibility and efficiency of use and many more. It was
suggested in his work that designing a HCI pattern is a solution to solve our usability problem
that occurs in different contexts of use. The way the problems were categorized was similar to
Erick G.Nillson .

Astahovs 1lja[18]: has adopted MV C design pattern for game development and conducted a number of

case studies .It was aimed at assessing the functionality and efficiency of a variety of design patterns on

31

a game project. His findings were that Some design patterns (e.g. MVC and Observer, State Machine
and Singleton) are best suited when used together. Both MVC and State (State Machine) patterns have
shown its great potential as a foundation for small game applications. The MV C is a decent choice for
overall game structure and this pattern is adopted by other middleware. The State Machine can be used
to split the Model further into smaller modules. He also emphasized that Even though the mentioned
design patterns date back to 1994, they are still used by the popular frameworks. Such DPs as MVVC
and State Machine are best suited for building a game engine or a small game from scratch because

they define the whole structure of the application.

32

CHAPTER 3

The Proposed Solution for Designing a Mobile User Interface
Using MV C Design Pattern

3.1 Introduction

This chapter describes in detail the proposed solution that we used to solve the problem.
The proposed approach is based on using Model View Controller design pattern (MVC) and
ICONX methodology for mobile devices. Section 3.2 gives an overview on the proposed
prototype. Section 3.3 introduces the framework of Model View Controller pattern. Section
3.4 explains the ICONX methodology, including the stages, the models and the techniques of

each stage of the solution approach.

3.2 Overview of the Solution Approach

The proposed solution to the stated problem is mainly based on utilizing MVC pattern (see
Section 2.3.1 in Chapter 2) and ICONX methodology (as given in Section 2.4 in Chapter 2).
The methodology used for solving this problem is ICONX. It involves many steps including
the selection of a proper design pattern. The ICONIX process is a streamlined approach to
software development. One of the main advantages of this process is that helps extract code
from use cases quickly and efficiently. This process is done by using a concentrated subset of
the UML and related tools and techniques. This methodology has also the ability to solve
complex problems related to mobile user interface. Thus, MVC proves to be the most effective

and convenient design pattern to fix the stated problem.

33

3.3 Framework of MVC Design Pattern

MVC pattern is usually implemented by ASP MVC.NET and J2EE, but in this research
we use ASP.NET MVC because it is easier than J2EE because J2EE has more details that
need to be well studied .The following describes the major differences between ASP.NET
MVC and J2EE MVC:

= The Model in ASP.NET MVC is business-based logic, while in J2EE MVC is simple
java bean classes.

= The View in ASP.NET MVC is ASP files ,but in J2EE MVC is JSP pages.

= ASP.NET MVC has one controller for each possible view, but in J2EE MVC has only

one controller.

ASP.NET is a development framework for building web pages and web sites with HTML,
CSS, JavaScript and server scripting. This application framework was developed by Microsoft
for building desktop applications. It is based on Common Language Runtime (CLR) which
gives developers the freedom to develop applications in multiple languages like Visual C#,
VB.NET, Visual J#, Visual C++ and other languages that are supported by the .NET

framework [39].

ASP.NET supports three different development models: Web Pages, MVC , and Web

Forms.
.NET FREMWORK
ASP.NET
MVC Web forms
framework

Figure 3.1: .NET framework and MVC[55]
34

MVC is actually one of three ASP.NET programming models, which include framework for
building web applications using the Model View Controller design. The MVC model defines
web applications with three logic layers: the data access layer (Controller logic), the display
layer (View logic) and the business logic layer (Model logic), (for more detail on MVC

design, see chapter 2 section 2.3.1)

In this research, we used a specific programming language with a framework such as C#,
which is an object-oriented programming language by Microsoft. It mainly aims at combining

the computing power of C++ with the programming ease of ASP.net [36].

