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ABSTRACT 
 

In  the  presentation dissertation  we  have discussed fixed  point 

theorem in complete metric spaces and metrically convex spaces 

which generalize Banach contraction principle and the results of 

Kannan,Assad and Chaterjea,where the notion of asymptotically 

regular of maps by Petryshyn. 

 

 

 

 

 

 

 

 

 



 

INTRODUCTION  

          Metric fixed point theory is a branch of  fixed point theory which finds   

 primary  application in functional analysis . Historically speaking , the  most 

fruitful and fundamental concept of metric spaces was  introduced by French  

 mathematician , M . Frechet in his doctorial  dissertation  submitted to Paris 

university in 1906.Metric spaces play crucial role in the further development 

of  analysis and topology  they  present  a natural setting for the rapid develo- 

pment of fixed point theory .  

         The study of contractive mappings played a central role in metric fixed 

 point theory. The first metrical fixed point theorem for contractive mapping  

was given a Polish mathematician Stefan Banach in 1922 which is popularly  

known as classical Banach contraction principle. It's extensions and general-  

ization started only at the  beginning of  last four decades .A good number of 

research  papers appeared  in the last four decades and by now there  exist a   

vast literature  on the subject.  

        The present dissertation comprises of  four chapter and each chapters is   

divided into sections which are numbered according as they occur in the co-   

      ntext .Each chapter begins with a brief introduction to its contents.      



 

          As usual chapter one is elementary in nature where we have discu - 

ssed  relevant preliminary concepts ,important results and definitions          

which are used throughout the text. This is  mainly aimed  to making  the    

dissertation as self  contained as possible. 

       In chapter two we present some fixed point theorems for single  –          

valued mapping which are the generalizations of well-known theorems of 

 Banach[5],Kannan[27].  

            Chapter three is devoted to asymptotically regular sequences and 

 asymptotically regular maps. The concept of asymptotically regularity is  

due to  F. E  Brouwder  and   W. V  Petryshyn  [ 8 ] .We also present  the  

 generalization of  Hardy - Roger's fixed point theorem [19].   

           In chapter four we have incorporated the fixed point  theorems  for 

metrically convex spaces which are the generalization of Assad[(1),(2)      

(3)] ,Chatterjia [10] and  Kannan et al [(27),(28)].  

        In the end , a bibliography is given which by no means is exhaustive 

one but lists only those books and  papers  which have  been referred to in  

the text. 
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CHAPTER   I  

Preliminaries  

1.1. A  Brief Historical Background: 
 

        It  happens quite often in mathematics that the exact solution of a 

system of equations can neither be  determined explicitly nor it can be 

computed conveniently. Under such circumstances, the following question 

naturally arises :Does there exist any solution to the system? or a deeper 

question :How many different solutions  the system has ? After obtaining an  

affirmative answer to the problem of  existence , one proceeds then to look 

for the exact solutions. In mathematics, the problem of solving a system of 

equations can be reduced in general to the problem of determining the fixed 

points of self-mapping  f   of an appropriate space X. The problem of solving 

an equation is not only equivalent in general to the problem of determining 

the fixed points of a self-mapping but in fact the fixed point theory has its 

origin in the former. 

        The earliest fixed point theorem is  due  to L.E.J. Brouwer [ 7] which 

asserts that a continuous mapping  f  of the closed unit ball in  Rn  has at 

least one fixed point, that is, a point  x  such that  f(x)=x. The existing 



 

literature contains various generalizations of this historic theorem. In this 

regard the survey article of  Park [32 ] deserves special mention. Indeed such 

generalizations arise through altering the hypothesis on the space  X and/or 

that on the mapping  f  itself, as suggested by the mathematical problems 

under investigation. For example, in the theory of  differential equations and 

functional analysis, X is usually supposed to be a topological  space of more 

general type, while in the theory of numerical analysis and in practical 

computation of  fixed points, X  is usually required to be compact. 

       Since the appearance of  Brouwer's fixed point theorem in 1912 and its 

subsequent generalizations, fixed point theorems provided powerful tools in 

demonstrating the existence of solutions to a large variety of problems in 

applied mathematics. However, from the computational stand point, their 

usefulness was limited. 

        Brouwer,s theorem was extended to infinite dimensional spaces by 

Schauder [39 ] in 1930. He proved that a continuous mapping of a compact 

convex subset of a Banach space has at least one fixed point. Tychonoff  

[41] extended  Brouwer,s  theorem  for topological vector space whereas 

Kakutani [30] proved a generalization of Brouwer,s theorem to multi 

functions. 



 

      Bohnenblust and Karlin[6] gave the multi-valued analogue of Schauder,s 

fixed point  theorem whereas multi-valued analogue of Tychonoff 's fixed 

point theorem was given by Fan [15] and Glicksberg [16],independently. 

Relevant Definitions And Results. 1.2.   

Definition 1.2.1.  

 Let  X  be a non  - empty set . A mapping  d  of   Х x Х  into  R (the set of 
reals ) is said to be  a metric (or distance function ) iff   d  satisfies the 
following axioms:  

[m1] : d(x,y) ≥ 0   ∀  x, yєХ.  

  [ m2] : d(x,y) = 0   iff   x =y. 

[m3] : d(x,y) =d(y,x) ∀ x, y є Х.  (symmetry)  

[ m4] : d(x,y) ≤ d(x,z)+d(z,y) ∀ x, y, z єХ       (triangle inequality)  

If d is a metric  for Х, then the ordered pair (Х ,d) is called a metric space 

and  d(x ,y) is called the distance between  x and y. 

Example   1.2.2. 

X = Rn   ;  d(x,y) = ∑ (x − y )     ,  

            For all     x = ( x1 ,x2 , . . . ,xn ) ,  y= (y1,y2,  . . . ,yn) ∈ Rn , 

is  a metric  in  Rn , called  the  Euclidean  metric.  



 

Definition  1.2.3.  

Let (Х,d) be a metric space and  let  A  be a non-empty subset of  Х. Then 

the  diameter  of  A, denoted  by  δ(A), is defined  by 

                         δ (A) = sup { d(x,y) : x,y ∈ A}  

 that is, the diameter of   A  is  the  supremum of  the  set  of  all distances 

between points of  A. 

 Definition 1.2.4. 

 Let (Х,d)  be a metric space .We say that   Х  is bounded  if  there  exists a 

positive number  M  such that  d(x,y) ≤  M  for all  points  x  and  y  in  Х.A 

metric space which is not bounded is said to be unbounded . Thus a metric 

space  X  is bounded  if  its diameter is finite .Similarly a subset  A of  X  is 

said to be bounded if  δ (A) is finite.   

Example 1.2.5. 

Let  X=R  and  d(x,y) = │x-y│ .This metric space unbounded since the 

diameter of  R is infinite. 

A discrete metric space (X,d) where 

d(x,y) = 
0  if   x = y               1  if   x ≠ y                

is bounded since δ (X) = 1. 



 

Definition 1.2.6. 

 Let (X,d) be a metric space and let  <sn>  be a sequence in X. Then  <sn>  is 

said  to be a Cauchy sequence in  X  if for every   ε >0 , there  exists a 

positive  integer  N  such that   

                 m,n ≥N     ═>     d(sm,sn)< ε. 

Definition 1.2.7. 

Let (X,d) be a metric space. A sequence {xn} in  X is said to be convergent 

to a point x in X if for every   ε >0 , there exists a positive integer  no such 

that  d(xn,x) < ε , for  all   n ≥ no .   

Definition  1.2.8. 

A  metric space  (X,d)  is said to be complete  if  every Cauchy sequence in  

X  converges to a point  in  X. 

 Theorem.1.2.9 [9].  

Every convergent sequence is Cauchy.  

Remark  . 

 In  general ,the  converse  of the Theorem  1.2.9   is not true.  



 

Theorem  1.2.10 .[37].  

Every  Cauchy  sequence  is  bounded.  

Remark . 

 In  general ,the  converse  of the Theorem  1.2.10   is not true.  

Theorem 1.2.11 [37]. 

 Every convergent sequence is bounded. 

Remark. 

In general ,the  converse  of the Theorem  1.2.11   is not true.    

Definition 1.2.12. 

 Let   ( X,d)  and  (Y,d)  be  metric spaces , a function   f: X → Y  is called 

continuous  at   xo є X  if  for each  >   there  exists   >  , such that    

d(f(x),f(xo)) <   , for all   d(x,xo) <  . 

A function f  is called continuous on  X  if  f  is continuous at each element  

of  X. 

Definition  1.2.13. 

Let  X   be  a linear  space  over  a filed  K (real or complex) .Let ║.║ be a 
function  from  X  into  K , such that  :  

( n1 ) ║x║ ≥ 0  ,for all x∈ X.   



 

( n2 ) ║x║ = 0 <═>  x = 0, the null elements  of  X. 

( n3) ║ λ x ║ =│λ│ .║ x║ for any  x∈ X &  any scalar  λ 

( n4)  ║ x+y║ ≤ ║x ║ +║y ║ for all  x,y ∈ X. ( The triangle  inequality).  

