University of Benghazi
Faculty of Science
Department of Mathematics

Finite Topological Spaces with Maple

A dissertation Submitted to the Department of Mathematics in Partial Fulfillment of the requirements for the degree of

Master of Science in Mathematics

$$
B y
$$

Taha Guma el turki
Supervisor
Prof. Kahtan H.Alzubaidy
Benghazi -Libya
2013/2014

Dedication

For the sake of science and progress in my country new Libya.
Taha

Acknowledgements

I don't find words articulate enough to express my gratitude for the help and grace that Allah almighty has bestowed upon me.

I would like to express my greatest thanks and full gratitude to my supervisor Prof. Kahtan H . Al zubaidy for his invaluable assistance patient guidance and constant encouragement during the preparation of the thesis.

Also, I would like to thank the department of Mathematics for all their efforts advice and every piece of knowledge they offered me to achieve the accomplishment of writing this thesis.

Finally, I express my appreciation and thanks to my family for the constant support.

Contents

Abstract 1
Introduction 2
Chapter Zero: Preliminaries
Partially Ordered Sets 4
Topological Spaces 11
Sets in Spaces 15
Separation Axioms 18
Continuous Functions and Homeomorphisms 22
Compactness 24
Connectivity and Path Connectivity 25
Quotient Spaces 29
Chapter One: Finite Topological Spaces
Basic Definitions 31
Separation Properties 34
Number of topologies on a finite set 36
Continuous Functions and Homeomorphisms 38
Compactness in Finite Topological Spaces 40
Connectivity and Path Connectivity 41
Chapter Two: Alexandroff Space
Basic Definitions 45
Separation Properties 49
Continuous Functions and Homeomorphisms 50
Compactness 51
Quotient Spaces 52
Chapter Three: Finite Topological Spaces with Maple
The Procedures Used in Finite Topological Spaces 53
Implementations 56
Appendix-Maple
The softwear 87
Packages 90
Packages used in Finite Topological Space 93
References 99
Abstract In Arabic 100

Abstract

In this thesis, we discuss the properties of finite topological spaces and their different properties from other topological spaces including Alexandroff spaces. And also we create and apply some Maple programming procedures to compute the special points of a set in a space and the number of topological spaces of a given cardinality .

Introduction

The finite topological spaces have recently captured topologists's attention. Since digital processing and image processing start of finite sets of observations and seek to understand pictures that emerge from notion of nearness of points. There was a brief early flurry of beautiful mathematical works on this subject.Two independent papers, by McCord [2] and Stong [7] , both published in 1966 ,are especially interesting. In this thesis we will work through them, also through a lecture note by May J.P [1] , published on the internet in 2008.

Chapter one starts with the definition of finite topological spaces and minimal basic open sets. And also we discuss the preorder relation and its relation with separation axioms, then we discuss the different properties of finite topological spaces in continuity and homeomorphisms, compactness , connectivity and path connectivity .

In chapter two we study Alexandroff spaces we show how to construct new Alexandroff spaces from given ones and discuss some of the very important properties of Alexandroff spaces .

In chapter three we create procedures of Maple 15 programming to compute the six special points and the topologies and T_{0} topologies on a finite set . Also procedures to find minimal bases and connected components of a finite space .

There is appendix to introduce the most important information of maple program and its packages of commands .

The list of used references is put at the end of the thesis . An abstract in Arabic is provided also .

Two papers have been extracted from this thesis and published on the following links:

Maple in Finite Topological Spaces - Special Points .
Kahtan H.Alzubaidy, Taha Guma El turki
http://www.maplesoft.com/applications/view.aspx?SID=145571 ,(April 2013)

Maple in Finite Topological Spaces -Connectedness .
Taha Guma El turki , Kahtan H.Alzubaidy,
http://www.maplesoft.com/applications/view.aspx?SID=150631 ,(August2013)

Chapter Zero

Preliminaries

Partially Ordered Sets

Definition 0.1:

A partially ordered set (poset) (A, \leq) consist :
a non empty set A and a binary relation \leq on A such that
for all $a, b, c \in \mathrm{~A}$:
(i) \leq is reflexive i.e., $a \leq a$.
(ii) \leq is anti symmetric i.e., if $a \leq b$ and $b \leq a$, then $a=b$.
(iii) \leq is transitive i.e ., if $a \leq b$ and $b \leq c$, then $a \leq c$ [5, p. 2].
$x \leq y$ is read as x precedes (contained in) y or y dominate (contains) x.

