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Abstract  

 In this thesis, we  study and investigate the following concepts :   

The Lebesgue measure of a set , the class of  measurable sets , the class of 

  -  measurable sets , the class of measurable functions  and   Lebesgue  

integration .                                                                                                       

We  give some properties of  the  above  concepts. Also, we give some 

facts, deductions , different  connections , related examples  and  some  

applications  of  Lebesgue  integration . 
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Chapter  One 

Preliminaries 

In this chapter, we give some definitions and results which we shall need later in  

this thesis . Also, we give some  related examples and remarks . 

Notations 
                              =  the set of  natural  numbers 

                              =  the set of  rational  numbers 

                              
c

=  the set of  irrational  numbers 

                              =  the set of  real numbers . 

  We start with  the basic definitions and results from set Theory . 

Definition 1.1 

 Let  A   and  B   be  subsets  of  the  universal  set  X .  

The  intersection  of  A   and  B   is  defined  by   

                                A B   { :x x A   and  x B  } .  

Then  A   and  B   are called  disjoint  if  A B  . 

The  union  of  A   and  B   is  defined  by   

                                A B   { :x x A   or  x B  } .  

Theorem 1.1 

  Let  ,A B   and  C  be  sets . Then  

          ( i )  A B A    and    A B B  

          ( ii )  A A B    and    B A B  

          ( iii )  A B A A B     and    A B B A B   

          ( iv )  ( ( )) ( )A B C A B A C  

          ( v )  ( ( )) ( )A B C A B A C . 

The  intersection of  a finite  number of  sets   
1 2

, , ,
n

A A A   is denoted  by 

                                 
1 2 n

A A A     or    
1

n

k
k

A


. 

The  intersection of  an  infinite  number of  sets  
1 2

, , , ,
n

A A A   is  denoted 

by 
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1 2 n

A A A    or    
1

k
k

A




. 

The  union  of  a finite  number of  sets  
1 2

, , ,
n

A A A  is denoted  by 

                                
1 2 n

A A A     or     
1

n

k
k

A


. 

The  union  of  an  infinite  number of  sets  
1 2

, , , ,
n

A A A   is  denoted by 

                                
1 2 n

A A A     or     
1

k
k

A




. 

Definition 1.2 

 Let   :f X Y and  let  B  be a subset of   Y . The inverse  of  B  under the 

mapping   f  is defined by 

                               
1

( ) { : ( ) }f B x X f x B


   . 

Theorem 1.2 

  Let   :f X Y and  let  A  and   B  be subsets  of   Y . Then 

                        ( i )  
1 1 1

( ) ( ) ( )f A B f A f B
  

   

                        ( ii )   
1 1 1

( ) ( ) ( )f A B f A f B
  

                           

                        ( iii )   
1 1

1 1

( ) ( )
i i

i i

f A f A
  

 

  

                        ( iv )   
1 1

1 1

( ) ( )
i ii i

f A f A
 

 

 

 . 

Definition  1.3 

 Let  A X . The  complement  of  A   is  defined  by   

                                 
c

A = { :x x X  and  x A  } .  

Sometimes , we  write   \
c

A X A .  

Theorem  1.3 

  Let  ,A B X . Then   

             ( i )   ,
c c

X X    

            ( ii )  ( )
c c

A A  

            ( iii )  ,
c c

A A A A X   
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Theorem  1.4 

  Let  ,A B X . If  A B , then  

               ( i )  
c c

B A  

                   ( ii )   A B A ,  A B B  

              ( iii ) ,
c c

B A X A B   . 

Theorem 1.5 

  Let  :f X Y   and  A Y . Then   

                                    
1 1

( ) ( ( ) )
c c

f A f A
 

 . 

Theorem 1.6  (  De  Morgan  laws  ) 

  Let  A  and  B  be  sets . Then   

                            ( i )  ( )
c c c

A B A B  

                            ( ii )  ( )
c c c

A B A B . 

The  generalized  of  Demorgan Laws  for  any  finite  number  of  sets  is   

                           ( i )  
1 1

( )
n n

k k
k k

cc
A A

 

   

                          ( ii )  
1 1

( )
nn

k k
k k

cc
A A

 

 .   

The  generalized  of  Demorgan Laws  for  any  infinite  number  of  sets  is   

                        ( i ) 
1 1

( )
k k

k k

cc
A A

 

 

  

                        ( ii )  
1 1

( )
k k

k k

cc
A A

 

 

 . 

Definition 1.4 

 The  difference  of  a set  A   with  respect  to  a set  B   is  defined  by  

                                      A B   { :x x A  and  x B  } ,  

while the  difference  of  a set  B   with  respect  to  a set A  is  defined  by 

                                     B A   { :x x B  and  x A  }. 

Sometimes ,  we  write  \A B A B  .  
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Theorem 1.7 

 Let  ,A B X . Then   

                     ( i )   ,A B A B A B     

                     ( ii )  
c

A B A B   

                     ( iii )  If  A B ,  then   \ \C B C A  

                     ( v )  \ ( ) ( \ ) ( \ )A B C A B A C  

                              \ ( ) ( \ ) ( \ )A B C A B A C . 

More  generally , we  have  

                       ( i )  
1 1

\ ( \ )
k k

k k

A B A B
 

 

    

                       ( ii )   
1 1

\ ( \ )
k k

k k

A B A B
 

 

 . 

Definition 1.5 

 Let  X  be a set . The  power set  of  X  is  the  family  of  all  subsets  of  X . 

It  is  denoted by  ( )P X . 

If  X  contains  n   elements , then  ( )P X   contains  2
n

 elements .  

Note  that   , ( )X P X  .  

Examples 1.1 

     ( i )  Let  { 1 }X  . Then   

                                     ,( ) { 1 }{ }P X  . 

     ( ii )  Let  { 1,2 }X  . Then   

                                   , , ,( ) { 1 } { 1,2 }{ }P X X . 

     ( iii )  Let  { 1,2 ,3}X  . Then   

                       , , , , , , ,( ) { 1 } { 2 } { 3 } { 1,2 } { 1,3 } { 2,3 }{ }P X X . 

Definition 1.6 

 Let  X  be  a non-empty  set . Let  f  be  a function  from  X  into  .  

The  positive  part  of   f  is  defined  by   

                          

.

( ) if ( ) 0

( )

0 otherwise

f x f x

f x
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The  negative  part  of   f  is  defined  by   

                           

.

( ) if ( ) 0

( )

0 otherwise

f x f x

f x


 


 



  

Remarks  1.1 

          ( i )  0f


   and    0f


  . 

          ( ii ) ( )f g f g
  

    

                    ( )f g f g
  

    . 

          ( iii )  Let   0  .  Then  

                                        ( )f f 
 
  

                                         ( )f f 


 . 

          ( iv )  Let   0  .  Then  

                                        ( )f f 
 
   

                                         ( )f f 
 
  . 

Lemma 1.8  

 Let X be a non-empty set  and  let  f  be a function from X into  . Then 

                            ( i )    f f f
 

   

                                      ( ii )   f f f
 

  . 

Lemma  1.9  

Let  ,x y     and  let   0   (  very small  )   .  

                    ( i )  if    x y   ,  then   x y , 

                    ( ii )  if  x y   ,  then  x y . 

Definition 1.7 

 Let  E  be  a non-empty  subset of    and   x  . Then we define 

                              :{ }E x y x y E   . 
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Theorem 1.10 

 Let  X  be  a non-empty  subset of  . Let  E  and  A  be subsets of  X and   x  . 

Then 

                        ( i )  If  E A , then   E x A x    
    

                    
       ( ii )

   
( \ ) ( ) \ ( )A E x A x E x       

                            ( iii )   ( ( ) ) ( )A x E x A E x     

                            ( iv )   .( ( ) ) ( )
c c

A x E x A E x     

Definition 1.8 

 Let A be a non-empty subset of . An element x  called an upper bound  

of A  if    a x   for all   .a A  

If A has an upper bound ,  then A is called a bounded above set . 

Definition 1.9 

 Let A be a non-empty subset of . An element y  called a lower bound  

of A  if   y a     for all   .a A  

If A has a lower bound , then A is called a bounded below set . 

Definition 1.10 

 Let A be a non-empty subset of . Then A is called a bounded  if A is both  

bounded above and bounded below .  

Lemma 1.11 

 Any subset of a bounded set is bounded . 

Theorem 1.12 

  A finite union of bounded sets is bounded . 

Remark 1.2  

 An infinite union of bounded sets may not  be bounded . 

For example  :  

  Let   , , , ,[ ] ( 1 2 3 ... )
n

A n n n   . 

Then  
n

A  are bounded sets . We have 
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1 1

,[ ]
n n

n
A n n

 

 

         

                                        ,( )   , 

which is not bounded . 

Definition 1.11 

 Let A be a non-empty subset of . A real number u is called a supremum of  

A , denoted by , sup ( )A if  

 ( i )   a u for all   a A  (  u  is an  upper bound of  )A  

 ( ii )  u v for any upper bound  v of A  ( u  is the least upper bound of . )A  

If , sup ( ) A A then it is called a  maximum of , A is denoted by . max ( )A  

Theorem  1.13 

 Let A be a non-empty bounded above subset of . Then  sup ( )A exists and  

unique . 

Theorem  1.14 

 Let A and B be non-empty bounded above subsets of . If ,A B then 

.sup ( )  sup ( )A B  

Theorem 1.15  

  Let  A  be a  non- empty bounded above  subset  of  .  Let  0   and  

sup( )A   . Then there exists  a A such that   a   . 

Definition 1.12 

 Let A be a non-empty subset of . A real number w is called an infimum of  

,A denoted by , inf ( )A if  

( i )  w a  for all   a A ( w is a lower bound of  )A        

( ii ) t w  for any lower bound  t of A ( w is the greatest lower bound of .)A  

If , inf ( ) A A then it is called a minimum of , A is denoted by . min ( )A  

Theorem 1.16 

 Let A be a non-empty bounded below subset of . Then  inf ( )A exists and  

unique . 
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Theorem 1.17 

 Let A and B be non-empty bounded below subsets of . If ,A B  then 

.inf ( )  inf ( )B A  

Theorem 1.18      

  Let  A  be a non- empty bounded below  subset  of  .  Let  0   and 

inf ( )A  . Then there exists  a A such that   a    . 

Definition 1.13 

 Let X be a bounded set. A mapping  :f X  is called bounded if there  

exists a positive real number M such that 

          
( )f x M for all .x X  

Example 1.2  

   Let  ( ) 3 4f x x   , ,[ 2 2 ]X   . 

Then  X  is  a bounded set .   

Let  ,[ 2 2 ]x    . Then    2x   . 

So   ( ) 3 4f x x   

                          3 4x   

                         3 ( 2 ) 4   

                          .10   

  Thus   f is a  bounded  function on  X  with   .10M    

Theorem 1.19 

 Let X be a bounded subset of and let :f X  be a bounded  function . 

Then 

              

.

( i )    sup ( ( ) ) sup ( ( ) ) ( 0 )

( ii )   sup ( ( ) ) inf ( ( ) ) ( 0 )

x X x X

x Xx X

f x f x

f x f x
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Definition 1.14 

 Let  X  be  a non – empty set .  Let  d   be  a  function  defined  on  the  cartesian  

product  X X   into   such that   

              ( i )

  

,( ) 0d x y   

              ( ii )

  

,( ) 0d x y x y       

              ( iii )

  

, ,( ) ( )d x y d y x  

              ( iv )

  

, , ,( ) ( ) ( )d x y d x z d z y  , 

  for all  , ,x y z X .  Then  d  is  called  a metric  on  X  and  ,( )X d   is  called  

a metric space .                                               

 

 

Example 1.3 

 Let  X  .  Define  d   by     

                                ,( )d x y x y      ( , )x y X . 

Then  d  is  a metric  on  X   and  ,( )X d  is  a metric space .   

This  metric  space  is  called  the  usual  metric  space . 

Definition 1.15  

 Let  ( , )X d   be  a metric  space  and  x X  and  Let  0r  .  The  set   

                            ( , )B x r  { : ( , )y X d x y r 

 

} . 

is  called  an open ball  with  center  x  and  radius  r .  

Definition 1.16 

  Let  ( , )X d   be  a metric  space .  A subset  A   of  X   is  said  to  be  open  in  

X   if  for  each  x A   there  is  0r    such that  ( , )B x r A .  

Definition  1.17 

 A subset  A  of a metric space  ( , )X d  is called a closed set  in  ( , )X d  if  its  

complement   
c

A  is open  in  ( , )X d . 

Examples  1.4  

   Let ,( )d  be  the  usual  metric  space . 

   ( i )  The empty set     and the universal set   are open and closed .  

   ( ii )  Let  {1,2,3, ... } . Then 

                              , , ,( 1) (1 2) (2 3) ...
c
       

          So  
c

is open and  hence   is a closed set . 
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     ( iii )  Let  
1 1

2 3
1, , , ... ,0{ }A  . Then 

                          
1 1 1

2 2 3

, , , ,( 1) (1 ) ( ) ... ( 0 )
c

A        . 

            So  
c

A is open and  hence  A  is a closed set . 

     ( iv )   is neither open nor closed .  

              Also, 
c

is neither open nor closed .  

     ( v )  Let   ,( 1 3 ) { 5 }A   . 

              Then  A  is neither open nor closed .                          

Theorem 1.20  

    ( i ) The intersection of  any  finite number of open sets in a metric space ( , )X d    

           is open . 

    ( ii ) The union of any collection of open sets (  finite or infinite ) in a metric space    

           ( , )X d  is open .  

Remark 1.3  

 An infinite intersection of open sets may not be open . 

For example  :  

 Let   , , ,
1 1

( , ) ( 1 2 3 ... )
n n n

A n   . 

Then  
n

A  are open  sets . We have 

                           
1 1

1 1
( , )

n n
n n n

A
 

 

         

                                        { 0 } , 

which is not open . 

Theorem 1.21  

     ( i ) The intersection of any collection of closed sets (  finite or infinite ) in a   

            metric space  ( , )X d  is closed .   

     ( ii ) The union of any finite number of closed sets in a metric space  ( , )X d  is  

             closed .      

Remark 1.4  

 An infinite union of closed sets may not be closed . 
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For example  :  

 Let   , , ,
1 1

[ , 1 ] ( 1 2 3 ... )
n n n

F n    . 

Then  
n

F  are closed sets . We have 

                           
1 1

1 1
[ , 1 ]

n n
n n n

F
 

 

         

                                         ,(0 1) , 

which is not closed . 

Definition 1.18 

 Let  ( , )X d   and   ( , )Y d   be  two metric  spaces .  A function   

: ( , ) ( , )f X d Y d   is  called  continuous  at  
0

x  in  X  if  for  each  0    

there  exists  0    such that  

     

                       
0

,( ( ) ( ) )d f x f x      for  all     
0

( , )d x x  .  

The  function  f   is  called  continuous  on  X  if  it  is  continuous  at  each  point      

of  X .  

Examples  1.5 

  ( i )  Let   :f    be  defined  by 

                                     ( ) 2 1f x x  . 

         Let   0,x x  . Then 

                  0 0( ) ( ) ( 2 1 ) ( 2 1 )f x f x x x      

                                                      02 x x   . 

        Thus if  0x x   , it follows that    

                                         0( ) ( ) 2f x f x   . 

        Choose 
2




 . Therefore 

                                         0( ) ( )f x f x  . 

        Hence  f  is  continuous  on  .  
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 ( ii )  Let   :f    be  defined  by 

                                      ( ) sinf x x  . 

       Let   0,x x  . Then 

                  0 0( ) ( ) sin sinf x f x x x    

                                                        0x x  . 

       Thus if  0x x   , it follows that   

                                                 0( ) ( )f x f x   . 

        Choose   . Therefore 

                                         0( ) ( )f x f x  . 

        Hence  f  is  continuous  on  .  

Theorem 1.22 

Let  ( , )X d   and   ( , )Y d   be  two metric  spaces .  Let  

, : ( , ) ( , )f g X d Y d   be continuous functions . Then   

                                    , , , , ( 0 )
f

f g f g f f g g
g

          

 are continuous functions . 

Theorem 1.23 

 A  function   :f   is  continuous if and only if 

  

1

( )Of


 is open for every 

open  O  in  .           

Definition 1.19 

Let  X be a non-empty set whose elements are called vectors and let K be the field 

of scalars and in which two operations called addition and scalar multiplication are 

defined. Then  X is called a linear space ( or a vector space ) over K if for all   

,  ,  x y z X and ,     K   the following axioms hold : 

( i )  . (  )     (  ) x y z x y z      

( ii )  .    x y y x    

( iii )  There exists  0 in X such that 

                                   , 0   0  x x x      
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  (  0 is called the zero vector ) . 

( iv )  There exists  x  in  X such that 

                               , (  )   0  (  )  x x x x       

  (  x is called the additive inverse of  x ) . 

( v )  .(  )     x y x y      

( vi ) . (  )    x x x       

( vii )  .(  )     (  ) x x     

( viii )  ,1  x x   

(  1  is called the multiplicative identity ) . 

Examples 1.6  [ 5 ]    

 ( i ) Let
 1 2 1 2( , ,  . . .  ,  ) : , ,  . . .  ,  { }

n

n nx x x x x x   

                       =  n - Euclidean space . 

        The addition on 
n

is given by : 

1 1 1 1( , , ) ( , , ) ( , , )n n n nx x y y x y x y     

        The scalar multiplication on 
n

 is given by : 

1 1 ,( , , ) ( , , )n nx x x x    

        for all
  1 2 1 2( , , , ) , ( , , , ) n

n nx x x y y y    and    . 

        Then 
n

is a linear space over . 

( ii )  Let X be the set of all polynomials   

                                         
2

n0 1 2

na a x a x a x    , 

        with coefficients   
i

1, 2 , ... ,( )i na   from a field  K .  

         Then  X  is a linear space over K with respect to the usual operations of   

         addition of polynomials and  multiplication by a constant . 

 

( iii ) Let X be the set of all  m n  matrices with entries from an arbitrary field K . 

         Then  X  is a linear space over  K  with respect to the the operations of matrix  

         addition and  multiplication by a constant . 
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Definition 1.20 

Let ,X Y be linear spaces over the same field .K A mapping f  from X into 

Y is called  linear  if  

              ( i )  (  )  ( ) ( )f x y f x f y      for all , ,x y X  

              ( ii )  (  )   ( )  f x f x  for all  ,x X ,K   

or  f  is called  a  linear  mapping  if  

           , .(   +   )  ( )  +  ( ) ( , , )f x y f x f y x y X K         

Examples 1.7 

 ( i ) Let   
3

:f    be  defined  by 

                                 ( , , ) 2 3 4f x y z x y z   . 

        Let   
1 1 1

, , ( a b c )u    and    
2 2 2

, , ( a b c )v  . 

        Let    . Then    

                                        1 1 1
, , ( a b c )u   

                                               1 1 1
, ,( a b c )   . 

    Therefore 

                                   
1 1 1

, ,( )  ( a b c )f u f     

                                                  
1 1 1

3 4  2 a b c     

                                                  
1 1 1

3 4  ( 2 a b c )    

                                                   ( )f u , 

  and  we have 

                          
1 2 1 2 1 2

, ,( )  ( a a b b c c )f u v f      

                                            
1 2 1 2 1 2

 2( a a ) 3( b b ) 4( c c )       

                                            
1 1 1 2 2 2

 ( 2a 3 b 4 c ) ( 2a 3 b 4 c )       

                                                    ( ) ( )f u f v  . 

    Thus  f  is  a  linear  mapping . 
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( ii )  Let   
2

:f    be  defined  by 

                                 ( , )f x y x y . 

        Let   , ( a b )u  . Then 

                         ,( )  ( a b )f u f  

                                     a b , 

         and we have 

                             ,( )   ( a b)( )f u f    

                                             , ( a b)f    

                                             (( a ) b)   

                                             
2

a b  

                                              ( )f u . 

          Thus   f  is  not  a  linear  mapping . 

Definition 1.21 

 Let   ( )
n

f   be  a sequence  of  functions defined  on  X .  Then  for  each  x X , 

we  define the  limit superior  and  the  limit inferior  by 

 

                      

lim inf ( ( ) ) lim inf ( ) :{ }
n knn

f x f x k n
 

   

                                                                    sup inf ( ) :{ }
kn

f x k n                                                                

and 
 

                     lim sup ( ( ) ) lim sup ( ) :{ }
n knn

f x f x k n
 

   

                                                                    inf sup ( ) :{ }
kn

f x k n  .                   
       

 

Notation 

                           lim inf ( ( ) ) lim ( )
n n

n

f x f x
 

  

                                      
.lim sup ( ( ) ) lim ( )

n n
n

f x f x
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Examples  1.8 
  

( i )   Define   : [ 1, 1]nf     by 

                                      .( ) sinnf x n x  

     Then         

                               lim inf ( ) 1n
n

f x
 

  , 

     and 

                              lim sup ( ) 1n
n

f x
 

 . 

( ii )  Define  the sequence of  functions  ( )nf  by 

 

                                    
.

1 if

( ) 1
if

n

n is even

f x
n is odd

n




 




 

      Then         

                               lim inf ( ) 0n
n

f x
 

 , 

      and 

                              lim sup ( ) 1n
n

f x
 

 . 

Theorem  1.24 

  Let   ( )
n

f   be  a sequence  of  functions defined  on  X and  x X .  Then                  

                         ( i )  lim inf ( ( ) ) lim sup ( ( ) )
n n

n n

f x f x
   

  

                     ( ii ) lim inf ( ( ) ) lim sup ( ( ) )
n n

n n

f x f x
   

  .                      

Theorem  1.25 

  Let   ( )
n

f   be  a sequence  of  functions defined on  X and  x X . If   

,( ) lim ( )
nn

f x f x
 

  then 

.( ) lim sup ( ) lim inf ( )
n n

n n

f x f x f x
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Example 1.9  

   Define   :nf    by 

                                   
2

2
( ) .

1
n

x
f x

n x



 

  Then    

2

2

lim ( ) lim
1

n
nn

n

n

x

f x

x
  





 

                                      0 . 

 It follows from Theorem 1.25  that     

                             lim inf ( ) 0n
n

f x
 

 ,   

  and     

                            lim sup ( ) 0n
n

f x
 

  . 

Definition 1.22 

 Let X  be  a non – empty  set . A non - empty  family  F  of  subsets  of X  is  called  

a  field  if  

                       ( i )  ,X F   

                      ( ii )  for  each  A F , then   
c

A F  

       ( iii )  If  
1 2

, , ,
n

A A A F , then   
1

n

k
k

A F


 .  

Examples 1.10 

  ( i )  Let X  be  any  set  and  let   ,F X  .  

     Then  F  is  a field  ( the  smallest  field  of  X ) . 

  ( ii )  Let  { 1 , 2 , 3 }X  . 

          Let   , , { 1 } , { 2 , 3 }{ }F X  .  

      Then  F  is  a field . 

  ( iii )  Let  [ 0 , 1 ]X  . 

           Let  
1 1

2 2
, , [ 0 , ] , ( ], 1{ }F X .  

       Then  F  is  a field . 
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  ( iv )  Let  X     the  set  of  all  natural  numbers .    

            Let              , , , , , , ,1 2 1,2 \ 1 \ 2 \ 1,2F   . 

           Then  F  is  a field . 

Lemma 1.26 

  Let F  be  a  field  of  subsets  of  X  and  let  ,A B F .  Then   

                                               A B F  .  

Lemma 1.27  

Let  F  be  a  field of subsets of  X .  If  
1 2

, , ,
n

A A A F , then  
1

.

n

k
k

A F




 
Remark 1.5 

 Let  
1

F   and  
2

F  be  two  fields  of  subsets  of  X .  Then   
1 2

F F   may  not  be a 

field . 

For  example : 

 Let  { 1 , 2 , 3 }X  . 

 Let    1
{ , , { 1 } , { 2 , 3 } }F X  , 

     
  
   2

{ , , { 2 } , { 1 , 3 } }F X  . 

Then  
1

F   and  
2

F   are  fields  of  subsets  of  X . 

We  have     

                
1 2

, , { 1 } , { 2 } , { 1 , 3 } , { 2 , 3 }{ }F F X  . 

Thus  
1 2

F F   is  not  a field  of  subsets  of  X . 

Definition 1.23 

 Let  X  be  a non - empty set . A  non - empty  family  F  of subsets of  X  is called 

a   field  if  
 

     ( i )  ,X F         

     ( ii )  for each  A F , then  
c

A F   

     ( iii )  If  ( )
k

kA F  , then   
1

k
k

A F




 . 

Examples 1.11 

      ( i )  Let  X   be  a non - empty  set  and  let   ,F X  . 

      Then  F  is  a   - field  ( the  smallest   -  field  of  X  ) .  
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      ( ii )  Let  X  be  the  set  of  all  real  numbers .  Let  ( )F P X . 