 The pair ( X, ║ .║ )  is  called normed (linear )  space . 

Definition 1.2.14.   

A subset  C  of  a linear space  X  is said to be  convex  if   αx + (1-α)y ∈ C  

whenever, x,y ∈ C and  0 ≤ α ≤1.   

Example 1.2.15.  
 

Let  X=R. 

Let   C={x:∥x∥ ≤ 1}. 
Let  x,y ∈ C . Then   ∥x∥≤ 1    and    ∥y∥ ≤1. 

We have  

∥ α x+(1− α )y ∥  ≤  ∥ α x ∥+∥(1- α)  y∥ 
                              = α ∥x∥+(1- α) ∥y∥ 
                              ≤ α +(1- α)  

                              =1 



 

Thus   αx+(1-α) y ∈C  

Hence  C  is a convex  set.  

Definition 1.2.16. 

 A complete normed  space  ( X, ∥. ∥ ) is  called a Banach space. 

Theorem 1.2.17. [9]. 

Every  normed  space  ( X,∥. ∥ )  is  a metric space  with  the metric defined 

by  d(x,y) = ∥ − ∥   (x,y ∈X).  

1.3. Banach Contraction  Principle  And Some Of  Its Generalizations.           
 

         The simplest of all the metric fixed point theorems is the contraction 

mapping of  theorem. A number of extensions and generalizations of this 

celebrated theorem have been obtained in recent years. The most significant 

generalization of  Banach Contraction Principle is due to Jungck  which 

appeared in 1976 and the entire contents of this dissertation revolves around 

this theorem and is the outcome of our endeavour to improve 'commutivity ' 

as well as  contraction' conditions in Jungck,s type theorems. 

        The present chapter is elementary in nature where we incorporate some 

preliminary notions along with some relevant results which will be 

frequently needed in our subsequent chapters. Many interesting results and 



 

definitions related to the fixed point theory could not be accomodated 

because of the limited size of the text.  

        For a comprehensive account of fixed point theory, books by  

Aksoyand Khamsi [1], Dugundji and Granas [ 12],Goebel and Kirk [ 17], 

Istratescu [21],Rus [ 38] and Smart [40] are of special recommendation .                   

 Definition 1.3.1.  

A topological  space  X   is said to have the  fixed point property  if  every 

continuous  mapping T of  X into itself  has a fixed point i.e. there  exists a 

point  x  in  X such that  Tx=x, x  is called a fixed point of T. 

        Naturally, the fixed point property is a topological property  it means 

that if  X  is homeomorphic to  Y  and  X  has the fixed point property then 

so does  Y. It is worth mentioning here that a set with fixed point property 

should be compact and contractive. Any set lacking one of  these properties 

will certainly leave a mapping with no fixed point. Real line, circle, torus are 

the examples which do not have the fixed point property while the unit 

interval [0,1] has the fixed point property. 

          In 1953, Kinoshita [31] gave an example to show that compactness 

and contractibility are no longer the necessary and sufficient conditions for a 



 

space to have the fixed point property. For further details one is referred to 

Smart  [40]. 

      The other fundamental but very simple  result after Brouwer,s fixed point 

theorem was given by Banach [5 ] in 1922 which is popularly known as 

Banach Contraction Principle or contraction mapping theorem. 

Definition  1.3.2. 

A mapping  T from a metric space X into itself is said to be a contraction  if 

  (a). . . . d(Tx,Ty) ≤ αd(x,y), for all x,y in X and  0≤ α <1.  

A contraction mapping is continuous but not conversely. 

The Banach contraction principle states that: 

( A CONTRACTION  MAPPING OF A COMPLETE  METRIC 

SPACE  X INTO ITSELF  HAS A UNIQUE  FIXED  POINT IN  X).  

    It is the simplest of all the fixed point theorems so for established and its 

proof does not require much topological background. We use the contraction 

mapping theorem to establish the existence-uniqueness theorem for ordinary 

non-linear differential equations. For various other applications of the 

contraction mapping theorem one is referred to Kolmogrove and Fomin [29 



 

],where one finds excellent illustrations of the use of fixed point theorems in 

analysis. 

      Mostly authors have replaced the contractive conditions by some more 

general mapping conditions. Rhoades ( [33],[34]) has compared all 

contractive conditions and derived about 125 such relations. 

     However, we mention here a few of them .In the sequel  T  is a self - 

mapping of a metric space (X,d). 

I . Edelstein[13].  For all  x,y in  X, x ≠ y  

(b). . . .  . d(Tx,Ty) < d(x,y). 

This mapping is called contractive. A contractive mapping is continuous 

and has a unique fixed point if there is one. Unlike contraction mapping a 

contractive mapping on a complete  metric space may not necessarily have a 

fixed point as evident from the following example:  

Example 1.3.3. 
 

The space  X=[1,∞) of reals is complete.  

Let  T   be  defined  by  Tx= x+1/x,  then  for  all  x,y  in  X  and   x< y, 

 d(Tx,Ty)= (y-x)-(1/x – 1/y ) <  d(x,y).  



 

Thus  T  is contractive  but T has no fixed point .  

(i i) Kannan( [27],[28]).Let  S,T : X→X. There exists α in [0,1/2) such that   

( c ) . . . . d(Sx,Ty) ≤ α [d(x,Sx)+d(y,Ty)], for all x,y in X. 

If  S=T, then above condition yields.                            

(d). . . . d(Tx,Ty)≤ α [d(x,Tx)+d(y,Ty)], for all x,y in X. 

 

 (i i i)  Reich[ 36 ] . For all  x,y in  X, α,β,γ ≥ 0 and α+β+γ < 1,     

 (e). . . . . d(Tx,Ty)≤ α d(x,Tx)+βd(y,Ty)+γd(x,y). 

 

(iv) Hardy-Rogers[19 ]. For all x,y in X, ai ≥ 0 and ∑ ai< 1, 

 (f). . . .d(Tx,Ty)≤ a1d(x,Tx)+a2d(y,Ty)+a3d(x,Ty)+a4d(y,Tx)+a5(x,y). 

1.4. Some Basic Fixed Point Theorems.  

 Definition  1.4.1. 

Let  T  be a self mapping on a nonempty set X. A point  x ∈ X is called a 

fixed point of  T  if  T x = x , i.e., a point  which  remains invariant under 

the mapping  T  is called a fixed point of  T. 

and we denote by  FT  or  Fix (T)  the set of  all fixed points  of  T.  



 

Examples  1.4.2 .  
 

(1)   If  X =R  and   T(x)= x2+5x+4, then  FT ={-2}; 

(2)   If  X =R  and   T(x) = x2 –x , then  FT ={0,2}; 

(3)   If   X =R  and   T(x) = x+2, then   FT = ø; 

(4)   If  X = R  and   T(x) = x,  then   FT = R. 

Definition  1.4.3. 

Let  T  be a self  mapping  of  a metric  space  X. Then  T  is  said  to  be  of  

Lipschitz  class if  there exists a real number  α > 0  such that 

d(Tx,Ty) ≤ α d(x,y)  for  all  x,y ∈ X. If  α<1, then  T is called contraction 

map. In case d(Tx,Ty) < d(x,y), x ≠ y, then T is said to be a contractive 

map. 

Example 1.4.4. 
 

Define     T:R → R   by 

             T(x) =  x +1. 

With the usual  metric  d (x,y) =|x− y|. 
Let  x, y ∈ X.Then 

|T(x)− T(y)| = x + 1 − y + 1   



 

                         ≤ | x− y| 
                          =  |x− y| . 
Thus  T  is a contraction mapping with  α =   and   x =  is a fixed point  of  

T. 

Definition 1.4.5. 

Let  T1  and  T2  be  two functions  from  a non - empty set  X  into itself . If 

there exists an element  x  in   X  such that  

                                 T1(x)=T2(x)=x, 

Then  x  is  called a common fixed point of  T1  and   T2. 

Similarly, if  nєN  and  T1,T2,. . . . ,Tn   are functions from  X   into itself. 

 If there exists an element  x  in   X  such  that 

                                   T1(x)=T2(x)= . . . =Tn(x) =x, 

Then  x  is called a common fixed point of   T1,T2, . . .,Tn. 

Example 1.4.6. 
 

Define  T1,T2∶ R → R by  
                         T1(x)=2x-2 ,   T2(x)=x2-3x+4. 



 

Then   x=2   is  a common fixed point of  T1,T2. 

Definition 1.4.7. 

Let (X,d) be metric space the mappings  f,g: X→X  are said to be commute 

iff    fg = gf .  

1.5. The iteration  process. 
 

In an iteration process, we choose an arbitrary point  xo in a given set and 

calculate recursively a sequence {xo,x1,x2,. . . .} from a relation of the form   

xn+1=T xn ,i.e., for arbitrary  xo one successively writes  x1=T xo , x2= Tx1= 

T2xo , . . . . 

With the development of fast computer, iteration schemes are used in nearly 

every branch of applied mathematics and convergence proofs and error 

estimates are very often obtained using some fixed point theorems. 

