
1

A Framework for Relational Database Migration
Abdelsalam Maatuk, Akhtar Ali, and Nick Rossiter

Abstract—The dominance of traditional Relational
DataBases (RDBs) and their limitation to support com-
plex structure and user-defined data types provided by
object-based/XML databases makes migrating an RDB
into object-oriented database, object-relational database
and XML an active research area. The problem is how
to effectively migrate existing RDBs, as a source, into
OODB/ORDB/XML, as targets, and what is the best way
to enrich and maintain RDBs’ semantics and constraints
in order to meet the characteristics of the three targets?
Existing work does not appear to provide a complete so-
lution for more than one target database. We tackle this
question by proposing a solution for migrating an RDB into
the three targets based on available standards. The so-
lution takes an existing RDB as input, enriches its mata
data representation with as much semantics as possible,
and constructs an enhanced Relational Schema Represen-
tation (RSR). Based on the RSR, a Canonical Data Model
(CDM) is generated, which captures essential characteris-
tics of target data models suitable for migration. A proto-
type has been implemented, which migrates a CDM/RDB
into object-oriented (ODBG 3.0), object-relational (Oracle
10g) and XML databases.

I. Introduction

Many organisations have stored their data in RDBs and
aspire to take advantage of databases that have emerged
more recently, e.g., object-based/XML. Instead of discard-
ing the previous RDB or build non-relational applications
on it, it is accepted to convert the old data and applications
together into a new environment. However, the question is
which of the new databases is it most appropriate to move
to? So there is a need for an integrated method that deals
with DataBase Migration (DBM) from RDB to Object-
Oriented DataBase (OODB)/Object-Relational DataBase
(ORDB)/XML in order to provide an opportunity for ex-
ploration, experimentation and comparison among the al-
ternative databases. The method should assist in evalu-
ating and choosing the most appropriate target database
to adopt for non-relational applications to be developed
according to required functionality, performance and suit-
ability, and could help increase their acceptance among en-
terprises and practitioners. However, the difficulty facing
this method is that it is targeting more than one database
models and these are conceptually different. There is a lack
of a canonical model that can be used as an intermediate
stage for schema and data conversion from input (RDB)
to various output targets.

Different researches are dedicated in RDB migrations
focusing on different areas. Most existing proposals are
restricted by a range of assumptions such as a source
schema is required to be available for further normalisa-
tion to 3rd Normal Form (3NF) before the DBM process
can begin [7]. Key-based inclusion dependency is assumed

School of Computing, Engineering & Information Sciences
Northumbria University, Newcastle upon Tyne, UK
{abdelsalam.maatuk,akhtar.ali,nick.rossiter}@unn.ac.uk

in many proposals with key attribute consistencies and
another frequent assumption is that the initial schema is
well designed [7], [10], [19]. Earlier models such as En-
tity Relationship Model (ERM), Extended ERM (EERM)
and Object-Modeling Technique (OMT) are assumed in
most works as an Intermediate Conceptual Representation
(ICR) or target data models [12], [14] whereas others are
restricted to a particular product, e.g., Oracle [11]. Sev-
eral previous approaches fail to maintain all of the data
semantics explicitly, e.g., integrity constraints and inher-
itance, whereas constraints are mapped into class meth-
ods [7] or into separate constraint classes [12]. For proof
of concept, most proposals have been implemented in one
way or another. Only a few attempt data conversion and
even those that do have some drawbacks. However, the ex-
isting work does not provide a solution for more than one
target database or for either schema or data conversion.
Besides, none of the previous proposals can be considered
as a method for converting an RDB into an ORDB.

In this paper, we propose an integrated method
for MIGrating an RDB into Object-based and Xml
databases (MIGROX), which is able to preserve the
structure and semantics of an existing RDB to generate
OODB/ORDB/XML schemas, and to find an effective way
to load data into target databases without lose or unnec-
essary redundancies. The method is superior to the ex-
isting proposals as it can produce three different output
databases as shown in Fig 1. In addition, the method ex-
ploits the range of powerful features that target data mod-
els provide such as ODMG 3.0, SQL4, and XML Schema.
Due to the heterogeneity among the three target data mod-
els, we believe that it is necessary to develop a Canon-
ical Data Model (CDM) to bridge the semantic gap be-
tween them and to facilitate the migration process. The
CDM should be able to preserve and enhance RDB’s in-
tegrity constraints and data semantics to fit in with tar-
get database characteristics. MIGROX has three phases:
Semantic enrichment, schema translation and data conver-
sion. In the 1st phase, the method produces a CDM, which
is enriched with an RDB’s constraints and data semantics
that may not have been explicitly expressed in it. The
CDM so obtained is mapped into target schemas in the
2nd phase. The 3rd phase converts an RDB data into its
equivalents in the new database environment. System ar-
chitecture has been designed and a prototype implemented
to demonstrate the process, which results successfully in
target databases.

This paper is structured as follows. Section II provides
an introduction to the semantic enrichment phase. An
overview of the schema translation phase is introduced in
Section III. Section IV presents the data conversion phase.
Section V reviews some results of the MIGROX prototype.
A general overview of the related work is presented in Sec-

2

tion VI, and Section VII concludes the paper and points
to future work.

Fig. 1. An Overview of MIGROX

II. Semantic Enrichment

Semantic enrichment is a process of analysing an RDB
to understand its structure and meaning, and make hidden
semantics explicit. In our approach, the semantic enrich-
ment phase involves the extraction of data semantics of
an RDB to be represented in an RSR followed by conver-
sion into a much enriched CDM. This facilitates migration
into new target databases without referring to the existing
RDB repeatedly. The main benefit from using an RSR and
a CDM together is that an RDB is read and enriched once
while the results can be used many times to serve different
purposes. Fig 2 shows the schematic view of the SE phase.

