University of Benghazi
Faculty of Science

Department of Mathematics

The Number of Subgroups of a Finite
Abelian Group

Submitted in partial fulfillment of the requirements for the

degree of master of science in mathematics
By
Wafa Omar Ali

Supervisor
Dr. Mohamed Al-Awami

Benghazi -Libya
(2012-2013)



Dedication

This work is dedicated to my family, who never cease to provide

me tremendous support and encouragement.



Acknowledgement

First [ want to express my sincere gratitude to Allah, whose great help
was the main driving force behind my ability and determination to

accomplish this work.

[ would also like to thank my parents, for their unceasing
encouragement, patience, and great support, which was great help

during the completion of this work.

[ am grateful to my supervisor, Dr. Mohamed AL-Awami whose
guidance enabled me to develop the understanding of the subject. I also
wish to express my gratitude and appreciation to my friend Nagla
Buzghia, an engineering specialist, who was instrumental in helping

me to programming software by MATLAB language.

Special thanks are also owed to the Head of the Department of
Mathematics, Dr. Shaban Traina, and all the staff of the Mathematics
Department, Benghazi University for their help during the preceding

years of the study.



Contents

Subject
ADSEACE Lo e
INrOAUCTION ....etii e
Chapter One
Preliminary
Chapter Two

Finite Abelian Groups
2.1 The structure of Abelian groups ...........ccooiiiiiiiiiiiiiii,
2.2 Automorphisms of cyclic groups ...........coovviviiiiiiiinnnnn.n

Chapter Three

Counting Subgroups of Finite Abelian Groups

3.1 The total number of subgroups of a finite Abelian group whose

orders below thirty ...,
3.2 The total number of subgroups of a finite Abelian p-group ......
3.3 The number of cyclic subgroups of a finite Abelian group ......

3.3.1 The number of cyclic subgroups of Z, X Z,, X X Zy,_  .......

3.3.2 The number of cyclic subgroups of Z, X Z,, X -+ X Z,

12

17

21

25

33

33

36



Chapter Four

Combinatorial Problems On The Subgroup Lattices of Finite Abelian Groups

4.1 Fundamental group lattices .............ccoiiiiiiiiiiiii

4.2 The number of subgroups of a finite Abelian p-group ...........

4.3 The number of cyclic subgroups of a finite Abelian p- group....

APPENAIX ...t

Conclusions and future Work ...

RETOIENCES ... e

...........................................................

39

43

53
58

59

61



Abstract

The goal of this thesis is to determine the number of subgroups of a
finite Abelian group G. Since a finite Abelian group is a direct product of
Abelian p-groups, the counting problem is reduced to p-groups. More
precisely, suppose that p{lp? ...p,tk is the decomposition of |G| as a
product of prime factors and let G, X G, X--XG, be the
corresponding primary decomposition of G. In that case, N(G) =

i-‘:lN(Gps), where N(G) denotes the number subgroups of the group
G. Three programs by MATLAB language are introduced, as a

convenient method for counting some different subgroup types of a finite

Abelian p-group.



Introduction

One of the most important problems pertaining to the Abelian group
theory is determining the number of subgroups of finite Abelian group.
This topic has been gaining interest of the scientific community since the
first half of the 20t century. However, as a finite Abelian group is a
direct product of Abelian p-groups, the above counting problem is
reduced to p-groups. Mathematical expressionsFormulas that give the
number of subgroups of type u of a given finite p-group of type A were
first published by Delsarte, Djubjuk, and Yeh in 1948. An excellent
survey on this subject, providing links to symmetric functions was
written by Butler in 1994. Another way to determine the total number of
subgroups of finite Abelian p-groups is presented in [3] and is applied
for rank two p-groups , as well as for elementary Abelian p-groups.
Tarnauceanu gave slightly different method for counting the number of
all subgroups of several particular finite Abelian p- groups, based on
properties of certain matrices attached to the invariant factors

decomposition of an Abelian group G, i.e. G = Z4, X ... X Zg,, Where
did, ...dx = |G|, dy|dy]| ... | dy. Finally in 2012, L.Téth developed
explicit formula for determing the number of all cyclic subgroups of a

direct product of several finite cyclic groups.

In this thesis we will solve one of the open problems of [14] by
introducing three programs by MATLAB language to count the number

of all subgroups of a finite Abelian p-group.



The thesis consists of four chapters, organized as follows:

In chapter one, all basic definitions and properties which are mostly

used in this thesis are discussed.

Chapter two provides background on the structure of finite Abelian

groups of order n.

In Chapter three, different methods for computing the number of

subgroups of finite Abelian groups are presented.

Finally, chapter four provides an application of the concept of the
fundamental group lattice in counting some different t subgroup types of

finite Abelian groups.



Chapter One

Preliminary

In this chapter, some of the basic concepts of finite group theory are

introduced, we recall also the basic lattice theoretic concepts.

Definition 1.1 [10]

A nonempty set G is a group, if to every pair (x, y) € G X G an element
xy € G 1s assigned, the product of x and y, satisfying the following

axioms:

Associativity: x(yz) = (xy)z forall x,y, z € G.

Existence of an identity: There exists an element e € G such that
ex =xe = x forall x € G.

Existence of inverses: For every x € G there exists an element x™1 € G
suchthat xx™! = e = x1x.

A group G is Abelian if, in addition, the following holds:

Commutativity: xy = yx forall x,y € G.
Examples 1.1

i. The set Z, = {[0], [1], [2], ... , [n— 1]} of congruence classes
modulo n forms finite Abelian group with respect to addition.

Ii. The set U(n) of all positive integers smaller than n, for eachn > 1,
and relatively prime to n is finite Abelian group under multiplication
modulo n. For example, U(10) = {[1], [3], [7], [9]}.



Definition 1.2 [10]°

A group G is finite if G contains only finitely many elements. In this

case, the number of elements is called the order of G,denoted by |G|.

Definition 1.3 [13]

A subgroup H of a group G is a non-empty subset of G, which forms a

group under the operation of G, and we then write H < G.

Definition 1.4 [18]
I. Asubgroup H of a group G is called proper if H # G, and is denoted

by H < G.

ii. The singleton set {e} forms a subgroup of all groups and is called
the trivial subgroup.

iii. A subgroup H of a group G is called maximal in G if it is a proper
subgroup of G, and whenever a subgroup M exists satisfying
H<M <G,theneitherM =HorM =G.

Proposition 1.1 [10]

A nonempty finite subset H of G is a subgroup if for all x,y € H also
xyisinH.
Remark.

Any intersection of subgroups of a group G is also a subgroup of G.

Definition 1.5 [18]

A group G is called cyclic group if there is an element g in G such that
G ={g" | n € Z}. Element g is called a generator of G, and the cyclic

group generated by g is (g).



Example 1.2

The group Z,, under addition modulo n is cyclic. If n > 1, then both 1

and n — 1 are generators, even though there may be others.
Definition 1.6 [9]

The order o(g) of an element g in a group G is the smallest positive

integer n such that g™ = e.
Remark.
I. Every cyclic group is Abelian.
ii. If the cyclic subgroup (g) of G is finite, then o(g) = [{g)I.
Theorem 1.1 [6]
A subgroup of a cyclic group is cyclic.
Theorem 1.2 [13]

A group G # {e}, with no nontrivial subgroup is a finite cyclic group of

prime order.
Theorem 1.3 [19]

A cyclic group of order n has a unique subgroup of order d, for each

positive divisor d of n.
Remark.

A finite group that contains exactly one maximal subgroup is cyclic of

prime power order. The converse is also true.
Theorem 1.4 [8]

If d is a positive divisor of n, the number of elements of order d in a

cyclic group of order n is ¢(d).

In the statement above, ¢ is the Euler ¢-function, and it is defined for



positive integer n by ¢(n) = m, where m is the number of positive

integers less than or equal to n that are relatively prime to n.
Definition 1.7 [10]

Let H be a subgroup of G and x € G. The subset of G consisting of the
product Hx = {hx | h € H} and xH = {xh | h € H} is respectively a

right coset, and a left coset of H in G.

The number of distinct right cosets of H in G is called the index of H in
G, and is denoted by |G: H]|.

Theorem 1.5 (Lagrange’s Theorem) [10]

Let H be a subgroup of the finite group G. Then |G| = |H||G: H|. In

particular, the integers |H| and |G: H| are divisors of |G].
Remark.

If G is a finite Abelian group, then the converse of Lagrange's theorem

is true for G.
Corollary 1.1 [10]

For every finite group G and every g € G, the order of g divides |G]|.
Corollary 1.2 [13]

A cyclic group of prime order contains no nontrivial subgroups.