      We begin with the following results which deal with the Convergence of 

the sequence of iterates for continuous  functions defined on closed interval. 

The following result  is due to Hillam [20]. 

For a given self map the following  properties obviously hold: 

1) FT ⊂FT
n, for each  n∈N; 

2) FT
n ={x}, for some n∈ N⇒ FT={x}; 



 

The reverse of  (2)  is not true, in general, as shown by the following 

example. 

Example  1.5.1.  

 Let  T:{1,2,3} → {1,2,3}, T(1)=3,T(2)=2 and  T(3)=1. 

 Then  FT 
2={1,2,3} but  FT ={2}.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER  2 

 

 FIXED POINT THEOREMS IN COMPLETE 

                    METRIC SPACES 
 

 

 

 

 



 

CHAPTER  II  

FIXED POINT THEOREMS IN COMPLETE METRIC SPACE.  

2.1. INTRODUCTION. 
 

        In  the present chapter we present some fixed point theorems for single 

–valued  mapping . Our results in section 2.2  are the generalizations of the 

well –known theorems of Banach [5] and  Kannan [27].  

 2 . 2 . SINGLE – VALUED MAPS AND THEIR FIXED POINTS. 
 

Throughout this section (X,d) stands  for a complete metric space .  

Theorem 2.2.1. 

If   T  is a self  mapping of  (X,d)  and  if  for  some  positive  integer  p ,the 

following inequality :  

(A)....d(T2px,T2py)≤a1d(Tpx,T2px)+a2d(Tpy,T2py)+a3d(Tpx,Tpy), 

 holds for all  x,y  in X,a1≥0,a2≥0,a3≥0 and  a1+a2+a3<1, then  T has a unique 

fixed point provided Tp  is continuous. 



 

Proof.  

Let   x ∈ X. Set   Tp(x)=x0  and  Tp(xn-1)=xn,  for   n=1,2,3,. . .            

Also suppose     K=    

Then , 

d(x1,x2)=d(T2px,T2px0) ≤ a1d(Tpx,T2px)+a2d(Tpx0,T2px0)+a3d(Tpx,Tpx0) 

                                    ≤ a1d (x0,x1)+a2d(x1,x2)+a3d(x0,x1). 

Hence 

d(x1,x2) ≤ k d(x0,x1).  

Again   

d(x2,x3)=d(T2px0,T2px1) ≤ a1d(Tpx0,T2px0)+a2d(Tpx1,T2px1) +a3d(Tpx0,Tpx1),  

                                    ≤ a1d(x1,x2)+a2d(x2,x3)+a3d(x1,x2). 

So  

  d(x2,x3) ≤ k2d(x0,x1). 

 In general , we have 

   d(xn,xn+1) ≤ knd(x0,x1).  



 

Thus { xn } is a Cauchy sequence which converges to some  w ∈X. Now we 

consider the inequality  

                    d(w,T2pw) ≤ d(w,xn+2)+d(T2pxn,T2pw)  

                                    ≤ d(w,xn+2)+a1d(Tpxn,T2pxn) 

         +a2d(Tpw,T2pw)+a3d(Tpxn ,Tpw) 

≤ d(w,xn+2)+ a1d(xn+1,xn+2)                                                                                                                            

                                     +  a2d(Tpw,xn+1)+a2d(xn+1,xn+2) 

                                    +a2d(xn+2,T2pw)+a3d(xn+1,Tpw). 

The  right  hand side of the above  inequality  can be made arbitrarily small 

by choosing  n  sufficiently  large . 

Hence  T2p(w)=w.  

For uniqueness of  w  , let w* be another fixed point of  T2p.Then 

  d(w,w*)=d(T4pw,T4pw*) 

                 ≤ a1d(T2pw,T4pw)+a2d(T2pw*,T4pw*)+a3d(T2pw,T2pw*) 

                =a1d(T2pw,T4pw)+a2 d(T2pw*,T4pw*)+a3d(T4pw,T4pw*). 

So 



 

 (1-a3) d(T4pw,T4pw*) ≤ 0.  

Therefore w  is  the unique fixed point  of T2p  and hence a unique  fixed 

point of T.  

This completes the proof. 

Theorem 2.2.2. 

 Let  T  be  a  self-mapping  of  X  satisfying   

(B)….d(Tp+1x,Tp+1y) ≤ a1d(Tpx,Tp+1x)+a2d(Tpy,Tp+1y)+a3d(Tpx,Tp+1y) 

                                   +a4d (Tpy,Tp+1x) +a5d(Tpx,Tpy),for  all  x,y ∈X,  

( C) ….  ∑i
5 ai< 1,  ai ≥ 0,  1≤ i ≤ 5 ,  

(D)  ….  Tp is continuous. 

Then  T  has a unique fixed point .  

Proof.  

For  an  arbitrary   x∈X , define  x0=Tp(x)  and  xn= T(xn-1). Then               

                d(x1,x2)=d(Tp+1x,Tp+2x) 

                             ≤ a1d(Tpx,Tp+1x)+a2d(Tp+1x,Tp+2x)+a3d(Tpx,Tp+2x) 

                             + a4d(Tp+1x,Tp+1x)+a5d(Tpx,Tp+1x) 



 

                              ≤ a1d(x0,x1)+a2d(x1,x2)+a3d(x0,x2)+a4d(x1,x1) 

                             +a5d (x0,x1).  

Hence,  

  d(x1,x2) ≤ (      ) d(x0,x1) =k d(x0,x1), 

where      k = (         ) 
Further, we have  

 d(x2,x3)=d(Tp+2x,Tp+3x) ≤ a1d(Tp+1x,Tp+2x)+a2d(Tp+2x,Tp+3x)   

                                       +a3d(Tp+1x,Tp+3x)+a4d(Tp+2x,Tp+2x)   

                                       +a5d(Tp+1x,Tp+2)   

                                        ≤ a1d(x1,x2)+a2d(x2,x3)+a3d(x1,x3) 

                                       +a4d(x2,x2)+a5d(x1,x2).  

Hence   

 d(x2,x3) ≤ k d(x1,x2) ≤  k2d(x0,x1). 

 In general ,  

d(xn,xn+1) ≤ kn d(x0,x1). 



 

 Thus { xn } is a  Cauchy sequence  which converges to some  point  w in X. 

Now,  

 d(Tpw,Tp+1w)≤ d(Tpw,xn+p+1)+d(Tp+1xn,Tp+1w) 

                       ≤ d(Tpw,xn+p+1)+a1d(Tpxn,Tp+1xn)+a2d(Tpw,Tp+1w) 

                        +a3d (Tpxn,Tp+1w)+a4d(Tp+1xn,Tpw)+a5d(Tpxn,Tpw)  

                        ≤ d(Tpw,xn+p+1)+a1d(xn+p,xn+p+1)+a2d(Tpw,w) 

                        +a2d(w,Tp+1w)+a3d(xn+p,w)+a3d(w,Tp+1w) 

                       +a4d(xn+p+1,Tpw)+a5d(xn+p,Tpw). 

 Hence , we have  

   (1-a2-a3)d(Tpw,Tp+1w) ≤ d(Tpw,xn+p+1,)+a1d(xn+p,xn+p+1) 

                                      +a2d(Tpw,w)+a3d(xn+p,w) 

                                       +a4d(xn+p+1, Tpw) 

                                          +a5d(xn+p, Tpw). 
 Using the continuity of  Tp and  letting  n→∞,we get     Tp(w)=Tp+1(w).  

Hence  Tp(w) is  a fixed point of T. For the unicity  of  Tp(w), consider 

  another fixed point  w* ≠Tpw of  T. 



 

Then we get, 

     d(Tpw,w*)=d(Tpw,Tp+1w*) 

                      =d(Tp+1w,Tp+1w*)  

                      ≤ a1d(Tpw,Tp+1w)+a2d(Tpw*,Tp+1w*)                                                                                       

                      +a3d(Tpw,Tp+1w*)+a4d(Tpw*,Tp+1w)+a5d(Tpw,Tpw*) 

                      = a3d(Tpw,Tp+1w*)+a4d(Tp+1w*,Tpw) +a5d(Tpw,Tp+1w*). 

This gives   d(Tpw,Tp+1w*)=d(Tpw,w*)=0 . 

Therefore Tp(w) is the unique fixed point of  T . 

 This completes the proof. 

Theorem   2.2.3. 

If   T  be  a  mapping  of  X  into  itself   with  d  as  metric  and if  

d (Tx,Ty)  ≤  ( , ). ( , ). ( , )( , ) ( , ) ( , ) ( , ) ( , ) ( , )                  
for   1/3  < β < 1   for all  x,y∈X .  

Then  T  have a unique fixed point. 



 

Proof.  

We define a sequence { xn} of elements of  X  as follows : 

Let  x0 ∈ X  and  xn=Txn-1 , for   n  is positive integer ,then  

d (x1,x2)=d(Tx0,Tx1) 

              ≤  ( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , ) ( , ) ( , )]                                                                      
Or    2d(x1,x2)+d(x0,x1) ≤ 3βd(x0,x1) 

 

Or       d(x1,x2)        ≤  3β-1 / 2   d(x0,x1). 