Fig. 2. Schematic View of the Semantic Enrichment Process

The semantic enrichment starts by extracting the ba-
sic metadata information about an existing RDB (e.g.,
relation names and keys) in order to construct an RSR,
which is designed in such a way as to ease key matching
for RSR’s constructs classification. To get the best results,
it is preferable that the process to be applied to a schema
in 3NF. A relation that is not in 3NF may have redun-
dant data, update anomalies problem or no clear semantics
of whether it represents one real world entity or relation-
ship type. The next steps are to identify the CDM con-
structs based on a classification of RSR constructs, includ-
ing relationships and cardinalities, which are performed
through data access. Lastly, the CDM structure is gen-
erated. In databases, essential semantics come with the
schema, whereas some semantics might be hidden in appli-
cation programs. Data semantics can be extracted using

a variety of ways such as catalogue (i.e., data dictionary),
DataBase Reverse Engineering (DBRE) tools, specified by
a user interactively, and obtained from conceptual schemas
and design documents. However, conceptual schemas may
not be precisely recovered in DBRE from the final logical
or physical schemas, and database understanding is easily
lost when experienced user(s) are absent or design docu-
ments are missing [1]. In modern RDB systems, matadata
is usually stored in a catalogue, which can be accessed to
get information about a database structure.

A. Extracting Relational Schema Representation (RSR)

In order to produce an integrated source of database se-
mantic information for the purpose of SE, implicit seman-
tics have to be made explicit. Conflicts in naming have to
be resolved, and attributes and interrelationships amongst
data have to be deduced. In this section, we introduce
an RSR, as a representation of an RDB’s metadata, to
be used as a source of information for CDM generation.
Basic information needed to proceed with the SE phase
includes relation names and attributes’ properties that in-
clude attribute names, data types, max length, default val-
ues, and whether the attribute is nullable. Moreover, the
most important information needed is about the keys in-
cluding Unique Keys (UKs). We assume that data depen-
dencies are represented by Primary Key (PKs) and Foreign
Key (FKs) as for each FK value(s) there are an existing,
matched PK value, which can be considered as a value ref-
erence. The inverse of an FK is called an Exported Key
(EK). EKs play an important role as regards to OO/OR
databases, which support bi-directional relationships. The
user interaction might be necessary to provide any missing
semantics.
Definition 1: In our approach an RDB schema is repre-
sented as a set of elements,

RSR := {R | R := 〈rn, Arsr, PK, FK, EK, UK〉},
where:
• rn denotes the name of R.
• Arsr denotes the set of attributes of R: Arsr := {a | a

:= 〈an, t, l, n, d〉}, where an is an attribute name, t is
its type, l is data length, n is nullable or not (‘y’|‘n’)
and d is a default value if given.

• PK denotes R’s primary key: PK := {α | α := 〈pa,
s〉}, where pa is an attribute name and s is a sequence
number in the case of a composite key, however, s is
assigned 1 in the case of a single valued key.

• FK denotes the set of foreign key(s) of R: FK := {β
| β := 〈er, {〈fa, s〉}〉}, where β represents one FK
(whether it is single or composite), er is the name of
an exporting (i.e., referenced) relation that contains
the referenced PK, fa is a foreign key attribute name,
and s is a sequence number.

• EK is a set of exported key(s) of R: EK := {γ |
γ := 〈ir,{〈ea, s〉}〉}, where γ represents one EK, ir
is the name of an importing (i.e., referencing) relation
that contains the exported attribute name ea (i.e., FK
attribute).

• UK is a set of unique keys of R: UK := {δ | δ := {〈ua,

SHORT NAMES: MIGROX: MIGRATING RELATIONAL DATABASE INTO OBJECT-BASED AND XML DATABASES 3

s〉}}, where δ represents one UK, ua is an attribute
name and s is a sequence number.

An RSR provides an image of matadata obtained from
an existing RDB. However, it provides more semantic in-
formation than is readily available in a DD. The main
purpose behind constructing an RSR is to read essential
metadata into memory outside the database’s secondary
storage. An efficient RSR construction overcomes the com-
plications that occur during matching of keys in order to
classify relations (e.g., strong or weak relation), attributes,
e.g., non-key attribute (NK) and relationships, e.g., M:N,
inheritance, etc. Each relation R is constructed with its
semantics as one element, which is easily identifiable and
upon which set theoretic operations can be applied for
matching keys. Each of R’s elements describes a specific
part of R (e.g., Arsr describes R’s attributes). An im-
portant advantage of RSR is that it identifies the set EK,
therefore adding more semantics to an RDB’s metadata.
The EK holds keys that are exported from R to other
relations.

Consider the database shown in Fig 3. PKs are italic and
FKs are marked by “*”. Table I gives the RSR constructed
for the schema in Fig 3 showing only some relations: emp,
salaried emp, dept and works on.

EMP
ENAME ENO BDATE ADDRESS SPRENO* DNO*

Smith 12345 09-Jan-55 31 Hampstead Rd, NE4 8AB 86655 4
Wong 34455 08-Dec-45 16 Hampstead Rd, NE1 7RU 86655 4
Scott 53453 31-Jul-62 4 Northcote St., NE5 5AL 34455 1
Ali 68844 15-Sep-52 49 Hill Street, RG1 2NU 34455 1
Borg 86655 10-Nov-27 162 London Road, OL1 4BX null 2
Wallace 54321 20-Jun-31 91 St James Gate, NE1 4BB 86655 2
Ally 98798 29-Mar-59 6 Blandford Square, NE1 4HZ 54321 3
Zelaya 98877 19-Jul-58 30 Ripon Gardens, NE2 1HN 54321 3

1
1
1
2
2
2
3
3
4
4
4
5
5
5
6
6

12345
34534
34455
12345
34534
34455
68844
34455
54321
98877
98798
98798
54321
86655
98877
98798

PNO*ENO*

WORKS_ON

19-Jun-71
01-Jan-85
22-May-78
06-Oct-05

86655
54321
34455
12345

1
2
3
4

Accounts
Administration
Research
Finance

STARTDMGR*DNODNAME

DEPT

3
3
3
2
1
4

Newcastle
London
Reading
Salford
Reading
Salford

1
2
3
4
5
6

Way Station 1
Way Station 2
Way Station 3
Salford House
4 Times Square
Newbenefits