This is the converse of Theorem 1.2, and follows immediately from
Theorem 1.5.

Definition 1.8 [10]

Let G and G be groups. A mapping ¢: G = G is a homomorphism from
GtoG, if

(xy)? = x%y? forall x,y €G.



Let ¢ be a homomorphism from G to G. We set

Kerp:={x€eG|x? =ez}, Ime:=G?.
We refer to Ker ¢ as the kernel of ¢ and Im ¢ as the image of ¢.The
homomorphism ¢ is an epimorphism if Im ¢ = G, an endomorphism if
G = G. Moreover, it is a monomorphism if ¢ injective, an isomorphism
if @ bijective, and an automorphism if ¢ is a bijective endomorphism.

If ¢ is an isomorphism, then G is said to be isomorphic to G;in which

case we may write G = G.
Theorem 1.6 (The Structure of Cyclic Groups) [10]

Let G be a cyclic group with generator g. If G has finite order n, then G
Is isomorphic to (Z,, +,,).
Definition 1.9 [7]

A group G is cocyclic if G = Zx, where p is a prime number and
k=1,2,.. 0.
Definition 1.10 [10]

A subgroup H of G that satisfies Hx = xH for all x € G is a normal

subgroup of G, which is denoted by H < G.
It should be noted here that all subgroups of Abelian groups are normal.
Proposition 1.2 (Product Formula) [19]

If H and K are subgroups of a finite group G, then |HK||H N K| =
|H||K| , where HK = {hk : h € H and k € K}.
Proposition 1.3 [19]

I. If H and K are subgroups of a group G, and if one of them is a

normal subgroup, then HK is a subgroup of G, and HK = KH.



ii. If both H and K are normal subgroups of a group G, then HK is a

normal subgroup.

Definition 1.11 [10]

Let G4, ...,G,, be groups. The Cartesian product of the sets G;

n

.><Gi =Glx ---XGn:{(gli--wgn)lgi EGL'}’

1=1

IS a group with respect to componentwise multiplication

(g1, s Gn)hy s oo hy) =(gahy s o Gnha).
This group is the external direct product of the groups G4, ... ,Gj,.

Theorem 1.7 [6]

The group Z,,, X Z,, is cyclic and is isomorphic to Z,,,, if and only if m

and n are relatively prime.

Corollary 1.3 [6]

The group -Xlzi is cyclic and isomorphic to Z,, ., if and only if the
1=
numbers m; for i = 1, n are such that the gcd of any two of them is 1.

Theorem 1.8 [8]

The order of an element in a direct product of a finite number of finite
groups is the least common multiple of the orders of the components of

the element. This can be expressed in the following form:

0(g1 -+» gn) =lecm(0(g1), .., 0(gn)).
Example 1.3

We determine the number of elements of order 15 in Zsg X Zg,. Let

(a,b) € Zs X Zgg such that o(a, b)=Icm (0(a),0(b))=15.



Clearly this requires that either o(a) =1 and o(b) = 15, or o(a) = 3
and o(b) = 5,0ro0(a) =3 and o(b) = 15.

Case 1 o(a) =1 and o(b) = 15. According to Theorem 1.4, we have
¢(1) =1 choices for a and ¢(15) =8 choices for b. This gives

1 X 8 = 8 elements of order 15.

Case 2 o(a) = 3 and o(b) = 5. In this case there are ¢(3) = 2 choice

for a and ¢(5) = 4 choices for b. Consequently, there are 2 x4 =8

elements of order 15.

Case 30(a) = 3 and o(b) = 15. In this case there are ¢(3) = 2 choices

for a and ¢(15) = 8 choices for b. This gives 2 x 8 = 16 elements of
order 15. Thus, Z3¢ X Zgy has 8 + 8 + 16 = 32 elements of order 15.

Theorem 1.9 [13]

Let G be a group with two normal subgroups H and K,with the
conditionsthat H N K = {e}and HK = G,then G = H X K.

Whereby HK is referred to as the internal direct product of H and K.
Definition 1.12 [19]

If p is a prime, then a finite group G is called a p-group if |G| = p™ for

some n > 0.
Theorem 1.10 [19]

If p is a prime, then every group G of order p? is Abelian.
Definition 1.13 [9]

If p is a prime and m is a positive integer such that pm||G| and

p™*1 4 |G|, then a “subgroup of G that has order p™ is called a Sylow



p-subgroup of G.

Remark.

For a finite Abelian group G the Sylow p-subgroups are called the p-

primary components of G.
Theorem 1.11 (Cauchy's Theorem) [8]

Let G be a finite Abelian group and let p be a prime that divides the
order of G. Then G has an element of order p.
Definition 1.14 [6]

A group G is decomposable if it is isomorphic to a direct product of two

proper nontrivial subgroups. Otherwise G is indecomposable.

Theorem 1.12 [6]

The finite indecomposable Abelian groups are exactly the cyclic groups
with order a power of a prime.
Definition 1.15 [12]

A partially ordered set or poset is a set P together with a binary relation
< such that the following conditions are satisfied for all x, y, z € P:
I. Reflexivity: x < x.
i. Antisymmetry: x < yandy < x imply that x = y.

iii. Transitivity: x <yandy < zimply that x < z.

Example 1.4

If G is any finite group, the subset L(G) of G consisting of all
subgroups of G is partially ordered set with respect to set inclusion, and

is called the subgroup lattice of G.



Definition 1.16 [12]

Let H be a subset of a poset P and x € P. The element x is an upper
bound of H if h < x for all h € H. An upper bound x of H is the least
upper bound (supremum) of H if, for any upper bound y of H, we have
x < y. This will be denoted as x =sup H or x = VH.

The concepts of lower bound and greatest lower bound (infimum) are

similarly defined; whereby the latter is denoted by inf H or AH.

Remark.

In the following text, the notation x A y =inf {x,y}, x Vy =sup {x,y}

will be adopted and A will be referred to as the meet and Vv as the join.

Definition 1.17 [4]
Let (L, <) be a non-empty ordered set.

I. IfxvyandxAyexistforall x,y € L, then L is called a lattice.
ii. If VH and AH exist for all H € L, then L is called a complete lattice.

Examples 1.5

I. Every finite lattice is complete.

ii. Let G be a group. The set L(G) = {H | H < G} forms a complete
lattice, any subset of £(G) has a greatest lower bound in £(G) (the
intersection of all its elements) and a least upper bound in £L(G) (the

join of all its elements).

Remark.

The lattice £(G) is called the normal subgroup lattice of G and its
binary operations Vv, A are defined by HAK = HNK, HV K = HK for
all H, K € L(G).



Definition 1.18 [12]

Let P be a poset. In that case, two elements x, y in P are comparable if
x <yory<x.Asubset H of P is a chain if any two elements in H are
comparable. Similarly, H is an antichain if no two different elements of

H are comparable.
Definition 1.19 [2]

If P, and P, are two posets and « is a map from P; to P,, then we say «
is order preserving if a(a) < a(b) holds in P, whenever a < b holds in

Py
Theorem 1.13 [2]

Two lattices L, and L, are isomorphic iff there is a bijection a from

L,to L, such that both a and a1 are order preserving.
Definition 1.20 [4]

Let L be a lattice and @ = M < L. Then M is called a sublattice of L if
x,y €M impliesxVyeMandx Ay € M.

Examples 1.6

I. Every chain in a lattice is a sublattice.

1. The normal subgroup lattice £(G) is sublattice of subgroup lattice
L(G) ofagroup G.

iii. Forx, y e L,if x <y, theinterval [x,y] ={z€Llx<z<y}isa

sublattice of a lattice L.

Theorem 1.14 [12]

Every finite lattice is isomorphic to a sublattice of the subgroup lattice

of some finite group.



Definition 1.21 [12]

A lattice L is called modular if for all x, y, z € L the modular law
holds:

Ifx <z then(xVy)Az=xV (yA2z).
Theorem 1.15 [12]

The lattice of normal subgroups of an arbitrary group and the subgroup

lattice of an Abelian group are modular.



Chapter Two

Finite Abelian Groups

In this chapter, a complete classification of finite Abelian groups is
given. In essence, all finite Abelian groups are built from cyclic groups,
which may have prime power orders, or orders n, ,..., n, where n; [n;,,
for all i = 1, . In addition, also in this chapter, the automorphism groups

of cyclic groups as examples of Abelian groups will also be determined.
2.1 The Structure of Abelian Groups

Theorem 2.1.1 [10]

Every finite Abelian group is a direct product of cyclic groups. Thus,

for every finite Abelian group G
G =Ly, XLy, X ... X Ly_, Where

i. n; =2forallj €{1,2,..,7} and,

. ninjpq, for1t <i<r-—1.