Similarly    

                  d(x2,x3)  ≤         d(x1,x2) 

Or              d(x2,x3)  ≤ (  )2   d(x0,x1). 

In general 

                  d (xn,xn+1) ≤ ( )n   d(x0,x1). 

There for  

                  d(xn,xn+p)  ≤ d(xn,xn+1)+d(xn+1,xn+2)  +. . . .+d(xn+p-1,xn+p) 



 

                                     ≤  d(x0,x1)    

Where  λ =   .  

Hence { xn} is  a Cauchy  sequence . 

Since   X  is complete  the sequence will  converge to  x0 ∈X. 

Now we shall show that  x0 = Tx0. We  write  

d (x0,Tx0) ≤ d (x0,xn) +d(Txn-1,Tx0) 

                 ≤ d(xo,xn) +3β[d(xn-1,xo)+d(xo,xn)]d(xo,x1)d(xn-1,xo)/ 

                      [d(xn-1,xn)d(xo,x1)+d(xo,x1).d(xn-1,xo) +d(xn-1,xo)d(xn-1,xn)] 

Taking  limit  xn → x0     As  n → ∞ 

d (x0,Tx0) ≤ 0. 

Hence  x0   is  the  fixed  point  of   T. 

Now  to show  the uniqueness  of  x0 . Let us consider  y0  be any  other  

fixed  point  of   T  , then  

 d (x0,y0) =d(Txo,Tyo) 

                 ≤ 3β d(xo,Txo).d(yo,Tyo).d(x0,yo) / [ d(xo,Txo) d(yo,Tyo) 



 

                 +  d(yo,Tyo) d(xo,yo)+d(xo,yo)d(xo,Txo)] 

or   d(xo,yo) ≤ 0 . 

Hence  xo   is the unique  fixed point of  T. 

This complete  the proof. 

Remark: 

 For  p=0 ,Theorem 2.2.2    reduces to that  of  Hardy and  Rogers [19]. 
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                                         CHAPTER III  
ASYMPTOTICALLY REGULAR SEQUENCES AND MAPS 

3.1. INTRODUCTION. 

            In recent years, a number of generalizations of  asymptotically T-

regular sequences and asymptotically  regular  maps  have been  discussed 

by many authors. The concept of asymptotic regularity is due to  

F.E.Browder and W.V .Petryshyn [8]. The work of Engl [14],Reich [35] and 

Gornicki [18] are of special   significance. In this chapter we present some 

generalizations of hardy –Roger,s  fixed point theorem [19] for certain 

sequences and mappings which are asymptotically  regular . The technique 

of our proofs can be used equally well for  other results in literature to show 

that one need not  consider the sequence  of successive approximation to 

prove the existence of fixed points of contraction mappings. 

3.2.Results For Asymptotically Regular Sequence: 

The following definition is essentially borrowed from Engl [14 ]. 



 

Definition 3.2.1. 

Let (X ,d) be a metric space . A sequence { xn } in X is said to be 

asymptotically T-regular if   limn→∞  d(xn ,Txn)=0 .  

Theorem 3.2.2.  

Let (X ,d) be a complete metric space and T a self –mapping of X satisfying 

the  inequality: 

(B)    d(Tx,Ty) ≤ a1d(x,Tx) + a2d(y,Ty) + a3d(x,Ty) + a4d(y,Tx) +a5d(x,y), 

for all x,y ∈X,  where  ai (i=1,2,3,4,5)  are  non- negative  reals  and 

max{(a1+a4), (a3+a4+a5)}<1. If there exists an asymptotically T –regular 

sequence in X, then T  has a unique fixed point. 

Proof. 

 Let  {xn}  be an asymptotically T-regular sequence in X. Then  

    d(xn,xm) ≤ d(xn,Txn) + d(Txn,xm) 

                  ≤ d(xn,Txn)+d(Txn,Txm)+d(Txm,xm) 

                    ≤ d(xn,Txn)+d(Txm,xm)+{a1d(xn,Txn) +a2d(xm,Txm) 

                   +a3d(xn,Txm) + a4d (xm,Txn) + a5d (xn,xm)} 

                  ≤ d(xn,Txn)+d(Txm,xm)+a1d(xn,Txn) + a2 d(xm,Txm) 

                 + a3 d(xn,xm) + a3 d(xm,Txm) + a4 d(xm,xn)+ a4 d(xn,Txn) 



 

               + a5 d(xn,xm) . 

Thus ,we get 

 d(xn,xm) ≤ {(1+a1+a4)/(1-a3-a4–a5)} d(xn,Txn) 

               + {(1+a2+a3)/(1-a3-a4-a5)} d(xm,Txm). 

Taking limit as n tends to infinity, we have limn→∞d(xn,xm)=0, showing 

thereby that {xn} is a Cauchy sequence. Since X is complete ,put limn→∞xn=z  

(say). 

Now we claim that z is a fixed point of  T consider, 

 d(Tz,z)≤ d(Tz,Txn) + d(Txn,xn) + d(xn,z) 

            ≤ a1d(z,Tz)+ a2d (xn,Txn)+ a3d(z,Txn)+ a4d(xn,Tz) 

            + a5d(z,xn)+ d(Txn,xn)  + d(xn,z). 

            ≤ a1d(z,Tz)+ a2d (xn,Txn)+ a3d(z,xn)+ a3d (xn,Txn)+ a4d(xn,z)                                                                                              

           + a4d (z,Tz)+ a5d(z,xn)+ d(Txn,xn)+ d(xn,z). 

Therefore, 

 (1-a1-a4)d(Tz,z) ≤ (1+a2+a3)d(xn,Txn)+(1+a3+a4+a5)d(xn,z), 

which gives 

 d(Tz,z) ≤ {(1+a2+a3) / (1-a1-a4)} d(xn,Txn) 

             + {(1+a3+a4+a5) / (1-a1-a4)} d(xn,z). 



 

Since T  is asymptotically T-regular, taking limit as n→∞  , we are left with 

d(Tz,z)=o , i.e. T z=z  

 Hence z is a fixed point  T. 

To show the uniqueness, let  z≠z1  be two fixed points, then 

   d(z,z1)=d(Tz,Tz1) 

             ≤ a1d(z,Tz)+a2d(z1,Tz1)+a3d(z,Tz1)+a4d(z1,Tz)+a5d(z,z1) 

(1-a3-a4-a5)d(z,z1) ≤ 0, since (1-a3-a4-a5) >0,we have d(z,z1)=0  ,so z=z1 

whence  uniqueness  follows immediately. 

This completes  the proof. 

If  T  is continuous , then  existence part  follows very easily as shown 

 by the following theorem. 

In this  case condition (B) is not needed. 

Theorem 3.2.3. 

Let (X ,d) be a metric space  and T a continuous self-mapping of X. If there 

exists an asymptotically T-regular sequence {xn} with limn→∞ xn =z, then z is 

a fixed point T. 

Proof.  

consider, d(Tz,z) ≤ d(Tz,Txn)+d(Txn,xn)+d(xn,z). 

Then taking limit  as n→∞,    we have  



 

                            d(Tz ,z)=0, 

         so               T z =z. 

Hence z is a fixed  point of T. 

3.3.Results for Asymptotically Regular Maps: 

Following Browder and Petryshyn [8],we have the following: 

Definition 3.3.1. 

Let (X ,d) be  a metric space .A mapping T of X into itself is said to be 

asymptotically regular  at a point x in X if  limn→∞ d(Tnx,Tn+1x)=0. 

Theorem 3.3.2. 

Let (X ,d) be a complete  metric  space  and  T a self –mapping of X 

satisfying the inequality: 

      d(Tx,Ty) ≤ a1d(x,Tx)+a2d (y,Ty)+a3d(x,Ty) +a4d (y,Tx)+a5d (x,y), 

 for all x,y ∈ X ,where ai(i=1,2,3,4,5) are non–negative reals with  

max{(a1+a4),(a3+a4+a5)}<1.If T  is asymptotically regular at some point x of 

X ,then there exists a unique fixed point of T. 

Proof.  

Let T be an asymptotically regular at xo∈X. Consider the sequence 

{Tnx0},then for all m ,n ≥ 1 

d(Tmx0,Tnx0) ≤ a1d(Tm-1x0,Tmx0) +a2d (Tn-1x0,Tnx0)+a3d(Tm-1x0,Tnx0) 
 



 

                     +a4d(Tn-1x0,Tmx0)+a5d(Tm-1x0,Tn-1x0) 
 
                      ≤ a1d(Tm-1x0,Tmx0)+a2d(Tn-1x0,Tnx0)+a3d(Tm-1x0,Tmx0) 
 
                      +a3d (Tmx0,Tnx0) +a4d (Tn-1x0,Tnx0)+a4d(Tnx0,Tmx0) 
 
                      +a5d(Tm-1x0,Tmx0)+a5d(Tmx0,Tnx0)+a5d(Tnx0,Tn-1x0). 
Hence, we get 

 d(Tmx0,Tnx0) ≤ {(a1+a3+a5) / (1-a3-a4-a5)} d(Tm-1x0,Tmxo) 
 
                       + {(a2+a4+a5) / (1-a3-a4-a5)} d(Tn-1x0,Tnx0). 
 