DNUM*PLOCATIONPNUMPNAME

PROJ

F
F
M
F
F
M
M

Alice
Elizabeth
Michael
Alice
Joy
Ally
Scott

12345
12345
12345
34455
34455
34455
54321

SEXKNAMEENO*

KIDS

Reading
Salford
Newcastle
London
Reading

1
2
2
3
4

LOCATIONDNO*

DEPT_LOCATIONS

55000
43000
25000
25000

86655
54321
98798
98877

SALARYENO*

SALARIED_EMP

3
4
2
3

12345
34455
53453
68844

PAY_SCALEENO*

HOURLY_EMP

Fig. 3. Sample company database

B. Generating Canonical Data Model (CDM)

This subsection presents a formal definition of CDM.
CDM is a good source of valuable semantics, enriched and
well organized data model so that it can be converted easily
and flexibly to any target models in DBM. Besides taking
into account the target model characteristics, it keeps all
data semantics that might be extracted from an RDB and
integrity constraints imposed on it. Moreover, it repre-
sents a key mediator for converting an existing RDB data
into target databases based on the structure and the con-
cepts of target model through instance conversion rules.
CDM facilitates reallocation of attribute values in an RDB
to the appropriate values in a target database. Based on

the CDM definition, target attributes that represent rela-
tionships among classes are materialized into references or
changed into other domain.

In this study the CDM is designed to upgrade the seman-
tic level of RDB and to play the role of an intermediate
stage for DBM from RDB to OODB/ORDB/XML acting
on both levels: schema translation and data conversion. It
represents explicit as well as implicit semantics of an exist-
ing RDB. Explicit semantic include relation and attribute
names, keys, etc.; implicit semantic include classification
of classes and attributes, and relationship names, types,
cardinalities and inverse relationships. Its constructs are
classified to facilitate the translation to complex target
objects in reasonable way instead of flat one to one and
complicated clustering conversions. Through the CDM,
target databases can be obtained well-structured without
proliferation of references and without unnecessary redun-
dancy. However, its richness may not be fully exploited due
to the relatively limited expressiveness of the input RDB.
For instance, object-based models encapsulate static (i.e.,
attributes and relationships) and dynamic aspects (i.e.,
methods) of objects. However, dynamic aspects get less
attention in CDM compared to static aspects because an
RDB does not support methods attached to tables.

CDM has three concepts: class, attribute and relation-
ship. The model can be seen as an independent model,
which embraces object oriented concepts with rich seman-
tics that cater for OR and XML data models. However, the
CDM is independent of an RDB from which it has taken
semantics as well as any of the target databases to which
it could be converted. It is enriched by semantics from
an RDB model such as PKs, FKs, attributes max length,
uniqueness, etc. In order to express as much semantics as
possible, the model has taken into consideration features
that are provided by object-based and XML models such
as association, aggregation and inheritance. It provides
non-OODB key concepts (i.e., FKs, null and UKs) and ex-
plicitly specifies that the attributes and cardinalities are
optional or required. Relationships are defined in CDM in
a way, which facilitates the extracting and transforming of
data in the data conversion phase including defining and
linking objects using user defined identifiers. Real world
entities, multi-valued and composite attributes, and rela-
tionships are all represented as classes in CDM.
Definition 2: CDM is defined as a set of classes,

CDM := {C | C := 〈cn, cls, abs, Acdm, Rel, UK〉},
where:

Each class C has a name cn, given a classification cls
and whether it is abstract abs or not. Each C has a set of
attributes Acdm, a set of relationship Rel and a set of UKs
UK.
• Classification (cls): A class C is classified into dif-

ferent kinds of classes, which facilitate its translation
into target schema, where:
cls := Regular Strong Class (RST) | Secondary (in-
herited) Strong Class (SST) | Subclass (SUB) | Sec-
ondary (inherited) Subclass (SSC) | Regular (M:N re-
lationship class without attributes) Relationship Class

4

TABLE I

Result of RSR construction

rn Arsr PK FK EK UK
an t l n d pa s er fa s ir ea s ua s

emp eno int 25 n eno 1 emp spreno 1 salaried emp eno 1
ename char 40 n dept dno 1 hourly emp eno 1
bdate date y works on eno 1
address char 40 y dept mgr 1
spreno int 25 y kids eno 1
dno int n

salaried emp eno int 25 n eno 1 emp spreno 1 dept mgr 1
salary int y

dept dno int n dnum 1 emp mgr 1 emp dno 1
dname char 40 n proj dnum 1 mgr 1
mgr int 25 n dept locations dno 1
startd date y

works on eno int 25 n eno 1 emp eno 1
pno int n pno 2 proj pno 1

(RRC) | Secondary Relationship Class (SRC), i.e., ref-
erenced RRC, M:N relationship with attributes or n-
ary relationships, n>2 | Multi-valued Attribute Class
(MAC) | Composite Attribute Class (CAC) | Regular
Component (in relationship with other classes rather
than its whole) Class (RCC).

• Abstraction (abs): It is important for a superclass to
check whether all of its objects are inherited or not.
A superclass is abstract (i.e., abs := true) when all
its objects are members of its subtype objects. In-
stances of an abstract type cannot appear in database
extension but are subsumed into or by instances of its
subtypes. A class is not abstract (i.e., abs := false)
when all (or some of) its corresponding RDB table
rows are not members of other subtable rows.

• Attributes (Acdm): A class C has a set of attributes of
primitive data type.
Acdm := {a | a := 〈an, t, tag, l, n, d〉}, where each
attribute a has a name an, data type t and a tag,
which classifies attributes into a non-key ‘NK’, ‘PK’,
‘FK’ or both primary and foreign key ‘PF’ attribute.
Each a can have a maximum length l, may have a
default d value whereas n indicates that a is nullable
or not (‘y’|‘n’).