The n; are referred to as the invariant factors of G, and the rank of G is

defined as the number of invariant factors.

If |G| = n, n,..n,, and m is a divisor of |G|, then there exist divisors m;
of n; (i=1,r) such that m=m,..m,. Hence Z, X ..XZ,
isomorphic to a subgroup of order m of G. This implies the corollary

given below.



Corollary 2.1.1 [10]

Let G be an Abelian group and m a divisor of |G|. Then G contains a

subgroup of order m.
Remark.

Theorem 2.1.1 gives an effective way of listing all finite Abelian
groups of order n. It stipulates that all finite sequence of integers
ny, n,, ... ,N,- Must be found, such that
. ny=2forallje(l,2, ..,7}
il. n; |ni+1, 1<i<<r-—1, and

i“ n1n2 Tlr =n

It should be note here that finitely generated Abelian groups have a

structure similar to that of finite Abelian groups. They are a direct

product of finite Abelian groups and groups isomorphic to Z.
Definition 2.1.1 [9]

If G is a finite Abelian group of order divisible by the prime p, then G,
is the set of all elements of G that have orders that are powers of p.
Example 2.1.1

Consider the additive group G = Z¢. The order of Z¢ is 6, which is
divisible by the prime numbers 2 and 3. In this group:

Each of [1], and [5] has order 6.
Each of [2] and [4] has order 3.
[3] has order 2.
[0] has order 1.

Forp = 2 or p = 3, the subgroups G, are given by



Theorem 2.1.2 [9]

If G is a finite Abelian group and p is a prime, such that p||G|, then G,
is a Sylow p-subgroup.
Theorem 2.1.3 (Primary Decomposition Theorem) [5]

Let ¢ be an Abelian group of order n > 1 and let the unique

factorization of n into distinct prime powers be given as

— a1, a2 ak
Tl—pl pz pk .

Then

k
i. G =XGp, where |Gy,| = p;", foralli=1k.

ii. Foreach G, € {G,,.Gp,, --

Gy with [G,| = p<,
Gy = Zpﬁl X ZPBZ X ... X Zp/;t
Wlthl Sﬁl Sﬁz S S,Bt and ﬁ1+ﬁ2++ﬁt = Q.
It should be noted here that the decomposition in (i) and (ii) is unique.

The last theorem vields the following conclusions:

I. Every finite Abelian group G can be expressed as a direct product of
Its p-primary components.
ii. The number of (distinct, i.e. nonisomorphic) Abelian groups of

order p® is equal the number of partitions of a.

In particular, if n = p;p;? ... p.¥, and g, is the number of partitions of

a;, then the number of nonisomorphic Abelian groups of order n is



A(N) = 419z - Q-
Example 2.1.2

If n = 1800 = 233252, then there are exactly 12 Abelian groups of

this order, as presented in the table below:

Order of p* Partitions of « Abelian groups
23 3, 1,2, 1,1,1 | Zg, Z,XZy, 7, X7Zy X7,
32 2, 1,1 Ly, Ty X Zs
52 2, 1,1 Zys, Zs X Ts

All Abelian groups of order 1800 can be obtained by taking one Abelian
group from each of the three lists above and taking their direct product.
Doing this in all possible combinations yields ways gives all

isomorphism types:

Lg X g X Zys Zip X Zpy X Lz X Lz X Ziys
Zg X Lg X Lg X Zs Zig X Ug X Ly X Ty X Lg X Ls
Zg X Ly X Ly X Zyps g X Uiy X Ly X Tg X Lips
Zg X Ug X Ly X Ls X Zs Ly X Uiy X Ly X Tg X Lg X Zg
Ly X Uiy X Lo X ZLys Zg X Uiy X Ly X Ly X Ly X Zips
Zo X Uy X Lg X Lg X Zs Zig X Uiy X Ly X Ly X Ty X Lig X L

Every Abelian group of order 1800 is isomorphic to only one of the

previous groups and no two of these groups are isomorphic.

In order to find the Abelian group G that is isomorphic to Z, X Z, X
Z, X 7z X L3 X Zys, We first must find the invariant factors n; satisfying

the divisibility condition n;|n;,, by regrouping, as follows:




=
Il
()
=
I
w
=
Il
ul

2 1
2 3 1
2 3 25

Hence, ny =2.1.1, n, =2.3.1, n3 =2.3.25 and G =7Z, X Zg X

Zy50-
Theorem 2.1.4 ( Fundamental Theorem of Finite Abelian Groups )

Every finite Abelian group G is a direct product of cyclic groups of the

form

Zpllll X Zp;lz X ... X Zp:k

where the p;'s need not be distinct primes and prime powers are uniquely
determined by G. [18]

Example 2.1.3

Determine the isomorphism type of the Abelian group U (40).
Solution:

SinceU(40) ={1,3,7,9,11,13,17,19, 21, 23, 27, 29, 31, 33, 37,

39} is of order 16, it isomorphic to one of the following
Ty X Ty X Ty X T,
Z, X Ly X T,
Ty X Ty
Z, X Lg

216.



To identify the solution, we must first determine the orders of all

elements of Abelian group U(40) :

Element| 13| 79|11

13

17

19

21

23

27

29

31

33

37

39

Order 11442 2

4

4

Based the table of orders, we can instantly rule out all but Z, X Z, and

Z, X I, X Z, as possibilities. Notice that in Z, X Z,, the subgroups

Z, % {0} and {0} x Z, have intersection {(0, 0)}. However, if we list all
the cyclic subgroups of order 4 in U(40), namely (3) = {3,9, 27, 1},
(7) ={7,9, 23,1}, (13) ={13,9,37,1}, and (17) = {17, 9, 33, 1} it

becomes apparent that none intersect trivially. Thus, U(40) = Z, X Z, X

Z,.

2.2 Automorphisms of Cyclic Groups [10]

As examples of Abelian groups, in this s section, the automorphism

groups of cyclic groups are determined.

Let G be a group and let Aut(G) denote the set of all automrphisms of G.

This set forms a group under the operation of function composition.

For an Abelian group G and every k € Z the mapping

a,: G — G such that x — x*

is an endomorphism with

Ker a;, = {x € G|x* = e},

Thus, Ker a,, contains all elements of G, whose orders divide k.




Theorem 2.2.1

a;, 1s an automorphism of the Abelian group G, if and only if (k,|G|) =
1.

Proof.

If (k,|G|) =1, then Ker a; = {e}. Conversely, if (k, |G|) # 1, then
there exists a common prime divisor p of k and |G|. Now, according to
Theorem 2.1.3, the p-subgroup G, is nontrivial, and there exists a

subgroup of order p in G. This subgroup is contained in Ker ;.
Definition 2.2.1

A subgroup H of a group G is a characteristic subgroup of G, if

H* = H, for all « € Aut(G).

Evidently, characteristic subgroups are normal in G. Moreover, {e} and

G are characteristic subgroups of G
Theorem 2.2.2

Let G be an Abelian group. Then G, is a characteristic p-subgroup of

order |G|,, where |G|, is the greatest p-power dividing |G|.
Theorem 2.2.3

Let ¢ =G, X..XG,. If the factors G,,..., G, are characteristic
subgroups of G, then Aut G = Aut G; X ... X Aut G,,.

It is well known that any finite Abelian group G may be expressed as the

direct product of its Sylow subgroups:

G =Gy, X Gy, X .. X Gy

Since the Sylow subgroups of an Abelian group G are characteristic, then



n
Aut G =X Aut G,
i=1 t

Hence, it suffices to determine the automorphism group of cyclic p-

groups.

If G is a cyclic p-group of order p™ > 1, then |Aut G| is the number of
integers k suchthat 1 < k < p™and (k,p) = 1. Thus

|Aut G| = p™"~'(p — 1).
In particular, [Aut G| =p —11f |G| = p.
Definition 2.2.2 [18]

Let p be a prime number. An Abelian group G is said to be an

elementary Abelian p-group if every element x of G satisfies x? = e,
Proposition 2.2.1 [5]

I. If pisan odd prime and n € N*, then the automorphism group of
the cyclic group of order p is cyclic of order p — 1. More generally,
the automorphism group of the cyclic group of order p™ is cyclic of
order p™~(p — 1).

Ii. For all n > 3, the automorphism group of the cyclic group of order
2™ is isomorphic to Z, X Z,n-2. In particular is not cyclic but has a
cyclic subgroup of index 2.

li. Let p be a prime and let G be an elementary Abelian p-group. If
|G| = p™, then G is an n-dimensional vector space V over the field
Z,. The subgroups of G correspond to the subspaces of V and the

automorphisms of G to the automorphisms of V.