       Then  F  is  a  - field  ( the  largest   - field  of  X ) . 

Remark 1.6 

  Every  - field is a field . In general, the converse is not true . 

For example : 

  Let  (0 , 1]X   . 

 Let F  be the class consisting of    and of all finite disjoint unions of the form   

                            
1

1( , ] ( 0 )i i i i
i

n

A a b a b


    . 

  We have   

     ( i )  ,X F . 

     ( ii )  Let  A F . Then   

                           1 1 2 1( 0, ] ( , ] ... ( , ]n

c
A a b a b F     .                           

      ( iii )  Let ,( , ] ( , ]a b c d F . Then   

                                 ( , ] ( , ]a b c d F  . 

    Thus  F  is  a field . 

     Let  1( 0 , 1 ]n n
A F   .    

     Then       
1 1

1( 0 , 1 ]n

n n
n

A
 

 

   

                          ( 0 , 1 ) F  .     

      Thus  F  is  not  a  - field . 

Lemma 1.28 

  Let F  be  a  - field  of  subsets  of  X  and  let  ,A B F .  Then   

                                               A B F  .  

Lemma 1.29 

 Let  F   be a  - field of subsets of  X .  If  ( )
n

nA F  ,  then  
1

n
n

A F




 .  
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Definition 1.24 

  Let  A X .  Then  the  real-valued  function  ,: { 0 1 }
A

X 
  
defined  by   

                                         
,

1 if   
( )

0 if   
A c

x A
x

x A



 



  

is  called  the  characteristic  function  of  A .  

Example  1.12 

 Let  X    and  let   { 1 , 2 , 3 , 4 }A  . 

Then   ( 1 ) ( 2 ) ( 3 ) ( 4 ) 1
A A A A

       , 

while , for  examples 

               ( 5 ) 0
A

  ,  ( 6 ) 0
A

  ,  ( 7 ) 0
A

  .  

Some  properties  of  characteristic  functions  

  Let  ,A B X .  Then 

               ( i )  
  

=  0   

            ( ii )  If  A B ,  then   
BA

    

            ( iii ) 1
C A

A

     

            ( iv )  .
BAA B

     

            ( v )  
\ AA B A B

      

            ( vi )  
BAA B A B

      . 

Remark  1.7  

 If  A B   , then  ( vi )  becomes 

                                            .
BA B A

      

More generally , if   n    and   
1 2 n

A A A     , then  we  have                                                        

                             
21 12

nn
A A AA A A

       . 
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Definition 1.25 

  Let  A X . A  simple  function  is a  function  : X   of  the form  

                                             
1

( ) ( )
n

i
i

iA

x xa 


  ,  

where  
1 2

, , ,
n

a a a     and  

iA

  are  the characteristic  functions of  A .  

 

Theorem 1.30   

  Let  
1 2
,   be  simple  functions . Then   

1 2
    is  a  simple   function . 

The following theorem is a  generalization  of  Theorem  1 .30 

Theorem 1.31   

  Let  n   and  let  
1 2
, , ... ,

n
    be  simple  functions . Then   

1 2
...

n
       

is  a  simple  function . 

Lemma  1.32  

 Let     be a simple  function and  let   be a constant . Then     is a simple  

function . 

  The next corollary follows  from  Theorem 1.31  and  Lemma  1.32 . 

Corollary 1.33  

 Let  n    and  let   
1 2
, , ... ,

n
    be  simple  functions . Let   

1 2
, , .... ,

n
     

be  constants . Then   
1 21 2

....
nn

         is  a  simple  function .                                 
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Chapter  Two 

Properties of the Lebesgue measure of a set 

  In this chapter, we give some properties of  the Lebesgue measure of open and closed 

sets . Also , we give some properties of  the Lebesgue exterior measure and the Lebesgue 

interior measure .  

2.1 The Lebesgue measure of open and closed sets  

  The length of an infinite interval such as  ( , )a  or  ( , ) b  of   defined to be  

  while the length of a bounded interval of is defined to be the difference between 

two end points . We  begin  with  the  measure  of  a bounded interval of   which  

agree with the idea of length . 

 

Definition 2.1.1 

  Let   ( , )I a b  or  (  ( , ] , [ , ) , [ , ]a b a b a b  )  be  a bounded  subset  of  . 

We  define  the  measure ( the Lebesgue measure ) or  length  of   I   by  
 

                                          ( )m I b a  .  

Remark  2.1.1   

  It  is  clear  that   0 ( )m I   .  That  is , the  measure  of  a bounded interval  I  

of   is a non-negative  real  number. 
 

Examples 2.1.1 

      ( i )  
1 1 1 1

2 2 2 2
( , ) ( ) 1( )m      . 

      ( ii )  
2 2

5 5 1
( [ 2, ) ) 2

2
m     . 

      ( iii )  2 23 3: ,( { } ) ( ( ] )m x x m     

                                                                  23  . 

      ( iv )  Let   [ 1 , 1 ) ( 0 , 2 ]S   . 
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         Then   [ 1 , 2 ] S . 

           So     ( ) ( [ 1 , 2 ] ) m S m  

                                  2 ( 1 )    

                                  3 . 

  The next lemma gives us some sets which have measure zero . 

Lemma 2.1.1 

          ( i )  The  measure of  an  empty set     is zero. That is , ( ) 0m   . 

          ( ii )  If A is a singleton  set,  then   ( ) 0m A  . 

Proof    

   ( i )  We  have   ( , ) ( , ] [ , )   a a a a a a .  

           So     

                      ( ) ( , )( )m m a a   

                                    a a    

                                    0 .        

  ( ii )  Let  A  be  a singleton  set .  Then  { a } ( )A a A  .                

          We  have   { a } [ , ]a a .                        

          Therefore     ( { a } ) ( [ , ] )m m a a   

                                               a a     

                                               0 .                    

Definition 2.1.2  

Let  S  be  a non-empty set  such  that   
1

n

ii
S I



 ,  where  
1 2

, , ,
n

I I I
  
are 

pairwise disjoint intervals . We  define the  measure  of  S  by  
  

                          
1

( ) ( )
n

ii
m S m I



  

                                       
1 2

( ) ( ) ( )   
n

m I m I m I  

                                       
1

( )
n

i
i

m I


  .   
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Remark  2.1.2    

 It  is  clear  that   0 ( )  m S . 

Examples 2.1.2  

    ( i ) Let   1 1 1

3 2 2
[ , ) [ , 1 )S  . 

          Then   

                       
1 1 1

3 2 2
( ) ( [ , ) [ , 1 ) )m S m  

                                    
1 1 1

3 2 2
( [ , ) ) ( [ , 1 ) )m m   

                                    
1 1 1

2 3 2
( ) ( 1 )     

                                    2

3
 . 

 

    ( ii )   Let   ( 2 , 1 ) ( 0 , 1 ) ( 2 , 4 )  S . 

            Then  

                      ( ) ( ( 2 , 1 ) ( 0 , 1 ) ( 2 , 4 ) )  m S m   

                              ( ( 2 , 1 )) ( ( 0 , 1 ) ) ( ( 2 , 4 ) )    m m m  

                               =  ( 1 2 ) ( 1 0 ) ( 4 2 )        

                                    4 . 

      ( iii )   Let   
2

: 4 9{ }S x x    . 

               Then   

                             [ 3 , 2 ] [ 2 , 3 ]S    . 

              So   

                           ( ) [ 3 , 2 ] [ 2 , 3 ]( )m S m      

                                      ( [ 3 , 2 ] ) ( [2 , 3 ] )   m m  

                                       =  ( 2 ( 3 ) ) ( 3 2 )                                      

                                             2 . 
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  In  the  next  definition, we  extend  the  idea  of  the  measure of an open interval  to  

the measure  of  an open  set . 

Definition 2.1.3 

 Let  G  be  a non-empty bounded  open  set of real numbers such that    

                                                       1






ii

G I ,  

where  
i

I  are  pairwise disjoint  open  intervals .  

The  measure  of  G  is  defined  by  
 

                                   
1

( ) ( )
ii

m G m I



  

                                           
1

( )




 
i

i

m I .  

Remark  2.1.3                         

  It  is  clear  that   0 ( )  m G .  

Example 2.1.3 

  Let   
1 1

1

3 1
:

2 2
{ }

k k

k

G x x
 





   .  

Then  G  is a bounded open subset of  (0, 1 ) .  

We have                           

                                      
1

3

4
1  I x  

                                    
2

3 1

8 2
  I x   

                                     
3

3 1

16 4
  I x .                       

  In  the  same  way , we  can  get     

                                     
1 1

3 1

2 2
k kk

I x
 

   . 

  So we have  

                              
       1

3
1

4
( ) m I    
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1 3
2

2 2
( )   

                                                       
.

1 1

2 2
  

                                        
2

1 3

2 8
( ) m I   

                                                       

1 3
2

4 2
( )   

                                                       

1 1

4 2
.  

                                         
3

1 3

4 16
( ) m I  

                                                       

1 3
2

8 2
( )   

                                                      

1 1

8 2
. , 

       and  so we  have  

                                         
1 1

1 3
( )

2 2
n nn

m I
 

   

                                                              
1 3

2
2

( )
2

n
                                                                         

                                                          

1 1

2
.

2
n . 

        Thus  

                                      
1

( ) ( )





kk

m G m I   

                                                    
1

( )
k

k

m I




         

                                                    
1

lim ( )
n

n

k
k

m I
 



   

                                                   
1 2

lim ( ) ( ) ( )( )


   
n n

m I m I m I  
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1 1 1 1 1 1 1 1
. . . .

2 2 2 4 2 8 2

lim
2

( )
n

n  
      

                                                

1 1 1 1 1

2 2 4 8

lim
2

( )( )
n

n  

                                                     

                         

                                                

1 1 1 1 1

2 2 4 8
lim

2
( )n

n  

                                                            
                          

                                    
            

 1

1

2

1

2
lim ( )
n

n

k

k

 


    

                                                 

1
2

1
2

1

2 1
( )


   

                                                  
1

2
 . 

  Thus   
1

2
( )m G   . 

Theorem 2.1.2  

  Let  
1

G  and  
2

G  be  disjoint bounded open  sets. Then  

                          
1 2 1 2

( ) ( ) ( )m G G m G m G  . 

Proof 

  Let  
1

G  be  a bounded  open  set . Then 

                            
1

1

,
ii

G I




  where    
i j

I I   , .i j  

 Let  
2

G  be  a bounded  open  set . Then 

                            
2

1

,
ii

G I




  where    
i j

I I     , ,i j  

where  
1

G  and  
2

G  are disjoint bounded open  sets  and   ,
i i

I I    are   pairwise disjoint  

open  intervals . Then                                                  
   

                            1 2
1 1

( ) ( )
i ii i

G G I I
 

 

 . 
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We have 

                   
1 2

1 1

( ) ( ) ( )( )
i ii i

m G G m I I
 

 

                                 

                                                1

( )( )
i ii

m I I




  

                                                 
1

( )
i i

i

m I I




   

                                                 
1

( ( ) ( ) )
i i

i

m I m I




   

                                                
1 1

( ) ( )
i i

i i

m I m I
 

 

    

                                                
1 2

( ) ( )m G m G  . 

Hence 

                   
    1 2 1 2

( ) ( ) ( )m G G m G m G  . 

Theorem 2.1.3  

  Let  
1 2
, , ... ,

n
G G G  be  disjoint bounded open  sets. Then  

                                 
1 1

( ) ( )i i

nn

i i

m G m G
 

  . 

Proof 

 We use mathematical induction .  

Let  1n  . Then   
1 1

( ) ( )m G m G  is true . 

Let 
 
n k . Then 

                         
1 1

( ) ( )i i

kk

i i

m G m G
 

   

                                                1 1( ) ( ) ( )... km G m G m G    .       

We will show that it is true for 
 

1n k  . 

We have 

                    
1 2 1

1

1

( ... )( ) ( )i k k

k

i
m G m G G G G 
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                               1 2 1( ... ) ( )k km G G G m G      (  Theorem  2.1.2  ) 

                              1 1 1( ) ( ) ( ) ( )... k km G m G m G m G      

                             
1

1

( )i

k

i

m G




  . 

Hence it is true for n . That is , we have 

                                1 1

( ) ( )i i

nn

i i

m G m G
 

  . 

Theorem 2.1.4  

  Let  
1 2
, , ...G G  and   

1
n

n

G


   

be  bounded  sets . Let
   1 2

, , ...G G  be  disjoint open  

sets. Then  

                                    
1 1

( ) ( )i i
i i

m G m G


 

  . 

Proof 

 Let   
1

n

n ii
G I





 , where  { }
n

i
I  is the family of pairwise disjoint open  intervals of  

n
G .  Then 

                                        
1 1 1

( ) ( ( ) )n

n

in n i
m G m I

  

  

                

                                                                      
11

( )
n

iin

m I
 



   

                                                      
1

( )
n

nm G




  . 

Theorem 2.1.5  [ 2 ] 

   Let  
1

G  and  
2

G  be  bounded  open  sets  and  
1 2
G G .  Then 

                ( i )   
1 2

( ) ( )m G m G  

                ( ii )  
2 1 2 1

( ) ( ) ( )m G G m G m G   . 

Remark  2.1.4   

  Let  G  be  a bounded  open  set  in [ , ]a b .  Then 

                                     ( )  m G b a .                      
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Theorem 2.1.6  [ 2 ] 

  Let  
1

G   and   
2

G  be  bounded  open  sets. Then         

                      
  1 2 1 2 1 2

( ) ( ) ( ) ( )m G G m G m G m G G   .                                                                                                                

Theorem 2.1.7  [ 2 ] 

Let  
1 2
, , ...G G  and   

1
n

n

G


   

be  bounded  sets . Let
   1 2

, , ...G G  be open  sets. Then  

                                      
1 1

( ) ( )i i
i i

m G m G


 

  .                                                   

Lemma 2.1.8 

 Let  I  be  a bounded  open interval and  a . Then 

                                        ( ) ( ) m I a m I .  

Proof 

 Let   ( , )I A B  and  a . Then 

                                 ( , )I a A B a          

                                           ( , )A a B a   . 

Trerefore           

                         ( ) ( ( , ) )m I a m A a B a     

                                             ( ) ( )B a A a     

                                             B A   

                                            ( )m I .          

Theorem 2.1.9   

 Let  G  be a  bounded  open  set  and  a . Then 

                                   ( ) ( )m G a m G  . 

 

Proof 

 Let  G  be a  bounded  open  set . Then 

                                                1






ii

G I ,                                  

where  
i

I  are  pairwise  disjoint  open  intervals. 
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Let  a .  Then   G a   is a bounded  open  set . 

So we have 

                             
1

( ) ( )




  
i

i

m G a m I a             

                                                   
1

( )




 
i

i

m I  ( Lemma  2.1.8 ) 

                                                   ( )m G . 

Definition 2.1.4 

  Let  F  be a non-empty closed set contained  in [ , ]a b . We  define  the  measure  of  

F  by  

                                        ( ) ( ) ( )  
c

m F b a m F , 

where   [ , ] \
c

F a b F .  

Remarks  2.1.5 

   ( i )  Note that, if F  is a non-empty closed set contained  in [ , ]a b , then 

                                               0 ( )  m F . 

   ( ii )  It follows from  Definition  2.1.4  that 

                             ( [ , ] \ ) ( [ , ] ) ( )m a b F m a b m F  . 

Examples 2.1.4 

  ( i )  Let  [ 3 , 5]F   be a closed set contained  in [ 1 , 7 ] . 

         Then  

                         ( 1 , 3 ) ( 5 , 7 )
c

F  .  

          So 

                         ( ) ( ) ( )  
c

m F b a m F             

                                 ( 7 1 ) ( ( 1 , 3 ) ( 5 , 7 ) )m    

                                      ( 7 1 ) ( ( ( 1 , 3 ) ) ( ( 5 , 7 ) ) )   m m  

                                      ( 7 1 ) ( ( 3 1 ) ( 7 5 ) )       

                                      2 . 
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     ( ii )  Let  [ 0 , 1 ]F  be a closed set contained  in [ 1 , 1 ] . 

             Then  

                              ( ) ( ) ( )  
c

m F b a m F   

                                      ( 1 ( 1) ) ( ( 1 , 0 ) )    m  

                                      ( 1 ( 1) ) ( 0 ( 1) )       

                                            1 . 

Lemma 2.1.10  [ 3 ]  

 Le  F  be a closed  subset of  an open set  G  of   [ , ]a b  . Then 

                                               
( ) ( )m F m G . 

  For the  next lemma , we give another method of the proof . 

Lemma 2.1.11  

Let  
1 2

, [ , ]F F a b .  Let  
1

F  be  a closed subset of a closed set  
2

F .  Then
  
 

                                         1 2
( ) ( )m F m F . 

Proof 

 Let  
1 2

,F F   be closed sets in  [ , ]a b  .  Then   
1

[ , ] \a b F    and   2
[ , ] \a b F  are 

open .   Since   
1 2

F F  , so    
2 1

[ , ] \ [ , ] \a b F a b F  .                                                                              

Then 

                     
2 1

( [ , ] \ ) ( [ , ] \ )m a b F m a b F
  
(  Theorem  2.1.5  ( i ) ),   

and hence  by  Remark  2.1.5 ( ii ) , we get  

                        2 1
( [ , ] ) ( ) ( [ , ] ) ( )m a b m F m a b m F   . 

So   

                         2 1
( ) ( )b a m F b a m F     .   

It follows that 

                                      2 1
( ) ( )m F m F   . 

Hence 

                                           
1 2

( ) ( )m F m F .  
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 Lemma 2.1.12 

   Let  G  be an  open subset of  a  closed set F of  [ , ]a b . Then 

                                          
( ) ( )m G m F . 

Proof 

 Let  G  be an open subset of a closed  set  F  of   [ , ]a b . Then  G  and  [ , ] \a b F  

are open and disjoint sets.  So   ( [ , ] \ )G a b F  is open . 

We have 
 

                                   ( [ , ] \ ) ( , )G a b F a b  . 

Therefore 

                   ( ( [ , ] \ ) ) ( ( , ) )m G a b F m a b   (  Theorem  2.1.5  ( i ) ) . 

So 

                   
( ) ( [ , ] \ ) ( ( , ) )m G m a b F m a b 

  
(  Theorem  2.1.2 ) .

                                                  

Since   ( [ , ] \ ) ( [ , ] ) ( )m a b F m a b m F  , it follows that 

                   
.( ) ( [ , ] ) ( ) ( ( , ) )m G m a b m F m a b  
 

We  have     

                                 ( [ , ] ) ( ( , ) )m a b m a b b a   .
 

It follows that                     

                                 
( ) ( ) ( )    m G b a m F b a . 

Hence 

                                 
( ) ( )m G m F .  

2.2 The Lebesgue exterior measure                        

  If  E  is an open set or closed set , then we have defined its measure as sum of lengths 

of  intervals . But if  E  is neither open or closed , we can not define its measure by the 

above method . However, we can define its exterior measure as  follows :  
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Definition 2.2.1 

  Let  [ , ]E a b . We  define  the  Lebesgue exterior  measure  or  simply  exterior  

measure of  E , denoted by ( )m E  by  : 

                       ( ) infm E  { ( ) :m G G   is  open  and  E G }.  

Remarks  2.2.1 

      ( i )  Let  G  be an open set  and  E G . Then 

                                         ( ) ( )m E m G  . 

      ( ii )  Let  G  be  a bounded  open  set  in [ , ]a b .  Then 

                                         ( )m G b a  .   

               It follows from ( i ) that 

                                        0 ( )m E b a   . 

               Hence  ( )m E

  is  finite  and  exists . 

Example 2.2.1 

  Let   [ 0, 1 ]E Q   

                the set of all rational numbers between  0  and  1.           

Let 0  and  let  { : }iq i N  be the set of points of  E . Then there is an open 

interval of length  
2
  contains  

1
q  and there is an open interval of length   

4
   contains  

2
q .  In general, there is an open interval of length  

2
n


 contains  

n
q .                                 

We have    
1

i
i

E I




   and   
1

i
i

I




 is open .                                                 

It follows that 

                                
1

( ) ( )i
i

m E m I




  (  By Remark 2.2.1 ( i ) )  

                                                
1

( )i

i

m I




     

                                               
1 2 4

...

2 2 2

  
           

                                               
1

1

2n
n
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                                                 . 

Thus   ( )m E  . 

Since   is an arbitrary positive number, so 

                                          ( ) 0m E  . 

Lemma 2.2.1 

  Let  a  be a real number .  Then    ( { a } ) 0m  .  

Proof 

 Let  0  .  Then  

                          { a } ,( )a a     . 

  Thus                                                

                          ( { a } ) ,( )m m a a       

 

                                               ( ) ( )a a      

 

                                                2 . 

Since    is an arbitrary positive number, so 

                                            ( { a } ) 0m  . 

Theorem  2.2.2  

  If  E  is  an  open set ,  then  ( ) ( )m E m E  .  

Proof 

 Let  E   be  an  open set . Then   

                                   ( ) ( )m E m E    ( i ) 

Let  G   be  open  and  E G . Then  

                                ( ) ( )m E m G    (  Theorem  2.1.5  ( i ) ) .  

Taking  infimum  of  both  sides  over  E G . Then  we  have   

                          ( ) infm E  { ( ) :m G G  is  open  and  E G }. 

Thus    

                                      ( ) ( )m E m E   ( ii ) 

It follows from  ( i )  and  ( ii )  that  

                                ( ) ( )m E m E  .  



 36 

Examples 2.2.2 

 ( i )  Since     is  an open set , it follows from Theorem  2.2.2  that    

                                     ( ) ( )
 m m .  

       We have    ( ) 0m     (  Lemma 2.1.1  ( i )  ) and hence   ( ) 0
 m .  

( ii )  Let   
1 1

1

3 1
:

2 2
{ }

 





  
k k

k

G x x .  

        Then  G  is a bounded open subset of  (0, 1 ) .  

        We have   
1

2
( )m G    (  Example  2.1.3  ) . 

        Therefore   ( ) ( )m G m G    ( Theorem  2.2.2 )            

                                          
1

2
 .    

Theorem 2.2.3 

 Let  
1 2

, [ , ]E E a b .  If   1 2
E E , then         

                                
1 2

( ) ( ) m E m E . 

Proof 

 Let    
  

                  
S

 
=  { ( ) :m G G  is  open  and   

1
E G },

                        
and 

      
           

T
 
=  { ( ) :m G G  is  open  and   

2
E G }.    

Let  ( )m G T . Then   G  is  open  and  
2

G E .              

Since   
1 2
E E , it follows that  2 1

G E E   and so  
1

G E . 

Hence  ( )m G S . Therefore  T S  which implies  inf ( ) inf ( )S T . 

Thus   
1 2

( ) ( ) m E m E .   

Theorem 2.2.4 

  Let  [ , ]E a b   and    a  . Then 

                               ( ) ( )m E a m E   .  
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  Proof 

   Let  0  .  There exists  an  open  set  G   containing  E  such that   

                                        ( ) ( )m G m E   . 

  Let  a . Then    E a G a   .                                      

  So 

                               ( ) ( )   m E a m G a  ( Theorem  2.2.3 )                     

                                                      ( ) m G a    ( Theorem  2.2.2 ) 

                                                      ( ) m G           ( Theorem  2.1.9 ) 

                                                     
( )m E  . 

Since    is an arbitrary positive number, so 

                                 ( ) ( )   m E a m E ( i ) 

Replacing  E  by  E a  and   a  by   a  in  ( i ) , we get 

                                 ( ( ) ) ( )    m E a a m E a . 

Therefore 

                                 ( ) ( )   m E m E a  ( ii )                                

It follows from  ( i )  and   ( ii )  that 

                                   ( ) ( )  m E a m E .    

Propostion 2.2.5 

  Let  
1 2

, [ , ]E E a b .  Then                                                
 
 

                  
1 2 1 2 1 2

( ) ( ) ( ) ( ) .m E E m E E m E m E      .  

Proof 

 Let  0  .  There exists  an  open  set  G   and   
1
E G   such that   

                                        
1

( ) ( )
2

m G m E   . 

Also, there exists  an  open  set  H   and   
2
E H   such that     

                                    
2

( ) ( )
2

  m H m E . 
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Then    
1 2

E E G H   and    
1 2

E E G H  . 

We have    G H   and   G H   are  open .  

Therefore    

                         
1 2

( ) ( ) ( ) ( )m G m H m E m E      . 

We have                         

            ( ) ( ) ( ) ( )m G m H m G H m G H     ( Theorem 2.1.6 ) . 

So                                                     

            1 2
,( ) ( ) ( ) ( )m G H m G H m E m E        

and hence  

              
1 2 1 2 1 2

( ) ( ) ( ) ( ) .m E E m E E m E m E         

Since    is  an arbitrary positive number,  so                     

               
1 2 1 2 1 2

( ) ( ) ( ) ( ) .m E E m E E m E m E        

Theorem 2.2.6  

  Let  
1 2

, , ,
n

E E E
 
be  bounded  sets. Then  

                               
11

( )( )
n n

k k
kk

m E m E 



  . 