3.4 ICONX Methodology

The ICONX Methodology is defined in detail. (see chapter 2 section 2.4). It mainly
consists of four stages. Figure 3.2 shows the main stages of ICONX methodology and Figure

3.3 shows the sub-stages of each main stage.

Requirements Review

I

Preliminary Design Review

I

Detailed Design Review

J

Implementation

Figure 3.2: The main stages of ICONX methodology

35

http://searchsoa.techtarget.com/definition/object-oriented-programming
http://searchsqlserver.techtarget.com/definition/C

Stage 1: Requirements Review

i 1-1dentify real-world domain objects E
1 2 Allocate functional requirements on use case diagrams '
i 3-Generate GUI Prototyping for each use case !

Stage 2: Preliminary Design Review

1-Perform robustness analysis for each use case
2-Update domain model

Stage 3: Detailed Design Review

1-Generate Sequence diagram from Boundary and Entity Objects
on the Robustness diagram.

2-Select a convenient design pattern.

3-Update the domain Model into class diagrams as needed.

Stage 4: Implementation

E write the code by using the Class and Sequence Diagram and
i select Program Language .

Figure 3.3: The sub- stages of ICONX methodology

36

3.4.1 Stage One : Requirements Review

Once we think about implementing the ICONIX process, we must bear in mind some
requirements for analysis. This analysis enables use cases to be identified, a domain model can
be produced and some prototype GUIs are created as a result. This step includes identifying

domain model, use cases and generating GUI prototyping for each use case.

3.4.1.1 Identifying Real-World Domain Objects

This is the first and the most important step. It simply focuses on the real world and
describes the problem of user interface. A clear definition of the problem leads to better
understand the next stages and to explicitly understand the scope of the problem.

3.4.1.2 Allocate Functional Requirements on Use Case Diagrams

The use case diagrams are usually defined during the requirements activities to capture
the requirements of the functionalities of the system. It also presents the requirements that
need to in explained in more detail. The scenario of the use case is to describe the
interaction of the user with the system.

The use case illustrates all actors (actor is any person who has interaction with the
user interface) .Another function of the use case is to describe how the user interface
responds to those actors . The representation is used to extract the functional requirements

of the system.

__—
T

Actor

Figure 3.4: Use case diagram

37

3.4.1.3 Generate GUI Prototyping for each Use Case
At this stage, the final prototypes of the main components are placed. The user interface
is the main component and user interface prototypes will be generated for each use case of

the system being developed to illustrate their actions.

For examples, the elements of the proposed GUI include:
= Button : a control that can be clicked to perform an action
= A text box: allows the user to enter text information which is to be used by the
program.
= A list box: a type of box within a collection of graphical user interface widgets that

can be grouped.

3.4.2 Stage Two :Preliminary Design Review

This step is mainly concerned with using a robustness analysis, which is the best for
visually describing the MVC (discussed in more detail in chapter 2 section 2.4.2).This
analytical procedure has two sub-steps : Perform Robustness Analysis and Update Domain
Model.

3.4.2.1 Perform Robustness Analysis for each Use Case
The Robustness diagram includes multiple elements. It actually consists of a class
diagram and an activity diagram. It visually represents behavior of use case , showing both
participating classes and software behavior. A robustness diagram is probably easier to read

than an activity diagram since objects speak to each other.

» Boundary: is the interface between the system and the outside world. Boundary
objects are typically screens or web pages (i.e., the presentation layer that the actor
interacts with).

= Entity: Entities are usually objects from the domain model.

= Control: Control objects are the “glue” between boundary and entity objects.

38

Boundary object Control object Entity object

Figure 3.5: Elements of robustness diagram

3.4.2.2 Update Domain Model

This sub-task is performed through extracting entity classes from the domain model, then

adding any missing entities discovered during the robustness analysis.
3.4.3 Stage Three: Detailed Design Review

During the stage of ICONIX process, the domain model and use case text from
stage 2 are used to design the system being built. A class diagram is produced from the
domain model and the use case text is used to make sequence diagram. This step is
categorized into: Sequence diagram, Design patterns ,and Class diagram.