Since  T  is  asymptotically regular  and  m ,n→∞  , above  yields   

limn→∞ d(Tmx0,Tnx0)=0. 

This shows  that {Tnx0} is a Cauchy sequence , since X is complete, 

limn→∞ Tnx0=z. 

Now  we  claim  that   z is fixed  point   of  T . For this we consider , 

d(T z ,z) ≤ d(Tz,Tnx0) + d(Tnx0,z) 
 
              ≤ a1d(z ,T z)+ a2d(Tn-1x0,Tnx0)+ a3d(z,Tnx0)+ a4d(Tn-1x0,Tz) 
 
              + a5d(z,Tn-1x0) + d (Tnx0,z) 
 
              ≤ a1d(z ,T z)+ a2d(Tn-1x0,Tnx0)+ a3d(z,Tnx0)+ a4d(Tn-1x0,Tnx0) 
 
              + a4d(Tnx0,Tz)+ a5d(z, T nx0)+ a5d(Tnx0,Tn-1x0)+ d(Tnx0,z) .  
 
Letting  n  tending  to  infinity , we get  

 d(T z ,z) ≤ a1d(z ,T z)+ a4d(z ,T z),  



 

 (1-a1-a4)d(z,Tz) ≤ 0.  

 Hence  T z =z. 

Therefore  z  is a fixed point of  T. 

The unicity of  fixed point  z  follows from  Theorem 3. 2.2. 

Theorem 3.3.3. 

Let (X ,d) be a metric space and  T a self – mapping satisfying the 

inequality:  

    d(Tx,Ty) ≤ a1d(x ,Tx)+ a2d(y, Ty)+ a3d(x, Ty) + a4d(y, Tx)+ a5d(x,y) 

 for all x ,y ∈ X, where ai (i=1,2,3,4,5) are non –negative reals with 

max{(a2+a3),(a3+a4+a5)}<1. If T is asymptotically regular at some  point x in 

X and the sequence {Tnx} of iterates has a subsequence {T }  converging 

to a point z of X, then z is a unique fixed point of T and {Tnx} also 

converges to z.  

Proof.  

Let  limk→∞  x = z≠ Tz , then 

d(Tz ,z) ≤ d(z, T  x) +d(T  x, T  x)+ d(T  x,Tz) 

             ≤ d(z, T  x)+ d(T  x, T  x)+ a1d(T  x, T  x)+ a2d(z ,Tz)  

             +  a3d(T  x,Tz)+ a4 d(z, T  x)+ a 5d(T  x, z).                             

Then   n →∞   ,yields  that 



 

 d(z,Tz )≤ (a2+a3 )d(z,Tz), 

(1- a2-a3 )d(z,Tz) ≤ 0,since(1- a2-a3 ) >0,so Tz=z. 

whence z is  a fixed point of T. Now , 

 d(z,Tnx)=d(Tz,Tnx) 
 
              ≤a1d(z,Tz)+a2 d(Tn-1x,Tnx)+a3 d(z ,Tnx)+a4 d(Tn-1x,Tz)+a5 d(z,Tn-1x) 
 
             ≤ a1 d(z,Tz)+a2d(Tn-1x,Tnx)+a3d(z,Tnx)+a4 d(Tn-1x,Tnx)  
 
             +a4 d(Tnx,Tz)+a5 d(z,Tnx)+a5 d(Tnx,Tn-1x). 
So, 

(1-a3-a4 -a5) d(z, Tnx) ≤ ( a2+a4+a5) d(Tn-1x,Tnx). 

d(z, Tnx) ≤  d(Tn-1x,Tnx) 

Asymptotically regularity of T at x and the fact  that   (a3+a4+a5)<1,imply 

 that the sequence {Tnx} converges  to  z . 

 This completes the proof. 

Remark.   

 It is clear that the  asymptotic   regularity  of  the mapping  T satisfying       

Hardy – Roger's contraction condition is actually a consequence of  ∑ a  < 

1 .So our   Theorem 3.3.2 and Theorem 3.3.3 extend results due to Hardy –

Rogers [19]. 



 

3.4. Composite Asymptotic Regularity And Common Fixed      

Points: 

        In this section, we present a generalization to the concept of 

asymptotically  regular ( abbreviated  as   a.r ) mapping ( c.f.  Definition 

3.3.1 )  by introducing the notion of compositely asymptotically regular 

(abbreviated as  c.a.r.)  mappings. 

        In doing so, we are motivated by those functions which are  not  a.r but 

their composition is  a.r.  To substantiate this ,  let us consider the following 

example. 

Example 3.4.1.  

Let  X=R be the set of reals equipped with usual metric. On  X  define the 

pair of maps (S,T) by  

                        S(x)=x-1    and    T(x)=x+1, 

For all  x ∈R .Then 

           limn→∞ d(Snx,Sn+1x) = limn→∞│x-n-x+(n+1)│=1, 

whereas 

          limn→∞ d(Tnx,Tn+1x)= limn→∞│x+n-x-(n+1)│=1, 



 

which shows that both the maps  S and  T are not  a.r. But on taking their 

composition , we get  STx=x and hence, we deduce 

         limn→∞ d((ST)nx,(ST)n+1x)=limn→∞│ x-x │=0 , 

which shows that the pair(S,T) is c.a.r. Thus it seems worthwhile to 

introduce the following: 

Definition 3.4.2. 

A pair of self-mapping (S,T) of  a metric space  (X, d) is said to be 

compositely  asymptotically  regular  (abbreviated c.a.r)  at  a point x  if 

their composition  SoT  is  a.r.  at  x . It is immediate to note that if  we 

choose T=Ix (or S=Ix),where Ix is the identity mapping on X, then the notion 

of  c.a.r. mappings reduces to that of  a.r. mapping. 

Let R+ denotes the set of non-negative real numbers, and let F:R+→R+ be a 

mapping such that   F(0) = 0  and  F is continuous at  0 .Employing the 

notion of  c.a.r. mappings, we first prove  the following: 

Theorem 3.4.3. 

 Let  S  and  T  be  self – mappings  of   a complete  metric  space  (X ,d) 

satisfying:  

α max {d(x,y),d(x,STx),d(y,STy) ,d(x,STy) ,d(y,STx)} d(STx,STy) ≤    



 

                    +F(min{d 2(x,y),d(x,STx).d(y,STy),d(x,STx).d(x,STy), 

                      d (y,STx).d(y,STy),d(x,STy).d(y,STx)}),          (3.4.3. 1)   

for all  x,y in X ,where  0 ≤ α <1. Then  ST  has a unique fixed  point  z 

provided  the  pair (S,T) is c.a.r. at some point of X .Moreover , if the pair 

(S,T) commute at z and Tz, then the  fixed  point  of  ST   also remains the 

fixed point of  S  and  T  separately.  

Proof.  

Let the pair (S,T) be c.a.r. at  xo in X, then using ( 3.4.3.1),  we get 

d ((ST)mxo,(ST)nxo )≤ α max{d( (ST)m-1xo,(ST)n-1xo), 

                                 d((ST)m- 1xo,(ST)mxo), d((ST)n-1xo,(ST)nxo), 

                                 d((ST)m-1xo,(ST)nxo),  d((ST)n-1xo,(ST)mxo)}   

                                 +F ( min { d2( (ST)m-1xo,(ST)n-1xo), 

                                 d((ST)m-1xo,(ST)mxo).  d ((ST)n-1xo,(ST)nxo), 

                                 d((ST)m-1xo,(ST)mxo).  d((ST)m-1xo,(ST)nxo), 

                                 d ((ST)n-1xo,(ST)mxo). d ( (ST)n-1xo,(ST)nxo) , 

                                 d ((ST)m-1xo,(ST)nxo).d ((ST)n-1xo,(ST)mxo)}) (3.4.3.2)   



 

Substituting 

d ( (ST)m-1xo,(ST)n-1xo) ≤ d ((ST)m-1xo,(ST)mxo)+ d ((ST)mxo,( ST)nxo) 

                                      +d ( (ST)nxo,(ST)n-1xo), 

d ((ST)m-1xo,(ST)nxo) ≤ d ((ST)m-1xo,(ST)mxo)+ d ( (ST)mxo,(ST)nxo), 

d ((ST)n-1xo,(ST)mxo) ≤ d ((ST)n-1xo,(ST)nxo) + d ( (ST)nxo,(ST)mxo), 

in (3.4.3.2) and using the composite asymptotic regularity of the pair 

 (S,T) at xo, we get as  n,m→∞ 

d ( (ST)mxo,(ST)nxo) ≤ α max {d ( (ST)mxo,(ST)nxo),0,0, 

                                  d ((ST)mxo,(ST)nxo),  d ((ST)mxo,(ST)nxo)} 

                                 +F (min {d2( (ST)mxo,(ST)nxo),0,0,0,  

                                  d2((ST)mxo,(ST)nxo)}), 

Which yields to   d ((ST)mxo,(ST)nxo)  ≤ α d ((ST)mxo,(ST)nxo) +F(0). 