Definition 0.2:

A partial order relation \leq is called a totally order (or linear order or chain) if for any $a, b \in \mathrm{~A}$, we have either $a \leq b$ or $b \leq a[5, \mathrm{p} .2]$.

Examples 0.1:

(i) \mathbb{R} with \leq (magnitude) (\mathbb{R}, \leq) is a poset in fact it's a chain.
(ii) \mathcal{A} is a family of sets with the inclusion $\subseteq,(\mathcal{A}, \subseteq)$ is a poset
(iii) \mathbb{Z}^{+}with division \midis a poset, but it is not a totally ordered set, since $3,7 \in \mathbb{Z}^{+}$and neither $3 \nmid 7$ nor $7 \nmid 3$.

Definition 0.3:

A preorder or quasiorder on a non empty set A is a binary relation that is reflexive and transitive [5, p. 3].

Definition 0.4:

An equivalence relation on a non empty set A is a binary relation that is reflexive, symmetric (i.e., if $x \leq y$, then $y \leq x$) and transitive. If $x \in \mathrm{~A}$, then the set $[x]$ of elements of A that equivalent to x is called an equivalence class of x [5, p. 2].

Definition 0.5:

A binary relation < on a non empty set A is called a strict order if for all $a, b, c \in \mathrm{~A}$, we have :
(i) $<$ is irreflexive i.e ., $a \nless a$.
(ii) $<$ is transitive i.e ., if $a<b$ and $b<c$, then $a<c[5$, p. 4].

Relationships between $<$ and $\leq:$
(i) $a \leq b$ iff $a<b$ or $a=b$.
(ii) $a<b$ iff $a \leq b$ and $a \neq b$ [5, p. 4].

Remark:

The inverse order of an order \leq is denoted by \geq.
\geq is defined as follows : $a \geq b$ iff $b \leq a$.

Definition 0.6:

Let (A, \leq) be a poset. Then y covers x in A, denoted by $x \sqsubset y$, if $x<y$ and no element in A lies strictly between x and y, that is, if $x \leq z \leq y$ then $x=z$ or $y=z$.

If $x \subset y$, or $x=y$, we write $x \sqsubseteq y[5, \mathrm{p} .4]$.
For a finite poset A , the covering relation uniquely determines the order on A , since $x \leq y$, if and only if there is a finite sequence of elements of A such that , x ᄃ $p_{1} \sqsubset p_{2} \sqsubset p_{3} \sqsubset \ldots \sqsubset p_{n} \sqsubset y$. Small finite posets are often described with a diagram called a Hasse diagram, which is a graph whose nodes are labeled with the elements of the poset and whose edges indicate the covering relation.This is illustrated in the following example.

Example 0.2:

Figure (1) shows the Hasse diagram of the poset $\mathrm{P}=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$ under inclusion.

Definition 0.7:

If (A, \leq) is a poset and $\mathrm{B} \subseteq \mathrm{A}$, then (B, \leq) is a poset it is called a subposet of a poset A .

Definition 0.8:

Let $\left(\mathrm{A}, \leq_{1}\right)$ and (B, \leq_{2}) be two posets, suppose that $\mathrm{C}=\mathrm{A} \times \mathrm{B}$, then C can be made a poset such that :
(i) Product order :
$(a, b) \leq(c, d)$ iff $a \leq_{1} c$ and $b \leq_{2} d . \leq$ is a partially order on C.

Remark:

If \leq_{1} and \leq_{2} are total orders, then \leq may not be total.
(ii) Lexicographical order (dictionary order):
$(a, b) \leq(c, d)$ iff $a<_{1} c$ or $\left(a=c\right.$ and $\left.b \leq_{2} d\right) . \leq$ is partially order on $\mathrm{C}[5, \mathrm{p} .4]$.