Remark.

The Gaussian binomial coefficient [Z] gives the number of subspace of
p

dimension k in a vector space of dimension n over the field of order p.

The number [Z] Is defined as
p

pn—k+i_1

(T ——— if 1<ksn-1
1, if k=0 orn

k 0, otherwise



Chapter Three

Counting Subgroups of Finite Abelian Groups

The process of finding the number of subgroups of a finite Abelian
group, or drawing the subgroup lattice of a given finite Abelian p-group,
is a difficult task. In this chapter, different methods that partially solve

these two problems are introduced.

In Section 3.1, some simpler methods of [11] are outlined, and are used
to calculate the number of subgroups of a finite Abelian group of orders
below thirty. Similarly, Section 3.2 included an expression that gives the

total number of subgroups of a finite Abelian p-group of rank two.

In the sections below, a different formula, concerning the number of
elements of a fixed order and the number of cyclic subgroups of a finite
Abelian group, is presented by using number-theoretic arguments in
[17].

3.1 The Total Number of Subgroups of a Finite Abelian
Group Whose Orders Below Thirty:

If G is a finite Abelian group of order p™,n > 1, then it is well known
that G can be decomposable into a direct product of indecomposable

cyclic groups:
G = Zpni X Lpnz X ... X Lyny , Where

pisaprime,1 <n; <n, <-- <ngandn; +n, + -+ n, = n. Inthis

case the Abelian group G is said to be of type (n,, n,, ..., ng).



The following simpler methods will be useful in counting the number
of all subgroups of a finite Abelian group in Table 1, and since a finite
Abelian group of prime order contains no proper subgroups, these groups

are not included in Table 1.

1. The number of all subgroups of a cyclic group of order p™, n > 1 is
n+ 1.

2. Forn = 1, the number of all subgroups of an elementary Abelian p-
group Zy, type (1,1, ..., 1) is

n-1
E"-D(E" -1 - (p"TH-1)
2
+kz::1 (pk—l)(pk—l—l) -« (p-1)

Proof.

Since Zy is an n-dimensional vector space over Z,, and [Z]p gives the

n
number of all subgroups of dimension (rank) k, then kz [Z] gives the
=0 tedp

total number of subgroups, as follows

D R I I I M R |

n_ n_ n-1_
— 1472 1, ("-D( 1)

n_
442719
p-1

p—-1 (r-1)(p2-1)
n-1
(P"-D(p"1-1) - (p"Ft1-1)
=2
T kz::l F 1) (PF1-1)... —1)

n
Here, kz [Z] is referred to as Galois numbers and is denoted by G,, ,,.



3. Forn = 2, the number of all subgroups of Abelian group of order p™,
type(l,n—1)is(n—1)(p+1) + 2.

4. The Abelian group of order p* type (2,2) contains exactly
p? + 3p + 5 subgroups.

Remark.

The proof of statement (3) follows directly from Theorem 4.2.1, when
a; =1 and a, = n— 1. Moreover, statement (4) is proven true by

5. Let G be an Abelian group of order p;™1p,"2 ... p, "k, then the number

of all its subgroups N(G) is
N(G) =TI, N(Gy),

where N(Gp,) is the total number of the subgroups of p;-primary

components of G.
Example 3.1.1
The number of all subgroups of a finite Abelian group Z, X Z, X Zg is
32siNCe Zy X Zy X Ly = 7y X Iy X Zy X Z4. Then
N(Zy X7y XZg) =N(Zy XZy X Ly X Zs3)
= N(Z, X Z, X Z,) N(Z5)
=16X%X 2
= 32.
Remark.

The number s(m,n) of all subgroups of a finite Abelian group

L, X Ly, 1S given by



s(m,

n)= 2, gcd(dy,dy) (mn=1).

dyfm, dy|n

For_example, if m = 3, n = 6, then the number of all subgroups of the

Abelian group Zs X Zg is

s(mn) = 2, gcd(dy, dy) = ged(1, 1) + ged(1, 2) + ged(1, 3) +

dy|3,d,|6

ged(1, 6) + gcd(3,1) + gcd(3, 2) + gecd(3, 3) + gcd(3,6) = 12.

Now, if n>1, we define A(n) as the number of non-isomorphic

Abelian groups of order n. Table 1 provides the classification and the

number of subgroups of all Abelian groups of order < 30.

Table (1)
Abelian groups of Number of their
Ordern | A(n)
the same order subgroups

4 2 Ly, Ty X 7o 3,5
6 1 Ze 4
8 3 Lg, Ly X Ly, Ty XLy X7, 4, 8, 16
9 2 Lo, T3 X Ly 3.6
10 1 VAT 4
12 2 Zqy, T, X Zg 6, 10
14 1 L4 4
15 1 L4 4
16 . Zyg, Ly X Lg, Ly X Ly, 5 11, 15,

Lig X Uig X Lgy Ly X Ly X Ly X 7y 27, 67
18 2 Lqg, 7z X ZLg 6, 12
20 2 Zoo, Ly X Ly, 6, 10




21 1 Z31 4

22 1 Z2 4

24 3 Tar Ly X Ly, Ty X Ly X Ty 8, 16, 32
25 2 Zos, Ls X Ls 3.8
26 1 Lyg 4

27 3 Loy, Ly X Ly, Ty X Ty X Ls 4, 10, 28
28 2 Zzg, ZZ X Zl4 6, 10

3.2 The Total Number of Subgroups of a Finite Abelian
p-Group

The aim of this section is to determine the subgroups that add to the
direct product of the subgroup lattice of the direct components. In
addition, the expression providing the total number of subgroups of a

finite Abelian group whose p-ranks do not exceed two is also introduced.

If G =H XK, then in general £(G) & L(H) X L(K).Therefore, it is
possible to construct £L(G) of L(H), L(K) and all isomorphisms between
intervals in the subgroup lattice. Moreover , the term "interval" is
used as follows: if H, K are subgroups of G, the interval [H, K] =
{(UeL(G)|H<U<K)

Definition 3.2.1 [12]

Let G = H X K. A subgroup D of G is called a diagonal in G (with
respectto H and K ) if

. DH =G = DK, and

ii. DNH={e}=DnNnK.




Theorem 3.2.1 [12]

Let H K< G and G = H XK. If ¢:H — K is an isomorphism, then
D(p) = D(H, ) = {xx®|x € H} is a diagonal in G (with respect to H
and K).

Conversely, if D is a diagonal in G (with respect to H and K), then there
exists a unique isomorphism ¢: H = K such that D = D(¢).Thus there
IS a bijection between diagonals (with respect to H and K) and
isomorphism of H and K, and between diagonals and automorphisms of
H (if H = K).

Examples 3.2.1 [3]

1. Consider the Klein group G = Z, X Z, = {e, a, b, ab | a? = b? = e}.
Each L(Z,) is a chain with two elements and the direct product of

these two chains is the four element lattice, as shown below.

G
H K

(e) (e)
(e)

Based on Theorem 3.2.1, we have to add as many diagonals as there are
isomorphisms Z, = Z, (i.e.H - K). From H = {e,a} to K = {e, b}
there is only one isomorphism, so only one diagonal (namely D(¢) =
D(H, ¢) = {e, ab}) has to be added to the direct product. Hence we
have 2 X2 =4 subgroups in the direct product+1 diagonal
corresponding to the isomorphism Z, — Z,. Thus, the total number of

subgroupsis 4 + 1 = 5, and G has the "diamond" as subgroup lattice



HG O K

(e)

2. Thegroup G =Z, X Z, = {e, a, b, ab, b?, ab?, b3, ab® | a?=

b* = e} has the subgroup lattice shown below:

© (e e)

we have to add only two diagonals, D corresponding to the isomorphism
[e, H] = [e, 2K] and D to the isomorphism [e, H] — [2K, K]. Thus, we
have 2 X 3 =6 subgroups in the direct product + 2 diagonals
corresponding two isomorphisms, equal to 8 subgroups, as previously

noted.

3. The group G = Z, X Z, = {a,bla* = b* = e) with cyclic subgroups
N = (a) = (a®), M = (b) = (b3) has the subgroup lattice



Each L(Z,) is a chain with three elements and the direct product of these

two chains is the nine element lattice

Index 1

N M
Index 2

Index 4

Index 8

(e) (e) Index 16

Now, we have two types of isomorphism: four isomorphisms Z, — Z,
le, 2N] — [e, 2M], [e, 2N] - [2M, M], [2N, N] - [e, 2M], and
[2N, N] — [2M, M] as well as two isomorphisms Z, — Z, ( [e, N] =

[e, M] - Z, has two automorphisms). Thus, we add 6 diagonals 2S, T,
V, SU, S, and U for a total of 15 subgroups.