Proof 

 The proof is by induction on  n . 

Theorem 2.2.7  

  Let  
1 2

, ,E E
  

and   
1

n
n

E


   

be  bounded  sets.  Then  

                               
11

( )( )
n n

nn

m E m E
 

 



  . 

Proof 

 Let  0  .  Then  for  each  
n

E 1, 2 , 3 ,( )n  , there  exists  an  open  set  
n

G
 
and

 

n n
E G   such  that
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                                         ( ) ( )

2
n n n

m G m E 
  .  

We  have     
1 1

n n
n n

E G
 

 



 

 and    
1

n
n

G


   

is  open .                         

 

 

Then         
1 1

( ) ( )
n n

n n

m E m G
 



 

          

                                         
1

( )
n

n

m G




    (  Theorem  2.1.7  ) 

                                        
1

( )
2

( )
nn

n

m E







   

                                         
1 1

1
( )

2
nn

n n

m E
 



 

     

                                         
1

( )
n

n

m E






   .  

Thus  
11

( )( )
n n

nn

m E m E
 

 



    .                             .              

Since    is  an arbitrary positive number, so  

                              
11

( )( )
n n

nn

m E m E
 

 



  . 

2.3 The Lebesgue interior measure 

 

Definition 2.3.1 

 Let  [ , ]E a b . We  define  the  Lebesgue interior  measure  or  simply interior  

measure of  E , denoted by  ( )m E


 by  : 

                                     ( ) ( ) ( )
c

m E b a m E



   , 

where   [ , ] \
c

E a b E .  

Remarks  2.3.1 

   ( i ) Since  0 ( )
c

m E b a


   , it follows that 

                                    0 ( )m E b a


   . 

          Hence  ( )m E
   is  finite  and  exists . 
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   ( ii ) It follows from the definition of an interior  measure that 

                                    
 

( ) ( ) ( )
c

m E b a m E



   .        

    ( iii )  Let   [ , ]E a b .  Then 

                                     ( [ , ] ) ( [ , ] )m a b m a b


 .   

Example  2.3.1 

 Let   
1 1

1

3 1
:

2 2
{ }

 





  
k k

k

G x x .  

 Then  G  is a bounded open subset of  (0, 1 ) .  

 We have   
1

2
( )m G    (  Example  2.2.2 ( ii ) ) . 

 Therefore   ( ) ( 1 0 ) ( )
c

m G m G


     

                                   
1

2
( 1 0 )      

                                   
1

2
 .  

Thus     
1

2
( )m G


 .                   

Theorem 2.3.1 

  Let  [ , ]E a b   and    a  . Then 

                                     ( ) ( )m E a m E
 

  .   

Proof 

 Let  I  be  a bounded  open interval containing  E .  

Then  E I   and      E a I a . 

So    

                        ( \ ) ( ) \ ( )   I E a I a E a .   

Therefore 

                    ( ) \ ( ) ( \ )( ) ( )   m I a E a m I E a               

                                                                    \( )m I E   (  Theorem  2. 2.4 ) . 
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We have 

             ( ) \ ( )( ) ( ) ( )m E a m I a m I a E a


      

                                      ( ) \ ( )( ) ( )m I m I a E a    (  Lemma  2. 1.8  )                                                                

                                      \( ) ( )m I m I E   

                                      ( )m E


 . 

Theorem 2.3.2    

  Let  
1 2

, [ , ]E E a b . If   1 2
E E , then          

                                        
1 2

( ) ( )
 

m E m E . 

Proof 

 Let  
1 2

, [ , ]E E a b .  Then   

                             
1 1

( ) ( ) ( )
c

m E b a m E


    

                         
2 2

( ) ( ) ( )
c

m E b a m E


   . 

Let  
1 2
E E . Then   

2 1

c c
E E .  So   

                             
2 1

( ) ( )
c c

m E m E    ( Theorem  2.2.3 ) , 

and hence  

                            
1 2

( ) ( )
c c

m E m E    . 

It  follows  that        

                             
1 2

( ) ( ) ( ) ( )
c c

b a m E b a m E      . 

Thus   

                 
          1 2

( ) ( )
 

m E m E . 

Proposition 2.3.3 

 Let  
1 2

, [ , ]E E a b . Then                 

                   
1 2 1 2 1 2

( ) ( ) ( ) ( )m E m E m E E m E E
   

    .  
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Proof 

  Let  
1 2

, [ , ]E E a b .  Then   

                          
1 1

( ) ( ) ( )
c

m E b a m E


    

                      
2 2

( ) ( ) ( )
c

m E b a m E


   , 

and 

                    
1 2 1 2

( ) ( ) ( ( ) )
c

m E E b a m E E


   .  

We have   

                   1 2 1 2 1 2
( ) ( ) ( ) ( )m E E m E E m E m E        

                                                                                                                        (  Proposition  2.2.5  )  ( 1 )           

Replacing  
1

E , 
2

E by  
1

c
E , 

2

c
E respectively and  

1 2
E E  by  

1 2
( )

c
E E and  

1 2
E E   by  

1 2
( )

c
E E in  ( 1 ) , we obtain                                         

                 1 2 1 2 1 2
( ( ) ) ( ( ) ) ( ) ( )

c c c c
m E E m E E m E m E      . 

It follows that               

1 2 1 2 1
( ) ( ) ( ) ( ) ( ) ( )b a m E E b a m E E b a m E

  
                                                                                                                  

                                                                                               
2

( ) ( )b a m E


    

and so                               

                1 2 1 2 1 2
( ( ) ) ( ) ( ) ( )m E E m E E m E m E

   
     . 

Hence 

                        1 2 1 2 1 2
( ) ( ) ( ) ( )m E m E m E E m E E

   
    . 

Theorem 2.3.4  [ 7 ] 

 Let  [ , ]E a b . Then 

                      ( ) supm E


 { ( ) :m F F  is closed  and  F E }. 

Theorem  2.3.5  

  If  F  is  a closed  set ,  then  ( ) ( )m F m F


 .  
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Proof 

 Let  F  be a closed set . Then   

                                   ( ) ( )m F m F


   ( i ) 

Let  H  be  closed  and  H F . Then  

                                  ( ) ( )m H m F    (  Lemma  2.1.11  ) .  

Taking  supremum  of  both  sides  over  H F . Then  we  have   

                    sup{ ( ) :m H H  is  closed  and  H F } ( )m F . 

Thus    

                                 ( ) ( )m F m F


   ( ii ) 

It follows from  ( i )  and  ( ii )  that  

                                ( ) ( )m F m F


 .  

Examples 2.3.2 

      ( i )  ( ) ( )m m


   .  

               Since  ( ) 0m   , so  ( ) 0m


  . 

      ( ii ) ( { a } ) ( { a } )mm


 . 

                   Since ( { a } ) 0m  , so
 

( { a } ) 0m


 . 

Theorem 2.3.6   

 Let  [ , ]E a b . Then   

                                           ( ) ( )m E m E



 .  

Proof 

 Let  G  be an open set containing  E  and  let  F  be a  closed subset  of  E .  

We have  F E G  . Then 

                              
( ) ( )m F m G    (  Lemma  2.1.10  ) . 

That is, ( )m G  is an upper bound of the family { ( ) }
F G

m F


. 

We have 

               ( ) supm E


 { ( ) :m F F  is closed  and  F E } ( Theorem 2.3.4 ) 
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                                   sup { ( ) :m F F  is closed  and  F G }                                         

                                   ( )m G . 

Thus 

                         ( ) ( )m E m G


 .              

Taking  infimum  of  both  sides  over  E G . Then  we  have                                 

                       ( )m E


 inf { ( ) :m G G  is open and  E G }                                                                

                                     ( )m E


 . 

Hence
   

( ) ( )m E m E



 .  

Theorem  2.3.7  [ 7 ] 

  Let  
1 2

, ,F F
  n

F   be pairwise disjoint  bounded  closed sets. Then  

                                   
11

( ) ( )
n n

i i
ii

m F m F


  .                           

Theorem  2.3.8 

  Let  
1 2

, ,E E
  n

E   be pairwise disjoint  bounded sets. Then  

                                   
1 1

( ) ( )
nn

i i
i i

m E m E
 

 

 . 

Proof 

   Let  0  .  Then  for  each  
n

E 1, 2 , 3 ,( )n  , there  exists  a  closed  set  
n

F
 
and

 

n n
F E  such  that 

    

                                         ( ) ( )
2

n n n
m F m E




  .  

Then the sets  
n

F  are  pairwise disjoint closed sets . 

We have                        

           

                          1 1

k k

n n
n n

F E
 



 

 and   
1

k

n
n

F
   

is  closed .  

So   

                        
1 1

( ) ( )
k k

n n
n n

m E m F
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1

( )
k

n
n

m F


    (  Theorem  2.3.7  ) 

                                                 
1

( )
2

( )
k

n n
n

m E





   

                                                 
1 1

1
( )

2

k k

n n
n n

m E


 

    . 

Thus 

                                  
11

( )( )
k k

n n
nn

m E m E
 



   ,          

and  hence  

                                 
1 1

( ) ( )
kk

n n
n n

m E m E
 

 

  . 

Since   is an arbitrary positive number,  so  we  have   

                             
1 1

( ) ( )
kk

n n
n n

m E m E
 

 

 . 
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Chapter  Three 

Properties of the class of  measurable  sets 

  Our goal in this chapter is to give  some  properties of the class of measurable sets. We 

also obtain some useful characterizations of measurable sets. 

Definition 3.1 

 Let  [ , ]E a b . Then  E   is  called  measurable  if           

                                      ( ) ( )m E m E


 , 

and we write   ( ) ( ) ( )m E m E m E


  . 

  We give some examples concerning measurable sets. 

Examples  3.1 

   ( i ) We have 

                               ( ) 0m        (  Lemma 2.1.1  ( i ) ) 

                               ( ) 0m      (  Example 2.2.2  ( i )  ) 

                               ( ) 0m


     (  Examples  2.3.2  ( i )  ) . 

          So 

                          ( ) ( ) ( ) 0m m m


      . 

            Hence     is  measurable . 

    ( ii )
 
We have

               

                                
( { a } ) 0m       (  Lemma 2.1.1 ( ii ) )

              

                                
( { a } ) 0m       (  Lemma  2.2.1 )  

 

                                
( { a } ) 0m


     (  Examples  2.3.2  ( ii )  ) .          

               So 

                               
( { a } ) ( { a } ) ( { a } ) 0m m m


   .                

            Hence { a } is  measurable . 

   ( iii )  Let   
1 1

1

3 1
:

2 2
{ }

 





  
k k

k

G x x .  
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          We have   

                                  
1

2
( )m G       (  Example  2.1.3  ) 

                                   
1

2
( )m G     ( Example  2.2.2 ( ii ) ) ,           

            and                      

                                   
1

2
( )m G


     ( Example  2.3.1 ) . 

               So      

                              ( ) ( ) ( )m G m G m G


             

             Thus  G  is a  measurable set . 

Remark 3.1  

  A subset of a measurable set may not be measurable , see , for example  [ 7 ] . 

Theorem 3.1 

  Let  [ , ]E a b . Then  E  is  measurable  if and only if  
c

E is  measurable .  

Proof 
 Let  E   be  a measurable  set .  Then  ( ) ( )m E m E


 . 

We  have                   
  
       

                              ( ) ( ) ( ( ) )
c c c

m E b a m E


    

                                                 ( ) ( )b a m E    

                                                ( ) ( )b a m E


    

                                                ( ) ( ) ( )( )
c

b a b a m E      

                                                ( )
c

m E .  

Hence  
c

E  is  measurable . 

Conversely, let  
c

E  be  a  measurable  set. Then  

                                           ( ) ( )
c c

m E m E



 . 

We  have                   
  
       

                        ( ) ( ) ( )
c

m E b a m E
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                                        ( ) ( )
c

b a m E


    

                                       ( )b a    ( ( ) ( )b a m E   ) 

                                      ( )m E .  

Thus  E   is  measurable. 

Theorem 3.2 

  Let  [ , ]E a b  and  let  E   be  a measurable  set . Then   

                               ( ) ( )
c

m E m E b a   . 

Proof 

 Let  E   be  a measurable  set .  Then   

                           ( ) ( ) ( )m E m E m E


  . 

Since  
c

E is  a measurable  set  ( Theorem 3.1 ) , it  follows  that  

                        ( ) ( ) ( )
c c c

m E m E m E


  . 

We  have   

                           ( ) ( ) ( )
c

m E b a m E


   , 

and  hence  

                       ( ) ( ) ( )
c

m E b a m E   . 

Thus     

                       ( ) ( )
c

m E m E b a   . 

Lemma 3.3 

 Let  [ , ]E a b  .  If   ( ) ( )
c

m E m E b a    , then  E   is  a measurable  

set .                              

Proof 

 Let   ( ) ( )
c

m E m E b a    .  

Then 

                    ( ) ( )
c

m E b a m E        
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                                   ( )m E


 . 

So  ( ) ( )m E m E


 . We  have   

                              ( ) ( )m E m E


   ( Theorem  2.3.5 ) . 

Thus  ( ) ( )m E m E


 . 

Hence E  is  a measurable  set . 

                                

Theorem 3.4   

 Let  E  be a  measurable  set  and  a . Then  E a  is  measurable  and 

                                         ( ) ( )m E a m E  .                      

Proof 

  Let  E  be a  measurable  set . Then 

                                      ( ) ( ) ( )m E m E m E


  . 

 Let  [ , ]E a b    and    a  . Then 

                               ( ) ( )m E a m E     ( Theorem  2.2.4 ) , 

and 

                              ( ) ( )
 

 m E a m E    ( Theorem  2.3.1 ) . 

So we have 

                               ( ) ( )m E a m E a


   .     

Thus  E a  is  measurable  and 

                                ( ) ( ) ( )m E a m E a m E a


     , 

and hence 

                                 ( ) ( )m E a m E  .  

Theorem 3.5 

  Let  
1

E
 
and  

2
E

 
be  disjoint  bounded  measurable  sets . Then

  1 2
E E

 
is   

measurable  and 

                                1 2 1 2
( ) ( ) ( )  m E E m E m E . 
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Proof 

 Let  
1 2
, [ , ]E E a b .  Let  

1
E

 
and  

2
E

 
be  measurable  sets . 

Then 

                          1 1 1
( ) ( ) ( )m E m E m E


  ,   

and    

                      
2 2 2

( ) ( ) ( )m E m E m E


  .  

By definition of interior measures of 
1

E
 
and  

2
E , we have 

                           
1 1

( ) ( ) ( )
c

m E b a m E


    

                                2 2
( ) ( ) ( )

c
m E b a m E


   . 

It follows that                            

                              1 1
( ) ( ) ( )

c
m E b a m E

     

                                                                                        ( 1 )              

                              2 2
( ) ( ) ( )

c
m E b a m E

    . 

 
We will show that  

1 2
E E

 
is  measurable . That is, we show that 

                           
1 2 1 2

( ) ( )m E E m E E


 . 

We know that    
1 2 1 2

( ) ( )m E E m E E




 
 ( Theorem 2.3.6 ) . 

It remains to show that  

                              1 2 1 2
( ) ( )m E E m E E


 . 

Let  0  . Then there exist open sets  
1 1

c
G E and   

2 2

c
G E  such that 

                                       
1 1 2

( ) ( )
c

m G m E 
    

                                                                                             ( 2 )  

                                       2 2 2
( ) ( )

c
m G m E 

  . 

We have  
1 2

E E   . So  
1 2

[ , ]
c c

E E a b  . 
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Since there exist open sets  
1 1

c
G E and   

2 2

c
G E , it follows that 

                  
                1 2 1 2

c c
E E G G   , 

and hence     

                                 1 2
( , ) [ , ]a b a b G G   ,                                            

and so we have                                

                                   
1 2

( , )a b G G  .          

So 

                                   
1 2

( , )( ) ( )m a b m G G   (  Theorem  2.1.5 ( i )  ) . 

Therefore   

                                     
1 2

( )b a m G G   . 

Thus 

                                  
1 2

( )( )m G G b a     . 

Since     

           
1 2 1 2 1 2

( ) ( ) ( ) ( )m G G m G m G m G G     (  Theorem  2.1.6 ) , 

which implies 

                    
1 2 1 2 1 2

( ) ( ) ( ) ( )m G G m G m G m G G   . 

So we have                    

                    1 2 1 2
( ) ( ) ( ) ( )m G G m G m G b a    . 

Since    
1 2 1 2

c c
E E G G , so we have                       

                
1 2 1 2

( ( ) ) ( )
c cc

m E E m E E            

                                                      1 2
( )m G G   (  Definition of m   ) 

                                                     1 2
( ) ( ) ( )m G m G b a    . 

It  follows from  ( 2 ) that 

       1 2 1 22 2
( ( ) ) ( ) ( ) ( )( ) ( )

c cc
m E E m E m E b a   

       

                                         1 2
( ) ( ) ( )

c c
m E m E b a      . 

Since    is  an arbitrary positive number, so  
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                     1 2 1 2
( ( ) ) ( ) ( ) ( )

c cc
m E E m E m E b a     , 

or 

          
       1 2 1 2

( ) ( ) ( ) ( ( ) ) ( 3 )
c c c

b a m E m E m E E        

We have               

                     1 2 1 2
( ) ( ) ( )m E E m E m E      ( Propostion 2.2.5 ). 

It  follows from  ( 1 )  that
                                                       

                1 2 1 2
( ) ( ) ( ) ( ) ( )

c c
m E E b a m E b a m E        . 

                                        1 2
( ) ( ) ( ) ( )( )

c c
b a b a m E m E       . 

It  follows from  ( 3 ) that
  
 

                         1 2 1 2
( ) ( ) ( ( ) )

c
m E E b a m E E     

                                                  1 2
( )m E E


 .  

Thus 

                             
1 2 1 2

( ) ( )m E E m E E


 ,  

and hence 

                     
        1 2 1 2

( ) ( )m E E m E E


 .     

Thus  
1 2

E E
 
is  measurable . 

We have    

                          
1 2 1 2

( ) ( )m E E m E E  

                                                  1 2
( ) ( )m E m E    

                                                  1 2
( ) ( )m E m E  .  

So 

                         1 2 1 2
( ) ( ) ( )m E E m E m E  . 

Also , we have        

                                 
1 2 1 2

( ) ( )m E E m E E


   

                                                          1 2
( ) ( )m E m E

 
    ( Propostion 2.3.3 ) 

                                                         1 2
( ) ( )m E m E  . 
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So 

                                
1 2 1 2

( ) ( ) ( )m E E m E m E  .  

Therefore 

                       
         1 2 1 2 1 2

( ) ( ) ( ) ( )m E E m E m E m E E   .                  

Hence             

                              1 2 1 2
( ) ( ) ( )  m E E m E m E . 

 We shall use the following remark in the next theorem . 

Remark 3.2  

 Let  
1 2
, , ,

n
E E E  be  measurable  sets . Then 

                               1 1 1
( ) ( ) ( )m E m E m E


   

                               2 2 2
( ) ( ) ( )m E m E m E


  , 

and so we have  

                               ( ) ( ) ( )
n n n

m E m E m E


  .  

Then 

                  
1 2

1

( ) ( ) ... ( )( )
n

n

i
i

m E m E m E m E   



     

                                           
1 2

( ) ( ) ... ( )
n

m E m E m E     

                                      
1

( )
i

n

i

m E


  . 

Also, we obtain 
1 1

( )( )
i

n n

i
i i

m E m E


 

  . 

  The  following  Theorem  is  a generalization  of  Theorem  3.5 . 

Theorem 3.6  

  Let  
1 2
, , ,

n
E E E   be  disjoint  bounded  measurable  sets . Then

   
1

n

i
i

E
   

is  

measurable  and    

                              
11

( ) ( )
i

n n

i
ii

m E m E


  .   
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Proof 

It follows from induction on 

 

n  that  
1

n

i
i

E


  is  measurable . 

That is,  
1 1 1

( )( ) ( )
nn n

i i i
i i i

m E m E m E


  

  . 

We  have   

               

    1 1 1

( )( ) ( )
i

n n n

i i
i i i

m E m E m E


  

    .       

Since 

                              
11

( ) ( )
n n

i i
ii

m E m E 



  (  Theorem 2.2.6  ) , 

and 

                             
1 1

( ) ( )
nn

i i
i i

m E m E
 

 

   (  Theorem 2.3.8 ) . 

It follows that                                                              

                             
1 11

.( ) ( ) ( )
nn n

i i i
i ii

m E m E m E
 

   

Thus                           

                             
11

.( ) ( )
n n

i i
ii

m E m E


   

Theorem 3.7 

  Let  
1 2
, ,E E  and   

1
i

i

E




 be  bounded  sets . Let
 
 

1 2
, ,E E   be  disjoint  bounded 

measurable  sets . Then
   

1
i

i

E


   

is  measurable  and    

                                   
11

( )( )
ii

ii

m E m E
 



  .  

Proof 

 For  every  ,n

1

n

i
i

E   is  measurable  ( Theorem 3.6  ). 

Then   

                        
1 1

( ) ( )
n n

i i
i i

m E m E
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1

( )
n

i
i

m E


  (  Theorem 3.6  ) 

                                            
1

( )





n

i
i

m E  

                                            
1

( )






i

i

m E   (  Theorem 2.3.2 ) . 

Since  n   is  an arbitrary,  so   

                              
1 1

( ) ( )
i i

i i

m E m E





 

 .  

We  have 

                               
11

( ) ( )
i i

ii

m E m E
 

 



  (  Theorem 2.2.7 ) . 

It  follows  that   

                          
11 1

( ) ( ) ( )
i i i

ii i

m E m E m E
 

 


 

   1( )  

So 

                              
1 1

( ) ( )
i i

i i

m E m E
 




 

 . 

We  have   

                         
1 1

( ) ( )
i i

i i

m E m E
 




 

    ( Theorem 2.3.5 ) . 

Therefore   

                         
1 1

( ) ( )
i i

i i

m E m E
 




 

 . 

Hence   
1

i
i

E




  is  measurable . 

Now,  we  put  
 

                                
1 1

,( ) ( )
i i

i i

m E m E
 



 


                                  

                               
1 1

( ) ( )
i i

i i

m E m E
 



 

   

and 

                                
1 1

.( ) ( )
i i

i i

m E m E
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in  ( 1 ), then  we  get   

                           
11 1

( )( ) ( )
i i i

ii i

m E m E m E
 

 

  . 

Thus   

                            
11

( )( )
i i

ii

m E m E
 



  . 

Proposition 3.8  [ 18 ] 

 Let
  1

E
 
and  

2
E

 
be  measurable  sets. Then 

                           1 2 1 2
( ) ( )( )

c

m E E m E E b a    . 

Corollary 3.9 

 Let
  1

E
 
and  

2
E

  
be  measurable  sets. Then  

1 2
E E

 
is  measurable. 

Proof 

  Let
  1

E
 
and  

2
E

 
be  measurable  sets. Then 

                 1 2 1 2
( ) ( )( )

c

m E E m E E b a      ( Proposition 3.8  ) 

It follows from Lemma 3.3  that
  1 2

E E
  
is  measurable . 

Corollary 3.10 

  Let  
1 2

, ,
n

E E E   be  measurable  sets . Then
   

1

n

i
i

E
   

is  measurable . 

Proof 

  Let  
i

E  be  measurable . Then 
 i

c
E  is  measurable  (  Theorem  3.1 ) .  

So  

1
i

n

i

c
E



 is  measurable  (  Theorem  3. 6 ) and hence   

1

( )
i

n

i

c
c

E


 is  

measurable . We  have 

                                                  

1 1

( )
i

n n

i
i i

c
c

E E
 

 .                              

Hence  
 

1

n

i
i

E
   

is  measurable . 
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Corollary 3.11 

  Let  
1 2

, ,E E   be  measurable  sets . Then
   

1
i

i

E


   

is  measurable . 

Proof 

Similar to the proof of Corollary  3. 10 .  

Corollary 3.12 

  Let  
1

E and  
2

E
 
be  measurable  sets  and  

1 2
E E  . Then    

                                        
1 2

( ) ( )m E m E . 

Proof 

 Let  
1

E and  
2

E
 
be  measurable  sets  and  

1 2
E E . 

We  have                 

                                  
2 1 2 1

( \ )E E E E . 

So 

                              2 1 2 1
( ) ( \ )( )m E m E E E                                              

                                              1 2 1
( ) ( \ )m E m E E    (  Theorem  2.1.2 ). 

Since
1 2 2 1

( ) ( ) ( \ ), ,m E m E m E E  are positive , so we have 

                              
2 1

( ) ( )m E m E ,    

or 

                             1 2
( ) ( )m E m E .  