Since  α < 1 and  F(0)=0 ,we get d ((ST)mxo,(ST)nxo) → 0  as  n,m→∞. 

Hence  { (ST)nxo}   is a Cauchy sequence in  X and  so, since  (X ,d) is 

complete ,it converges to a point z in X. Now using (3.4.3.1), we obtain 

d (z ,STz)  ≤  d (z,(ST)nxo)+d ((ST)nxo ,STz) 



 

                 ≤ d ( z,(ST)nxo)+α max { d ((ST)n-1xo,z), d ((ST)n-1xo,(ST)nxo), 

                    d ( z,STz),d ((ST)n-1xo,STz), d (z,(ST)nxo)} 

                 +F( min { d2((ST)n-1xo,z),d ((ST)n-1xo,(ST)nxo. 

                   d (z,STz) ,d((ST)n-1xo,(ST)nxo). d ((ST)n-1xo,STz), 

                   d (z,(ST)nxo). d (z,STz),d ((ST)n-1xo,STz).d (z,(ST)nxo)}) 

                  ≤ d (z,(ST)nxo)+ α max {d (ST)n-1xo,z),  d( (ST)n-1xo,(ST)nxo), 

                    d (z,STz), [d ( (ST)n-1xo,z)+d  (z,STz)], d (z,(ST)nxo)} 

                  +F (min{ d2( (ST)n-1xo,z),d((ST)n-1xo,(ST)nxo).d(z,STz), 

                   d ((ST)n-1xo,(ST)nxo). d ((ST)n-1xo,STz),d (z,(ST)nxo).d  (z,STz), 

                   [d ((ST)n-1xo,z)+d(z,STz)].  d(z,(ST)nxo)}), 

which on letting  n,m → ∞ ,reduces to  

   d (z,STz) ≤ α d(z,STz) < d (z,STz), 

a contradiction giving thereby    z=STz. 

The uniqueness assertion follows immediately  from contraction Condition 

(3.4.3.1) of  the hypothesis. 



 

Now, it remains to show that  z  is also a common fixed point  of  S and  T 

separately. For this let us write  

                                   Sz=S(STz)=S(TSz)=ST(Sz), 

                                   Tz=T(STz)=TS(Tz)=ST(Tz),     

  which show that  Sz  and  Tz are other fixed points of  ST. 

Therefor , in view of the uniqueness of the fixed point of  ST, one can write  

                               Sz=Tz=STz=z 

which shows that  z  is the common fixed point of  S,T  and  ST. 

Theorem  3.4.4. 

Let (X,d)  be  a metric  space  and  S  and  T  be  mappings of  X into  itself 

satisfying (3.4.2.1), where  0≤ α <1. If the pair (S,T) is c.a.r. at a point  x  in  

X and the sequence of  iterates {(ST)n}  has a subsequence converging  to a 

point  u  in X, then  u is the unique  fixed  point of   ST  and  {(ST)nx}  also 

converges to u. Moreover, if the pair  (S,T)  commutes at u and Tu, then the 

fixed point of  ST  also remains the fixed point of  S and T separately. 

Proof.  

Let  the  pair  (S,T)  be  c.a.r.  at  some  point   x  of  X  and  consider  the 

 



 

 

sequence { (ST)nx}. Suppose that  limk( )  x=u and  STu≠u.  By 

(3.4.3.1), we obtain 

     d (u, STu) ≤ d (u, (ST)  x)+d ((ST)  x, (ST)  x)+d ((ST)  x,STu) 

                      ≤  d ( u, (ST)  x) + d ((ST)   x, (ST)  x ) 

                      + α max { d ((ST)  x,u), d((ST)  x, (ST)  x),d(u,STu), 

                        d (((ST)  x,STu),d (u, (ST)  x)} 

                      +F ( min{ d2((ST)  x,u),d ((ST)  x, (ST)  x).d (u,STu), 

                       d ((ST)  x,(ST)nk+1x).d ((ST)  x,STu),d (u, (ST) x). 

                       d (u,STu),d ((ST)  x ,STu).d(u,  (ST) x)}), 

 which on letting  k → ∞ , reduces to  

 d (u, STu) ≤ α max {0,0,d (u, STu),d(u, STu),0}+F(0),since α ∈[0,1) and 

F(0)=0, we get 

 d(u, STu) ≤ α d(u, STu)< d (u, STu),a contradiction ,giving thereby STu=u. 

 

 



 

Now     

  d (u,(ST)nx)=d (STu,(ST)nx) 

                      ≤ d (STu,(ST)n+1x)+d ((ST)n+1x,(ST)nx). 

Since the pair (S,T) is c.a.r. using (3.4.3.1),  STu=u and letting  n→ ∞, we 

obtain 

d (u,(ST)nx)≤ αmax{d(u,(ST)nx),0,0,d(u,(ST)nx),d(u,(ST)nx)}+F(0). 

d (u,(ST)nx) ≤ α d(u,(ST)nx)+F(0). 

Since  α<1 and F(0)=0, we get d(u,(ST)nx)→0  as n→∞. 

Consequently {(ST)nx} converges to u. the remaining  part  follows from 

Theorem 3.4.3. 

Theorem  3.4.5. 

Let  S  and  T be  self – mapping  of  a metric  space (X ,d) such that  ST  is 

continuous .Then the following conclusions holds: 

(a)   If a sequence  {xn}  in X converges to a fixed point z of ST,  then 

{xn} is asymptotically ST – regular.         

(b) if  {xn}  be a sequence in X admitting a subsequence  {x }  with  limi x = z  and  limi d(STx , x  ) = 0, then z is a fixed  point of ST.      If 



 

the pair (S,T) commutes at  z  and Tz,  then  Sz  and  Tz also remains 

the fixed point of  ST.  

Proof.  

The proof  is straightforward, hence it is omitted. 
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CHAPTER IV 

SOME FIXED POINT THEOREMS IN METRICALLY 
CONVEX SPACES 

     

4.1.INTRODUCTION       

          There are several fixed point theorems for single –valued mappings of 

a closed subset of a Banach space . However , in many applications, the 

mapping under consideration is  not a self-mapping of closed sets . Assad [2 

] gave  sufficient conditions for such single-valued mappings to have a fixed 

point by proving a fixed point theorem for Kannan's mappings on a Banach 

space and putting certain boundary conditions on the mapping.  

        In this chapter we have presented some results from Khan et.al [23,25] 

which extend the result of Assad [2] for more general single – valued 

mappings which are also substantial generalization of the main theorem of 

Chatterjea [10]. 

4.2. RESULTS FOR METRICALLY CONVEX SPACES. 
 

Definition 4.2.1. 

 A metric space (X,d) is said to be metrically convex  if  for any  x,y ∈ X, 

 with  x≠y, there exists  z ∈X, x≠z , z ≠ y such that 



 

  

                      d (x,z) + d (z,y) = d (x,y) . 

The following result is borrowed from Assad  and Kirk [4] .In the sequel , 

 stands for the boundary of  K . 

Lemma 4.2.2 .  

If  K  is  a nonempty  closed  subset  of  a complete  and  metrically convex 

 metric  space  (X,d) , then  for  any  x∈ K  and  y∉ ,there  exists a  z∈  

 (the boundary of  K )  such that   d(x,z)+d(z,y) = d(x,y).  

Theorem 4.2.3. 

 Let X  be a complete metrically convex space  and  K  a closed non-empty   

 subset  of  X.  Let  T: K⟶X  be the mapping satisfying the  inequality:  

  d(Tx,Ty) ≤ C max { d(x,Tx),d(y,Ty))}+ C'{d (x,Ty) + d(y,Tx)} . . . (1) 

for every  x,y in  K , where  C and C' are nonnegative reals such that         

max  ,   = h > 0 , 

 

max  ℎ, ℎ  = h' , 

 

max { h,h'} = h'' < 1.                  

Further, for every  x in , Tx ∈K . Then T has a unique fixed point in  K. 

Proof . 

 Let xo ε K . Let us construct  two sequences {xn} and {x'
n} in the following 



 

 manner.  
 

Define  x'
1= Txo . if  x'

1∈ K , put  x1= x'
1 if  x'

1∉ K ,choose  x1∈ , so that  

d(xo,x1) + d(x1,x'
1) = d(xo,x'

1) . Define x'
2= Tx1 . If x'

2 ∈K , put  x2=x'
2 .If 

 x'
2∉K , choose x2∈ , so that d(x1,x2)+d(x2,x'

2)=d(x1,x'
2).Continuing in 

 this way, we obtain  {xn} and {x'
n} satisfying :  

 (i)   x'
n+1=Txn, 

(ii)  xn=x'
n, if x'

n∈ K, 

(iii)  If x'
n ∉ K , choose xn∈  ,so that  

                   d(xn -1,xn) + d(xn, x'
n)= d(xn -1,x'

n). 

put  P = {xi ∈{xn}∶xi = x'
i} ,Q ={xi∈{xn}∶xi ≠ x'

i},it is not hard to show that  

if  xn∈ Q then xn-1 and xn+1  belong to P.  