4. Let us now consider the 2-group G = Z, X Z, X Z,.

First, we take H =Z, with 3-element chain subgroup lattice, and

K = 7, X Z, with the 'diamond’ subgroup lattices, as follows



oOH

> 2H ad O ¢
A

o

(e) (e)

Hence we have 3 X 5 = 15 subgroups in the direct product, and we must
add 6 diagonals corresponding to 6 isomorphisms from A = [e, 2H] to
each 1-segments on the 'diamond' and other 6 isomorphisms from
B = [2H, H] to the same-segments. Consequently, the total number of

subgroupsis 15+ 6 + 6 = 27.

Remark.

There is no isomorphism from the interval (chain) [e, H] to some 3-
element chains in the "diamond"(namely [e, a, K], [e, b, K] or [e, ¢, K])

because none of these is an interval in the subgroup lattice L(K).
5. G == Zg X (ZZ X Z4).

First, we have 4 x 8 = 32 subgroups in the direct product + 3 x11

diagonals corresponding to all isomorphism between 1-segments and

2H

4H

(e)



2X2X4=16 more diagonals to be added corresponding to all
isomorphism between 2-segments (2 number of 2-segments in L(Z,),
|Aut(Z,)| = 2(2—-1) = 2, and 4 number of 2-segments in L(Z, X
Zy)), for atotal of 32 4+ 33 4+ 16 = 81 subgroups.

6. G =74 X (Zy XZy)

In this case, we take H = Z, with 3-element chain subgroup lattice, and

K = 7, X 7Z,with the subgroup lattice in Example 3.

Therefore, we have 3 x 15 =45 subgroups in the direct product,
2 X 24 = 48 diagonals (between 1-segments) corresponding to all the
Z, = Z, isomorphisms and 2 x 18 = 36 diagonals (between 2-
segments) corresponding to all the Z, — Z, isomorphisms. The total in

this example is 45 + 48 + 36 = 129 subgroups.

The rank two formula

In this section, proof of the formula giving the total number of

subgroups for a finite Abelian p-group of rank two will be given.

First, set G = Z,¢ X Z, for arbitrary positive integers ¢ and k.

Here, we have the direct product of chains of length t and k,
respectively. In other words, we have (t + 1)(k + 1) subgroups. Next,
we determine the diagonals corresponding to the automorphisms

Z., — Z,,which give p — 1 diagonals for each pair of 1-segments, i.e.,
tk(p — 1).
Further, the diagonals corresponding to the automorphisms Z,2 — Z,z,

give p(p — 1) diagonals for each pair of 2-segments.

Hence, (t — 1)(k — 1)p(p — 1) diagonals have to be added.



We must continue this process until we exhaust the adjacent min(t, k)-

length segments, which is obviously the chain L(H) or the chain L(K).

This chain produces |k — t| + 1 pairs of chains of length min(t, k), each

generating p™n(&K)=1(p — 1) diagonals.
Therefore, the total number of subgroups is

t+D)k+D+tk(p-D+(t-D&k-Dpp—-1D+- +
2(lk — t] + 2)p™inEO=2(p — 1) + (Jk — t] + Dp™REO-L(p — 1),
Finite Elementary Abelian p-Groups
A finite elementary Abelian p-group has a direct decomposition of type
Ly =Ly X Ly X ... X Ly,

where p is a prime and n € N*.

This is denoted by N(Zy) for the total number of subgroups of Z3; and
by n(1-seg(L(Zy)) for the number of 1-segments of the subgroup lattice
L(Z3).

Using | Aut(Z,)|=p—1 and Z} = Z, x ZE~1, whereby L(Z,) is a
chain with two elements, by counting the subgroups in the direct product

and the diagonals, respectively, we obtain

N(Z3) = 2N(Z} 1) + (p — 1)n(1-seg(L(ZE™1)).

Consequence

n(1-seg(L(Zp)) = > [N(z3*) - 2N(23)]

= p_il [Gn+1,p - ZGn,p]



p"-1
p—-1

n-1,p-
n
n
Where Gy, ,, =|<§::o [k]p’ and foralln € N

Go’p = 1, Gl,p = 2,

Gni1p = 2Gpp + (e 1)Gn—1,p -
Remark.

Each finite Abelian p-group G can be written as Z ;1 X G where G is a

finite direct product of finite cocyclic groups of order greater or equal to

pt. If we know how to count the 1-segements, 2-segements, ..., the

[-segments in £(G), we can calculate the total number of subgroups of G

as follows:

N(Zyx G) = N(Z,1) x N(G) + L(p — D)n(1 -seg)+ (I = Dp(p —
1D n(2-seg) + (I — 2)p%(p — 1)n(3 -seg)+ -+ 2 p'~2(p — Dn((l -
1) -seg) +p'~t (p — Dn(l -seg).
In the expression above, n(u -seg) denotes the number of u-segments in
L(G).

For example, let G be an Abelian p-group Z, X Z, X Zg, then G can be
written as Zg X (Z, X Z,), Where G = Ly X Ly, l =3, p = 2. Moreover,
n(1-seg) and n(2 -seg) in L(Z, X Z,) is 11 and 4 , respectively. Thus,

the total number of subgroups of G is

N(Zg X (Z, X Z4)) = (4%X8)+3x11+2Xx2x%x4=281.



3.3 The Number of Cyclic Subgroups of a Finite Abelian Group

This section presents several theoretical arguments and mathematical
expressions concerning the number of elements of a fixed order and the
number of cyclic subgroups of a direct product of several finite cyclic

groups.
3.3.1 The Number of Cyclic Subgroups of Z,,, X Z,, X ... X Z,_

In this subsection, we denote by c(n4, ...,n,.) for the number of all
cyclic subgroups of the direct product Z,,, X ... X Z,_, where r, ny, ...,n,

are arbitrary positive integers.
Theorem 3.3.1 [17]

Forany ny,...,n, = 1, c(n4, ..., n,.) is given by the expression

¢(dy) .. $(dy)
3.1
dyfnq,....de| Ny ¢(lem(dy,...,dy)) ( )

c(ny,...,n,.) =

In particular, the number of cyclic subgroups of Z,,, X Z,,

ctng, n) = 2, ¢(ged(dy, dy)) (3.2)

dy| g, dy|ny
Remark.

The expression (3.2) follows from (3.1) by using the identity

p(m)p(n) = qb(gcd(m, n))q,')(lcm(m, n)) (mn=1).

The following expression relates to the number og(n4,...,n,) of

elements of order 6 in Z,,, X ... X Zj, . Let n = lem(ny,...,n,.), where the



order of every element of the direct product is obviously a divisor of n.

Let 4 denote the Mobius function, and define it as

1 if n=1
un) = 0 if n is not square free
" if n = pipz .. Pr

Theorem 3.3.2 [17]

For every nq, ..., n, = 1 and every §|n,

05(1y, ., my) = 2 ged(e, my) -ged(e, ny) u(8/€) (3.3)
= Zd (dy) () (3.4)
Ic%L(él ......... drr\):r

Let cs(n4,...,n,-) denote the number of cyclic subgroups of order § (6|n)
of the group Z,, X --- X Zj_.Since a cyclic subgroup of order § has ¢ (8)

generators,

o, ) = P (35)

Now (3.1) follows immediately from (3.4) and (3.5) by

c(ng,..,n,.) = ézr; cs(ng, ..., n,.) (3.6)

Example 3.3.1
Let us compute the number of all cyclic subgroups of a finite Abelian
group Z, X Z, X Zs. For every & |lcm(2,2,3), there exist cyclic

subgroups of order 6 . Hence, there are cyclic subgroups of orders



1, 2, 3, 6, and the number of cyclic subgroups corresponding to each of

these orders are:
01(2,2,3) = ¢(dy)Pp(d,)p(d3)
= 2 o@e(Mp() =1

0] 2,d,| 2, ds 3
lem (d; ,d, ,dg)=1

01(2,2,3) _

o16Y) L

C1(2, 2, 3) B

0,(223)= 2 $(d)p(dy)p(ds)

02,0, 2, d;[ 3
Icm (dl,d2 ,dg):z

= o(DP(2)P(1) + ¢(2)p(DP(1) + ¢(2)p(2)p(1) = 3

0,(2,23) _

$(2) 3.