Corollary 3.13 

 Let  
1

E and  
2

E
 
be  measurable  sets  and  

1 2
E E . Then  

2 1
\E E

 
is  measurable and    

                               2 1 2 1
( \ ) ( ) ( )m E E m E m E  .  

Proof 

 Let  
1

E and  
2

E
 
be  measurable  sets  and  

1 2
E E . 

We  have                 

                                  
2 1 2 1

\
c

E E E E .  

Since  
1

E
 
is  measurable ,  so  

1

c
E is  measurable. 
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Thus  
2 1

c
E E

 
is  measurable   (  Corollary 3.9 ) . 

Hence  
2 1

\E E
 
is  measurable . 

We have 

                     2 12 1
( ) ( \ )( ) m E m E E E  

                                      2 1 1
( \ ( ))m E E m E  . 

Hence 

                      
2 1 2 1

( \ ) ( ) ( )m E E m E m E  .   

Corollary 3.14 

 Let  
1

E and  
2

E
 
be  measurable  sets. Then  

2 1
\E E

 
 and   

1 2
\E E   are  measurable . 

Proof 

 Let  
1

E and  
2

E
 
be  measurable  sets .   

We  have                 

                                  
2 1 2 1 2

\ \ ( )E E E E E .  

Since  
1

E
 
and   

2
E  are  measurable  ,  so  

1 2
E E

 
is  measurable  (  Corollary 3.9  ) . 

Thus  
2 1 2

\ ( )E E E
  
is  measurable   (  Corollary 3.13  ) . 

Hence  
2 1

\E E
  
is  measurable . 

In the same way, we can prove that  
1 2

\E E
  
is  measurable . 

Theorem 3.15 

  If   ( ) 0m E  , then  E   is a  measurable  set .  

Proof 

 Let   ( ) 0m E  .  

Since  ( ) ( )m E m E


   ( Theorem 2.3.6 ) ,  so  

                              0 ( ) ( ) 0m E m E


   . 

Therefore 

                               0 ( ) 0


 m E .     
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Therefore   ( ) 0m E


 .  It  follows  that  

                                ( ) ( ) 0m E m E


  . 

Hence  E   is  measurable . 

 We state and prove the next two lemmas . 

Lemma 3.16 

  If   ( ) 0m E    and  A E , then  E A  is  measurable .  

Proof 

 Since    E A E  , so we have 

                                ( ) ( )m E A m E     ( Theorem 2.2.3 ) .                                                

Let  ( ) 0m E  . Then 

                                
( ) 0m E A   , 

and so we have                       

                                
0 ( ) 0m E A   . 

Thus                                  

                              
( ) 0m E A   . 

It follows from Theorem 3.15  that
  

E A  is  measurable . 

Lemma 3.17 

Let  E  be  a measurable  set  and  A E .  If   ( ) 0m E A


  , then  A  is  

measurable .  

Proof 

 Let  E  be  a measurable  set  and  A E . 

Let
  

( ) 0m E A


  . Then  E A  is  measurable  (  Lemma  3.16  ) . 

Then  ( )
c

E A  is  measurable  (  Theorem 3.1  ) . 

We have 

                              ( )
c

A E E A   .      

Thus  A  is  measurable  ( Corollary 3.9 )  .    
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Theorem 3.18  [ 18 ] 

  A bounded  interval  of   is  a measurable  set . 

Theorem 3.19  

         ( i )  Every bounded open set  is a  measurable  set . 

         ( ii )  Every bounded closed  set  is  a  measurable  set . 

Proof 

    ( i ) Let  G  be  a bounded open set. Then  

                                                       1






ii

G I ,  

             where  
i

I  are  pairwise disjoint  open  intervals.  

            Then  
i

I  is  measurable  ( Theorem 3.18 )   and   
1 ii

I




 is  measurable                    

           ( Theorem 3.7 ) . Hence  G  is  measurable .        

    ( ii ) Let  F  be  a bounded closed set. Then  
c

F is open and it follows from ( i ) that     

            
c

F  is  measurable . So  F  is  measurable . 

Examples 3.2 

      ( i ) Since ( , )a b  is a bounded open set , it follows that  ( , )a b  is  measurable  

            ( Theorem 3.19 ( i ) ) . 

      ( ii )  Since  [1,2] { 3}A    is a bounded closed set, it follows that A is    

              measurable ( Theorem 3.19 ( ii ) ) . 

Propostion 3.20 

 Let  E  be a measurable  set . Then
 
 for each  0  , there exists an open  set  G E  

such that  
 

( )m G E  .  

Proof 

 Let  E  be a measurable  set  and let  G  be an  open  set such that   E G . Then  G  is 

a  measurable  set ( Theorem  3.19 ( i ) ) .  

It follows that  G E  is a  measurable ( Corollary 3.13 ) . 
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Let  0  .  There exists  an  open  set  G E  such that   

                                  ( ) ( )m G m E  . 

Since  E  is a measurable  set , so ( ) ( ) ( )m E m E m E



  . 

Therefore 

                           
( ) ( )m G m E  . 

Let  G  be  a bounded  open  set of real numbers . Then    

                                          1 ii
G I





 ,  

where  
i

I  are  pairwise disjoint  open  intervals . 

We have 

                                    
1

( ) ( )
ii

m I m E




  , 

and so 

                                 1

( ) ( )
i

i

m I m E




   .   

Hence   

                                 
1

( ) ( )
i

i

m I m E




   .                 

Thus 

                       ( ) ( ) ( )m G E m G m E    ( Corollary 3.13 ) 

                                               
1

( ) ( )
i

i

m I m E




    

                                               
 . 

Propostion 3.21  

 Let  E  be a  measurable  set . Then
 
 for each  0  , there exists a closed  set  F E  

such that   ( )m E F   .  

Proof 

 Let  E  be a measurable  set  and let  F  be a closed  set in 
 
E . Then  F  is a  

measurable  set  ( Theorem  3.19 ( ii ) ) .  

It follows that  E F  is a  measurable ( Corollary 3.13 ) . 
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Let  0  .  There exists a closed  set  F E  such that   

                                    ( ) ( )m F m E


  . 

Since  E  is a measurable  set , so ( ) ( ) ( )m E m E m E



  . 

Therefore 

                           
( ) ( )m F m E  . 

Let  F  be  a bounded  closed set . Then    

                                                       1

k

ii
F F


 ,  

where  
i

F  are  pairwise disjoint  closed sets . 

We have 

                                      
1

( ) ( )
k

ii
m F m E


  , 

and so 

                                      1

( ) ( )
k

i
i

m F m E


   .  

Hence 

                                    1

( ) ( )
k

i
i

m E m F


   . 

Thus 

                  ( ) ( ) ( )m E F m E m F     ( Corollary 3.13 ) 

                                         
1

( ) ( )
k

i
i

m E m F


     

                                         
 . 

Theorem 3.22 

  Let 
1 2 3
, , , ...E E E  be  measurable  sets such  that  

 1 2 3
...E E E     and   

1
( )m E   . Then 

                                         
1

lim ( )( )
n nk

k

m E m E
 





  . 

Proof  

  Let   
1

k
k

E E




 .  We  have 
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1 1 2 2 3

( ) ( ) ...   E E E E E E                               

Then 
 1 2 2 3

, , ...E E E E   are disjoint measurable  sets . 

So we have                               

                        1 1 2 2 3
( ) ( ) ( ) ...     m E E m E E m E E  

Since  
 1 1 2 2 3

, , , ...  E E E E E E  it follows that 

   1 1
1

( ) ( ) ( )
k k

k

m E m E m E E






    

                                     1
1

1

lim ( )
n k k

n

k

m E E
  





               

                                     1 2 2 3
lim ( ) ( ) ( ) ( ) ...(

n
m E m E m E m E

 
      

                                                                                       
1

( ) ( ) )
nn

m E m E


   

                                    1
lim ( ) ( ) )(
 

 
n n

m E m E  

                                   1
( ) lim ( )

n n
m E m E

 
  . 

Since  
 1

( )m E   , so 

                                   
( ) lim ( )

 


n n
m E m E . 

Thus  

                                
1

lim ( )( )
n nk

k

m E m E
 





 .  

Theorem 3.23 

 Let 
 1 2 3

, , , ...E E E  be  measurable  sets such  that  
1 2 3

...E E E     Then 

                                         
1

lim ( )( )
n nk

k

m E m E
 





  . 

Proof  

 Let   
1

k
k

E E




 .  We  have 

              
1 2 1 3 2

( ) ( ) ...E E E E E E    
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Then 
 1 2 1 3 2

, , , ...E E E E E   are disjoint measurable  sets .  

So we have                                 

              1 2 1 3 2
( ) ( ) ( ) ( ) ...m E m E m E E m E E       

Since 
 1 2 3

...E E E   , it follows that
        

 1 1
1

( ) ( ) ( )
k k

k

m E m E m E E






    

                 1 1
1

1

( ) lim ( )
n k k

n

k

m E m E E
  





    

       

                 1 2 1 3 2
( ) lim ( ) ( ) ( ) ( ) ...(

n
m E m E m E m E m E

 
       

                                                                                             
1

( ) ( ) )
n n

m E m E


   

                1 1
( ) lim ( ) ( )( )

n n
m E m E m E

 
    

               
lim ( )

n n
m E

 
 . 

Hence 

                            
( ) lim ( )

 


n n
m E m E . 

Thus  

                           
1

lim ( )( )
n nk

k

m E m E
 





 .  

Theorem 3.24 

 Let  [ , ]E a b . Then  E  is  measurable  if  and  only  if  for  each  0  , there exist 

open sets  
1

G  and  
2

G such that  
1
G E , 

2


c
G E and   1 2

( )m G G  .  

Proof 

 Let  0  . Then there exist open sets  
1
G E ,  

2


c
G E such that 

                                       
1 2

( ) ( )m G m E 
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                                       2 2
( ) ( )

c
m G m E 

  . 

Then 

                       1 2
( ) ( ) ( ) ( )

c
m G m G m E m E      . 

But we have 

          
1 2 1 2 1 2

( ) ( ) ( ) ( )m G m G m G G m G G  
 
(  Theorem  2.1.6  ) . 

It follows that 

      1 2 1 2
1( ) ( ) ( ) ( ) ( )

c
m G G m G G m E m E        

Since  
1
G E

 
 and   

2

c
G E , it follows that 

                                      
1 2

[ , ]
c

G G E E a b   .   

We have 

                                    
1 2

[ , ]G G a b .  

Hence    

                                   
1 2

[ , ]G G a b . 

Thus 

                           
1 2

( ) ( [ , ] )m G G m a b b a   .                                

It follows from  ( 1 )  that    

                1 2
2( ) ( ) ( ) ( )

c
b a m G G m E m E        .    

Let E  be  a measurable  set .  Then                                   

                               
( ) ( )

c
m E m E b a      (  Theorem  3.2  ) .  

Then ( 2 ) becomes 

                               1 2
( )b a m G G b a     . 

So we have 

                              
1 2

( )m G G  . 
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Conversely, let  0  . Suppose there exist open sets  
1

G  and  
2

G such that  
1
G E ,  

2


c
G E  and   1 2

( )  m G G .    

Since   
1
G E , 

2


c
G E , it follows that 

                           
1

( ) ( )m E m G      and     
2

( ) ( )
c

m E m G  . 

                                      

Then   

                
1 2

( ) ( ) ( ) ( )
c

m E m E m G m G     

                                                       
1 2 1 2

( ) ( )m G G m G G   

                                                       b a   . 

Hence 

                               ( ) ( )
c

m E b a m E     , 

and so                            

                                ( ) ( )m E m E


  . 

Since    is an arbitrary postitive number , so 

                                  ( ) ( )m E m E


 . 

We have   

                                 ( ) ( )m E m E


    ( Theorem  2.3.6  ) . 

Hence 

                                   ( ) ( )m E m E


 .  

Thus E  is a measurable  set .                         
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Chapter  Four 

Properties of the class of 
- measurable sets 

 The main aim of this chapter is to give some difference properties of the class of  

*-measurable sets . 
 Let us start with the following definition .      

Definition 4.1  
 Let F  be  a  field of subsets of  X . A  function  : F    is  called   positive  if    

                                     ( ) 0A     for all  A F .  

Examples 4.1 

    ( i ) Let  { 1 , 2 , 3 }X  . 

          Let  { , , { 1} , { 2 , 3 } }F X  . 

         Then  F  is  a field of subsets of  X .  

          Let  A F . Define  : F    by 

                               ( )A   the number of elements in  A . 

         If   1 { 1 }A  , then  
1( ) 1A  . 

         If  
2 { 2 , 3 }A  , then  2( ) 2A  . 

         If  
3 { 1 , 2 , 3 }A X  , then  3( ) 3A  . 

        If  
4A   , then  4( ) 0A  . 

      Thus    is  positive . 

( ii )  Let  ,[ 3 7]X   . 

         Let  F  the power set of  X    

                     ,( [ 3 7] )P  . 

        Then  F  is  a field of  all subsets of  X .  

        Let  ( )I P X . Define  : F    by 

                               ( )I   the length of  the interval  I . 

          If   
1

,[ 3 1]I    , then  
1

( ) 2I  . 

          If   
2

,[0 1]I  , then  
2

( ) 1I  . 
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   If   
3

,[4 7]I  , then  
3

( ) 3I  . 

  Thus    is  positive . 

Remark  4.1 

 For the rest of this chapter, we  assume that   0 ( )A      for all  A F .                                       

Definition 4.2 

  Let  F  be  a  field  and  let  ,A B F .  A  function  : F    is  called   

additive  if  

                                     ( ) ( ) ( )A B A B    , 

where  ,A B  are  disjoint sets . 

Example 4.2 

 Let  X  . 

Let  ( )F P . 

Then F  is a field of  all subsets of X . 

Let m  be the Lebesgue measure . 

 Let  ( )A P . Define  : ( )P    by 

                        
( [1, ] )

( ) lim ( )
n

m A n
A n

n


 
  , 

provided that the limit exists . 

Let  , ( )A B P   with    A B   . Then 

             
)( ( [1, ] )

( ) lim
n

B

B

Am n
A

n


 
   

                               

(( [1, ] ) [1, ] )
lim

( )

n

Bm A n n

n 
  

                               

[1, ] [1, ]
lim

( ) ( )

n

m A n m B n

n 


  

                               

[1, ] [1, ]
lim lim

( ) ( )

n n

m A n m B n

n n   
   

                                .( ) ( )A B    

Hence     is  additive . 
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Lemma 4.1 

  Let    be  additive  on  a  field  F .  Then  ( ) 0   .  

Proof 

 Let  A F   with  ( )A    . Then   

                                        A A  . 

So     ( ) ( )A A    

                       ( ) ( )A    .  

Hence   ( ) 0   . 

Theorem 4.2 

  Let    be  additive  on  a  field  F   and   let  ,A B F .  If  A B ,  then  

                           ( i )  ( \ ) ( ) ( )B A B A      

                           ( ii )  ( ) ( )A B  . 

Proof  

   ( i )  Let  A B . Then   

                                 ( \ )B A B A .  

           So  

                                ( ) ( \ )( )B A B A   

                                              = ( ) ( \ )A B A  . 

             Hence    ( \ ) ( ) ( )B A B A    .  

     ( ii )  From ( i ) , we  have     

                                   ( ) ( ) ( \ )B A B A    .  

             Since  ( ) 0A    and   ( \ ) 0B A  ,  it  follows  that  

                                  ( ) ( ) ( \ ) ( )B A B A A      . 

              Thus   ( ) ( )B A  . 

Theorem 4.3 

  Let    be  additive  on  a  field  F  and   let  ,A B F .  If  A B , then   

                                    ( ) ( ) ( )A B A B    .  

Proof  

  Let  A B .  Then  

                                     ( \ )A B A B A .  
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So     

                    ( ) ( \ )( )A B A B A   

                                          ( ) ( \ )A B A   .  

Since  \B A B ,  so  by  Theorem 4.2  ( ii )  we  obtain  

                                   ( \ ) ( )B A B  , 

and hence 

                            ( ) ( ) ( )A B A B    .  

Lemma 4.4 

  Let    be  additive  on  a  field  F  and   let  ,A B F . Then   

                              ( \ ) ( ) ( )A B A A B     .  

Proof  

 We  have 

                       \ \ ( )A B A A B  . 

So 

                      ( \ ) ( \ ( ) )A B A A B                                  

                                          ( ) ( )A A B     ( Theorem 4.2  ( i ) ) . 

  We state and prove the next two theorems . 

Theorem  4.5 

  Let  F  be  a field  of  subsets  of  X  and  let  ,A B F .  Let    be  additive  on  

F .  Let  ( \ ) ( \ )A B A B B A  .   

If   ( ) 0A B    , then  ( ) ( )A B  . 

Proof  

  Let  ,A B F .  Then    

                    ( ) ( \ ) ( \ )( )A B A B B A    

                                          ( \ ) ( \ )A B B A      

                                          0 . 

Since  ( ) 0A    for all  A F   and   ( \ ) ( \ ) 0A B B A   , it  

follows  that 

                                 ( \ ) ( \ ) 0A B B A   .  
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We  have 

                              ( \ ) ( )A A B A B . 

Then 

              
  
           ( ) ( ( \ ) ( ) )A A B A B            

                                        ( \ ) ( )A B A B   

                                        0 ( )A B   

                 
                       

( )A B . 

Similarly, we  have  

                          
( \ ) ( )B B A A B . 

Then 

                           ( ) ( \ ) ( )( )B B A A B            

                                        ( \ ) ( )B A B A    

                                        0 ( )B A   

                                        ( )B A . 

It  follows  that   

                                        ( ) ( )A B  . 

Theorem  4.6 

  Let  F  be  a field  of  subsets  of  X  and  let  ,A B F . Let     be additive  on  

F  and  let   ( \ ) ( \ )A B A B B A  .   

Define  a relation   by   

                                     A B   if   ( ) 0A B   . 

Then    is  an equivalence  relation  on F . 

Proof  

  Reflexive  :  
                           ( ) ( )A A     

                                               0 . 

Thus  A A . 

Symmetric  :  

   Let  A B .  Then  ( ) 0A B   . 
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Since   A B B A   , so    

                            ( ) ( ) 0B A A B     .        

Hence   B A . 

Transitive  :  

 Let  A B . Then  ( ) 0A B     and    ( ) ( )A B    ( Theorem 4.5 ) .  

Let  B C . Then  
 

( ) 0B C     and  hence  ( ) ( )B C  .                                                               

Hence   ( ) ( ) ( )A B C    . 

As in Theorem 4.5  , we can deduce that  

                                    ( \ ) ( \ ) 0B A B C   .        

Since   ( \ ) ( \ )A C A C C A  , so       

                                   ( ) ( \ ) ( \ )A C A C C A     . 

For  ( \ )A C  : 

                   ( \ ) ( ) ( )A C A A C      (  Lemma  4.4 ) 

                                         ( ) ( )B A C    

                                         ( ) ( )B A C B    

                                        ( \ ( ) )B A C  

                                        
( \ ) ( \ )( )B A B C  

                                        ( \ ) ( \ )B A B C     (  Theorem  4.3 ) 

                                        0 . 

Hence  ( \ ) 0A C  . 

Now, we also  have that   

                     ( \ ) ( ) ( )A C A A C     

                                         ( ) ( )C A C    

                                         ( \ )C A  

                                                 0 . 

Thus  

                    ( \ ) ( \ ) 0A C C A   . 
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Therefore 

                 ( \ ) ( \ ) ( ( \ ) ( \ ))A C C A A C C A                   

                                                         
( )A C   

                                                                    0 .                                                                                 

Thus   A C . 

Hence    is  an equivalence  relation on F .          

Definition 4.3 

 Let  F   be  a   field of subsets X .  A  function  : F    is  called  an  outer  

measure  on  F   if  

             ( i )  ( ) 0      

             ( ii )  If  ,A B F  and  A B ,  then  ( ) ( )A B     

             ( iii )  If  ,nA F then   
1 1

( )( )
n n

n n

A A 


 

  .  

Example 4.3 

       Let  { 1,2}X  . 

      Let   ,F X  . 

     Then  F  is a   field of  subsets  of  X . 

Let  A X .  Define   : [0,1 ]Fv


   by 

                 ( 1 ) ( 1 ( 2 ) ( 0 1 )( ) )
A A

Av


       , 

where  
A

  is the characteristic function of  A .  

Then 

                  ( 1 ) ( 1 ( 2 )( ) )v


   
 

       

                                      ( 0 ) ( 1 ( 0 ))    

                                      0 . 

Let A B X  . Then 

                     ( 1 ) ( 1 ( 2 )( ) )
A A

Av


            

                                          ( 1 ) ( 1 ( 2 ))
B B

      

                                          ( )Bv


 . 



 67 

Let  nA F . Then 

                       

1 1

1

( 1 ) ( 1 ( 2 )( ) )

n n
n n

n
n A A

Av


   
 

 





   

                                                  

1 1

( 1 ) ( 1 ( 2 ))
n nn nA A

   
 

 

     

                                                 

1

( 1 ) ( 1 ( 2))( )
n n nA A

   




    

                                                

1

( )
n

n
Av







  . 

Thus   v


 is  an outer measure .  

Theorem 4.7 

  Let  F  be  a   field  and  let ,A B F .  Let  : F     be  an  outer  

measure . Let  ( ) ( )u A A B .  Then
   

u
 
is  an  outer  measure on  F . 

Proof 

    ( i )  ( ) ( )u B    

                         = ( )   

                         = 0 .  

    ( ii )  Let  
1 2

,A A F  with
  1 2

A A . Then   

                                      
1 2

A B A B  .  

            So   
1 2

( ) ( )A B A B  , and  hence 

                                      
1 2

( ) ( )u A u A .    

    ( iii )  Let  
n

A F . Then  

                         1 1

( ) ( )
n nn n

u A A B
 

 
  

                                              =  
1

( )( )
nn

A B



 

                
1

( )
n

n

A B
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1

)(
n

n

u A




  .  

      Thus  u
  
is  an  outer  measure on  F . 

Lemma 4.8  [ 2 ] 

 Let  F  be  a   field  and  let E F .  Let  : F    be  an  outer  measure 

and  let  x  . Then                                                                                                                                                                 

                                           ( ) ( )E x E    . 

Definition 4.4 

  Let  

  be  an  outer  measure  on X .  A  set  F X  is  called  measurable with 

respect to  *  or   *-measurable  if  for every  A X , then          

                              ( ) ( ) ( )
c

A A F A F      , 

where A is called the test set . 

Theorem 4.9 

             ( i )  The  universal  set  X  is  - measurable  set  

             ( ii )  The  empty  set     is  - measurable  set . 

Proof 

   ( i ) Let  A X . Then  

                  ( ) ( ) ( ) ( )
c

A X A X A X A           

                                                                      ( ) ( )A      

                                                                      ( ) 0A   

                                                                      ( )A .  

       Hence  X   is   - measurable  set .  

( ii ) Let  A X . Then  

                ( ) ( ) ( ) ( )
c

A A A A X             

                                                                      ( ) ( )A      

                                                                      0 ( )A   

                                                                      ( )A .  

       Hence     is   - measurable  set .  
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Lemma 4.10 

  A set  F X  is  - measurable  if  and  only  if   for every  A X ,   

                               ( ) ( ) ( )
c

A A F A F      .  

Proof 

   Let  A X .  It is  clear  that  if  F  is  
 - measurable , then   

                               ( ) ( ) ( )
c

A A F A F      .  

Conversely ,  let  ( ) ( ) ( )
c

A A F A F      .  

Since 

                              ,( ) ( )
c

A A F A F  

so we  have 

                          ( ) ( ) ( )( )
c

A A F A F    

          ( ) ( )
c

A F A F    .  

Thus   ( ) ( ) ( )
c

A A F A F       . 

Hence  F   is  
 - measurable . 

Lemma 4.11 

 Let  F X . Then  F  is   - measurable  set  if  and  only  if  
c

F is  
 - 

measurable set . 

Proof 

 Let  F   be   - measurable  set  and  A X .  Then  

                    ( ) ( ) ( )
c

A A F A F       

                                  ( ) ( ( ) )
c c c

A F A F    . 

Hence  
c

F is   - measurable  set . 

Conversely,  let  
c

F be  
 - measurable  set . Then  

                    ( ) ( ) ( ( ) )
c c c

A A F A F       

                                  ( ) ( )
c

A F A F    .  

Hence F  is   - measurable  set . 
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Theorem 4.12 
 Let  

1
E  and  

2
E  be   - measurable  sets . Then  

1 2
E E  is  - measurable  set . 

Proof 

  Let  
1

E  be   - measurable  set  and  for  any  test set  A X . Then  

                        1 1
( ) ( ) ( ) ( 1 )

c
A A E A E       . 