• Relationships (Rel): A class C has a set of relation-
ships Rel. Each relationship rel ∈Rel between a class
C and another class C ′ is defined in C to represent an
association, aggregation or inheritance.
Rel := {rel | rel := 〈RelType, dirC, dirAs, c,
invAs〉}, where RelType is a relationship type, dirC
is the name of C ′, dirAs denotes a set containing the
attribute names representing the relationship from C ′

side, invAs denotes a set of inverse attribute names
representing the inverse relationship from C side, and
c is a relationship cardinality constraint. RelType can
have the followings values: ‘associated with’ for asso-
ciation, ‘aggregates’ for aggregation, and ‘inherits’ or
‘inherited by ’ for inheritance. Cardinality c is defined
by min..max notation to indicate the occurrence of
C ′ object(s) within C objects, where min is a mini-
mum cardinality and max is a maximum cardinality.
Querying (or examining) data in a complete database

is used to extract cardinality constraints. Querying
data instances may not return the semantics of an ex-
isting RDB if data is incomplete as different database
states give different cardinalities. Based on c, C ′’s
object(s) can be single-valued or set-valued.

Using key matching, RSR relations and their attributes
are classified, relationships among relations are identified
and their cardinalities are determined and translated into
equivalents in the CDM. Abstraction of each class in CDM
is checked. We assume that, in RDB, the kinds of relations
are identified and relationships are represented by means
of PKs/FKs. For example, a weak entity/relation is iden-
tified when a PK of a relation is a superset of FKs and
the to-one relationship is determined when an FK refers to
a PK. Other representations may lead to different target
constructs. That is a relation R is a strong relation if its
PK is not fully or partially composed of any FKs. Simi-
larly, R is a weak relation if its PK is partially composed
of a PK of another strong relation. In addition, in EERM,
an inheritance relationship is represented using general-
ization/specialzation, which have different types of speci-
fication. However, such types of specialization can not be
represented directly in relational data models. There are
many alternative ways to model inheritance in relational
data models [5]. The most common alternative represents
inheritance as one relation for a superclass and one rela-
tion for every subclass. The superclass is represented by a
relation R with its key and attributes, where R(pk, a1,...,
an), A(R) := {pk, a1..., an} and PK(R) := pk. Each sub-
class S with its attributes is represented by relation S(pk,
attributes of S) and PK(S) := pk. MIGROX assumes this
alternative because it is based on PKs/FKs matching, and
without user involvement it would not be possible to au-
tomatically identify other alternatives of inheritance. The
main idea in inheritance is that a supertype is inherited by
one or more other subtypes. A subtype can be inherited
by other subtypes. Moreover, a subtype may inherit from
more than one other supertypes, i.e., multiple-inheritance.
However, as ODMG 3.0, SQL4 and XML Schema do not
allow a concrete subtype to have more than one concrete
supertype, multiple-inheritance is not supported in MI-
GROX. Therefore, each superclass in CDM can be inher-

SHORT NAMES: MIGROX: MIGRATING RELATIONAL DATABASE INTO OBJECT-BASED AND XML DATABASES 5

ited by one or more subclasses, but a subclass can have
only one superclass.

Consider the RSR shown in Table I, Fig 4 shows the
resulting CDM, generated from the RSR and RDB in an
easy to follow format hiding the deeply nested structure of
CDM classes. The CDM shows only EMP and DEPT classes.
For instance, the CDM’s class, EMP, which is SST, has at-
tributes: ename, eno, bdate, address, spreno and dno.
Other properties (e.g., attributes’ types, tags, default val-
ues) are not shown for the sake of space. The class EMP
is ‘associated with’ classes: DEPT, WORKS ON and with it-
self. Moreover, it ‘aggregates’ KIDS class and ‘inherited by ’
SALARIED EMP and HOURLY EMP classes. Cardinalities are
determined for each class. Relationships defined in each
class as: RelType {invAs ←→ dirC(dirAs)c} (←→ indi-
cates bidirectional association and → indicates unidirec-
tional aggradation).

EMPSST
abs [Acdm := {ename, eno, bdate, address, spreno, dno},

Rel := {associated with{dno ←→ DEPT(dnum)1..1,
eno ←→ DEPT(mgr)0..1, spreno ←→ EMP(eno)1..1,
eno ←→ EMP(spreno)0..∗, eno ←→ WORKS ON(eno)1..∗ },
aggregates{ eno → KIDS(eno)0..∗},
inherited by {SALARIED EMP, HOURLY EMP}}]

DEPTRST [Acdm := {dname, dnum, mgr, startd},
Rel := {associated with {mgr ←→ EMP(eno)1..1,
dnum ←→ EMP(dno)1..∗, dnum ←→ PROJ(dnum)1..∗},
aggregates {dno → DEPT LOCATIONS(dno)1..∗}}]

Fig. 4. Sample generated CDM schema

III. Schema Translation

The Schema Translation phase aims at translating CDM,
produced from the semantics enrichment phase, into its
equivalent targets schemas as shown in Fig 5. Target
schemas hold equivalent semantics to that of an existing
RDB, which are enhanced and preserved in CDM. Three
sets of translation rules are designed for mapping CDM
into target schemas. Algorithms are developed for produc-
ing each target schema according to these rules. In this
section, we define target schemas, which satisfy ODMG
3.0, SQL4 and XML Schema standards and introduce the
schema translation phase.

Fig. 5. Schematic View of translating CDM into target schemas

A. Target Models

We first briefly define the output target models for the
ST phase. Translating these models defined here to the

actual schema definition languages is straightforward.
Definition 3: A target ODMG 3.0 schema is defined as a
set of classes,

OOschema := {Coo | Coo := 〈cn, spr, k, Aoo, Reloo〉},
where cn is a name of a class Coo, spr is the name of its
superclass, k is its primary key, Aoo is a set of its attributes
of simple or complex data type and Reloo is a set of rela-
tionship types in which Coo participates. The sets Aoo and
Reloo are defined as follows:
• Aoo := {aoo | aoo := 〈an, t, m〉}, where an is a name

of an attribute aoo, t is its data type, which can be
primitive (e.g., string), user-defined constructed (e.g.,
struct) or object-based (e.g., class), and m denotes
whether aoo is single-valued (‘sv’) or collection-valued
(‘cv’); and

• Reloo := {relc | relc := 〈reln, dirCn, m, invReln〉},
where reln is the name of the relationship relc, dirCn

is the name of the referenced class, and invReln is the
name of the inverse relationship.