C2(2, 2, 3) -

05(223)= 2 ¢(d)d(dr)p(ds)
dy 2,d,|2,d5)3
lcm (d; ,d, ,dg)=3

= o(Dp(D)P(3) =2

03(2,2,3) _
»3) L

C3(2, 2, 3) -

06(223)= 2 ¢(d)d(dy)p(ds)

dl\z,dz\z,da\s
Icm (dl,d2 ,ds):G

= o(DP(2)p(3) + ¢(2)p(1)p(3) + ¢(2)p(2)9(3) = 6

06(2,23) _

cs(2,2,3) =% 2= =3,

Consequently, the total number of all cyclic subgroups of a finite

Abelian group Z, X Z, X Z5 is:

c(2,2,3) = ¢1(2,2,3) + ¢,(2,2,3) + ¢5(2,2,3) + c¢(2,2,3) = 8.



Corollary 3.3.1 [17]

For every prime p and every a4, ...,a, = 1,1 < v < max (ay, ..., a;,),

1 (pmin(v,a1)+ ..+ min(v,a;) _
' 1(p-1)

min(v—1,a1)+ ... +min(v—1,ar))

cpr(P™, ..., p%) =
p
Example 3.3.2

Let Z,, X Z,: be a finite Abelian p-group of type (1, 2). Thena, =1,

a, = 2. Hence, the number of all cyclic subgroups of order p is

_ 1
-1

cp(p, P?) P*-1)=p+1.

Alternative Method:

This method allows us to determine the number of cyclic subgroups of
order p in Z, X Z,2 by counting the number of elements using the fact
that |(a,b)| = p =lcm (o(a), o(b)). This requires that both o(a) and
o(b) be p or o(a) =p and o(b) =1 and vice versa. The first case
yields (p —1)? elements, while the second case yields 2(p — 1)

elements of order p. However, as each cyclic subgroup of order
2_
phasp — 1 elements of order p, Z, X Z,z has ’;—_11 =p+ 1 cyclic

subgroups of order p.

3.3.2 The Number of Cyclic Subgroups of Z,, X Z,, X ... X Z,,

In this subsection we consider the special case n; =--=n, =n.

According to (3.3),

0s(n, ... , 1) =§e"u<6/e) = ¢,(8) 3.7)



The expression above is the Jordan function of order r. Note that
$1(8) = ¢p(68) is the Euler's function.

This means that the number of all elements of order § (6|n) in the direct

product Z,, X ... X Z,, with r factors, is ¢,.(6) = 6" [[,;s(1 — %).

Hence the number of cyclic subgroups of order é (§|n) of the Abelian
group Z,, X ... X Zy, is ¢,-(6) / d(6).

Now, let ¢"(n) denote the number of all cyclic subgroups of Z,, X ... X
Z,, with r factors. In this case, for every n > 1, the following equality
holds:

r _ ¢ ()
c"(n) _é‘zn ) (3.8)

In particular, let c(n) = ¢?(n). We obtain from (3.8) that
cn) = 2 (6 (3.9)

where ¥ (8) = 6 [1s (1 +%) is the Dedekind function. For every

prime power p® (a > 1), c(p*) =2(1 +p + -+ p* 1) + p%.

For example, by using expressions (3.7) and (3.8) we can easily count
the number of all cyclic subgroups of an elementary Abelian p-group
Ze X Zs X Ls, wWhere for every & |lcm(5,5,5) there exist cyclic
subgroups of order §. Consequently, there are cyclic subgroups of orders
1, 5 and the number of cyclic subgroups corresponding to each of these

orders is determined as shown below.



0,(5,5,5)=1,¢,(5)=1.

0s5(5,5,5) = 5 [Ips (1 - pi)

-5(1-3)

= 124.

) =5
T80

= 31.
Hence, the total number of all cyclic subgroups is:
c3(5)=1+31

= 32.



Chapter Four

Combinatorial Problems on the Subgroup

Lattices of Finite Abelian Groups

In this chapter, the concept of the fundamental group lattices is applied
to the practical example of counting some different types of subgroups of
finite Abelian groups. Explicit formulas are obtained for the number of
subgroups of a given order in a finite Abelian p-group of rank two and
for the number of maximal subgroups and cyclic subgroups of a given
order of arbitrary finite Abelian groups. The number of elements of a

prescribed order in such a group will be also found.

4.1 Fundamental Group Lattices [16]

Let (G, +) be an Abelian group. Then the set £L(G) of all subgroups of G

is a modular and complete lattice.

If we suppose that G is finite of order n, the fundamental theorem of

finitely generated Abelian groups implies that there exist the

numbers k € N*, dy, ds, ..., d; € N\ {0,1} satisfying d, | d, | ... | dy,
k

did, ..d, =nand G lezdi.
1=

This decomposition of a finite Abelian group into a direct product of

cyclic groups initiated the concept of fundamental group lattice, defined

below.



Let k>1 be a natural number. Then for each (d,,d,, ...,dy) €
(N\ {0,1})*, we consider the set Lik; a,d,,..a,) consisting of all
matrices A = (a;;) € My (Z) that have the following properties:

i. a;; =0,foranyi>j,

. 0 < alj, azj, ey aj_lj < Cljj, for anyj = 1,_k,

ii. 1. a;q| d4

2. az| (dp, di 7)),
a1
aiz a13|

a
3. a33|(d3,d2a—zz,d1M)

)
Az2011

Ag—2 k-1 Qg—2k

Ak-1k Ap—1k-1 Ak—1k
K. Qgg | (di Ay ———, dg—2
Ag—1k-1 Ag—1 k-10k-2 k-2

aip 4iz ... a1k
Az dz3z ... azk
1 y
Ak—1k-1A0k—2k-2- - - Q11

where (x4, x3,..., X,,) denotes the greatest common divisor of the
numbers x;, X5,..., X, € Z.

On the set L, g, 4,

yree

.d,) We introduce the next partial ordering relation

(denoted by <), as follows:

.....

relations:

1. byy | aq ,



ajs a12|

byi b
2. by, | (az; ,%),

a1 Q12 Qa3
b1y b1z bi3
0  byy by3

by2b14

Qaz2 a23|

byy by3
3. b33| (asz, )
by,

),

Ag—2k-2 QAg—2k-1 QAk-2k

Ak-1k-1 Qk-1k| |Pk-2k-2 Dbk-2k-1 D13

br—1k-1 Dbr-1k 0 br—1k-1 br-1k
K. by | (Akk » > , - . e
k—1k—1 k-1k-1Dk—-2 k-2

|a12 az ... a1k I

Ao azz ... ark

0 0 . ak_lk )
bg—1k-1bk-2k-2 - - - b11

hold.

matrices Uy p = (u;;) and V, p = (v;;), where :
a. u;; = 0andv;; = 0, respectively, forany i > j,
b. uy; =[ay; , by] as well as vy; =(ay;, by), forany i = 1,k,

c. the element u;; (as well as v;;) for i < j are uniquely determined

.....

respectively.
We have U, p = inf {A, B} and V, p = sup {A, B} respectively,
(Lek; aydy,... d,)» <) forms a lattice, referred to as a fundamental group
lattice of degree k.

The next proposition establishes the connection between the fundamental

group lattice and the finite Abelian groups.



Proposition 4.1.1 [15]

For a lattice L ,the following two conditions are equivalent :
I. There exists a finite Abelian group G, such that L = £(G).
ii. There exist the numbers k € N*, d,, d,, ..., d;, € N\ {0,1} such that

.....

Remarks.

1. If G is a finite Abelian group of order p;''p,? ... p,™, then it is well
known that G can be written as the direct product of its primary

components

where |G;| = pi"i, for all i = 1,m . Since the subgroups of a direct

product of groups having coprime orders are also direct products, so we

Therefore, our counting problem is reduced to p-groups. In this case, we

.....

which consists of all matrices of integers A = (a;;); ;_7% satisfying the

i,j=1,

conditions:



(i a;j=0foranyi>j,

. 0<ayaj...,a414; < ajj,foranyj =1k,
iii. 1. a;q|p*™,
a2
2. a22| (paz ,pal _>J
a1
a2 a13|
azs a a
A3, a 22 23
3. a33|(p 3p2 _;pl—)'
Az, Ar2011
Ak—2k-1 Ak-2k
* < Ay g Fk—1k aw_r 1 Ak—1k-1 Ag-1k
k. akkl(p k'pkl ;P"Z yeaay
Ax-1k-1 Ax-1k-1Ak-2 k-2
a12 a13 ) alk
a22 a23 P azk
pal 0 0 e ak_lk
1
Ak-1k-1 Ag—2k-2 - - - A11
\

Wherepisaprimeand1 < a; < a, < -+ < ay.

k
2. The order of the subgroup of _XlZpai corresponding to the matrix
1=

A= (a'ij) € L(k;pal,paz ..... p%k) IS

pzl'(zl ai

K
[li=, aii

4.2 The Number of Subgroups of a Finite Abelian p-Group

As shown in the previous section, in order to determine the number of

subgroups of a finite Abelian group, it suffices to reduce the study to



p-groups. Hence, the problem is equivalent to determining the number of
distinct solutions A = (a;;) € M (Z) of the system ().