Now apply the definition of  - measurablitity for 
2

E with the test set  
1

c
A E  

to get 

   
1 1 2 1 2

( ) ( ) ) ( ) )( (
c c c c

A E A E E A E E                                                

                             1 2 1 2
) ( ) ) ( 2 )( (

c c
A E E A E E       

It follows from ( 1 )  and  ( 2 )  that 

1 1 2 1 2
( ) ( ) ) ( ) ) ( 3 )( (

c c
A A E A E E A E E          

 

We have 

     
1 1 2 1 1 2

( ) ) ( ) )( (
c c

A E A E E A E E E     

                                                                     
1 1 1 2

( ) ( ) )(
c

A E E E E    

                                                                     
1 2

( ) )(A X E E    

                                                                    
1 2

( )A E E  . 

Therefore  

             
1 1 2 1 2

( ) ) ( )( ( )
c

A E A E E A E E       .                       

Substituting in  ( 3 ) gives 

                 1 2 1 2
( ) ( ) ) ( ) )( (

c
A A E E A E E         

It  follows  from  Lemma  4.10   that  
1 2

E E  is  
 - measurable  set . 

Corollary 4.13 

  Let  E   and  F   be   - measurable  sets . Then  E F   is  - measurable  set . 
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Proof 

 Let  ,E F X . Then 

                                       ( )

c
c c

E F E F . 

Since  E   is   - measurable  ,  so  
c

E is   - measurable  (  Lemma 4.11 ) .  

Also, since  F   is   - measurable ,  so  
c

F is   - measurable .  

Then   
cc

E F is   - measurable  (  Theorem 4.12  ) . 

It  follows  that  ( )

c
c c

E F is   - measurable  set  (  Lemma 4.11 ) . 

Hence  E F  is   - measurable . 

Corollary 4.14 

  Let  E   and  F  be   - measurable  sets . Then  
c

E F is  
 - measurable  set . 

Proof 

 Let  ,E F  be  - measurable sets . So  
c

F is   - measurable .   

Hence  
c

E F is   - measurable  (  Corollary 4.13  ) .  

Corollary 4.15 

  Let  E   and  F  be   - measurable  sets  and  let  F E  . Then  E F   is  
 - 

measurable  set . 

Proof 

 Let  E   and  F  be   - measurable  sets .  Then  
c

E F is   - measurable   

 (  Corollary  4.14  ) .  We  have  

                                           
c

E F E F  . 

Hence  E F  is   - measurable .  

Theorem 4.16  

  Let  
1 2

, , ,
n

E E E
  
be   - measurable  sets . Then  

1

n

k
k

E


 is                                  

 - measurable . 
  

Proof 

 We  use  mathematical  induction . 

Let  1n   .  Then  for all  A X ,  we  have   
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1 1

( ) ( ) ( )
c

A A E A E       . 

Suppose  that  it  is  true  for  a positive  integer  ( 1 )p p  .  Since  
1p

E
   

is                

 -measurable ,  it follows  that  
  

                             
1 1

( ) ( ) ( )
p p

c
A A E A E    

 
  .  

Then   

 

       

1 1 1

( ) ( ) ( ( ) )
p

p kp k

c
A A E A E E    

  
  

 

                                                                                               
1 1

.( ( ) )
p

kp k

c c
A E E

 

 

Since   
11

p

k pk

c
E E


  ,  so we have 

 

         

1 1

( ) ( ) ( ( ) )

p

p kk
A A E A E    

 
  

 

                                                                                                
1 1

.( ( ) )
p

kp k

c c
A E E

 

 

Also, since   
1

11 1

( ) ( )
pp

pk kk k

c c c
E E E



 
 , it  follows  that  

1

1 1 1

( ) ( ) ( ( ) ) ( ( ) )
p

p k kk k

p c
A A E A E A E   


   

  
  

 

             

1

1 1 1

( ) ( ( ) ) ( ( )( )
p

p k kk k

p c
A E A E A E 


 

  
   

              

1 1

1 1

( ) ( ( )( )
p p

k kk k

c
A E A E 

 
 

 
  . 

Thus   
1

1

p

kk
E




 is   - measurable .  

Hence   
1

n

k
k

E
   

is   - measurable .  

Theorem 4.17  

  Let  
1 2

, ,E E  be   - measurable  sets . Then  
1

k
k

E




  is   - measurable .   

Proof 

  Let  A X .  Then    

      
  1 1

( ) ( ( ) ) ( ( ) )
n n

k kk k

c
A A E A E    

 
   (  Theorem 4. 16 ) 
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1 1

( ( ) ) ( ( ) )
n

k kk k

c
A E A E 


 

 
   

                      
11

( ) ( ( ) )
n

k kkk

c
A E A E 


 



  ,  

for every  n . So we have  

              
11

( ) ( ) ( ( ) )
k kkk

c
A A E A E  

 
  



   

                             
1 1

( ( ) ) ( ( ) )
k kk k

c
A E A E 

 
 

 
  .   

Hence   
1

k
k

E


  

is   - measurable . 

Theorem 4.18 

  Let    be a  family  of  all   - measurable  sets .  Then    is  a field .   

Proof 

 We  can  write    as  follows :   

                               { :F X F   is   - measurable  on  X }. 
Then   

                  X     (  Lemma 4.9 ( i ) ) .   

                       (  Lemma 4.9 ( ii )  ) .  

  Let  E  .  Then  
c

E    (  Lemma 4.11  ) . 

 Let  
1 2

, ,E E   .  Then   
1

k
k

E




    (  Theorem 4.17  ) .  

Thus     is  a   field .   

Theorem 4.19 

  Let  :f X    be  an  onto  function  and  let   

                          { 
1

: ( )fB B


  is   - measurable } .  

 Then    is a    field .    

Proof 

  ( i )   
1

( )f


     is   - measurable  (  Lemma 4.9 ( ii ) )  . 

          So      .         
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1

( )f Y X


   is   - measurable  ( Y   ) (  Lemma 4.9 ( i ) ) . 

         So   Y  .         

( ii )  Let  B  .  Then   
1

( )f B


  is   - measurable . 

        Since  
1 1

( ) ( ( ) )
c c

f fB B
 

 ,  it  follows  that  
1

( )
c

f B


  is   -                                                                                                         

         measurable  ( Lemma 4.11 ) .  So  
c

B  .         

  ( iii )  Let  
1 2

, ,B B  .  Then   

                                    
1 1

1 1

( ) ( )
n n

n n

f fB B
 

 

 

     

            is   - measurable  ( Theorem 4.17  ) .  So   
1

n
n

B




  .     

          Hence    is  a     field .   

Theorem 4.20 

 Let E  be   - measurable  set  and  x  . Then   E x is   - measurable  set . 

Proof 

Let  A X . Then           

                   ( ) ( )A A x      ( Lemma 4.8 ) 

                                  ( ( ) ( ( ) ))
c

A x E A x E       

                                  .( ( ) ) ( ( ) )( ) ( )
c

A x E x A x E x         

Since         

                             ,( ( ) ) ( )A x E x A E x     
and  

                            ,( ( ) ) ( )
c c

A x E x A E x     

it follows that 

                              .( ) ( ) ( ) )( ) (
c

A A E x A E x         

Hence  E x is   - measurable  set .              

Proposition 4.21 

  Let  E   be   - measurable  set  and  let  E F . Then                                                                                                                                                                 

                               ( ) ( ) ( )
c

F E F E      . 
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Proof 

 Let  E   be   - measurable  set . Then  for  every  A X ,                  

                         ( ) ( ) ( )
c

A A E A E      . 

Taking  A F   ( the test set ) .  Then  we  get    

                        ( ) ( ) ( )
c

F F E F E      .  

Since  E F ,  so  E F E .  

Therefore   

                            ( ) ( ) ( )
c

F E F E      ,  

and  so  

                            ( ) ( ) ( )
c

F E F E      .  

Theorem 4.22 

  Let  E   be   - measurable  set  and  let  F X .  Then                                         

( ) ( ) ( ) ( )E F E F E F         .  

Proof 

 Let  E   be   - measurable  set .  Then  for  every  A X ,                  

                          ( ) ( ) ( ) ( 1 )
c

A A E A E        

Taking  A F  ( the test set )  in  ( 1 ) .  Then  we  get   

                          ( ) ( ) ( ) ( 2 )
c

F F E F E        

Again , taking  A E F  ( the test set )  in  ( 1 ) . Then  we  get                              

                ( ) ( ( ) ) ( ( ) )
c

E F E F E E F E       

Since  ( )E F E E    and   ( )
c c

E F E F E , so   

                        ( ) ( ) ( ) ( 3 )
c

E F E F E        

It  follows  from   ( 2 )  and  ( 3 )  that    

                     ( ) ( ) ( ) ( )E F E F E F         . 

Lemma 4.23 

  Let  E X  and   ( ) 0E  .  Then  E  is  - measurable  set . 
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Proof 

  Let  A X .  Then 

                                         \
c

A E A E .  

Since   \
c

A E A E A  , so   ( ) ( )
c

A E A   .  

Also,  since  A E E , so   ( ) ( )A E E   . 

Therefore   

                      ( ) ( ) ( ) ( )
c

A E A E A E         . 

It  follows  that   

                   ( ) ( ) ( )
c

A E A E A         (  since  ( ) 0E   ) .  

By  Lemma 4.10 , E  is   - measurable . 

Lemma 4.24 

 Let  B   be   - measurable .  If  A B   and  ( ) 0B  , then  A   is  - 

measurable . 

Proof 

 Let  A B .  Then 

                               ( ) ( )A B   . 

 Let  ( ) 0B  .  Then 

                               0 ( ) ( ) 0A B     .  

So   

                             ( ) 0A  .  

Hence A  is   - measurable  ( Lemma 4.23 ) .  

Lemma 4.25 

 If  A C B    with  ,A B   are   - measurable  sets  and  ( \ ) 0B A  ,  

then  C   is   - measurable . 

Proof 

 Let  A C B    and   ( \ ) 0B A  .  Then   

                                        \ \C A B A  .  

So  \C A   is   - measurable   ( Lemma  4.24 ) .  
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We  have   

                             ( \ )C C A A . 

Since  A   is  - measurable  and  \C A  is   - measurable ,  so  

 ( \ )C A A   is   - measurable  ( Theorem  4.12 ) .  

Hence  C   is   - measurable . 

Theorem 4.26 

  Let F  be  a   field  of  subsets  of  X .  Let  ,A B F   with  A B   .  

Let  A  be   - measurable  set . Then    is additive .  That is, 

                                 ( ) ( ) ( )A B A B      . 

Proof 

 Let  A  be   - measurable  set . Then  for every  E X , we  have 

                        ( ) ( ) ( )
c

E E A E A      .                  

Replacing  E  with   ( )E A B ( the test set ) , yields                            

( ( )) ( ( ) )E A B E A B A        

                                                                                              ( ( ) )
c

E A B A                                                 

                                  ( ( ( ) ( ) ) )E A A B A                                                                                                                    

                                                                          ( ( ( ) ( ) ) )
c c

E A A B A     

 

                                 ( ( ) ) ( ( ) )E A E B                                                                                                                  

                                       ( ) ( )E A E B    .                           

Taking  E X , so we have 

                        ( ( )) ( ) ( )X A B X A X B       . 

Thus  ( ) ( ) ( )A B A B      .           
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Chapter  Five 

Properties of the class of  measurable functions 

 The class of measurable functions will play a critical role in the theory of  Lebesgue 

integration . The concept of measurable functions is a natural outgrowth of the idea 

of measurable sets. Measurable functions in measure theory are analogous to 

continuous functions in topology. A continuous function pulls back open sets to open 

sets, while a measurable function pulls back measurable sets to measurable sets..   

Definition 5.1 

 Let X  be  a non-empty  set  and  let  F  be  a    field  of  subsets  of  X . Then 

,( )X F  is  called  a  measurable  space .  

 A subset  E  of  X  is said to be  measurable  if  E F . 

Examples 5.1  

      ( i )  Let X  be  a non - empty  set  and  let   ,F X  . 

             Then  F  is  a    field  of  subsets  of  X . 

             Thus  ,( )X F   is  a measurable  space .   

      ( ii )  Let  X  be  the  set  of  all  real  numbers  and  let  ( )F P X , 

                   where ( )P X  is a power set of  X . 

                   Then  F  is  a    field  of  subsets of  X . 

       Thus  ,( ( ) )X P X  is  a measurable  space .  

 ( iii )  Let  { 1,2,3,4,5,6}X  . 

                 Let   ,, { 1,3,5 },{ 2,4,6}F X  . 

                Then  F  is  a    field  of  subsets of  X . 

                Thus  ,( )X F  is  a measurable  space.  

Definition 5.2  

  Let  X  be  a set  and  let  F   be  a  - field  of  subsets  of  X .  A  function     on 

F  is  called  measure   if 

                       ( i )  ( ) 0    

                     ( ii ) If  ( )
n

A  is a disjoint sequence of sets in  F , then   
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1 1

( )( )
n n

n n

A A 


 

  .   

Example 5.2 

 Let  X  . 

Let  ( )F P   be  the  family of  all subsets of  .   

Let  ( )
m

  be a sequence of non-negative real numbers . 

Let  ( )A P . Define  : F  by  

                             ( ) 0   ,    

                            ( ) ( )
m

m
A

A A 


  .   

Let  ( )
n

A  be a disjoint sequence of sets in F . Then 

                              
1

1

( )

n

m

m n

n
n

A

A 









   

                                                         1 2
...

m

m A A



  

   

                                                         1 2

...
m mA A

m m
 

 

     

                                                         1

( )
n

n

A




  . 

Thus    
1 1

( )( )
n n

n n

A A 


 

  . 

Hence     is  a measure  on  F . 

Remark 5.1 

 Let  X  be  a set  and  let  F  be  a  - field  of  subsets  of  X .  If    is a measure   

on  F , then 

                                   
1 1

( )( )
kk

n n
n n

A A 
 

  , 

where  
1 2

, , ... ,
k

A A A  are disjoint sets in  F . 
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Definition 5.3 

  Let  X be  a non-empty  set  and  F  be  a   field  of  subsets  of  X .  Let     be  

a measure  on  F . Then  ( , , )X F    is  called  a measure  space .  

Example 5.3  

Let  X  . 

Let  ( )F P X  be  the  family of  all subsets of X .   

Define     as in Example 5.2 .  Then  ( , ( ) , )X P X    is  a measure  space . 

Lemma  5.1 

 Let  ( , , )X F   be  a measure  space  and  let  ( ) 0A 

 

 for all  A F . Let 

,A B F .  If  A B , then 

                                          

( ) ( )A B  . 

Proof 

 Let  A B . Then 

                               .( \ )B A B A               

So 

                          ( ) ( ( \ ) )B A B A    

                                       ( ) ( \ )A B A   

                                      ( )A . 

Thus   

                                ( ) ( )A B  . 

Lemma  5.2 

 Let  ( , , )X F   be  a measure  space  and  let  ( ) 0E 

 

 for all  E F .            

Then 

                                     

( \ ) ( ) ( )X E X E    . 

Proof 

 Let  E X .  Then 

                                     ( \ )X E X E  . 

So 

                                    ( ) ( ) ( \ )X E X E    ,                                      

and  hence 

                          ( \ ) ( ) ( )X E X E    . 
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  Most of the theory of measurable functions does not depend on the specific features 

of the measure space on which the functions are defined , so we consider general 

spaces. 

Definition 5.4 

  Let  ( , )X F   be  a measurable  space .  A function   :f X    is  called  

measurable  if  for  every  a , then   
 

                                               ( ){ : > a }fx X x F  .  

Remark 5.2 

  Let  ( , )X F be  a measurable  space .  It follows from  Definition 5.4  that a  

function   :f X    is  measurable  if and only if  for all  a ,  

1

( , )( )f a F


  . 

Lemma 5.3 

  Let  ( , )X F   be  a measurable  space .  A function  :f X    is  measurable  

if and only if  for  each  real  number  a ,  then 
 

                                     ( ){ : a }fx X x F   .   

Proof 

 Let f   be  a measurable  function .  Then  for  each  real  number  a , the  set  

                                             ( ){ : > }fx X x a F  .  

So   

                                           ( )
c

{ : > }fx X x a F  ,  

and  hence                 

                                         ( ){ : }fx X x a F  . 

Conversely ,  let  { : ( ) }x X f x a F  , and  hence 

                                      
c

{ : ( ) }x X f x a F  . 

Therefore   

                         
c

{ : ( ) } { : ( ) > }x X f x a x X f x a F    .    

Hence f  is  a measurable  function . 
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Remark 5.3 

 Let  ( , )X F be  a measurable  space .  It follows from  Lemma 5.3  that the  

function   :f X    is  measurable  if and only if  for all  a ,   

1

( , ]( )f a F


  . 

Example 5.4 

 Let  X   . 

Let  , ( ,0] , (0, ),{ }F     . 

Then  F  is  a   - field  of  subsets  of  X . 

Let   :f    be defined by 

                                  ( )f x x .           

We have 

                    
1

( , 1 ] : ( ) ( , 1 ]( ) { }f x X f x


               

                                               : ( ) 1{ }x X f x     

                                               : 1{ }x X x     

                                               ( , 1 ] F  . 

Thus    
1

( , 1 ]( )f F


  . 

Hence  f  is not a measurable  function on  F . 

Lemma 5.4 

  Let  ( , )X F   be  a measurable  space .  A function  :f X    is   measurable  

if and only if  for  each  real  number  a , then 

 

                                         { : ( ) }x X f x a F  .   

Proof 

 Let f  be  a measurable  function .  Then  for  each  real  number  a ,  the set  

                                            { : ( ) > }x X f x a F  .  

It  follows  that   

                          1
: ( ) > ( 1, 2, 3, ... ){ }

n
x X f x a F n    . 
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Thus   

   
1

1
{ : ( ) } = { : ( ) }

n

x X f x a x X f x a F
n





       . 

Conversely ,  let  { : ( ) }x X f x a F   .   

Then  
1

: ( ){ }x X f x a F
n

    . 

So  

               1

1
{ : ( ) > } { : ( ) }

n

x X f x a x X f x a F
n





      .  

Hence  f   is  a measurable  function .  

Remark 5.4 

  Let  ( , )X F be  a measurable  space .  It follows from  Lemma 5.4  that  the  

function   :f X    is  measurable  if and only if  for all  a ,   

1

[ , )( )f a F


  . 

 

Lemma 5.5 

  Let  ( , )X F   be  a measurable  space .  A function  :f X    is   measurable  

if and only if  for  each  real  number  a , then 

 

                                 { : ( ) }x X f x a F   .   

Proof 

  Let f  be  a measurable  function .  Then  for  each  real  number  a , the  set  

                       { : ( ) }x X f x a F     ( Lemma 5.4 ) .    

We  have   

                    
c

{ : ( ) } = { : ( ) }x X f x a x X f x a F     . 

Conversely ,  let  { : ( ) }x X f x a F   .   

It  follows  that   

                         
c

{ : ( ) < }x X f x a F  , 

and  so  

                        { : ( ) }x X f x a F   .    

Hence f   is  a measurable  function .   
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Remark 5.5 

  Let  ( , )X F be  a measurable  space .  It follows from  Lemma 5.5  that  the  

function   :f X    is  measurable  if and only if  for all  a ,  

1

( , )( )f a F


   . 

Lemma 5.6 

 Let  ( , )X F  be  a measurable  space .  Let  :f X    be  a measurable  

function  and  let  a  . Then 

  

                                         { : ( ) }x X f x a F   . 

Proof 

 Let  a .  Then 

      { : ( ) } { : ( ) }x X f x a x X f x a        

                                                                                        { : ( ) }x X f x a  . 

Since    
                             { : ( ) }x X f x a F     ( Lemma  5.3 ) , 

and   
                             { : ( ) }x X f x a F     ( Lemma  5.4 ) ,  

so 

                                 { : ( ) } { : ( ) }x X f x a x X f x a F     . 

It  follows  that  

                                   { : ( ) }x X f x a F   . 

 

Lemma  5.7 

  Let  ( , )X F  be  a measurable  space .  Let  :f X    be  a measurable  

function .  Let  ,a b  .  Then  

 

                                       { : ( ) }x X a f x b F    . 

Proof  

  Let  ,a b  .  Then 

         { : ( ) } = : ( ){ }x X a f x b x X a f x                                                                                                            

                                                                                     : ( ){ }x X f x b F   . 

Thus   { : ( ) }x X a f x b F    .  
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Lemma  5.8 

  Let  ( , )X F  be  a measurable  space .  Let  :f X    be  a measurable  

function .  Let  ,a b  .  Then  
1

( , )( )f a b F


 .                               

Proof  

  Let  ,a b  .  Then 

             

1 1

( , ) = ( , ) ( , )( ) ( )f a b f b a
 

     

                                        

1 1

= ( , ) ( , )( ) ( )f b f a F
 

   .                                                 

Thus  
1

( , )( )f a b F


 . 

Theorem 5.9 

 Let  ( , )X F   be  a measurable  space .  Let  :f X    be  a measurable 

function .  Then   
n

f ( n  is a positive integer  )  is  measurable . 

Proof  

 Let  a . If  n  is odd , then    

             
1

{ : ( ) } : ( ){ }
nn

x X f x a x X f x a F      .  

Let  0a  .  If  n  is even , then    

         
1 1

{ : 0 ( ) } : ( ){ }
n nn

x X f x a x X a f x a F


        . 

                                                                                                               ( Lemma 5.7 ) 

 

Let  0a  .  If  n  is even , then    

             

1

{ : ( ) } : ( ){ }
nn

x X f x a x X f x a      

                                                           F  . 

Thus   
n

f  is  measurable . 

Lemma 5.10 

 Let  ( , )X F   be  a measurable  space .  A constant  function   :f X   is  

measurable .  

Proof  

 Let  f   be  a constant  function .  Then   
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                                   ( )f x k     for all  x   in  X .  

We  have   

                    

.

if

{ : ( ) > } =

if

X a k

x X f x a

a k




 
  

   

It  follows  that  

                             { : ( ) > }x X f x a F  . 

Hence  f  is  measurable .   

Lemma 5.11 

 Let  ( , )X F be  a measurable  space . Let  :f X    be  a measurable   

function  and  let    .  Then  f    is   measurable . 

Proof 

  Let  a .  Then 

              { : ( ) } { : ( ) }x X f x a x X f x a           

                                                      
1

{ : ( ) }x X f x a F    ,  

where   
1

a a    . 

Hence  f    is  measurable .  

Theorem 5.12 

 Let  ( , )X F   be  a measurable  space .  Let  :f X    be  a measurable  

function  and  let    .  Then  f  is  measurable . 

Proof  

 Let     .  For    ,  we  have  three  cases :  

Case  ( i )  :   let  = 0 .  Then  

                                  ( ) = 0f x , 

          which  is  measurable (  Lemma 5.10 ) .  

Case  ( ii )  :   let  > 0   and  let  a .  Then  

            { : ( ) ( ) > } = { : ( ) > }x X f x a x X f x a     
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                                                             { : ( ) > }ax X f x


   

                                                             
1

{ : ( ) > }x X f x a F   ,  

   where    
1

a
a


 .   

   Hence  f  is  measurable .  

Case  ( iii )  :  let  < 0   and  let  a .  Then  

              { : ( ) > } { : ( ) < }
a

x X f x a x X f x


    

                                                         
2

{ : ( ) < }x X f x a F    (  Lemma 5.5  ), 

    where   
2

a
a


 .  

   Hence  f  is  measurable . 

Proposition 5.13 

 Let  ( , )X F   be  a measurable  space .  Let  , :f g X    be  measurable  

functions .  Then  for  every  a ,  the  set  

                                                                            

                            { : ( ) < ( ) }x X f x g x a F   . 

Proof  

 Let  a  . Then 

{ : ( ) < ( ) } { : r , ( ) < r < ( ) }x X f x g x a x X f x g x a      

  
                : ( ) < r < ( ){ }

r

x X f x g x a


    

                            

                   { : ( ) < r } { : ( ) r }( )
r

x X f x x X g x a F


      . 

Thus   

                        { : ( ) < ( ) }x X f x g x a F   . 

Theorem 5.14 

  Let  ( , )X F  be  a measurable  space .  Let  , :f g X    be  measurable  

functions .  Then  f g   is  measurable .  
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Proof  

 Let  g  be  a measurable  function .  Then  g   is  measurable  function  ( Theorem 

5.12 , 1    ) .  Let  a  .  Then            

{ : ( ) ( ) < } = { : ( ) < ( ) }x X f x g x a x X f x g x a F       

                                                                                                (  Proposition  5.13 ).  

 Hence  f g   is  measurable . 

  The next theorem is a generalization of  Theorem 5.14 .  

Theorem 5.15 

 Let  ( , )X F  be  a measurable  space .  Let  n    and  let  
 1 2

, , ,
n

f f f  be  

measurable  functions .  Then    
1 2 n

f f f     is  measurable .       