Remark:

if \leq_{1} and \leq_{2} are total orders, then \leq is a total order .

Definition 0.9:

Let $\left(\mathrm{A}, \leq_{1}\right)$ and $\left(\mathrm{B}, \leq_{2}\right)$ be two posets. A function $f: \mathrm{A} \rightarrow \mathrm{B}$ is order preserving if $x \leq_{1} y$ implies $f(x) \leq_{2} f(y)$ where $x, y \in \mathrm{~A}$.

Definition 0.10:

Two posets $\left(\mathrm{A}, \leq_{1}\right)$ and $\left(\mathrm{B}, \leq_{2}\right)$ are called order isomorphic , if there exists a one-to-one onto function $f: \mathrm{A} \rightarrow \mathrm{B}$ such that f and f^{-1} are orderpreserving .Also f is called order isomorphism [5, p.13].

Definition 0.11:

Let A be a poset .
(i) An element $s \in \mathrm{~A}$ is called smallest element of A , if $s \leq x$ for all $x \in \mathrm{~A}$.
(ii) An element $\mathrm{g} \in \mathrm{A}$ is called largest element of A , if $x \leq g$ for all $x \in \mathrm{~A}$.
(iii) An element $m \in \mathrm{~A}$ is called minimal element of A , if there is no $x \in \mathrm{~A}$ such that $x<m$.
i.e., if there is $x \in$ A such that $x \leq m$, then $x=m$.
(iv) An element $\mathrm{g} \in \mathrm{A}$ is called maximal element of A , if there is no $x \in$ A such that $\mathrm{g}<x$.
i.e., if there is $x \in$ A such that $g \leq x$, then $x=g[5$, p. 6] .

Definition 0.12:

Let (A, \leq) be a poset and $\mathrm{B} \subseteq \mathrm{A}$.
(i) An element $u \in \mathrm{~A}$ is an upper bound of B if $x \leq u$ for any $x \in \mathrm{~B}$.

The least upper bound or Supremum of B is an upper bound which precedes every other upper bound of B. It is denoted by sup.(B). i.e., sup.(B) $\leq u$ for each upper bound u of B.
sup.(B) is the smallest upper bound of B .
(ii) An element $l \in \mathrm{~A}$ is an lower bound of B if $l \leq x$ for any $x \in \mathrm{~B}$.

The greatest lower bound or Infimum of B is a lower bound
which dominates every other lower bound of B. It is denoted by inf.(B).
i.e., $l \leq \inf$.(B) for each lower bound l of B.
inf.(B) is the greatest lower bound of B.

Lemma 0.1:

Smallest and greatest elements are unique, if they exists .

Definition 0.13:

A poset (A, \leq) is called complete , if for every $\mathrm{B} \subseteq \mathrm{A}$, inf.(B) and sup.(B) both exist .

Lattices:

Definition 0.14:

A poset L is a lattice if for every $a, b \in \mathrm{~L}$ both $\sup .\{a, b\}$ and inf.$\{a, b\}$ exist in L [5, p .53] .

Notation:

$$
\sup .\{a, b\}=a \vee b \text { and } \operatorname{Inf} .\{a, b\}=a \wedge b
$$

\vee is called join and \wedge is called meet $[5, \mathrm{p} .53]$.

Examples 0.3:

(i) (\mathbb{R}, \leq) is a lattice .

Since for any $x, y \in \mathbb{R}, x \vee y=\max \{x, y\}$ and $x \wedge y=\min \{x, y\}$
(ii) if A is a set, then $\left(2^{\mathrm{A}}, \subseteq\right)$ is a lattice.

For any $\mathrm{X}, \mathrm{Y} \subseteq \mathrm{A}$, we have $\mathrm{X} \vee \mathrm{Y}=\mathrm{X} \cup \mathrm{Y}$ and $\mathrm{X} \wedge \mathrm{Y}=\mathrm{X} \cap \mathrm{Y}$.
(iii) $\left(\mathbb{Z}^{+}, \mid\right)$is a lattice
$x \wedge y=(x, y)$ greatest common divisor
$x \vee y=[x, y]$ least common multiple.