Definition 4: A target SQL4 ORDB schema is repre-
sented as ORschema := {UT,TT,UKor}, where UT is a
set of User Defined Types (UDTs), TT is a set of typed
tables and UKor is a set of UKs. The sets UT and TT are
defined as follows:
• UT := {udt | udt := 〈utn, sut, Aut, uoid〉}, where utn

is the name of the type udt, sut is the supertype name
of udt, Aut is a set of attributes and uoid is a user
defined identifer of udt;

– Aut := {aut | aut := 〈an, t, m, n, d〉}, where an is a
name of an attribute aut, t is its data type, which
can have primitive, user-defined constructed or ref-
based, m denotes whether aut is a single-valued
(‘sv’) or a collection-valued (‘cv’), d is a default
value in case of primitive and n denotes whether
aut accepts nulls or not; and

• TT := {tt | tt := 〈ttn, utn, stt, pk〉}, where ttn is the
name of a typed table tt, utn is a udt’s name that tt
is defined based upon, stt is its supertable’s name and
pk is the PK of tt.

Definition 5: A target XML Schema is represented as
XMLschema := {Root,GT}, where:

Root is a global element declared under the schema with
its direct local subelements and constraints representing
the XML document tree, and GT is a set consisting of
global complex types, which are defined to be referenced
as types of subelements that are declared within the Root
or by other defined global complex types. The Root and
the set GT are defined as follows:
• Root := {rootn, RT , PKx, FKx, UKx}, where Root

has a name rootn, a type RT and three sets of identity-
constraints PKx, FKx and UKx;

– RT represents the Root’s local complex type that
involves a set of local sub-element le declarations:
RT := {le | le := 〈en, et, nim, max〉}, where en is
the name of le, et is its type, and min and max are
its minimum and maximum occurrences. The type
of each subelement et is defined globally under the
schema in the set GT ;

6

– PKx is a set of primary keys for subelements defined
in the Root: PKx := {pk | pk := 〈pkn, selector,
PKfield〉}. Each primary key has a constraint
name pkn, element set selector as scope for the key
to be defined in, and a set of related sub-elements
that are selected to be unique PKfield;

– FKx is a set of foreign keys, where FK := {fk |
fk := 〈fkn, ref , selector, FKfield〉}. Each for-
eign key has a constraint name fkn, an element set
selector, a reference constrains name refer that re-
fer to a matched PK constrain name, and a set of
related subelements FKfield;

– UKx is a set of unique keys, where UK := {uk
| uk := 〈ukn, selector, UKfield〉}. Each unique
key has a constraint name ukn, element set scope
selector, and a set of related subelements selected
to be unique UKfield; and

• GT := {CT | CT := 〈 ctn, base, LE〉}, where ctn is the
name of a complex type CT , base is its a supertype’s
name (if it is derived from other type), and LE is a set
of elements that declared locally within CT . LE :=
{le | le := 〈en, et, nim, max〉} as defined as for Root’s
type; however, data type of local elements le ∈ LE
can be built-in data type (e.g., string) or predefined
complex type (e.g., dependent complex type).

B. Translation Process

Given a CDM, the schema translation phase starts by
asking the user to determine which target is to be pro-
duced. Then, an appropriate set of rules is implemented
to map the CDM into equivalent constructs in the target
schema. Each rule maps a specific construct, e.g., class
or attribute. By using CDM constructs classification, we
can identify their equivalents in target schema definition
language. Based on cls, each main CDM class C is trans-
lated into target type, where C.cls 6= (“MAC” | “CAC” |
“RRC”). The type is defined under its superclass if C.cls
:= “SUB” or “SSC”. However, MAC and CAC classes are
mapped into multi-valued and composite (e.g., struct) at-
tributes respectively, and RRC classes are mapped into an
M:N relationship in which a pair of 1:M relationship is
defined in each of the target types that participate in the
relationship. Attributes C.Acdm are translated into equiva-
lents with the same names as that of CDM and their types
are converted according to target data types. Keys are
specified when attributes are tagged with ‘PK’. The type
of target relationship and its multiplicity are determined by
the classification of a CDM class C ′ related to the class C
being translated and the properties of each relationship rel
defined in C, where rel ∈ C.Rel, e.g., rel.RelType, rel.c.
Each rel is translated into an equivalent target association,
aggregation or inheritance. Target relationship names are
generated by concatenating dirC with dirAs, and C.cn
with invAs, e.g., dept mgr and emp eno in Fig 6. Relation-
ship cardinality rel.c is mapped into single-valued when
rel.c := (0..1 | 1..1) or collection-valued otherwise. The
OODB and ORDB schemas corresponding to the CDM in
Fig 4 are shown in Fig 6 (ODMG 3.0 ODL) and Fig 7 (Or-

acle 10g), respectively. The XML Schema is provided in
Fig 8.

class emp (extent emps, key eno) {
attribute string ename; attribute number eno;
attribute date bdate; attribute string address;
attribute set<struct kids{string kname, char sex;}> kids eno;
relationship dept dept mgr inverse dept::emp eno;
relationship set<emp> emp spreno inverse emp::emp eno;
relationship dept dept dno inverse dept::emp dno;
relationship emp emp eno inverse emp::emp spreno
relationship set<proj> proj pnum inverse proj::emp eno;};
class hourly emp extends emp (extent hourly emps){attribute
number pay scale;};
class salaried emp extends emp (extent salaried emps){attribute
number salary;};
class dept (extent depts, key dno) {
attribute string dname; attribute number dno;
attribute date startd; attribute set<string> dept locations dno;
relationship set<emp> emp dno inverse emp::dept dno;
relationship set<proj> proj dnum inverse proj::dept dno;
relationship emp emp eno inverse emp::dept mgr;};
class proj (extent projs, key pnum) {
attribute string pname; attribute number pnum; attribute string
plocation;
relationship set<emp> emp eno inverse emp::proj pnum;
relationship dept dept dno inverse dept::proj dnum;};