Now we wish to estimate d(xn,xn+1).We divide the proof  into three cases 

Case I. 

xn,xn+1∈ p. From(1) , we have  

    d(xn ,xn+1) = d(Txn-1,Txn)  

                    ≤ C max [d(xn-1,Txn-1),d(xn ,Txn)]                                                      

                    +C'[d(xn-1,Txn)+d(xn,Txn-1)]                                            



 

= C max [d(xn-1,xn),d(xn ,xn+1)]                                                       

+C'[d(xn-1,xn+1)+ d(xn,xn)].                                                                 

                                                    Then it follows that                                

d(xn, xn+1)≤ C max [ d(xn-1,xn), d(xn, xn+1)] +C'd (xn-1, xn+1) 

                              ≤ C max[d(xn-1,xn), d(xn, xn+1)] +C'[d(xn-1,xn)+d(xn,xn+1)]. 

Now if  d(xn,xn+1) ≤ d(xn-1,xn), we have  

             d(xn,xn+1) ≤ C d(xn-1,xn)+C' d(xn-1,xn) +C' d(xn,xn+1). 

So         d(xn,xn+1) ≤ [C+C')/1-C')] d(xn-1,xn). 

If           d(xn-1,xn) ≤ d(xn,xn+1),we obtain 

              d(xn,xn+1) ≤ C d (xn,xn+1)+C' d(xn-1,xn)+C' d(xn,xn+1).        

So,         d(xn,xn+1) ≤ [C'/1-C-C')] d(xn-1,xn). 

Thus in both the situations, we obtain   

d (xn,xn+1) ≤ h d (xn-1,xn).  

Case II. 

xn∈ P, xn+1∈Q. 

Then condition (1) implies that   

                 d (xn,xn+1) ≤ d(xn,xn+1)+d(xn+1,x'
n+1)     



 

                                  = d(xn,x'
n+1)= d (Txn-1,Txn) 

≤ C max [d (xn-1,Txn-1),d (xn,Txn)]   

                                  +C'[d (xn-1,Txn)+d (xn,Txn-1)] 

                                  = C max [ d (xn-1,xn),d (xn,x'
n+1)]+C' d (xn-1,x'

n+1). 

 For        d (xn-1,xn) ≤ d (xn,x'
n+1), we have  

              d (xn,xn+1) ≤ [C'/1-C-C')] d (xn-1,xn). 

If          d (xn,x'
n+1)  ≤ d (xn-1,xn), we have  

             d (xn,xn+1)  ≤  [C+C') /(1-C')] d (xn-1,xn). 

Consequently , we  have  

              d (xn,xn+1) ≤ h d(xn-1,xn). 

Case III 

xn  ∈Q ,  xn+1∈P. Then   

d(xn,xn+1) ≤ d (xn,x'
n) + d (x'

n,xn+1) 

                  ≤  d(xn-1,xn) + d (xn,x'
n) + d (x'

n,xn+1)  

                  = d(xn-1,x'
n) + d (x'

n,xn+1)    

                 ≤ h d(xn-2,xn-1)+d (x'n,xn+1) by case II,since xn∈Q implies xn-1∈P.   



 

Now , if  d (xn-1,x'
n) ≥ d (xn,xn+1) , we have  

d(xn,xn+1) ≤ h d(xn-2, xn-1) +d(Txn-1, Txn  )                                      

≤ h d (xn-2 ,xn-1)+ C max[ d(xn-1,x'
n),d(xn,Txn)]  

+C'[d(xn-1,Txn) + d(xn,Txn-1)]                                   

=h d(xn-2,xn-1) + C max [d(xn-1,x'
n) ,d (xn,x'

n+1)]  

+C'[d(xn-1, x'
n+1)+d(xn, x'

n)]                              

=h d (xn-2, xn-1)+ C max [d(xn-1,x'
n) ,d (xn,xn+1)]  

+C'[d(xn-1, xn+1)+d(xn, x'
n)].                              

 Note that here  

        d(xn-1, xn+1)+d(xn, x'
n) ≤ d(xn-1,xn) +d (xn,x'

n) + d(xn,xn+1).  

Hence we obtain  

       d (xn,xn+1) ≤ h d (xn-2,xn-1) + C d (xn-1,x'
n) + C' [ d(xn-1,x'

n) + d (xn ,xn+1)] 

which implies  

            d (xn,xn+1) ≤  d(xn-2,xn-1) +  d(xn-1,x'
n) 

                              ≤  d(xn-2,xn-1) + ℎ  d(xn-2,xn-1)  



 

                               ≤ ℎ  d (xn-2,xn-1). 

When      d(xn-1,x'
n) ≤ d(xn,xn+1), we see that  

        d (xn,xn+1) ≤ h d (xn-2,xn-1) + C d (xn,xn+1) + C' d(xn-1,x'
n) +C' d (xn ,xn+1). 

       d (xn,xn+1) ≤  d(xn-2,xn-1) +  d(xn-1,x'
n) 

                        ≤    d(xn-2,xn-1) + ℎ  d(xn-2,xn-1) 

    ≤ ℎ  d(xn-2,xn-1)                                       

Now , combining  the  above two  inequalities, we see that  

                 d (xn,xn+1) ≤ h' d(xn-2,xn-1).  

Therefore in all three cases we find that  

                d (xn,xn+1) ≤ h'' max {d(xn-2,xn-1),d(xn,xn-1)}. 

It is routine to verify  that  for  n > 1 we obtain  

               d (xn,xn+1) ≤ (h'' )n/2  , where     = (h'' )-1/2 max [ d (xo,x1),d(x1,x2)]. 

Thus for  m > n >N,  

          d(xm,xn)  ≤ ∑ d(x  , x ) ≤ ∑ (h )/  δ .    



 

Therefore {xn}  is  a Cauchy sequence , and hence converges to  a limit  p.  

Also there exists an infinite subsequence {xn(k)}of {xn} such that xn(k)+1 ∈P.  

Then  

       d (Tp,p) ≤ d(Tp,Txn(k)) + d (xn(k)+1,p) 

                     ≤ C max {d (p,Tp), d(xn(k),Txn(k))} 

                     +C'{d(p,Txn(k))+d(xn(k),Tp)}+d(xn(k)+1,p). 

Letting   k  tends to infinity , we get  

 d (Tp,p) ≤ (C+C') d(Tp,p) +C' d(Tp,p),     

which implies that  Tp=p, since  h <1.   

Condition (1)  ensures  that  p is  also unique.  

This completes the proof.  

Theorem  4.2.4. 

 Let X  be a complete metrically convex space and  K  a closed  non -empty 

subset of  X. Let  T:K ⟶ X be a mapping satisfying  the inequality: 

d(Tx,Ty) ≤ C max[1 ∕ 2d(x,y ),d(x,Tx),d(y,Ty)+C' [d(x,Ty)+d(y,Tx)]…...(2) 



 

 For every x,y  in K , where C and C' are non - negative reals with 

max[(C+C') ∕  (1-C'), C' ∕ (1-C-C')]= h< 1. Further ,for every x in  ,Tx∈K. 

Then T has a unique fixed point in K 

proof. 

 Let  xo ∈K . Let  us  construct  the  two  sequences  {xn}   and  {x'
n}  in  the 

following  manner:     

Define   x'
1= Txo . if  x'

1∈ K , put  x1= x'
1  if  x'

1∉ K , choose  x1∈ , so that 

d(xo,x1) + d(x1,x'
1) = d(xo,x'

1) . Define   x'
2 = Tx1 . If   x'

2 ∈ K , put   x2=x'
2. If 

x'
2∉K , choose x2∈ , so that   d(x1,x2)+d(x2 ,x'

2) = d(x1,x'
2). Continuing in 

this way ,we obtain  {xn} and {x'
n} satisfying :  

(i)   x'
n+1=Txn, 

(ii)  xn=x'
n , if  x'

n∈ K, 

(iii) If x'
n ∉ K , choose  xn∈  ,so that  

                   d(xn -1,xn) + d(xn, x'
n) = d(xn -1,x'

n). 

put  P = {xi ∈{xn}∶xi = x'
i} , Q ={xi ∈{xn}∶xi ≠ x'

i} it is not hard to show that  

if  xn∈ Q then xn-1 and xn+1  belong to P. Now we wish to estimate d(xn,xn+1). 

  



 

 

Case I. 

xn,xn+1∈ P. From(2) , we have 

              d(xn ,xn+1) == d(Txn-1,Txn)      

               ≤ C max [1∕ 2d(xn-1,xn),d(xn-1,Txn-1),d(xn,Txn)]  

+C'[d(xn-1Txn)+d(xn,Txn-1) ]               

= C max [d(xn-1,xn),d(xn,x'
n+1)]           

               +C'[d(xn-1,xn+1)+ d(xn,x'
n)].                                