3.4.3.1 Generate Sequence Diagram from EBC on the Robustness

Diagram.

This step explains the sequence model, which is one of the UML models .We must show
interaction between the set of objects(e.g. boundary and entity) ,messages being sent and
received by those objects and demonstrate the behavior of objects[53].

In fact ,the boundary and entity classes in a robustness diagram will generally become

object instances in a sequence diagram, while controllers will become messages[49].

39

Wiew Controller
Web User v v
oD oet ' '
H '

X @ & O)

| NeedSomelnformation
A >)

'
' 1
1

HandleEvent >
Querglnformationl i

[ResultSet]

DoValidation(.)

. UpdateView() __

NotifyUser(.)

Figure 3.6: Sequence diagram of MVC[49]

3.4.3.2 Select Suitable Design Pattern
As we know, there are 23 different types of design pattern (explained in detail in chapter

2 section 2.2) However, we still need to define what we actually mean by MVC design pattern.

MVC is basically a set of classes to build a user interface. Those classes that define the
main MVC relationship are Observer and Strategy .The diagram below illustrates the three
essential types of objects in the Observer: the model is the application data, the view is the
screen and the controller defines the way the View reacts to user input. As shown, this

comprehensive Observer process allows us to attach multiple Views to the same model.

40

chaarvers
Subject | Dbaerver

EAlach{n cbsarvar | Obsarae R - .
s DLachiin clmener | Dm;:wﬂ] ?m“hmbﬂ“‘ﬂf o in chsarvers) FUpdataly
[Matify) o, Upcate]);
ﬁ“-\)
subject
ConcreteSubject - ConcreleObserver
leubjectState E LobsarsarState
+SatStatal) obhsererState = - Updatal)
+GatStatel) 41— retum subjectState subject GetState]);

Figure 3.7: Observer design pattern[59]

This Observer pattern aims at defining the one-to- many relationships
between the subject and the observers. This means that if the Subject is altered,
then all Observers are updated .The Subject here keeps the list of the Observers
and can attach and detach objects to the list. Another component of MV C is the

View —Controller relationship.

The Controller is used by the View to implement a certain type of response .It
also allows the View to respond differently to user input .This View-Controller

connection is an example of the strategy design pattern.

Contaxt strateqgy Strategy
= -
+Contextinterface() +Algorithminterface|)
AN
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
+Algorithminterface|) +Algorithminterface|) +Algorithminterface()

Figure 3.8: Strategy design pattern [58]

41

Now we can state that the View takes on the role of the Observer object and the

Model acts as a Subject from the Observer pattern as shown in the two diagrams

below:

The View is a Context and the Controller is a Strategy object. From this

combined knowledge we can draw the MVVC UML class diagram.

Update View Execute event
Mode| View Controller
- =
HAtach{in observer | View) +Lpdate|) +Algarithminterface()
+Detachiin obserer - View) +Cantextinterfaca])
+Motify() £
subject
) ConcreteView
-obsarvarsiate
+pdated)
ConcreteModel Updata Modal ConcreteController
subjectState |
+SetState())
s Gototatol) +Algarithminterface()

Figure 3.9: MVC design pattern

3.4.3.3 Update the Domain Model into Class Diagrams as needed.

Class diagrams indicate the set of classes and relationship between them. Every class

contains three elements: Class name, Attributes and Method or Operation.

Class Name

Attributes

Operation

Figure 3.10: Class diagram

42

3.4.4 Stage Four : Implementation

This is the final stage of the ICONEX methodology. It verifies the system which will match
up with the Use case, Text and Sequence diagrams. Finally, Code is written by using the Class
and Sequence diagrams .In this research we used the ASP.NET MVC framework for

designing user interface of mobile.

43