Fig. 6. Sample Output OODB schema

IV. Data Conversion

The Data Conversion phase concerns converting exist-
ing RDB data to the format defined by the target schema.
Data stored as tuples in an RDB are converted into com-
plex objects/literals in object-based databases or elements
in XML document. We propose using CDM to guide the
conversion process. Data coversion is performed in three
steps as shown in Fig 9. Firstly, the RDB relations’ tu-
ples are extracted. Secondly, these data are transformed
(converted) to match the target format. Finally, the trans-
formed data are loaded into text files suitable for bulk
loading in order to populate the schema generated earlier
during the ST phase. Since relationships in object-based
databases are reference-based, the process is accomplished
in two separate passes. In the first pass, each RDB re-
lations’ tuples comprising of non-FK attributes are con-
verted into equivalent target format in order to define ob-
jects. In the second pass, the initial object defined in the
first pass are linked using FK values extracted from each
RDB relation’s tuples based on relationships defined in the
target schema. Objects’ user-defined identifers uoids1 are
extracted by concatenating the class name with the PK
data extracted from corresponding RDB table. Similarly,
object-based relationships are established using uoids ex-
tracted from CDM relationship attributes, i.e., dirAs and
invAs data. However, relationships among XML elements
are established by key/keyref constraints specified in XML
schema document. Each target database’s data are gener-
ated using a set of data instance conversion rules. We have
developed an algorithm for integrating the rules for each
target database. The algorithm generates the target data
in text files as initial objects’ files and relationships files.
Sets of customised SQL queries are embedded in these al-

1 i.e., surrogate OID, which will be translated by the system into
a physical OID during object loading

SHORT NAMES: MIGROX: MIGRATING RELATIONAL DATABASE INTO OBJECT-BASED AND XML DATABASES 7

create type emp t
create type proj t
create type dept locations t as object (location varchar2(20));
create type dept locations ntt as table of dept locations t;
create type kids t as object (kname varchar2(20),sex char(1));
create type kids ntt as table of kids t;
create or replace type emp ntt as table of ref emp t;
create or replace type proj ntt as table of ref proj t;
/
create or replace type dept t as object (
dname varchar2(20), dno number, startd date, dept locations dno
dept locations ntt, emp dno emp ntt, proj dnum proj ntt, emp eno
ref emp t) not final;
create or replace type emp t as object (
ename varchar2(20), eno number, bdate date, address
varchar2(30), dept mgr ref dept t, emp spreno emp ntt, kids eno
kids ntt, proj pnum proj ntt, dept dno ref dept t, emp eno ref
emp t) not final;
create type proj t as object (
pname varchar2(20), pnum number, plocation varchar2(20), emp eno
emp ntt, dept dno ref dept t) not final;
create type hourly emp t under emp t (pay scale number) final;
create type salaried emp t under emp t (salary number) final;

create table dept of dept t
nested table dept locations dno store as dept locations dnoNT
nested table emp dno store as emp dnoNT nested table proj dnum
store as proj dnumNT;
create table hourly emp of hourly emp t
nested table emp spreno store as emp spreno hourly empNT nested
table kids eno store as kids eno hourly empNT nested table
proj pnum store as proj pnum hourly empNT;
create table proj of proj t
nested table emp eno store as emp enoNT;
create table salaried emp of salaried emp t
nested table emp spreno store as emp spreno salaried empNT nested
table kids eno store as kids eno salaried empNT nested table
proj pnum store as proj pnum salaried empNT;

Fig. 7. Sample Output ORDB schema

gorithms to extract the desire data from an RDB. Once a
query is executed, the result is transformed from flat RDB
form to target database format. At last, a conversion pro-
gram is generated to emact the schema file obtained from
the ST phase and the files generated during the DC phase.

Consider the CDM shown in Fig 4 and RDB data given
in Fig 3 to input to the algorithm for generating OODB
data. One tuple from the salaried emp RDB table of an
employee called “Wallace”, which is identified by the PK
value 54321 is converted, with its related tuples in other
tables, into target equivalents. The output OODB object
definition (in LDB2 syntax) that represents the RDB “Wal-
lace” tuple is shown in Fig 10(a), whereas its relationships
is defined in Fig 10(b).

V. Experimental Study

To demonstrate the effectiveness and validity of MI-
GROX, a prototype has been developed to realize the al-
gorithms outlines in proceeding sections. The algorithms
were implemented using Java 1.5 software development
kit and Oracle 10g. The experiment was run on a PC
with CPU Pentium IV 3.2 GHz and RAM 1024 MB oper-
ated under Windows XP Professional. We used the JDBC
API to establish a connection with RDBMS that hold
the source RDB. To evaluate scalability and performance
of MIGROX, a set of queries have been designed to ob-
serve any differences between the source RDB and target
databases. Due to limited space, this section presents only

2 http://lambda.uta.edu/lambda-DB/manual/

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:annotation>
<xs:documentation xml:lang ="en"> Generated XML Schema
</xs:documentation>
</xs:annotation>
<xs:element name= "XMLSchema">
<xs:complexType>
<xs:sequence>
<xs:element name= "dept" type= "dept t" maxOccurs =
"unbounded"/>
<xs:element name= "emp" type= "emp t" maxOccurs = "unbounded"/>
<xs:element name= "hourly emp" type= "hourly emp t" maxOccurs =
"unbounded"/>
<xs:element name= "proj" type= "proj t" maxOccurs =
"unbounded"/>
<xs:element name= "salaried emp" type= "salaried emp t" maxOccurs
= "unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:key name= "empenoPK">
<xs:selector xpath= ".//emp"/>
<xs:field xpath= "eno"/>
</xs:key>
...
<xs:keyref name= "empdnoFK" refer= "deptdnoPK">
<xs:selector xpath= ".//emp"/>
<xs:field xpath= "dno"/>
</xs:keyref>
...
</xs:element>
<xs:complexType name= "dept t">
<xs:sequence>
<xs:element name= "dname" type= "xs:string"/>
<xs:element name= "dno" type= "xs:int"/>
<xs:element name= "mgr" type= "xs:int" minOccurs= "0"/>
<xs:element name= "startd" type= "xs:date" minOccurs= "0"/>
<xs:element name= "dept locations dno" type= "xs:string"
maxOccurs= "unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name= "emp t">
<xs:sequence>
<xs:element name= "ename" type= "xs:string"/>
<xs:element name= "eno" type= "xs:int"/>
<xs:element name= "bdate" type= "xs:date" minOccurs= "0"/>
<xs:element name= "address" type= "xs:string"/>
<xs:element name= "spreno" type= "xs:int" minOccurs= "0"/>
<xs:element name= "dno" type= "xs:int"/>
<xs:element name= "kids eno" type= "kids t" minOccurs= "0"
maxOccurs= "unbounded"/>
<xs:element name= "proj pnum" type= "proj pnum t" maxOccurs=
"unbounded"/>
</xs:sequence>
</xs:complexType>
...
</xs:schema>

Fig. 8. Sample Output XML Schema

two sets of queries for the RDB shown in Fig 3 and one
equivalent target database generated by MIGROX (i.e.,
ORDB). For each query we give a description, an RDB
Version (R-Q), and an ORDB Version (OR-Q) and the re-
sult of the query. The queries are run on Oracle 10g to
check whether the results are the same or not.