The following is the first result in this section, providing an explicit

formula that can be used for counting the number of subgroups of finite

k
Abelian p-group _Xlzpai in the particular case @y = a, = -+ = ;.
1=

Proposition 4.2.1 [14]

For a €{0, 1,..., k}, the number of all subgroups of order p* in the

finite elementary Abelian p-group Z’; is 1 if a=0 or a=k, and

_a(a+1)

2 if 1<a<k-—1. In particular, the

i+ip+ - +ig

1<ij<iy<e-<ig<k

total number of subgroups of Z’g IS

k-1
, c o ._oc(oc+1)
2+Z z pll+lz+ +lg————

a=1 1<ij<iy<--<ig<k

In the general case, the number of maximal subgroups of a finite Abelian

pk-1
p-1°

k k
p-group X Zye; is Y, pi=t =
i=1 i=1

Example 4.2.1

The aim of this example is to determine the total number of all
subgroups in elementary Abelian p-group Z3. For a € {0, 1, 2, 3, 4}, we

begin by counting the number of all subgroups of order 24~¢,

For « = 1, we must have 1 < i; < 4 which implies that the number of

subgroups of order 2 in Z3 is in this case

2071 = 2171 4 2271 4 2371 4 2471 = 15,

1<T, <4



Let us now suppose that « = 2. Then 1 < i; < i, < 4 and thus i; and i,

can be chosen respectively as follows:

(1,2),(1,3),(1,4), (2,3), (2,4), (3,4) which implies that the number

of subgroups of order 4 in Z3 is in this case

2i1+i2—3 — 21+2—3 + 21+3—3 + 21+4—3 + 22+3—3 + 22+4-—3 +
1<ij<i,<4

23+4——3 — 35

Finally, ifa = 3,then 1 < i, <i, < i3 < 4, and thus i, i, and i3 can

be chosen respectively as follows:
(1,2,3),(1,2,4),(1,3,4), (2,3, 4).
This implies that the number of subgroups of order 8 in Z3 is in this case

2i1+i2+i3—6 — 21+2+3—6 + 21+2+4——6 + 21+3+4—6 + 22+3+4-—6

1<ip<iy<ig=<4

= 15.

Thus, the total number of all subgroups in elementary Abelian p-group
Z3is2+ 15+ 35+ 15 = 67.

Now , we return to the problem of finding the total number of subgroups
k

of _Xlzpai. We shall apply our method for rank two Abelian p-group,
1=

i.e., for the case when k = 2.

Theorem 4.2.1 [14]

For every 0 < a < a; + a,, the number of all subgroups of order

p®1*%2~4 jn the finite Abelian p-group Zya X Zya: is



r pa+1_1

st if 0<a<my
(X1+1_1 )
\ E ma if a<a<a
ar+az—a+1_q ]
\ ! p—1 ) lf a, <ac< aq + a,.

In particular, the total number of subgroups of Z,a: X Za is

1
(p—-1)?

+ (a, —a; + 1)].

[(a; —a; + 1) p“1*2 — (ay —a; — 1) p1*™! — (o + ay + 3)p

Proof.

Let A= (a;;) be a solution of (x) for k =2, corresponding to a
subgroup of order p*1*%2~* |In this case, the condition (iii) of (x)

becomes

ain
aiq |Pa1 and a,, | (p*2, p™ ‘1_11)
put a;; = p*, where 0 < i < a;. Then a,, = p*~* and so

p@t| (p%, p®1lay,), thatis p@~t | pa—i(p@=@ti g ,).

If 0 < a < a;, we must have i < a and the above condition is satisfied

by all a;, < p*~t.

Hence, there are p®*~* distinct solutions of (x), and the number of

subgroups of order p®*%2=% in Z,a: X Z,«, is in this case

pa+1_1

Si@) =2, pt = (41)

p—1

Now, if a; < a < a,, then p®~% | (p@2~®*i g ,) and thus a,, can be

any multiple of p%1~¢ in the set {0,1,... p*~* — 1}.



It is clear that there are p*1~ distinct solutions of () and the number of

subgroups of order p®1*%2=%in Z,a1 X Zye- is in this case

p(l1+1_1

S, (a) =§6 p*t = (4.2)

p—1

Finally, if a, <a<a;+a,. Then a; —a<a,—a; +i and the
number of distinct solutions of (x) is again p*~t. Thus the number of
subgroups of order p*%2=% in Z,a: X Z,«, is in this case

&1 ai+az—a+1_
Sg(a) :‘ z pal_i — M (43)

=a-a, p_l

By using the equalities (4.1), (4.2) and (4.3), we obtain the total number

of subgroups of Abelian p-group Zye: X Z,e, ,which can be written as

2 ) oy +a,
> oSi@+ 2 S@+ Y Sia) = ——[(a, —ay + 1)pht? —
a=0 a=a+1 a=a,+1 (-1

(az - al - 1)pa1+1 - (a1 + az + 3)p + (CZ1 + az + 1)]

4.3 The Number of Cyclic Subgroups of a Finite Abelian
p-Group

Another application of fundamental group lattices is the counting of
cyclic subgroups of finite Abelian groups. First, we need to obtain this

number for a finite Abelian p-group of rank 2.
Lemma 4.3.1 [14]
The subgroup of Z,e: X Z,a, corresponding to the matrix A = (a;;) €

. . _ .
L, pa1 pazy is cyclic if and only if a,, = (p*2, p™ a_ii)'



Theorem 4.3.1 [14]

For every 0 < a < a,, the number of cyclic subgroups of order p“ in

the finite Abelian p-group Z,a: X Zya: is:

1, if a=20
p®+p*t, if 1<a<a
p™, if o <a<a,

In particular, the number of all cyclic subgroups of Z,a: X Zya is

2+2p+ -+ 2p9t + (@ — ay + D)p2r.
Proof.

Let g5 () be denote by the number of cyclic subgroups of order p* in
Lpar X Loz and let A = (a;j) € L pe1pazy be the matrix

corresponding to such a subgroup. Then
aiq |Pa1’ Az, = (p*2, p™ Z_i) and aqqa,, = pM e,
Puta;; =p*,0 <i < a,.Then
gy = p*1H®277 = (p%2,p®17lay,) = pUT(pTatayy),

which implies that

p©® = (p®T N, apy). (4.4)
If « = 0, then a;; = p**, a,, = p*2, a,, = 0, and thus

g5(0) =1 (4.5)
For1 < a < a; we must have a; —a <i. If i = a; — «a, the condition

(4.4) is equivalent to p%2~¢ | a,, , therefore a,, can be chosen in p*



ways. If o —a+1<i, (44) is equivalent to p*~*|a;, and

paz—a+1 + alz )

There are p®~t — p®~i=1 elements of the set {0, 1, ..., p%+®2-a~1}

satisfing the previous relations. Therefore,

G@=p"+ 3 (T -pmT ) =pt 4t (46)
i 1

i=a—a+

If a; <a < a,, then the condition a; —a <i is satisfied by all

i =1, a;, and hence

gg(a) = igo (p“l_i _ pal—i—l) — pa1 (4_7)

Now, from the equalities (4.5)-(4.7) we conclude that the total number

of cyclic subgroups of Z,a: X Zya; is

aq a,
142, @“+p“™H+ X p= = p% [(az —a; + Dp™*t -
a=1 a=a,+1 -

(@ —a; —)p* —2]=2+2p+ -+ 2p 1 + (@, — ay + Dp™.

The above method can be used for an arbitrary k > 2, too. In order to do

this we need to remark that

p*hp(@)-p* thy(a-1)

gp(@) = —— 2=
for all « # 0, where
a )
1 (% if 0<a<m
hy (@) _{ p%1, if a, < a

This equality extends to the general case, as described below.



Theorem 4.3.2 [14]

For every 1 < a < «;, the number of cyclic subgroups of order p“ in

K
the finite Abelian p-group _XlZpai is
i=

~H(a)-p* *hE ™ (a-1)

ahk
gk(a) =22

pa_pa—l ’
where
p(k—l)“, if 0<a<a
hE1(a) = p(k_z)‘”“l, if g <a<sa,
D - .
pa1+a2+-~-+ak_1’ lf (047 <ac< ag.