Proof  

 We  use  mathematical  induction .   

Let  1n   . Then   
1

f
  
is  measurable .  

We assume it is true for  n k . That is, 

                                     
1 2 k

f f f    

is  measurable . 

Let  1n k   . We  have   

               
1 2 1 21 1

( )
k k k

f f f f f f f
 

        , 

which  is  measurable  ( Theorem 5.14 ) .  

Hence   
1 2 n

f f f  
  
is  measurable . 

  

Theorem 5.16 

  Let  ( , )X F  be  a measurable  space.  Let  n    and  let   
1 2

, , ,
n

  
  
be  

real constants.  Let   
1 2

, , ,
n

f f f
  
be   measurable   functions .  Then    

                                              1 1 2 2 n n
f f f      

is  measurable . 

Proof  

 Let  
1

f  be  a measurable   function .  Then  
1 1

f   is  measurable  ( Theorem 5.12 ) .        

Let  
2

f  be  a measurable   function .  Then  
2 2

f   is  measurable .        
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In  the  same  way ,  if   
n

f  is   measurable ,  then  
n n

f   is  measurable .        

It  follows  that  

                                    1 1 2 2 n n
f f f         

 is  measurable  ( Theorem 5.15 ) .  

Corollary 5.17 

  Let  ( , )X F  be  a measurable  space .  Let  , :f g X    be  measurable  

functions .  Then  f g   is  measurable .  

Proof  

 Let  g  be  a measurable  function . Then  ( 1 ) g is  measurable  function 

(  Theorem  5.12 , 1    ) .  We  have  

                                         ( 1 )f g f g    .  

Since  f is  measurable  and  ( 1 ) g   is  measurable ,  so  ( 1 )f g    is  

measurable  ( Theorem  5.14 ) . 

Hence  f g   is  measurable .  

Lemma 5.18 

Let  ( , )X F   be  a measurable  space .  Let  :f X    be  a measurable  

function .  Then   f
  
is  measurable .   

Proof 

  Let  a .  Then 

     
{ : ( ) } { : ( ) }x X f x a x X a f x a        

                                { : ( ) } { : ( ) }x X f x a x X f x a F       . 
                                                                     

Hence  f
  
is  measurable . 

Theorem 5.19 

 Let  ( , )X F   be  a measurable  space .  Let  , :f g X    be  measurable  

functions .  Then   

                                                                          

                     ( i ) { : ( ) > ( ) }x X f x g x F   

 

                        ( ii ) { : ( ) ( ) }x X f x g x F   . 
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Proof  

   ( i )   { : ( ) > ( ) } { : ( ) > r }(
r

x X f x g x x X f x


     

    { : ( ) r } )x X g x F   .  

           Thus   { : ( ) > ( ) }x X f x g x F  .  

 
    ( ii )   .{ : ( ) ( ) } \ { : ( ) > ( ) }x X f x g x X x X g x f x F       
  

             Thus   { : ( ) ( ) }x X f x g x F   . 

By using the  idea of the  measurability of  functions ,  we  state and prove the next  

proposition .  

Proposition  5.20  

Let  ( , )X F   be  a measurable  space  and  let  :f X    be  a measurable  

function  defined  over ( 1,2,3,.. )
K

KE   of  X .  Then  f  is  a  measurable  function  

on   
1

K

K

E




.   

Proof  

 Let   :f X    be  a measurable  function  defined  over ( 1,2,3, ... )
K

KE  .    

Then  for  every  a ,   

                              { : ( ) > }
K

x E f x a F  . 

We  have   

          
1 1

{ : ( ) > } = { : ( ) > }
K K

K K

x E f x a x E f x a F
 

 

   . 

So 

               
1

{ : ( ) > }
K

K

x E f x a F




  . 

Hence  f   is  a measurable  function  on  
1

K

K

E




.  

Theorem 5.21 

  Let  ( , )X F   be  a measurable  space .  Let  :f X    be  a measurable  

function  and  let  O  be  an open  set .  Then   

    

                                  { : ( ) }x X f x O F   . 
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Proof  

 Let O  be  an open  set .  Then     

                                        
1

k
k

O I




 ,  

where   ( , )
k k k

I a b
  
are  open  disjoint  intervals . 

Then  we  have   

    
1

{ : ( ) } : ( ){ }
k

k

x X f x O x X f x I




       

                                              
1

{ : ( ) }
k

k

x X f x I




    

                                        
1

{ : ( ) }(
k

k

x X f x a




    

                                                       { : ( ) } )
k

x X f x b F   . 

Theorem 5.22 

  Let  ( , )X F   be  a measurable  space .  Let  , :f g X    be  measurable  

functions .  Then  f g   is  measurable .  

Proof  

  We  have           

                               
2 21

4
( ) ( )( )f g f g f g    .  

Since  ,f g   are  measurable  functions ,  so  ( f g  )  is  measurable  function 

 ( Theorem 5.14 )  and  hence 
2

( )f g is  measurable  function ( Theorem  5.9  , 

2n   ) . Also, we  have  ( )f g   is  a measurable  function  (  Corollary 5.17  ), 

it  follows  that   
2

( )f g   is  a measurable  function . 

Therefore  

2 2

( ) ( )f g f g   is  a measurable  function . 

Thus   
2 21

4
( ) ( )( )f g f g f g      is  a measurable  function  

 ( Theorem 5.12  
1

4
   ) . Hence  f g   is  measurable . 
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Remark 5.6 

 Also , we  can  also  define  f g   by   

                              
2 2 21

2
( )( )f g f g f g    . 

Theorem 5.23 

  Let  ( , )X F   be  a measurable  space .  Let  :f X    be  a measurable  

function .  If  A X ,  then   :f A    is  measurable . 

Proof  

 Let  :f X    be  a measurable  function . 

Then  for  every   a , we  have   

                                        { : ( ) > }x X f x a F  . 

Let  A X .  Then  A F .  

We have 

                   { : ( ) > } = { : ( ) > }x A f x a x X f x a A F   .  

Thus   

                           { : ( ) > }x A f x a F  . 

Hence  :f A   is  measurable .  

Theorem 5.24 

 Let  ( , )X F   be  a measurable  space .  Let  :f X    be  a measurable  

function .  Then   0
1

( )f
f

  is  measurable . 

 

Proof  

 Let  a  .  If  > 0a  ,  then  
1

( )
a

f x
   if and only if  ( ) 0f x    or  

( ) 0( f x    and  
  

1
( ) )f x

a
 . 

Then  we  have   

       

1
: : ( ) 0

( )
{ } ({ }x X a x X f x

f x
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                         .
1

: ( ) : ( ) 0{ } { })x X f x x X f x F
a

         

If  = 0a ,  then   
1

( )
a

f x
    if and only if   ( ) 0f x  . 

Then  we  have   

              1
{ : } { : ( ) 0 }

( )
x X a x X f x F

f x
      . 

If  0a  ,  then  
1

( )
a

f x
    if and only if   ( ) 0f x     and  

  

1
( )f x

a
 . 

Then  we  have   

1
: : ( ) 0

( )
{ }{ } ( )x X a x X f x

f x
       

                                                                              
1

: ( ){ }x X f x F
a

   . 

Hence   
1

f    

is a  measurable  function . 

Corollary 5.25 

  Let  ( , )X F   be  a measurable  space .  Let  , :f g X    be  measurable  

functions .  Then  0( )g
f

g
   is  measurable . 

Proof 

 We  have   

                              0 )
1

( g
f

f
g g

 .  

Since  g   is  measurable ,  so  
1

g   

is  measurable  (  Theorem 5.24 ) .   

It  follows  that 

 

1
.f

g
  is  also  measurable  (  Theorem 5.22 ) . 

Thus   
f

g   

 is  measurable . 

Theorem 5.26 

  Let  ( , )X F   be  a measurable  space .  Let  , :f g X    be  measurable  

functions .  Then  max{ , }f g   and  min{ , }f g   are  measurable .   
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Proof  

We  have   

                            
2

max{ , }
f g f g

f g
  

 . 

Since  f   and  g   are  measurable ,  so  f g   is  measurable  (  Theorem  5.14  ) .  

Also ,  since  f   and  g   are  measurable  ,  so  f g   is  measurable  (  Corollary 

5.17  )  and  so  f g
  
is  measurable  (  Lemma 5.18 ) . So we have 

f g f g    is  measurable . It  follows  that   

 

                                         
2

f g f g  

  
 

 is  measurable  (  Theorem 5.12 ,  
1

2
    ) . 

Hence   max{ , }f g   is  measurable . 

We  have  

                             min{ , }
2

f g f g
f g

  


 
.   

In  the  same  way , we  can  prove  that  min{ , }f g  is  measurable .  

Theorem 5.27 

 Let  ( , )X F   be  a measurable  space .  Let  :f X    be  a measurable  

function .  Then  ,f f
 

are  measurable  functions .  

Proof  

        ( i )   ,( ) max { ( ) 0}f x f x


 .  

               Since  ,max { ( ) 0}f x   is  measurable  ( Theorem 5.26  ) ,  so                

                 f


is  measurable .          

        ( ii )   ,( ) min { 0 ( )}f x f x


  . 

                Since  ,min { 0 ( )}f x   is  measurable  ( Theorem 5.26  ) ,  so   

                  f


 is  measurable .
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Theorem 5.28 

  Let  ( , )X F   be  a measurable  space .  Then the characteristic function  
E

  is 

measurable  if  and  only  if   E F .  

Proof  

 Let  
E


 
be  a measurable  function .  Then   

                                            { : ( ) > 0}
E

E x X x F   .   

Hence  E F .  

Conversely ,  let  E F .  

 If   0a  , then { : ( ) < }
E

x X x a      which is a measurable set . 

 If   1a  , then  { : ( ) < }
E

Xx X x a      which is a measurable set . 

 If   <0 1a  , then \{ : ( ) < }
E

X Ex X x a   which is a measurable set . 

Hence  
E

   is  a  measurable function .  

Theorem 5.29 

  Let  ( , )X F  be  a measurable  space .  Every  simple  function  

             

                                            1

n

Ei
i i

a 


    

 is  measurable  if  and  only  if
    1 2

., , ,
n

E E E F
                                

Proof  

It follows from  Theorem 5.28  that  

                    
1

E


 
is a measurable function  if and only if  

 
1

E F , 

and hence  

                  
1

1
E

a  is  a measurable function if and only if  
1

E F  ( Theorem 5.12 ) . 

Aslo , we have  

                  
 2

E
 is  a measurable function  if and only if  

 
2

E F , 

and hence  

                   
2

2
E

a 
 
is  a measurable function  if and only if  

 
2

E F . 

In the same way, we can obtain 
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n

n
E

a  is  a measurable function  if and only if  
 

n
E F . 

It follows from  Theorem 5.16  that 
 

            
1 2

1 2
nE E En

a a a    
  
is  measurable if and only if

               

                                                                                                1 2
, , , .

n
E E E F  

Hence  the  simple  function     is  measurable . 

Propostion 5.30 

 Let  ( , )X F   be  a measurable  space .  A function   :f X    is  measurable  

if and only if  
 

1

( )Of F


  for all open sets O  in  . 

Proof  

 Let   f be  a measurable  function and  let O  be an  open set in  . 

Then 

                                     
1

( , )
n n

n

O a b



 . 

Therefore   

                                    
1 1

1

( ) ( , )( )
n n

n

Of f a b
  


   

                                                  

1

1

( , )( )
n n

n

f a b F



  . 

Conversely, suppose that 
  

1

( )Of F


  for all open sets O  in  . 

Take ,( )O a   in  . Then 

                                     

1

( , )( )f a F


  .  

Hence  f is  a measurable  function . 

Theorem 5.31  [ 20 ] 

  Let  ( , )X F   be  a measurable  space .  If  :f    is  continuous , then  f  is  

measurable . 

Examples 5.5  

  (  i )   Let   
2

2( ) 3f x x x   .  

           Then   f  is  a continuous  function .  So  f  is  measurable  ( Theorem 5.31 ) .                                                                                                       

  ( ii )  Let   ( ) sin cosf x x x  .  
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          Then   f  is  a continuous  function .  So  f  is  measurable . 

  ( iii )  Let   ( )
x

f x x e  . 

           Then   f  is  a continuous  function .  So  f  is  measurable .  

   ( iv )  Let  
2

( )
4

x
f x

x


  

. 

             Then  f  is  a continuous  function .  So  f  is  measurable . 

Theorem 5.32 

  Let  ( , )X F   be  a measurable  space .  Let   :f X    be  a measurable  

function  and  let   :g    be  a continuous  function .  Then  :g f X    

is  measurable .  

Proof  

 For all  a ,  let 
1

( , )( )aO g a


  .  Since  :g    is  a continuous  

function ,  so aO  is  an  open  set  in  .   

We have                       

                    

1 1 1

,( ) ( , ) ( ( )( ) ( ) )g f a f g a
  

    

                                                         

1

( )aOf F


   ( Proposition  5.30 ) . 

Hence   g f   is  measurable . 

Lemma 5.33 

 Let  ( , )X F   be  a measurable  space .  Let  ( )
n

f  be  a sequence  of  

measurable  functions .  Then   sup ( ( ) )
n

n

f x   and   inf ( ( ) )
nn

f x   are  

measurable  functions .  

  

Proof  

 Let  a .  Then  

          
1

{ : sup ( ( ) ) > } = { : ( ) > }
n n

n n

x X f x a x X f x a F




   . 
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Then  sup ( ( ) )
n

n

f x   is  measurable .  

Also,  we  have  

         
1

{ : inf ( ( ) ) > } = { : ( ) > }
n n

n n

x X f x a x X f x a F




   . 

Then  inf ( ( ) )
nn

f x  is  measurable .  

Lemma 5.34 

  Let  ( , )X F   be  a measurable  space .  Let  ( )
n

f  be  a sequence  of  

measurable  functions .  Then   lim ( )
n

f x
  
and  

 
lim ( )

n
f x

  
are  measurable  

functions.  

Proof  

We have 

                          lim ( ) sup ( inf ( ( ) ) )
n kn k n

f x f x


 , 

and 

                          lim ( ) inf ( sup ( ( ) ) )
n kn k n

f x f x


 . 

Let   

                            ( ) sup ( ( ) )
n kk n

M x f x


 , 

and                

                   ( ) inf ( ( ) )
n kk n

m x f x


 . 

Then   

                           lim ( ) inf ( ( ) )
n n

n

f x M x  

and  

                        lim ( ) sup ( ( ) )
n n

n

f x m x . 

Thus   lim ( )
n

f x   and    lim ( )
n

f x   are  measurable  ( Lemma  5.33 ) .     

Theorem 5.35 

  Let  ( , )X F   be  a measurable  space .  Let  ( )
n

f  be  a sequence  of  

measurable  functions  such  that  
  

                                        
( ) lim ( )

nn
f x f x

 
 .  

Then f  is  measurable .  
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Proof  

 Let  ( ) lim ( )
nn

f x f x
 

 . Then  

                                
( ) lim sup ( ) lim inf ( )

n n
n n

f x f x f x
   

  . 

Hence f  is  measurable  ( Lemma 5.34 ) . 

Definition 5.5 

 Let  ( , , )X F    be  a measure  space .  Let  ( )
n

f
  
be  a sequence  of  

measurable  functions .  We  say  that  ( )
n

f
  
converges  to  a function   f  almost  

everywhere , denoted  by  
n

f f
 
a . e   if 

  

                             
  { : ( ) ( ) } 0( )

n
x X f x f x   .  

Definition 5.6 

  A measure  space  ( , , )X F    is  called  complete  if  for  A F   with  

( ) 0A     and   B A ,  then  B F .  

That is , any subset of a measurable set of  measure zero is  measurable . 

Theorem 5.36 

  Let  ( , , )X F    be  a complete  measure  space .   If  
 n
f f

 
a . e ,  then  f is  

a measurable  function .  

Proof  

 Let   : ( ) ( ){ }
n

A x X f x f x   .  

 Since  
n

f f
  
a . e ,  so  ( ) 0A  .  

Let  a .  Then  

         { : ( ) > } = ( { : ( ) > } )x X f x a x X f x a A   
 

                                                                   
  

 
{ : ( ) > }( )

c
x X f x a A .  

Since  { : ( ) > }x X f x a A A  , ( ) 0A    and   ( , , )X F    is  

complete  measure  space ,  so  we  have  

 

                                      { : ( ) > }x X f x a A F  . 



 107 

Also ,  we  have   

      { : ( ) > } { : ( ) > }
c c

x X f x a A x A f x a    

                                         { : lim ( ) > }
nn

c
x A f x a F

 
   .   

It  follows  that   { : ( ) > }x X f x a F  .                                                                             
                            

                                 

Hence  f  is  measurable .    
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Chapter  Six 

Lebesgue  Integration 

   In  this  chapter, we introduce  the  integral  of  real-valued  functions  on  an  

arbitrary  measure  space  and  give  some  of  its  properties . We  refer  to  this  

integral  as  the  Lebesgue  integral . We  carry  out  the  definition  in  three  ways : 

           -  for  simple  functions 

          -  for  non-negative  measurable  functions 

          -  for  measurable  functions . 

6.1 The  Lebesgue  integral  of  simple  functions    

Definition  6.1.1  

 Let  ( , , )X F m   be  a measure  space  and  E Fخ .  Let  
1

E

n

i
ii

as c
=

= ه  be  a  

simple  function  for  real  numbers  
i

a   and   measurable  sets  
i

E .   

The  Lebesgue  integral  of  s  over  E  with respect to a measure  m is  defined  by  

                                         
1

( )
n

i i
i

E

d a Es m m
=

= ٍ ه , 

where  
i

E Eح   and   0 ( )
i

Em£ ¥<    1, 2 , . . . ,( )i n= . 

Remark 6.1.1 

  It is clear that   

E

ds m ¥< ٍ . That is , 

E

ds m ٍ  exists . 

Examples 6.1.1 

 ( i ) Let  [0, 2 ]E = . 

        Let   
1 6

,

4 4

[ ]
n n

s c=  (  the characteristic function of  61
,

4 4

[ ]
n n

 ) . 

        Then  s  is a simple function .  

         Let  m  be the Lebesgue measure . We  have 

                                 
1 6

,

4 4[0, 2] [0, 2 ]
[ ]

n n

d m d ms c= ٍ  ٍ   
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1 6

4 4

( , )[ ]
n n

m=  

                                                 
6 1

4 4
n n

-=                                            

                                                 .
5

4
n

=  

     ( ii ) Let  ,[ 0 7 ]E = . Let 

                                 
[ 0 , 2 ] [ 3 , 7 ]

2s c c+= .  

              Then  s  is a simple function . We  have 

                         
[ 0 , 2 ] [ 3 , 7 ]

[0, 7]

2 )(

E

d m d ms c c+= ٍ  ٍ                               

                                          
[ 0 , 2 ] [ 3 , 7 ]

[0, 7] [0, 7]

2d m d mc c+=  ٍ  ٍ                                

                                          1 ( [ 0 , 2 ] ) 2 ( [ 3 ,7 ] )m m+=                                           

                                           1 ( 2 0 ) 2 ( 7 3 )    

                                            10 . 

Lemma  6.1.1  

 Let  ( , , )X F m   be  a measure  space  and  E Fخ .  Let  0s ³   be  a simple  

function .  Then    

                                         0

E

ds m ³ ٍ .                                     

Proof   

 Let   
1

0
E

n

i
ii

as c
=

³= ه  . Then  0
i

a ³   for  all   1, 2 , . . . ,i n= . 

Since  1, 2 , . . . , )0 ( ) (
i

i nEm =£ < ¥ , it  follows  that 

                               
1

( ) 0
n

i i
i

E

d a Es m m
=

= ٍ ه³ . 

Thus                                   

                               0

E

ds m ³ ٍ . 
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Proposition  6.1.2  

 Let  ( , , )X F m   be  a measure  space  and  E Fخ   with  ( ) 0Em =  . Let  s  

be  a simple  function .  Then  0

E

ds m = ٍ . 

Proof   

 Let   
1

E

n

i
ii

as c
=

= ه   and    ( ) 0Em = . 

Since   
i

E Eح   ( 1, 2 , . . . , )i n= , so   ( ) ( )
i

E Em m£  (  Lemma  5.1  ) . 

Therefore     0 ( ) ( ) 0
i

E Em m£ £ = . 

It  follows  that  ( ) 0
i

Em =    for  all   1, 2 , . . . ,i n= . 

Thus        

                      
1

( )
n

i i
i

E

d a Es m m
=

= ٍ ه  

                                     0= . 

Remark 6.1.2 

 Since  ( ) 0m =    by  Proposition  6.1.2 , it  follows  that  ,ئ

                                    0ds m

ئ

= ٍ . 

Lemma  6.1.3  

 Let  ( , , )X F m   be  a measure  space  and  E Fخ .  Let  s  be  a  simple  function  

and  let  a   be  a real  constant . Then 
  

                                    

E E

d ds sa m a m= ٍ  ٍ .                                                    

Proof   

  Let   
1

E

n

i
ii

as c
=

= ه  be  a simple  function . Then 

                       
1

( )
E

n

i
ii

E E

d a dsa m a c m
=

= ٍ ه  ٍ  

                                            
1

E

n

i
ii

E

a da c m
=

= ٍ ه  
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1

( )
n

i i
i

a Ea m
=

= ه  

                                          
1

( )
n

i i
i

a Ea m
=

= ه  

 

                                           

E

dsa m=  ٍ . 

Theorem  6.1.4 

 Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ,s t  be  simple  functions . 

Then  

                             ( )

E E E

d d ds t s tm m m+ += ٍ  ٍ  ٍ .                  

Proof   

  Let   
1

E

n

i
ii

as c
=

= ه   and    
1

( )
E

n

i i i
ii

b a bt c
=

= ه¹   

be  two simple  functions . Then 

         
1 1

( ) ( )
E E

n n

i i
i ii i

E E

d a b ds t m c c m
= =

+ += ه ٍ ه  ٍ  

 

                                         
1

( )
E

n

i i
ii

E

a b dc m
=

+= ٍ ه  

 

                                       
1

( ) ( )
n

i i i
i

a b Em
=

+= ه  

 

                                       
1 1

( ) ( )
n n

i i i i
i i

a E b Em m
= =

+= ه ه  

 

                                        

E E

d ds tm m+=  ٍ  ٍ . 

Thus                         

                     ( )

E E E

d d ds t s tm m m+ += ٍ  ٍ  ٍ . 
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Corollary  6.1.5  

  Let  ( , , )X F m   be  a measure  space  and  E Fخ .  Let  ,s t  be  simple  functions  

and  let  ,a b   be  real  constants . Then 

  

                       ( )

E E E

d d ds t s tb ba m a m m+ += ٍ  ٍ  ٍ . 

Proof 

 Let  ,s t  be  simple  functions  and  let  ,a b   be  real  constants .  

Then 

        ( )

E E E

d d ds t s tb ba m a m m+ += ٍ  ٍ  ٍ   ( Theorem  6.1.4 ) 

                                          

E E

d ds tba m m+=  ٍ  ٍ    ( Lemma  6.1.3 ) .  

Remarks  6.1.3                 

     ( i )  Corollary  6.1.5  shows  that  the  mapping   

E

s s d m ٍa   is  linear . 

     ( ii )  If  ,1 1ba = = -   in  Corollary  6.1.5, then  

                                 ( )

E E E

d d ds t s tm m m- -= ٍ  ٍ  ٍ . 

Lemma  6.1.6  

Let  ( , , )X F m   be  a measure  space  and  E Fخ .  Let  ,s t  be simple  functions .  

If  s t£ ,  then 

                                        

E E

d ds tm m£ ٍ  ٍ .                                     

Proof  

 Let   h t s-= .  Then  0h ³   is  a simple  function .  So 

                               0

E

h d m ³ ٍ   (  Lemma  6.1.1  ) . 

So 

                          ( )

E E

d h dt sm m+= ٍ  ٍ     
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E E

d h ds m m+=  ٍ  ٍ    ( Theorem  6.1.4 ) 

                                           

E

ds m³  ٍ . 

Hence   

E E

d ds tm m£ ٍ  ٍ .    

Proposition  6.1.7 

 Let  ( , , )X F m   be  a measure  space  and  E Fخ .  Let  s  be  a simple  function . 

Then     

                                    

EE

d dss m m£  ٍ ٍ .                 

Proof  

We have   s s s- £ £ . 

 Since   s s- £ ,  it  follows  that  

                                

E E

d ds sm m- £ ٍ  ٍ    ( Lemma 6.1.6  ) . 

Also, since   s s£ , it  follows  that 

                              

E E

d ds sm m£ ٍ  ٍ . 

Therefore 

                             

E E E

d d ds s sm m m- £ £ ٍ  ٍ  ٍ , 

and  so   

          

E E E

d d ds s sm m m- £ £ ٍ  ٍ  ٍ   (  Lemma  6.1.3 , 1a = -  ) . 