Then it follows that                                                                               

d(xn, xn+1) ≤ C max [ d(xn-1,xn), d(xn, xn+1)] +C 'd (xn-1, xn+1)  

                              ≤ C max[d(xn-1,xn), d(xn, xn+1)] +C'[d(xn-1,xn)+d(xn,xn+1)]. 

Now if  d(xn,xn+1) ≤ d(xn-1,xn), we have  

              d(xn,xn+1) ≤ C d(xn-1,xn)+C' d(xn-1,xn) +C' d(xn,xn+1). 

So          d(xn,xn+1) ≤ [C+C')/1-C')] d(xn-1,xn). 

When     d(xn-1,xn) ≤ d(xn,xn+1),we obtain 

              d(xn,xn+1) ≤ C d (xn,xn+1)+C' d(xn-1,xn)+C' d(xn,xn+1). 



 

So          d(xn,xn+1) ≤ [C'/1-C-C')] d(xn-1,xn). 

Thus in both the situations, we obtain  

             d (xn,xn+1) ≤ h d (xn-1,xn).  

Case II. 

xn∈ P, xn+1∈Q.  

Then condition (2) implies that  

d (xn,xn+1) ≤ d(xn,xn+1)+d(xn+1,x'
n+1  )  

                  =d(xn,x'
n+1)= d (Txn-1,Txn) 

                  ≤ C max [1/2  d (xn-1,xn),d (xn-1,Txn-1),d (xn,Txn)] 

                  +C'[d (xn-1,Txn)+d (xn,Txn-1)] 

                 = C max [ d (xn-1,xn),d (xn,x'
n+1)]+C' d (xn-1,x'

n+1). 

For    d (xn-1,xn) ≤ d (xn,x'
n+1), we have  

          d (xn,xn+1) ≤ [C'/1-C-C')] d (xn-1,xn). 

If        d (xn,x'
n+1)  ≤ d (xn-1,xn), we have  

           d (xn,xn+1) ≤  [C+C') /(1-C')] d (xn-1,xn). 

Consequently , we  get  



 

           d (xn,xn+1) ≤ h d(xn-1,xn). 

Case III. 

xn∈Q , xn+1∈P . 

As  xn∈ Q is a convex linear combination of  xn-1  and  x'
n ,  we have   

      d(xn ,xn+1) ≤ max  [d(xn-1,xn+1), d (x'
n,xn+1)]. 

If  d (xn-1,xn+1) ≤ d (x'
n,xn+1), we have  

     d (xn,xn+1) ≤ d (x'
n,xn+1)  

                      = d (Txn-1, Txn). 

                       ≤ C max [1/2 d (xn-1,xn),d(xn-1,Txn-1),d (xn,Txn)] 

                       + C' [d (xn-1,Txn) + d (xn,Txn-1)] 

                       = C  max  [1/2 d (xn-1,xn),d(xn-1,x'
n),d (xn,x'

n+1)] 

                       + C' [d(xn-1,x'
n+1)+ d (xn,x'

n)] 

                       =  C max [ d (xn-1, x'
n), d( xn ,xn+1)] 

                       + C'[d (xn-1 ,xn+1) +d(xn , x'
n)]. 

  Note that here  

 d (xn-1, xn+1) +d(xn , x'
n) ≤ d (xn-1, xn) + d (xn,xn+1) +d (xn,x'

n) 

                                        ≤ d( xn-1,x'
n) +d(xn,xn+1). 



 

If                    d(xn,xn+1)  ≤ d(xn-1,x'
n), we have 

          ,x'
n)+C'[d (xn-1,x'

n) +d(xn,xn+1)].        ' C d(xn-1  ≤ d(xn,xn+1)            

Whence         d (xn,xn+1) ≤ [C+C')/ (1-C')] d(xn-1,x'
n). 

When             d(xn-1,x'
n) ≤ d(xn,xn+1), we  have  

                       d(xn,xn+1) ≤ C d(xn,xn+1 )+C' d(xn-1,x'
n)+C' d(xn,xn+1). 

That is           d(xn,xn+1) ≤ [C'/(1-C-C')]d(xn-1,x'
n). 

Therefore ,we have 

                   d(xn,xn+1) ≤ h d(xn-1,x'
n)        

                   d(xn,xn+1) ≤ h2d(xn-2,xn-1) by case II, since  xn∈ Q implies xn-1∈P.   

Now if          d(x'
n,xn+1) ≤ d(xn-1,xn+1)  we have 

                     d(xn,xn+1) ≤ d(xn-1,xn+1) 

                                   = d(Txn-2,Txn)              

                                   ≤  C max[1/2d(xn-2,xn),d(xn-2,Txn-2),d(xn,Txn)]                  

                                   +C' [d(xn-2,Txn)+d(xn,Txn-2)]. 

                                  =C max[1/2d(xn-2,xn ),d(xn-2,x'
n-1),d(xn,x'

n+1)]   



 

                                  +C '[d(xn-2,x'
n+1)+d(xn,x'

n-1)].             

Clearly, we have   

1/2 d (xn-2,xn) ≤ 1/2[ d (xn-2,xn-1)+d (xn-1,xn)]          

                  ≤  max [d(xn-2,xn-1),d(xn-1,xn)].                           

Therefore one gets 

        d(xn,xn+1) ≤ C max[d(xn-2,xn-1) d(xn-1,xn),d(xn-2,xn-1), d(xn,xn+1)]  

                         +  C'[d(xn-2,xn+1)+d(xn,xn-1)]. 

                        ≤  C max  [d(xn-2,xn-1)+d(xn,xn+1)]                                

                         +C'[d(xn-2,xn+1)+d(xn,xn-1)]. 

If        d(xn,xn+1) ≤ d(xn-2,xn-1),we have 

           d(xn,xn+1) ≤  C d(xn-2,xn-1)+C'[d(xn-2,xn-1)+d(xn-1,xn+1)+d(xn,xn-1)] 

                          ≤  C d(xn-2,xn-1)+C'd(xn-2,xn-1)+C'd(xn,xn+1).     

Thus  d(xn,xn+1) ≤ [(C+C')/(1-C')] d(xn-2,xn-1). 

When d(xn-2,xn-1) ≤ d(xn,xn+1),we obtain 

d(xn,xn+1) ≤ C d(xn,xn+1)+C' d(xn-2,xn-1)+C' d(xn,xn+1).           



 

Which yields 

d(xn,xn+1) ≤ [C'/(1-C- C')]d(xn-2,xn-1). 

Now  combining  the  above two  inequalities , we see that 

d(xn,xn+1) ≤  h d (xn-2,xn-1).      

Therefore  in  all three  cases ,we find that 

d(xn,xn+1) ≤ h max [d(xn-2,xn-1), d(xn,xn-1)]. 

It is routine  to  verify   that  for  n >1, 

d(xn,xn+1) ≤ hn/2   , where  =h-1/2 max [d(xo,x1),d(x1,x2)]. 

Thus for  m >n >N,  

d(xm,xn) ≤ ∑ d(x , x ) ≤ ∑  h/  . 

Therefore {xn} is a Cauchy sequence,and hence converges to a limit p(say). 

Also there exists an infinite subsequence {xn(k)} of {xn} such that xn(k)+1 ∈P.  

Then  

d(Tp,p) ≤ d (Tp,Txn(k))+d(xn(k)+1,p)  

               ≤ C max[1/2 d(p,xn(k)),d(p,Tp),d(xn(k),Txn(k))] 

               + C' [ d(p,Txn(k))+d(xn(k),Tp)]+d(xn(k)+1,p). 



 

Letting  k tends to infinity , we have  Tp=p  .Condition (2)  ensures that  p is 

also unique .This  completes the proof. 
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  الخلاصھ

  
حیث أن في الفصل ,لمتعلقھ بھا طروحھ ناقشنا مفھوم نظریات النقطھ الثابتھ والدوال االأ هذھ فى

  .طروحھ ساسیھ التى استعملت خلال الأیات الأول عرضنا بعض المفاھیم والنظرالأ

  تيتعمیم لنظریمھ المفرده والتي ھى أماالفصل الثاني عرضنا بعض نظریات النقطھ الثابتھ لدوال القی

Banach[5] وKannan[27]  .  

للدوال  قاربمقارب للمتسلسلات المنتظمھ والشكل المل الثالث ناقشنا مفھومي الشكل الوفي الفص

  . Hardy-Roger,s [19]المنتظمھ والتي ھي تعمیم لنظریھ 

تي ھى تعمیم بھ المتریھ والوفي الفصل الرابع دمجنا نظریات النقطھ الثابتھ إلى الفراغات المحد

  Kannan [(27),(28)].و  Chatterjia [10]وAssad  [(1),(2),(3)]  ھلنظری

 .الاطروحھ  ھذه بعض المراجع التي استعملت خلالوفي النھایھ عرضنا 

         

  واالله ولي التوفیق  
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