Since the numbers of cyclic subgroups and of elements of a given order
in a finite Abelian p-group are connected by Euler's function ¢, so we

infer the following consequence of Theorem 4.3.2.
Corollary 4.3.1 [14]

The number of all elements of order p%, 1 < a < ay, in the finite
k
Abelian p-group ><12pai is
1=
gy (@) (%) = g5(@) (@ — p* 1) = p*hy~*(a) —p**hy~ (@ — 1).

For example, let us compute the number of all cyclic subgroups of a

finite Abelian p-group Z,, X Z,, X Z,2.

If « = 1, then the number of all cyclic subgroups (as well as elements)

of order p in Z,, X Z, X Z,z is



phi(1)—h3(0)

9y Vo) = @*+p+1) (@-1).

If @ = 2, then the number of all cyclic subgroups (as well as elements)

of order p? INZ, X Z,, X L,z is

p?h3(2)-ph3(1)
9p(2) = ——F—=p’

)

95(2) p(p?) = p*(p* — p).

Hence, the number of all cyclic subgroups of finite Abelian p-group

Ly X Ly X Ly 18 2p* + p + 2.
Remark.

m
Let G be a finite Abelian group of order p;*p,? ... p,™ and let _Xlei
=

be the corresponding primary decomposition of G. Then every cyclic

subgroup H of order p;py? ... p,™ of G can be uniquely expressed as
m

a direct product _XlH . » where Hy,_is a cyclic subgroup of order pf“' of
i=

Gpi’ i=1,m.

This remark leads to the following result, that generalizes Theorem 4.3.2
and Corollary 4.3.1.
Corollary 4.3.2 [14]

Based on the previous remark, for every (a,, a, , ..., @) € N™ with
a; <n;, i =1,m , the number of cyclic subgroups (and elements) of

order pflpgz PN G is



i= 1gpl (CZ)

and

i= 1gpl (a1)¢(pl )’

respectively, where k; denotes the number of direct factors of G,,,
=1,m.

For example, consider the Abelian group Zs, X Zgo Used in Example
1.3, whereby the number of all of cyclic subgroups of order 15, and the
number of elements of the same order can be obtained as follows:

Since Zsg X Zgyg =7y X Ly X Lg X Zg X Zg, then p, =3, p, =5,
k,=2,k, =1, a; = a, = 1. So the number of all cyclic subgroups of

order 15 is

l 1gpl (al) = gpi (al)gpzz (az)

=g5(gi(1)

_ (3h3(1)=h3(0)\ [5h3(1)—h2(0)
- ( 3-1 ) ( 5-1 )
= 4.

Where, h1(1) = 3 and h3(0) = 1, therefore g2(1) = 4. Also h2(1) =
h2(0) = 1, therefore gi(1) = 1, also the number of elements of order
15 s

2, 9y (@)o(p) = g5t (@) d(pi) g2 (@) d(p5?)

= g3 (D3 g5 ((5)
= 32.



APpendix



The program to calculate the total number of subgroups and the
number of subgroups of order p",0<n<n;+n,,in a finite
Abelian p-group Zpni X Zyn;:

clear

P =input ('Please inter P )

nl=input ('Please inter nl ")

n2=input ('Please inter n2 ')

if nl>n2

m =n2;

n2=nl;

nl=m;

end

x=1/(P-1)"2* ((n2-nl+1)*P"(nl+2)-(n2-nl-1)*P"(nl+1) -
(n1+n2+3) *P+ (nl+n2+1) ;

disp(['The total number of subgroups is ',num2str (x) 1)
n=0;

while n<=(nl+n2)

if n>=0 & n<=nl

y= (P~ (n+1)-1) / (P-1) ;

w=P"n;
disp(['The number of all subgroups of order ', num2str (w) , '
is ', num2str(y) 1)

else 1f n>=nl & n<=n2

y=(P"(nl+1)-1)/(P-1);

w=P"n;

disp(['The number of all subgroups of order ', num2str (w) , '
is ',num2str(y) 1)

else 1if n>=nl & n <=(nl+n2)

y= (P (n1l+n2-n+1)-1)/(P-1);

w=P"n;

disp(['The number of all subgroups of order ',ynum2str (w), '
is ', num2str (y) 1)

end

n=n+1;

end

Input

Please inter P 3

Please inter nl 1

Please inter n2 2

Output

The total number of subgroups 1is 10

The number of all subgroups of order 1 is 1
The number of all subgroups of order 3 is 4
The number of all subgroups of order 9 is 4
The number of all subgroups of order 27 is 1



The program to calculate the total number of cyclic subgroups
and the number of cyclic subgroups of order p",1<n<ng,
respectively the number of all elements of a finite Abelian p-
group an1 X anz X ... X ank .

clear

p=input ('please inter p ")
k=input ('please inter k "),
N=zeros (1, k) ;

for i=1:k

N(l,i)=input(['Please inter n',num2str(i)]);
end

SUM=0;

n=1;

disp('The number of all cyclic subgroups of order 1 is 1 ')
disp ('The number of all elements of order 1 is 1 ")

while n<=N (1, k)

if n>=0 & n<=N(1,1)
x=p” ((k-1) *n) ;

y=p" ((k-1)*(n-1));

m= (x*p" n-y*p”~(n-1))/(p
SUM=SUM+m;

B=m* (p"n-p”(n-1));
w=p”~n;

disp(['The number of all cyclic subgroups of order ',num2str
(w), " is ', num2str(m)])

disp(['The number of all elements of order ', num2str(w),'

is ', num2str (B)])

else 1if n>=N(1,1) & n<=N(1l,2)

x=p” ((k=-2)*n+ N(1,1));

y=p” ((k=2)* (n-1)+ N(1,1));

m=(x*p n-y*p” (n-1))/ (p"n-p” (n-1)) ;

SUM=SUM +m;

B=m* (p"n-p” (n-1));

w=p”~n;

disp(['The number of all cyclic subgroups of order ', num2str
(w), " is ', num2str(m)])

disp(['The number of all elements of order ', num2str(w),'
is ', num2str(B)])

elseif N(1,k-1)<= n

x=p”™ (sum(N(1,1:k=-1)));

m=x* (p"n-p” (n-1))/ (p"n-p” (n-1));

A

n-p”(n-1));

SUM=SUM+m;

B=m* (p"n-p” (n-1));

w=p”~n;

disp(['The number of all cyclic subgroups of order ', num2str
(w), " is ', num2str (m)])

disp(['The number of all elements of order ', num2str(w),'
is ', num2str (B) ])

end

n=n+1;

end



x=SUM+1;

disp(['The total number of cyclic subgroups is

Input

Please
please
Please
Please
Please

Output

The
The
The
The
The
The
The

number
number
number
number
number
number

inter
inter
inter
inter
inter

of
of
of
of
of
of

nl
n2
n3

all
all
all
all
all
all

N R = WD

cyclic subgroups of order
elements of order 1 is
cyclic subgroups of order
elements of order 2 is
cyclic subgroups of order
elements of order 4 is

total number of cyclic subgroups is 12

QO B I -

,hum2str (x) ])

is 1
is 7
is 4



The program to calculate the total number of subgroups and the
number of subgroups of order p",0<n<k, of elementary
Abelian p-group Zg,of arbitrary rank:

clear

P=input (' Please inter p ');

k=input ('Please inter k ');

sum=0;

n=0;

while n<=k

if n==

disp(' The number of all subgroups of order 1 is 1 ")
else 1if n>=1 & n <=k

%the power of P in the Numerator:

ml=k:-1: (k-n+1);

NUM=prod (P.”ml-1) ;

%the power of P in the Denominator:

m2=n:-1:1;

DUM=prod (P." " m2-1) ;

y=NUM/DUM;

sum=sum+y;

w=P"n;

disp(['The number of all subgroups of order ',num2str (w),'
is ', num2str(y)1)

end

n=n+1;

end

x=sum+1;

disp(['The total number of subgroups is ',numZ2str(x)])

Input

Please inter P 5
please inter k 3

Output

The number of all subgroups of order 1 is 1
The number of all subgroups of order 5 is 31
The number of all subgroups of order 25 is 31
The number of all subgroups of order 125 is 1
The total number of subgroups is 64



Conclusions and Future Work

The results presented in this work indicate that the counting of
subgroups of a finite Abelian group is an interesting combinatorial
aspect of group theory. In this study, although different types of
subgroups of a finite Abelian group were counted, it was not possible
to produce explicit formulas for counting the number of subgroups of
fixed order or total number of subgroups of finite Abelian p-group of

arbitrary rank.

Consequently, as a potential direction of further research in this field,

the following subjects are noted :

e The number of Fuzzy subgroups of a finite Abelian groups.
e The number of Characteristic subgroups of finite Abelian groups.
e Create computer algebra programmes to count the number of

subgroups of finite Abelian group.
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