Thus     

E E

d ds sm m£ ٍ  ٍ . 
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Theorem  6.1.8  [ 9 ] 

 Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let   
1

A

n

i
i i

as c
=

= ه be  a 

non-negative  simple  function  and  ( 1,2,. . . , )
i

A F i n= خ . Then 

                                      
1

( )
n

i i
i

E

d a A Es m m
=

= ٍ ها . 

 Remark  6.1.4 

  If  E X=  in  Theorem  6.1.8 , then     

                                 
1

( )
n

i i
i

X

d a As m m
=

= ٍ ه . 

Proposition  6.1.9  

 Let  ( , , )X F m   be  a measure  space  and  let  ,A B Fخ   with   A Bئ     .ا=

Let  s  be  a non-negative  simple  function .  Then 
  

                          

BAA B

d d ds s sm m m+= ٍ  ٍ  ٍ
U

. 

Proof   

  Let  E Fخ   and   ( 1,2,. . . , )
i

A F i n= خ .  Then   

                        
1

( )
n

i i
i

E

d a A Es m m
=

= ٍ ها    (  Theorem 6.1.8  ) .  

Therefore   

               
1

( )( )
n

i i
i

A B

d a A A Bs m m
=

= ٍ ه
U

I U  

                                  
1

( ) ( )( )
n

i i i
i

a A A A Bm
=

= ه I U I  

                                 
1

( ) ( )( )
n

i i i
i

a A A A Bm m
=

+= ه I I  

                                 
1 1

( ) ( )
n n

i i i i
i i

a A A a A Bm m
= =

+= ه Iه I  

                                 

BA

d ds sm m+=  ٍ  ٍ . 
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  The next theorem is a generalization of  Proposition 6.1.9 . 

Theorem  6.1.10  

 Let  ( , , )X F m   be  a measure  space    and  let   
1 2
, , ,

m
A A A FخK   with   

( )
mi

A A i m   .  Let  s  be  a non - negative  simple  function . 

Then  

                            
1

1

k

k

m

k
m

k

A
A

d ds sm m
=

=

= ٍ ه  ٍ

U

. 

Proof   

 Let  
1 2
, , ,

m
A A A FخK   with   ( )

mi
A A i m   .   

Then 

                   
11

1

(( ) )
n m

i i kki
m

k
k

A

d a A As m m
==

=

= ٍ ه

U

I U  ( Theorem 6.1.8 ) 

                                        
1 1

( )
n m

i i k
i k

a A Am
= =

= ه ه I  

                                        
1 1

( )
m n

i i k
k i

a A Am
= =

= ه ه I  

                                       
1

m

k

k
A

ds m
=

= ه  ٍ . 

Theorem  6.1.11  [ 9 ] 

 Let  ( , , )X F m  be  a measure  space  and   let  nA Fخ  such that   
1

.n

n

A X
¥

=

=U     

Let  s  be  a  non-negative simple  function . Then 
 

 

                                     l i m

n

n
XA

s d s dm m
® ¥

= ٍ  ٍ . 

Lemma  6.1.12   

 Let  ( , , )X F m   be  a measure  space  and  E Fخ .  Let  s  be  a non-negative   

simple function  and  let 
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                                                 ( )

E

E s df m=  ٍ . 

Then  f  is  a measure  on  F . 

Proof 

     ( i )  ( ) 0dsf m

ئ

= ٍ ئ=   (  Remark 6.1.2 ) . 

    ( ii ) Let  
i

A Fخ .  We have 

                                 
1

( )
n

i i
i

E

d a A Es m m
=

= ٍ ها , 

         and so   

                                  
1

( ) ( )
n

i i
i

E a A Ef m
=

= ها . 

         Let  
1 2
, , . . .E E Fخ   and    ( )

i j
E E i j¹ ئا= .   

        Then 

                         
11 1

( ) ( )( )
n

k i i k
k ki

E a A Ef m
¥ ¥

= ==

= Uها U  

                                                  
1 1

( )
n

i i k
i k

a A Em
¥

= =

= ها ه                                                     

                                                  
1 1

( )
n

i i k
k i

a A Em
¥

= =

= ها ه  

                                           
1

( )
k

k

Ef
¥

=

= ه . 

     Thus 

                           
11

( ) ( )
k kk k

E Ef f
¥¥

= =

= Uه . 

     Hence  f  is  a measure on F .   

\Theorem  6.1.13   

  Let ( , , )X F m   be  a measure  space  and  E Fخ .  Let  s  be  a non-negative   

simple  function . Then 
 
 

                               

\X E X E

d d ds s sm m m+= ٍ  ٍ  ٍ . 
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Proof 

 Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  s  be  a non-negative   

simple  function  such that 
   

                                            ( )

E

E dsf m=  ٍ . 

Then  f   is  a measure  on  F   (  Lemma  6.1.12  ) . 

Let  E Xج .  Then                    

                    

\

( ) ( \ )

E X E

d d E X Es sm m f f+ += ٍ  ٍ . 

Since  ( \ ) ( ) ( )X E X Ef f f= -  ( Lemma 5.2 ) , it  follows  that  

            

\

( ) ( ) ( )

E X E

d d E X Es sm m f f f+ += - ٍ  ٍ                                 

                                               ( )Xf=  

                                               

X

ds m=  ٍ .                                                                                      

Corollary  6.1.14   

  Let  ( , , )X F m   be  a measure  space  and  E Fخ  with  ( ) 0Em = . Let  s  be  

a non-negative  simple  function . Then 
 

                                    

\X X E

d ds sm m= ٍ  ٍ . 

Proof             

 It  follows  from  Theorem 6.1.13  that               

                    

                             

\X E X E

d d ds s sm m m+= ٍ  ٍ  ٍ .  

  Since  0

E

ds m = ٍ   ( Proposition 6.1.2 ) , it  follows  that                            

                              

\X X E

d ds sm m= ٍ  ٍ . 
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6.2 The Lebesgue integral of non-negative measurable    

      functions    

Definition  6.2.1    

 Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  f  be  a non-negative  

bounded  measurable  function  on  E .  The  Lebesgue  integral  of   f  over  E  

with  respect to a measure  m  is  defined by  

  

,: ( ) ( ) f o r  a l l ,s u p 0 i s s i mp le{ }
E E

f d d x f x x Es s sm m= £ £ ٍ ٍ خ

 

or  briefly , we  write   

                 : ,s u p 0 i s s i mp l e{ }
EE

f d d fs s sm m= £ £ ٍ ٍ  

                                   sup ( )
s f E

ds 


  . 

Remark 6.2.1 

  It is clear that   

E

df m ¥< ٍ . That is ,  

E

df m ٍ    exists . 

Lemma 6.2.1    

  Let  ( , , )X F m  be  a measure  space  and  E Fخ . Let  f  be  a non-negative  

bounded  measurable  function  on  E .  If  ( ) 0E  ,  then   

 

                                           0

E

df   .                                                              

Proof 

 Let  E  be  a measurable set with  ( ) 0E  . 

 Let  s  be  a simple  function .  Then 

                                 0

E

s d    ( Proposition  6.1.2  ) . 

Therefore    

                                   sup ( )
s fE E

f d s d 


   

                                                     0 . 
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Lemma  6.2.2    

 Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ,f g  be  non-negative  

bounded  measurable  functions  on  E .  If  f g£ ,  then  

   

                                        

E E

f d g dm m£ ٍ  ٍ .               

Proof 

 Let  0 s f£ £  and  f g£ . Then  s g£ . 

Since 

                                   sup ( )
Es gE

g d s d 



  , 

it follows from the definition of a supremum that 

                                   

E E

s d g dm m£ ٍ  ٍ . 

Taking supremum over  s f£ , we have                         

                                   s u p ( )
s f EE

s d g dm m
£

£ ٍ  ٍ . 

Hence 

                               

E E

f d g dm m£ ٍ  ٍ .  

Lemma 6.2.3   

  Let  ( , , )X F m  be  a measure  space  and  E Fخ . Let  f  be  a non-negative  

bounded  measurable  function  on  E .  Let   0  . Then  

 

                                       

E E

f d f d     . 

Proof 

Let   f  be  a  non - negative  measurable  function .  

Let  0 s f£ £  and  0  . Then  0 s fa a£ £ . 

So  sa  is a simple function and  fa  is a  non - negative  measurable  function .  
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We have 
   

                         sup ( )
s fE E

f d s d
 

   


   

                                             sup ( )
s f E

s d
 

 


   (  Lemma  6.1.3  ) 

                                             sup ( )
s f E

s d 


   

                                            

E

f d   .   

Theorem 6.2.4   

  Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ,f g  be  non-negative  

bounded  measurable  functions  on  E .  Then  

 

                              ( )

E E E

f g d f d g d       .  

Proof 

 Let  ,f g  be  non - negative bounded  measurable  functions . 

Let  ,s t  be simple functions such that  0 s f£ £  and   0 t g£ £ .  

Then   s t+   is a simple function  and  f g+  is a non - negative  measurable   

function .  So   0 s t f g+ +£ £ . 

We have  

                   ( ) s u p ( )( )
s t f gE E

f g d s t dm m

+ +£

+ += ٍ  ٍ . 

It follows that         

                 ( ) ( )

E E

f g d s t dm m+ ³ + ٍ  ٍ  

                                               

E E

s d t d     ( Theorem 6.1.4 ) . 
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Taking supremum over  s  and  t , we have 

                        ( ) ( 1 )

E E E

f g d f d g dm m m+ ³ + ® ٍ  ٍ  ٍ  

Let v  be a  simple function such that   v t s+= . Then 

                       v ( )

E E

d s t d      

 

                                        

E E

s d t d     

                                       

E E

f d g dm m£ + ٍ  ٍ . 

Taking supremum over  v , we have 

                              ( ) ( 2 )

E E E

f g d f d g dm m m+ £ + ® ٍ  ٍ  ٍ  

It follows from  ( 1 )  and   ( 2  )  that 

                              ( )

E E E

f g d f d g d       .           

Corollary 6.2.5   

  Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ,f g  be  non-negative  

bounded  measurable  functions  on  E   and  let   , 0   .  

Then 
  

                  ( )

E E E

f g d f d g d           .  

Proof 

 The  proof  follows  from  Lemma 6.2.3  and  Theorem 6.2.4 . 

Remark  6.2.2                 

 Corollary  6.2.5  shows  that  the  mapping   

E

f f d m ٍa   is  linear . 
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 We have the following deduced  lemmas . 

Lemma 6.2.6   

Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  , :f g X ® ،  be 

measurable  functions . Then   

 

                   ( i )  ( )

E E E

f g d f d g d  
   

      

                   ( ii )  ( )

E E E

f g d f d g d  
   

      

                   ( iii )  ( )

E E E

f g d f d g d  
   

     . 

Proof 

  The proof  follows  from Theorem  6.2. 4 .  

Lemma  6.2.7   

Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  :f X ® ،  be  

measurable  function  and  let  0  . Then  

  

                     ( i )    

E E

f d f d   
 

   

                     ( ii )   .

E E

f d f d   
 

   

Proof 

  The proof follows from Lemma  6.2. 3 . 

Lemma 6.2.8   

 Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ,f g  be  non-negative  

bounded  measurable  functions  on  E .  If   f g , then   

                                  .( )

E E E

f g d f d g d        

Proof  

 We have 

                                 .( )f f g g      
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Then  

                    ( )( )
E E

f d f g g d      

                                    ( )

E E

f g d g d       (  Theorem  6.2.4  ) . 

Therefore  

                          ( )

E E E

f g d f d g d       . 

 

Lemma 6.2.9   

   Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  , :f g X ® ،  be 

measurable  functions  such that   f g
 

   and    f g
 

 .  

Then   

                   ( i )  ( )

E E E

f g d f d g d  
   

      

                   ( ii )  .( )

E E E

f g d f d g d  
   

      

Proof 

  The proof  follows  from Lemma  6.2. 8 . 

Theorem  6.2.10  [ 19 ] 

Let  ( , , )X F m  be  a measure  space  and  E Fخ . Let  f  be a  non-negative  

bounded  measurable  function  on  E . Then 
   

                                       
E

E X

f d f dm c m= ٍ  ٍ .  

Propsition  6.2.11   

 Let  ( , , )X F m  be  a measure  space . Let  f  be a  non-negative  bounded  

measurable  function  on  X . Let  ,A B Fخ  such that  A Bح .  Then  

 

                                        

BA

f d f dm m£ ٍ  ٍ .  

Proof 

  Let   A Bح .  Then   
BA

c c£ .  So    
BA

f fc c£ .                                          
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Therefore   
A

f c   and   
B

f c   are  non-negative  measurable  functions . 

It  follows  that 

                             
BA

X X

f d f dc m c m£ ٍ  ٍ     (   Lemma 6.2 . 2 ) . 

Hence                                       

                             

BA

f d f dm m£ ٍ  ٍ    (  Theorem 6.2 .10 ) . 

Proposition  6.2.12   

  Let  ( , , )X F m  be  a measure  space . Let  f  be a  non-negative  bounded  

measurable  function  on  X and  let  ,(0 )a ¥   Then .خ

                                ( )
1

: a{ }

X

fx X x f d
a

m m£ خ³  ٍ .                     

Proof  

 Let   ( ): a{ }fx X xA = خ ³ . Then   

       

                           

X A

f d f dm m³ ٍ  ٍ                          

 

                                             

A

a d m³  ٍ  

 

                                            

A

a d m=   ٍ

 

                                            ( )a Am=  . 

Thus                   

                                   
1

( )

X

f d A
a

m m³ ٍ , 

and hence  
 

                                   ( )
1

: a{ }

X

fx X x f d
a

m m£ خ³  ٍ .   
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6.3 The  Lebesgue  integral  of  measurable  functions    

Definition  6.3.1    

 Let  ( , , )X F m  be  a measure  space  and  E Fخ . Let  f  be an arbitrary  bounded 

measurable  function  on  E  ( not necessarily  0f ³  ) . Then  f is called  Lebesgue  

integrable  on  E  or  briefly  integrable  if 

 

                              

E

f d m
+

¥< ٍ    and   

E

f d m
-

¥< ٍ .   

The  Lebesgue  integral  of   f  with respect to a measure  m  is  defined  by      

  

                        

E E E

f d f d f dm m m
-+

= - ٍ  ٍ  ٍ . 

Remark 6.3.1 

 We have 

                         .f f f
-+

= +  

Then 

                 ( )

E E

f d f f dm m
-+

= + ٍ  ٍ  

                                         

E E

f d f dm m
-+

= + ٍ  ٍ  (  Theorem 6.2 .4  ) . 

Theorem  6.3.1 

 Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  f  be  a bounded 

measurable function on  E .  Then   f  is integrable  if  and  only  if  
 

E

f d   .  

Proof 

 Let  f  be  an integrable  function on  E . Then 

                             

E

f d m
+

¥< ٍ    and   

E

f d m
-

¥< ٍ . 
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We  have 

            

E E E

f d f d f d  
 

     (  Remark  6.3.1  ) . 

Thus    

E

f d   . 

Conversely, let 

E

f d   . 

Since    f f

  , so  

E E

f d f dm m
+

£ ٍ  ٍ  

  and  so  

E

f d m
+

¥< ٍ .                                  

Also,  since   f f

  , so  

E E

f d f dm m
-

£ ٍ  ٍ   

 and  so  

E

f d m
-

¥< ٍ .                                  

Thus   f  is integrable . 

Lemma  6.3.2  

 Let  ( , , )X F m  be  a measure  space  and  E Fخ . Let  f  be  a bounded 

measurable function on  E  and  let  a خ ،  .  Then 

                                  

E E

f d f da m a m= ٍ  ٍ .    

Proof 

 Let  a خ ،  . Then  we  have  two  cases . 

Case ( i )  :  let  0a ³ . 

  The  Lebesgue   integral  of  fa   is  given  by    

                  ( ) ( )

E E E

f d f d f da m a m a m
+ -

= - ٍ  ٍ  ٍ         

                                   

E E

f d f da m a m
+ -

= - ٍ  ٍ  
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E E

f d f da m a m
+ -

= - ٍ  ٍ     (  Lemma  6.2.7  ) 

                                  ( )
E E

f d f da m m
+ -

= - ٍ  ٍ  

                                  

E

f da m=  ٍ . 

Case ( ii )  :  let 0a <  . Then 

                 ( ) ( )

E E E

f d f d f da m a m a m
+ -

= - ٍ  ٍ  ٍ         

                                  

E E

f d f da m a m
- +

= - - - ٍ  ٍ . 

Since  0a- > , it  follows  that 

                 

E E E

f d f d f da m a m a m
- +

= - + ٍ  ٍ  ٍ  ( by ( i ) ) 

                                    ( )
E E

f d f da m m
+ -

= - ٍ  ٍ  

                                     

E

f da m=  ٍ . 

Theorem  6.3.3  [ 19 ] 

  Let  ( , , )X F m  be  a measure  space  and  E Fخ . Let  f  be  a bounded 

measurable  function  on  E .  Then 

 

                                       
E

E X

f d f dm c m= ٍ  ٍ .     

Theorem  6.3.4   

 Let ( , , )X F m  be  a measure  space and  E Fخ . Let  ,f g  be  bounded 

measurable  functions  on  E . Then 

 

                        ( )

E E E

f g d f d g dm m m+ += ٍ  ٍ  ٍ . 
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Proof 

  We  have   

     ( ) ( )
E

E X

f g d f g dm c m+ += ٍ  ٍ   (  Theorem 6.3.3  )       

( ) ( )( ) ( )
E E

X X

f g d f g dc m c m
+ -

+ += - ٍ  ٍ                

                               ( ) ( )
E E E E

X X

f g d f g dc c m c c m
+ -

+ += - ٍ  ٍ                          

                                     ( ) ( )( )
E E

X

f g dc c m
+ +

+=  ٍ                                       

                                                                          ( ) ( )( )
E E

X

f g dc c m
- -

+-  ٍ                                                                                        

                                 

( ) ( ) ( )
E E E

X X X

f d g d f dc m c m c m
+ + -

+= - ٍ  ٍ  ٍ  

  

( )
E

X

g dc m
-

-  ٍ                                                                                               

           ( ) ( )( )
E E

X X

f d f dc m c m
+ -

= - ٍ  ٍ                                             

( ) ( )( )
E E

X X

g d g dc m c m
+ -

+ - ٍ  ٍ  

           
E E

X X

f d g dc m c m= + ٍ  ٍ       

           .

E E

f d g dm m= + ٍ  ٍ  

Corollary  6.3.5 

 Let ( , , )X F m  be  a measure  space  and  E Fخ . Let  ,f g  be  bounded 

measurable  functions  on  E  and  let  ,a b  be  real  constants . Then  

    

                    ( )

E E E

f g d f d g db ba m a m m+ += ٍ  ٍ  ٍ .                   
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Proof 

 The  proof  follows  from  Lemma  6.3.2  and  Theorem  6.3.4 . 

Remarks  6.3.2                 

     ( i ) Corollary  6.3.5  shows  that  the  mapping   

E

f f d m ٍa   is  linear . 

      ( ii ) Let  1a =   and  1b = -   in  Corollary  6.3.5 . Then  

                              ( )

E E E

f g d f d g dm m m- = - ٍ  ٍ  ٍ . 

Lemma  6.3.6 

  Let  ( , , )X F m   be  a measure  space and  E Fخ .  Let  ,f g  be  bounded 

measurable  functions  on  E  . If   f g£ ,  then  

E E

f d g dm m£ ٍ  ٍ .                                               

Proof 

 Let   f g£  .  Then   f f g g
- -+ +

- £ - . 

Therefore  we  have 

                 f g
+ +

£     and  so    

E E

f d g dm m
+ +

£ ٍ  ٍ  (  Lemma 6.2.2 ) , 

and    

                      g f
--

£     and  so   

E E

g d f dm m
- -

£ ٍ  ٍ , 

and hence 

                              

E E

f d g dm m
- -

- £ - ٍ  ٍ . 

Thus 

                           

E E E

g d g d g dm m m
-+

= - ٍ  ٍ  ٍ                  

                                              

E E

f d f dm m
-+

³ - ٍ  ٍ  

                                              

E

f dm=  ٍ . 
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Proposition  6.3.7   

 Let ( , , )X F m  be a measure  space  and  E Fخ .  Let  f  be  a bounded 

measurable  function  on  E .  Then 

 

                              

E E

f d f dm m£ ٍ  ٍ . 

Proof 

 Since   f f f- £ £ ,  it  follows  that                            

                 

EE E

d f d df fm m m- £ £ ٍ ٍ  ٍ   (  Lemma  6.3.6  ) . 

Thus     

E E

f d f dm m£ ٍ  ٍ . 

Theorem  6.3.8 

  Let  ( , , )X F m  be  a measure  space  and  
1 2

,E E Fخ   with   
1 2

E E = ائ .  

Let  f  be  a bounded measurable  function  on  E . Then 

 

                                                                                       

1 21 2

E EE E

f d f d f dm m m+=

ب

 ٍ  ٍ  ٍ . 

Proof 

 We  have   

  

1 2

1 2

E E

XE E

f d f dm c m
ب

=

ب

 ٍ  ٍ    (  Theorem  6.3.3 )   

                            

1 2 1 2

( ) ( )
E E E E

X X

f d f dc m c m
+ -

ب ب
= - ٍ  ٍ                  

                         

1 2 1 2

) )( (
E E E E

X X

f d f dc c m c c m
+ -

+ += - ٍ  ٍ                   

                         

1 2
E E

X X

f d f dc m c m
+ +

+=  ٍ  ٍ  
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1 2
E E

X X

f d f dc m c m
- -

--  ٍ  ٍ  

1 1

( ) ( )( )
E E

X X

f d f dc m c m
+ -= - ٍ  ٍ   

2 2

( ) ( )( )
E E

X X

f d f dc m c m
+ -

-+  ٍ  ٍ  

1 2
E E

X X

f d f dc m c m+=  ٍ  ٍ  

 

1 2

.

E E

f d f dm m+=  ٍ  ٍ  

Theorem  6.3.9 

 Let ( , , )X F m  be  a measure  space and   
1 2
, , . . . ,

n
E E E Fخ   with   

( )
n j

E E n j= ئ ا¹ . Let  f  be  a bounded measurable  function  on  E . 

Then 

                                                                                           

1

1

n

k
n

k

k
k

E
E

f d f dm m
=

=

= ٍ ه  ٍ

U

 . 

Proof 

 Let  
1 2
, , . . . ,

n
E E E Fخ   with  ( )

n j
E E n j= ئ¹ ا .  

Then 

      

1

1

n
k

kk

n

k
E

E
X

f d f dm c m

=

=

= ٍ  ٍ
U

U

 

                          

1 1

( ) ( )

k k

n n

k k
E E

X X

f d f dc m c m

= =

+ -
= - ٍ  ٍ

U U

    

                         

1 2

. . . )(
n

E E E

X

f dc c c m
+

+ + +=  ٍ  
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1 2

. . . )(
n

E E E

X

f dc c c m
-

+ + +-  ٍ  

                         

1 1 2 2

) )( (
E E E E

X X

f f d f f dc c m c c m
+ - + -

- + -=  ٍ  ٍ  

. . . )(
n n

E E

X

f f dc c m
+ -

+ + - ٍ  

        

1 2

. . .

n
E E E

X X X

f d f d f dc m c m c m+ + +=  ٍ  ٍ  ٍ
 

                           

1 2

. . .

n
E E E

f d f d f dm m m+ + +=  ٍ  ٍ  ٍ  

                         
1

.

n

k

k
E

f d m
=

= ه  ٍ  
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Chapter  Seven 

Applications of  Lebesgue  Integration 

  In this chapter, we introduce some  mathematical  applications of the Lebesgue 

integration .      

7.1 Convergence of the Lebesgue integral 

   In this section, we give convergence theorems for Lebesgue integrals . Also,we 

give some related examples and consequences. 

Let  ( , , )X F m  be  a measure  space and  E Fخ .  Let   :f X ® ،  be  a  

measurable function  and  Let  ( )nf  be  a sequence  of  measurable  functions 

defined on  E  such that  
           

                             l i m ( ) ( ) ( )
n

n
f x f x x E

® ¥

= خ . 

 In general , is not true  that 
 

                                  l i m l i mn n
n n

E E

f d f dm m
® ¥ ® ¥

= ٍ  ٍ  

                                                                

E

f d m=  ٍ . 

For example :  

 Let  [0,1]E =  and define the sequence of functions  
n

f  by  : 

when    10
n

x£ £   the graph of   
n

f  consists of the sides of the  triangle  with 

altitude  n   and  base  [0,1] . when   1 1x
n

£ £ ,  then   0
n

f = . 

Since   0
n

f ®   on   [0,1] , so 

1

0

( )l i m 0n
n

f x d x
® ¥

= ٍ .  