1. Find the name of a department with dno = 4.
R-Q/OR-Q: select dname from dept where dno = 4;
Result: Finance

2. Find names of salaried employees in department 2
who make more than 40000 per year.
R-Q: select e.ename from emp e, salaried emp s where
e.dno = 2 and e.eno = s.eno and s.salary >= 40000;
OR-Q: select s.ename from salaried emp s where
s.dept dno.dno = 2 and s.salary >= 40000;
Result:
Borg

8

Fig. 9. Schematic view of converting relational data into targets

%salaried emp54321 := persistent hourly emp (ename: "Wallace",
eno: 54321, bdate: ’1931-06-20’, address: "91 St James Gate
NE1 4BB", kids eno: set(struct(kname: "Scott", sex: "M")),
salary: 43000);

(a) definition of salaried emp54321 object
——————————————————————————————
salaried emp54321 -> update()-> dept dno.add (dept2);
salaried emp54321 -> update()-> emp eno.add (salaried emp86655);
salaried emp54321 -> update()-> proj pnum.add (proj4, proj5);

(b) relationships among salaried emp54321 and other objects

Fig. 10. Output OODB data

Wallace
3. Find all employees working in ’Accounts’.

R-Q: select e.eno, e.ename from emp e, dept d where
e.dno = d.dno and d.dname = ‘Accounts’;
OR-Q: select st.column value.eno,
st.column value.ename from dept d, table(d.emp dno)
st where d.dname = ‘Accounts’;
Result:
34534 Scott
68844 Ali

4. Find all employees who have kids named “Alice” and
“Michael”.
R-Q: select e.ename from emp e, kids d1, kids d2
where e.eno = d1.eno and e.eno = d2.eno and
d1.kname = ‘Alice’ and d2.kname = ‘Michael’;
OR-Q: select h.ename from hourly emp h, ta-
ble(h.kids eno) d1, table(h.kids eno) d2 where
d1.kname = ‘Alice’ and d2.kname = ‘Michael’;
Result: Smith

5. Display a list of project names that involve an em-
ployee whose name is “Smith”.
R-Q: select pname from proj p, works on w, emp
e where e.eno = w.eno and w.pno = p.pnum and
e.ename = ‘Smith’;
OR-Q: select pname from proj p, table(p.emp eno) e
where e.column value.ename= ‘Smith’;
Result:
Way Station 1
Way Station 2

After evaluating the results between the source and the
target database, MIGROX is shown to be feasible and effi-
cient as the queries designed for retrieval operations return
identical results. Target databases are generated without
loss or redundancy of data. Moreover, many semantics

can be converted for RDB into the targets, e.g., associa-
tion, aggregation and inheritance with integrity constraints
enforced to the target databases. Some update opera-
tions (i.e., insert, delete and modify) are applied on the
databases to show that integrity constraints in the RDB
are preserved in the target databases. However, we can-
not cover automatically referential integrity constraints on
REFs that are in nested tables in ORDB because Oracle3

does not have a mechanism to do so. This integrity could
be preserved manually once the schema is generated, e.g.,
using triggers.

VI. Related Work

In recent years, with the growing importance and ben-
efits provided by object-based and XML databases, there
has been a lot of effort on migrating RDBs into the rela-
tively newer technologies [1], [15], [8], [10]. Migration of
source RDB into object-based and XML databases is ac-
complished in the literature for only one target database
(e.g., OODD, ORDB or XML). Existing work can be clas-
sified into two categories. The first category, which is
called Source-to-Target (ST), translates each construct in
a source into an equivalent construct in a target database
without using an Intermediate Conceptual Representa-
tion (ICR) for semantic enrichment. This technique usu-
ally results in ill-designed databases as some of the data
semantics are ignored. The second category, which is
called Source-to-Conceptual-to-Target (SCT), results in
well-designed databases due to the amount of data seman-
tics preserved in a conceptual intermediate stage, i.e, ICR.

Inferring conceptual schema from a logical RDB schema
has been extensively studied [1], [13], [9]. Such conversions
are usually specified by rules, which describe how to de-
rive RDB’s constructs (e.g., relations, keys), classify them,
and identify relationships among them. Semantic informa-
tion is extracted by an in-depth analysis of schema, data
and queries. Fonkam and Gray present an algorithm for
converting RDB schemas into conceptual models [9]. Al-
hajj proposes semantics extraction by analysing data in-
stances [1]. Petit et al. present an approach to extract
EERM constructs from an RDB by analysing SQL queries
in application programs [13].

Existing work for migrating RDBs into OODBs focus
on schema translation using ST techniques [14], [15], [7].
Premerlani and Blaha propose a procedure for mapping
an RDB schema into an OMT schema [14]. Fahrner and
Vossen propose a method, in which an RDB schema is
normalised to 3NF, enriched by semantics using data de-
pendencies and translated into an ODMG-93 schema [7].
Singh et al. propose an algorithm for mapping an RDB
schema into a corresponding OODB schema based on com-
mon attributes factoring [15]. However, constraints are not
considered in their approach. Behm et al. propose a model,
called Semi Object Type (SOT), to facilitate restructuring
of schemas during translating an RDB into an OODB [2].
An RDB schema is mapped into SOT schema, which is

3 http://download.oracle.com/docs/cd/B10501 01/appdev.920/
a96594/title.htm

SHORT NAMES: MIGROX: MIGRATING RELATIONAL DATABASE INTO OBJECT-BASED AND XML DATABASES 9

then redesigned and converted into an OODB schema.
How to map UML models to ORDBs has been studied
not long ago (e.g., [16], [11]), however, the focus has been
on the design of ORDBs rather than on migration. Most of
existing research on migrating RDBs to XML are following
the SCT technique, focusing on generating a DTD schema
and data [3], [4], [17]. Some existing work (e.g., [6], [4]) use
data dictionaries and assume well-designed RDB (e.g., in
3NF) whereas some others consider legacy RDB (e.g., [18])
for migration into XML documents. Du et al. propose a
method that employs a model called ORA-SS to support
the translation of RDB schema into XML Schema [4].

Although known conceptual models, e.g., ERM and
UML may be used as a CDM during DBM, we argue that
they do not satisfy the characteristics and constructs of
more than one target data model, and do not support
data representation. Some important semantics have not
been considered in these conceptual models. For instance,
ERM does not support inheritance whereas UML should
be extended by adding new stereotypes or other constructs
to specify ORDB and XML models peculiarities [11], [17].
Several ICR models have been developed for specific appli-
cations. However, these models are incapable of capturing
diverse characteristics of the three target data models. The
SOT model [2] has been designed only for migrating RDBs
into OODBs whereas the ORA-SS model [4] has been de-
signed to support semi-structured data models.

VII. Conclusion

This paper contributes a solution to RDB migration,
which is superior to the existing proposals as it can produce
three different output databases. Besides, it exploits the
ranges of powerful features that target data models provide
such as ODMG 3.0, SQL4, and XML Schema. A system
architecture is designed and a prototype has been imple-
mented, which generated successfully the target databases.
The approach has been evaluated by comparing query re-
sults. We have designed several experiments that involve
running queries on a source RDB and one target database,
which is generated by our prototype. We have analysed
the results of queries obtained from both databases and
found that both set of results were identical. Therefore,
we concluded that the source and target databases are
equivalents. Moreover, the results obtained demonstrate
that the MIGROX solution, conceptually and practically
is feasible, efficient and correct. Our future research fo-
cus is on data specific manipulation (e.g., update/query)
translations and further prototyping to simplify relation-
ship names that are automatically generated.

References

[1] Alhajj, R.: Extracting the Extended Entity-Relationship Model
from a Legacy Relational Database. Inf. Syst, vol. 28, pp. 597–
618, 2003.

[2] Behm, A., Geppert, A. and Dittrich, K. R.: Algebraic Database
Migration to Object Technology. ER’00, pp. 440–453, 2000.

[3] Conrad, R., Scheffner, D., Freitag J. C.: XML Conceptual Mod-
eling Using UML. In 19th Int. Conf. Conceptual Modeling, vol.
1920, pp. 558–571, 2000.

[4] Du, W., Li, M., Tok, L., and Ling, W.: XML Structures for
Relational Data. WISE, vol. 1, pp. 151–160, 2001.

[5] Elmasri, R. and Navathe, S. B.: Fundamentals of Database Sys-
tems (5th Edition). Addison-Wesley, Inc., 2006.

[6] Lee, D., Mani, M., Chiu, F. and Chu, W. W.: NeT and CoT:
Translating Relational Schemas to XML Schemas using Semantic
Constraints. CIKM, pp. 282–291, 2002.

[7] Fahrner, C. and Vossen, G.: Transforming Relational Database
Schemas into Object-Oriented Schemas According to ODMG-93.
In 4th Int. Conf. on Deductive and Object-Oriented Databases,
pp. 429–446, 1995.

[8] Fong, J., Wong, H. K. and Cheng, Z.: Converting Relational
Database into XML Documents with DOM. Info. & Soft. Tech.,
vol. 45, pp. 335–355, 2003.

[9] Fonkam, M. M. and Gray, W. A.: An Approach to Eliciting the
Semantics of Relational Databases. In 4th Int. Conf. on Advanced
Info. Syst. Eng., vol. 593, pp. 463–480, 1992.

[10] Kleiner, C. and Lipeck, U. W.: Automatic Generation of XML
DTDs from Conceptual Database Schemas. GI Jahrestagung, vol
1, pp. 396–405, 2001.

[11] Marcos, E., Vela, B. and Cavero, J. M.: A Methodological Ap-
proach for Object-Relational Database Design using UML. Soft.
and Syst. Modeling, vol. 2, pp. 59–75, 2003.

[12] Narasimhan, B., Navathe, S. B. and Jayaraman, S.: On Map-
ping ER Models into OO Schemas. In 12th int. Conf. Entity-
Relationship Approach, vol. 823, pp. 402–413, 1993.

[13] Petit, J., Kouloumdjian, J., Boulicaut, J. and Toumani, F.: Us-
ing Queries to Improve Database Reverse Engineering. In 13th
Int. Conf. Entity-Relationship Approach, vol. 881, pp. 369–386,
1994.

[14] Premerlani, W. J. and Blaha, M. R.: An Approach for Reverse
Engineering of Relational Databases. Commun. ACM, vol. 37,
pp. 42–49, 1994.

[15] Singh, A., Kahlon, K. S., Singh, J., Singh, R., Sharma, S.
and Kaur, D.: Mapping Relational Database Schema to Object-
Oriented Database Schema. Int. Conf. on Computational Intelli-
gence, pp. 153–155, 2004.

[16] Urban, S. D., Dietrich, S. W. and Tapia, P.: Succeeding
with Object Databases: Mapping UML Diagrams to Object-
Relational Schemas in Oracle 8. John Wiley, pp. 29–51, 2001.

[17] Vela, B. and Marcos, E.: Extending UML to Represent XML
Schemas. CAiSE Short Paper Proceedings, 2003.

[18] Wang, C., Lo, A., Alhajj, R. and Barker, K.: Converting Legacy
Relational Database into XML Database through Reverse Engi-
neering. ICEIS, vol. 1, pp. 216–221, 2004.

[19] Zhang, X., Zhang, Y., Fong, J. and Jia, X.: Transforming RDB
Schema to Well-structured OODB Schema. Info. & Soft. Tech.,
vol. 41, pp. 275–281, 1999.