We  have 

                          

1

0

1 1
( )

2
( ) ( )n n

n
f x d x = ٍ  

                                                    
1

2
= . 
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It follows that     

1

0

1
( )

2
l i m n

n

f x d x
® ¥

= ٍ . 

Thus    

1 1

0 0

( ) ( )l i m l i mn n
n n

f x d x f x d x
® ¥ ® ¥

¹ ٍ  ٍ . 

Notation 

  Let X  be a non-empty set . Let  :f X ® ،  and  let  ( )nf  be  a sequence  of    

functions  defined  on  X . 

The notation   ( ) ( ) ( )nf x f x n Zخ ¥  on X  means  that    

       

               
1

( ) ( )
n n

f x f x
+

£     for  all   n   and  x Xخ  ( Monotonicity ),                                        

and    

                        ( ) l i m ( )
n

n
f x f x

® ¥

= . 

We  have  the  following  properties :   

    Let   ( ) ( )nf x f xZ   and   ( ) ( )ng x g xZ  as  n ¥®   and   for all  

x Xخ  and  let   :h X ® ،  .  Let ( )na  be  a sequence  of  positive real 

constants and  let  a  be a  positive  real  constant .  

Then 

                    ( i )  ( ) ( ) ( ) ( )n nf x g x f x g x+ +Z  

                    ( ii )  ( ) ( )nf x h f x h- -Z  

                    ( iii )  If na aZ ,  then   ( ) ( )n nf x f xa aZ . 

Let X  be a non-empty set . Let  :g X ® ،  and  let  ( )ng  be  a sequence  of    

functions  defined  on  X . 

The notation   ( ) ( )ng x g x]  on  X  means  that   

  

                            1 ( ) ( )n n
g x g x+ £      for  all  n   and  x Xخ ,  

and  

                            ( ) l i m ( )
n

n

g x g x
® ¥

= . 
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We  have  the  following  properties : 

  Let   ( ) ( )ng x g x] .  Then     

                  ( i )  ( ) ( )ng x g x- -Z  

                  ( ii )  ( ) ( )nh g x h g x- -Z .  

Theorem 7.1.1  [ 3 ] 

  Let  ( , )X F  be  a measurable  space  and  let  f  be  a non -negative  bounded 

measurable  function on  X . Then  there is a sequence  of  non-negative  simple  

functions  )( ns   such that  ( ) ( )n x f xs Z   as  n ¥®   and   for all  x Xخ . 

Theorem  7.1.2  (  Monotone Convergence Theorem  )  

  Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ( )nf  be  a sequence  of  

non-negative  measurable  functions defined on  E  such that   ( ) ( )nf x f xZ . 

Then 

                                     l i m n
n

E E

f d f dm m
® ¥

= ٍ  ٍ . 

Proof 

  Since  0 ( ) ( )nf x f x£ £   for all  n , so 

                                 n

E E

f d f dm m£ ٍ  ٍ    ( Lemma  6.2.2 ) .              

  It follows that 

                                 l i m ( i )n
n

E E

f d f dm m
® ¥

£ ® ٍ  ٍ    

 

Let   0 1a< <    and    0 h f£ £  be a simple function . 

Set                    

                                  : ( ) ( ){ }n nE x E f x a h x   . 

       

Then  1 2 3 ...E E E     and  nE   are measurable sets  ( Theorem 5.19 (ii) ) .  

Also, we have   
1

n

n

E E
¥

=

=U .  
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Therefore    

                              

n n

n

E E

a h d f dm m£ ٍ  ٍ  

                                                   n

E

f d m£  ٍ      ( Proposition  6.2 .11 ) . 

So                            

                             l i m l i m

n

n
n n

EE

a h d f dm m
® ¥ ® ¥

£ ٍ  ٍ . 

 

It  follows  from  Theorem  6.1.11  that 
 

                             l i m n
n

E E

a h d f dm m
® ¥

£ ٍ  ٍ , 

and so 
                   

                            l i m n
n

E E

a h d f dm m
® ¥

£ ٍ  ٍ . 

Since  a  is an arbitrary in  (0,1) , taking                         

                                         
2

11a
n

= - . 

Therefore                                          

                                     
2

1( 1 ) l i m n
n

E E

h d f d
n

m m
® ¥

- £ ٍ  ٍ . 

Letting  n ¥® , so we have   
                             

                                      l i m n
n

E E

h d f dm m
® ¥

£ ٍ  ٍ . 

 

Taking  a supremum over all  h  such that   0 h f£ £ , so 

                               s u p l i m( )
E

n
n

f Eh

h d f dm m
® ¥

£

£ ٍ  ٍ , 

and hence 
 

                               l i m ( i i )n
n

E E

f d f dm m
® ¥

£ ® ٍ  ٍ  

It follows from  ( i )  and  ( ii )  that 
 

                                                l i m n
n

E E

f d f dm m
® ¥

= ٍ  ٍ . 
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Remark 7.1.1 

 The monotonicity condition in the monotone convergence theorem cannot be 

dropped. 

For example :  

   Let  [0,1]E = .    

  Let  F  be  the    field  of all open sets  in [0,1] . 

  Let  mm=  ( the Lebesgue measure ) and define                         

                                   
1,0

( )
( )

1,2,3,. . .n

n

nf nc == .      

Then  ( )
n

f  is  a decreasing sequence of  non-negative  measurable  functions . 

Clearly    l i m 0
n

n
f

® ¥

=     and  so   l i m 0n
n

E

f d m
® ¥

= ٍ . 

We have             
 

                          1
,( 0 )( )n

E
n

nf d m m= ٍ  

                                              1( )
n

n=  

                                               1= , 

 and hence 

                              l i m 1n
n

X

f d m
® ¥

= ٍ .     

Thus 

                             l i m l i mn n
n n

E E

f d m f d m
® ¥ ® ¥

< ٍ  ٍ . 

 

  The  next  two  corollaries  are  consequences  of  Monotone  Convergence  

Theorem . 

Corollary  7.1.3  

  Let  ( , , )X F m  be  a measure  space and  E Fخ . let  f  be  a non -negative  

bounded measurable  function on  E . Let  ( )nf  be  a sequence  of  measurable  
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functions defined on  E  such that  ( ) ( )nf x f xZ  .  Let nf h³    for all  n  and 

E

h dm ¥> - ٍ . Then 

                                     l i m n
n

E E

f d f dm m
® ¥

= ٍ  ٍ .  

Proof 

Let  ( ) ( )nf x f xZ . Then 

                              ( ) ( )nf x h f x h- -Z  .  

Since  nf h³  ,  it  follows  that 0nf h- ³  .  

Since ( )nf h- is  a sequence  of  non-negative  measurable  functions  and 

nf h f h- -Z  , so  Monotone  Convergence  Theorem  7.1.2   gives  us 

                         ( ) l i m ( )n
n

E E

f h d f h dm m
® ¥

- = - ٍ  ٍ . 

Therefore 

   l i m ( )
n

n

E E E E

f d h d f d h dm m m m
® ¥

=- - ٍ  ٍ  ٍ  ٍ   ( Lemma  6.2.8 ) 

                                            l i m
n

n

E E

f d h dm m
® ¥

= - ٍ  ٍ . 

Thus              

                             l i m n
n

E E

f d f dm m
® ¥

= ٍ  ٍ . 

Corollary  7.1.4  

  Let  ( , , )X F m  be  a measure  space and  E Fخ  . Let  g  be  a non-negative  

bounded  measurable   function on  E .  Let  ( )ng  be  a sequence  of  measurable  

functions  defined  on  E  such that  ( ) ( )ng x g x] .  Let ng h£   for all  n  

and  

E

h dm ¥< ٍ .  Then 

                                l i m n
n

E E

g d g dm m
® ¥

= ٍ  ٍ .  
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Proof 

  Let  ( ) ( )ng x g x] .  Then 

                                ( ) ( )
n

h g x h g x- -Z .  

Since  ng h£ ,  it  follows  that  0nh g- ³ .  

Since ( )nh g- is  a sequence  of   non-negative  measurable  functions and 

n
h g h g- -Z , so Monotone  Convergence  Theorem  gives  us 

 

                           ( ) l i m ( )n
n

E E

h g d h g dm m
® ¥

- = - ٍ  ٍ . 

Therefore 

                       l i m ( )n
n

E E E E

h d g d h d g dm m m m
® ¥

- = - ٍ  ٍ  ٍ  ٍ . 

 So                                                                    

                     l i m
n

n

E E E E

h d g d h d g dm m m m
® ¥

- = - ٍ  ٍ  ٍ  ٍ , 

and  hence            

                              l i m n
n

E E

g d g dm m
® ¥

= ٍ  ٍ .  

  Monotone  Convergence Theorem allows to prove linearity of the Lebesgue integral 

for non-negative  measurable  functions . 

Theorem  7.1.5  

  Let  ( , , )X F m  be  a measure  space and  E Fخ  . Let  f  be  a non-negative  

bounded  measurable   function  on  E  and  let a  be  a  positive  real  constant .   

Then  
   

                                  

E E

f d f da m a m= ٍ  ٍ .                   

Proof 

 Let  f  be  a non-negative  bounded  measurable  function  on  E . There exists  a 

sequence  of  non-negative  simple  functions  ( )
n

s   such that    

                                  
n

fs Z   (  Theorem 7.1.1  ) . 
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It  follows  from  Monotone  Convergence  Theorem  that   
           

                                 l i m
n

n
E E

f d dsm m
® ¥

= ٍ  ٍ . 

Choose a  positive sequence  ( )na  of  positive real constants and  a  is a  positive  

real  constant  such that na aZ .     

It  follows  that   
n n

fsa aZ . 

Again,  Monotone  Convergence  Theorem  gives  us   

                     l i m
n n

n
E E

f d dsa m a m
® ¥

= ٍ  ٍ  

                                                l i m ( )
n n

n
E

dsa m
® ¥

=  ٍ  

                                            l i m l i m( ) ( )
n n

n n
E

dsa m
® ¥ ® ¥

=  ٍ  

                                            

E

f da m=  ٍ .   

Theorem  7.1.6  

  Let  ( , , )X F m  be  a measure  space and  E Fخ .  Let  ,f g  be  non-negative  

measurable  functions  on  E .  Then 
  

                          ( )

E E E

f g d f d g dm m m+ += ٍ  ٍ  ٍ .                  

Proof 

 Let  ,f g  be  non-negative  measurable   functions  on  E  . There exist  two  

sequences  of  non-negative  simple  functions  ( )
n

s  and  ( )nt   such that 

n
fs Z   and  n gt Z   ( Theorem 7.1.1 ) . 

It  follows  from  Monotone  Convergence  Theorem  that  

                                       l i m
n

n
E E

f d dsm m
® ¥

= ٍ  ٍ , 

and 

                                     l i m n
n

E E

g d dtm m
® ¥

= ٍ  ٍ . 



 141 

We have  nn
f gs t+ +Z . 

It  follows  from  Monotone  Convergence  Theorem  that         

          ( ) l i m )( nn
n

E E

f g d ds tm m
® ¥

+ += ٍ  ٍ  

                                           l i m ( )nn
n

E E

d ds tm m
® ¥

= + ٍ  ٍ  

                                           l i m l i m nn
n n

E E

d ds tm m
® ¥ ® ¥

= + ٍ  ٍ .         

Thus 

                        ( )

E E E

f g d f d g dm m m+ += ٍ  ٍ  ٍ . 

Remark  7.1.2 

 Let  ( , , )X F m  be  a measure  space  and  
1 2
, , . . .E E Fخ   with   

( )
i j

E E i j= ئ ا¹ .  Let  f be  a  bounded  measurable  function .  

Then 

                              

1 1

,n

k k
k k

E E

f fc c ¥

= =

+ +

Z
U U

  

and 

                               

1 1

.n

k k
k k

E E

f fc c ¥

= =

- -

Z
U U

                 

Theorem  7.1.7  

 Let  ( , , )X F m  be  a measure  space  and  
1 2
, , . . .E E Fخ   with   

( )
i j

E E i j= ئ ا¹ .  Let  f  be  a bounded  measurable  function .  

Then 

                                                                                                

1

1

kk

k

E k
E

f d f dm m

¥

=

¥

=

= ٍ ه  ٍ
U

. 
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Proof 

  We  have     

             

1

1

k
k

k
k

EX
E

f d f dm c m
¥

¥

=

=

= ٍ  ٍ
U

U

    

                                     

1 1

( ) ( )
k k

k k

E E

X X

f d f dc m c m¥ ¥

= =

+ -
= - ٍ  ٍ

U U
.  

By Remark  7.1.2 ,  we have 

            

1 1

n

k k
k k

E E

f fc c ¥

= =

+ +

Z
U U

   and       

1 1

.n

k k
k k

E E

f fc c ¥

= =

- -

Z
U U

                   

It follows from  Monotone Convergence Theorem  that   

11

1

l i m l i m( ) ( )n n

kk
kk

En nE

k
k

X X
E

f d f d f dm c m c m

==¥

® ¥ ® ¥

+ -

=

= - ٍ  ٍ  ٍ

U

UU
 

 

                         

1 1

l i m ( ) ( )( )n n

k k
k k

E En
X X

f d f dc m c m

= =

® ¥

+ -
= - ٍ  ٍ

U U
                             

                          

1

l i m n

k
k

En
X

f dc m

=

® ¥

=  ٍ
U

               

                          

1

l i m

n

kk

n

E

f d m

=

® ¥

=  ٍ
U

                                  

                           
1

l i m

k

n

n

k
E

f d m
® ¥ =

= ه  ٍ     (  Theorem  6.3.9 )                                      

                          
1

k

k
E

f d m
¥

=

= ه  ٍ .         
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Theorem  7.1.8  (  Fatous  Lemma  )  

  Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ( )
n

f   be  a sequence  

of  non-negative  measurable  functions defined  on  E . Then 
 

 

                           l i m l i m
n n

E E

f d f dm m£ ٍ  ٍ .                                                  

Proof 
 
We have  

                       
( ) ( )lim lim inf  ( i )( )

n kn k n

f x f x


  

Set     ( ) ( )inf
n kk n

g x f x


 . 

Then   
1

( ) ( )
n n

g x g x


    and   so     l i m
n n

g fZ . 

By Monotone Convergence Theorem , we have 

                              l i m l i m  ( i i )
n

n n

E E

g d f dm m
® ¥

®= ٍ  ٍ        

Since   ( ) ( )0
n k

g x f x  , it follows that 

                                 
n k

E E

g d f dm m£ ٍ  ٍ   ( Lemma  6.2.2 ) .      

Taking  an infimum over  k n , we get 

                     i n f   ( i i i )
n k

k nE E

g d f dm m
³

®£ ٍ  ٍ . 

We  have 

                       l i m l i m i n f( )
n

n k
k nE E

f d f dm m
³

® ¥

= ٍ  ٍ   (  by ( i ) )           

                                      l i m
n

n

E

g d m
® ¥

³  ٍ      (  by ( iii ) )   

                                                      l i m
n

E

f d m=  ٍ (  by ( ii ) ) . 

Thus   

                 l i m l i m
n n

E E

f d f dm m£ ٍ  ٍ .    
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Example 7.1.1 

   Let  E = ،  and define the sequence  ( )nf  defined on  E  by      

                                       

.

1 [ , 1]
( )

0 o t h e r w i s e
n

x n n
f x

ى+ =ïïïخ ي
ïïïî

 

  That is,  
[ 1 ],

n
n n

f c
+

= . 

 

 Then     
[ 1 ],n n n

f d m d mc
+

= ٍ  ٍ
،،

 

                                    ( [ , 1] )m n n +=  

 

                                    1= . 

Therefore  

                               l i m 1
n

f d m = ٍ
،

. 

We have   l i m ( ) 0n
n

f x
® ¥

= .  It follows  that 

                         l i m ( ) l i m ( ) 0n n
n

f x f x
® ¥

= = , 

and hence l i m 0
n

f d m = ٍ
،

.                                   

Thus   l i m l i m
n n

f d f dm m£ ٍ  ٍ
،،

. 

Corollary  7.1.9  

  Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ( )
n

f   be  a sequence  

of  non-negative  measurable  functions defined  on  E  such  that 
n

f f® .  If  

there exist a positive  constant  M  such that 
n

E

f d Mm £ ٍ   for all  n , then 

 

                                         

E

f d Mm £ ٍ .   
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Proof 

 We have 

            l i m l i m
n n

E E

f d f dm m£ ٍ  ٍ   (  Fatous  Lemma  ) . 

Since 
n

E

f d Mm £ ٍ  for all n  , it follows that    l i m
n

E

f d Mm £ ٍ , 

 

and  hence  l i m
n

E

f d Mm £ ٍ .              

Since  
n

f f® , so we have  l i m l i m
n n

f f f= = .       

                      

Hence  

E

f d Mm £ ٍ . 

 

Theorem  7.1.10  (  Lebesgue  Dominated Convergence Theorem  ) 

   Let  ( , , )X F m  be  a measure  space  and  E Fخ .  Let  ( )nf   be  a sequence  

of  measurable  functions defined  on  E  such that  
n

f f®  .  Let  g  be  a non-

negative  measurable   function  such that  
n

f g£    for all   n   and  

E

g d m ¥< ٍ .  Then 

                               l i m
n

n
E E

f d f dm m
® ¥

= ٍ  ٍ . 

Proof 

  Let  
n

f g£ . Then 

                                ,ng f g- £ £  

and so  0ng f- ³     and    0nf g+ ³ .   

Therefore 

                          ng f g f- ® -    

and  

                          nf g f g+ +® .  
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So 

                   ( ) l i m ( )n
n

E E

g f d g f dm m
® ¥

- = - ٍ  ٍ   

                                                   l i m ( )n

E

g f d m= - ٍ  

Since ng f-  are non-negative  measurable  functions , so  

        ( ) l i m ( )n

E E

g f d g f dm m- £ - ٍ  ٍ   ( Fatous  Lemma  ) 

                                        l i m n

E E

g d f dm m-=  ٍ  ٍ . 

So we have 

                    l i m n

E E E E

g d f d g d f dm m m m-- £ ٍ  ٍ  ٍ  ٍ ,      

and hence  

                          l i m  ( i )n

E E

f d f dm m®³ ٍ  ٍ  

 Similarly,  Since   nf g+   are non-negative  measurable  functions, so 

                   ( ) l i m ( )n
n

E E

g f d g f dm m
® ¥

+ += ٍ  ٍ                    

                                                    l i m ( )n

E

g f d m+=  ٍ  

                                                    l i m ( )n

E

g f d m+£  ٍ .                                             

So 

            l i m n

E E E E

g d f d g d f dm m m m+ +£ ٍ  ٍ  ٍ  ٍ ,    
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and hence  

                          l i m  ( i i )n

E E

f d f dm m®£ ٍ  ٍ  

It follows from  ( i )  and   ( ii )  that 

                           

        l i m l i mn n

E E E E

f d f d f d f dm m m m£ £ £ ٍ  ٍ  ٍ  ٍ . 

Therefore 

                         l i m l i mn n

E E E

f d f d f dm m m= = ٍ  ٍ  ٍ . 

Hence 

                                 l i m
n

n
E E

f d f dm m
® ¥

= ٍ  ٍ . 

Example 7.1.2 

 Let  [0,1]E =    and    

2 2

,( ) ( )
n

n x
f x n x n x Ee

-

= خ ¥خ . 

We will find the limit of the integral  

                                

2 21

0

l i m
n

n x
n x d xe

-

® ¥
 ٍ , 

by using the Lebesgue Dominated Convergence Theorem . 
               
We have 

                         

2 2

( )l i m l i m
nn n

n x
f x n x e

-

® ¥ ® ¥
=                    

                                                  0= .                                        

Then 

                          

2 2 2 2

1n x n x
n x n x

x

e e
- -

=  
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1

x

£ . 

Thus 

 

                      

2 2

1n x
n x

x

e
-

£      for all  n ,                 

  

where   

                                     

1

0

1 d x
x

¥< ٍ . 

 

The Lebesgue Dominated Convergence  Theorem  7.1.10  applies and  

 

                   

2 21 1

0 0

l i m 0
n

n x
n x d x d xe

-

® ¥
= ٍ  ٍ  

 

        0= . 

 

7.2  pL   Spaces 

 We introduce  pL  spaces  for  every  p   ( 1 p£ ¥< ).  An  important  application 

of  Lebesgue intergation  is  pL and  these spaces play important roles in functional 

analysis and its applications . 

Definition  7.2.1  

  Let  ( , , )X F m  be  a measure  space and  E Fخ .  Let  f  be  a measurable  

function on  E  and  1 p£ ¥< . We  define   ( , , )
p

E FL    by  
 

                    ( , , ) :{ }
pp

E

E F f f dL     .  

   We  shall  give  some  properties  of   ( , , )
p

E FL   in  the  next  results . 

Lemma  7.2.1 

  Let  ( , , )
p

f E FL   and  let  a   be  a non-zero  constant . Then 

                                     ( , , )
p

f E FL  .  
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Proof 

 Let  ( , , )
p

f E FL  . Then 

                                   
p

E

f d    . 

 We  have  f  is a measurable  function  ( Theorem 5. 12  ) . 

Then 

                         
p p p

E E

f d f d              

                 
p p

E

f d    

                                                        .                                                                  

Hence  ( , , )
p

f E FL  . 

Lemma  7.2.2 

  Let  , ( , , )
p

f g E FL  . Then   ( , , )
p

f g E FL   . 

Proof  

 Let  , ( , , )
p

f g E FL  . Then    

                        
p

E

f d         and     
p

E

g d    .    

 We  have   f g  is a measurable  function  ( Theorem 5.14  ) . 

Then 

                    ( )
p p

E E

f g d f g d             

                                   2 ( )
p p p

E

f g d    

                                         2 ( )
p p p

E E

f d g d          

                                                       .                       

Hence   ( , , )
p

f g E FL   . 



 150 

Corollary  7.2.3 

  Let  , ( , , )
p

f g E FL   and  let  ,a b  be  non-zero  constants . Then 

                                           ( , , )
p

f g E FL    .  

Proof  

  The  proof  follows  from  Lemma 7.2.1  and  Lemma 7.2.2 . 

Remark  7.2.1 

 Let  1a =   and  1b = -   in  Corollary 7.2 .3 .  Then  

                           ( , , )
p

f g E FL   . 

Theorem  7.2.4 

 Let  ( , , )
p

f E FL    and   g f . Then  ( , , )
p

g E FL  . 

Proof  

 Let  ( , , )
p

f E FL    and   g f  . Then  

               ( ) ( ) ( ){ : } { : }x g x c x c g x f x     

                               ( ){ : }x c f x F   .                   

Thus  g   is  a  measurable  function .                                                                                                                     

Since  g f ,  so 
p p

g f  for  all  1 p£ ¥< . 

Then 

                         
p p

E E

g d f d   , 

and  so 

                            
p p

E E

g d f d     .   

Hence     
p

E

g d   . 

Thus   ( , , )
p

g E FL  . 
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Lemma  7.2.5 

 Let  ( , , )
p

f E FL   . Then   ( , , )
p

f E FL  . 

Proof 

 Since  f  is  a  measurable  function ,  so  f   is  measurable  ( Lemma 5.18 ). 

Also, since  
p

f f   ( 1 p£ ¥<  ) ,  it  follows  that 

                          
p

E E

f d f d     .  

Hence 

                              

E

f d   . 

Thus ( , , )
p

f E FL  . 

  In  next  two  theorems , we  take [0,1]E    and   2p  . 

Theorem  7.2.6  [ 4 ]      

  Let  2, [0,1]f g L . Then    

         
2 2

1 1

1 1 1

0 0 0

2 2

.( ) ( )f g f gd d d      

Theorem  7.2.7   

  Let  2 [0,1]f L . Then 

                           

1

1 1 2

0 0

2

( )f fd d   . 

Proof 

  Let  2, [0,1]f g L . Then    

                
2 2

1 1

1 1 1

0 0 0

2 2

( ) ( )f g f gd d d      

                                                                                             (  Theorem  7.2.6  ) . 
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Taking   ( ) 1g x    for all   x , we get 

                                 
2

1

1 1

0 0

2

.( )f fd d    

Since    

1 1

0 0

f fd d    (  Proposition 6.3.7 ) , it follows that    

                                

1

1 1 2

0 0

2

.( )f fd d    
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 الخلاصة

 في هذه الرسالة سوف ندرس ونستعرض المفاهيم الاتية :

لفئات الفئات المقاسة  و مجموعة امقياس لباق للفئات و مجموعة   

مجموعة الدوال المقاسة  و تكامل لباق . و المقاسة     

سوف نقوم بعرض بعضا من خواص المفاهيم السابقة . وايضا سوف    

بعض الحقائق الاساسية والارتباطات المختلفة والامثلة المتعلقة  تعرضنس

 و تطبيقات لتكامل لباق.
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