Definition 0.15:

A poset L is a complete lattice if L has arbitrary joins and arbitrary meets.

Topological Spaces

In this section we will introduce the basic definitions that are related to topological spaces and also discuss the most important topological properties

Definition 0.16:

A topology on a set X consist of a collection $\boldsymbol{\tau}$ of subsets of X called
(open sets of X).With the following properties :
(i) $\varnothing \in \boldsymbol{\mathcal { T }}$ and $\mathrm{X} \in \boldsymbol{\mathcal { T }}$.
(ii) if $\mathrm{O}_{1}, \mathrm{O}_{2} \in \boldsymbol{\tau}$, then $\mathrm{O}_{1} \cap \mathrm{O}_{2} \in \boldsymbol{\tau}$, and
(iii) if $\mathrm{O} \alpha \in \boldsymbol{\mathcal { V }}$ for any $\alpha \in \mathbf{J}$, then $\bigcup_{\alpha \in J} \mathrm{O} \alpha \in \boldsymbol{\mathcal { T }}$.
(ii) and (iii) mean that the collection τ is closed under finite intersections and arbitrary unions [4, p.1].

Examples 0.4:

(i) Discrete Topology:

If X is a set, then $\delta=2^{\mathrm{X}}=\{\mathrm{O}: \mathrm{O} \subseteq \mathrm{X}\}$ is a topology on X , it is called discrete topology . It's the largest topology on X .
(ii) Indiscrete Topology :

If X is a set, then $\mathcal{\tau}=\{\varnothing, X\}$ is topology on X, it is called indiscrete topology, it's the smallest topology on X.

(iii) Cofinite Topology :

If X is a set, $\boldsymbol{\tau}=\{\mathrm{O} \subseteq \mathrm{X}: \mathrm{X}-\mathrm{O}$ is finite $\} \cup\{\phi\}, \mathcal{\tau}$ is a topology on X is called cofinite topology $\emptyset \in \mathcal{\tau}$ and $\mathrm{X} \in \boldsymbol{\tau}$, since $\mathrm{X}-\mathrm{X}=\varnothing$ is finite.

Let $\mathrm{O}_{1}, \mathrm{O}_{2} \in \boldsymbol{\tau}$, then $\mathrm{X}-\mathrm{O}_{1}$ and $\mathrm{X}-\mathrm{O}_{1}$ are finite .
$\mathrm{X}-\left(\mathrm{O}_{1} \cap \mathrm{O}_{2}\right)=\left(\mathrm{X}-\mathrm{O}_{1}\right) \cup\left(\mathrm{X}-\mathrm{O}_{2}\right)$ which is finite and hence
$\mathrm{O}_{1} \cap \mathrm{O}_{2} \in \boldsymbol{\mathcal { T }}$. Let $\mathrm{O} \alpha \in \boldsymbol{\mathcal { T }} \quad$ for any $\alpha \in \mathbf{J}$, then $\mathrm{X}-\mathrm{O} \alpha$ is finite
for any $\alpha \in \mathbf{J} . \mathrm{X}-\bigcup_{\alpha \in \mathrm{J}} \mathrm{O} \alpha=\bigcap_{\alpha \in \mathrm{J}}(\mathrm{X}-\mathrm{O} \alpha)$, which is finite and hence
$\bigcup_{a \in \mathrm{~J}} \mathrm{O} \alpha \in \boldsymbol{\tau}$.
(iv) Metric Topology :

If (X, d) is a metric space then

$$
\mathcal{\tau}_{\mathrm{d}}=\left\{\mathrm{O} \subseteq \mathrm{X}: \forall a \in \mathrm{O}, \exists \epsilon>0, \text { s.t } a \in \mathrm{~B}_{\mathrm{d}}(a ; \epsilon) \subseteq \mathrm{O}\right\}
$$

is the metric topology on X induced by d. For example the usual metric topology on \mathbb{R} is

$$
\mathcal{E}=\{\mathrm{O} \subseteq \mathbb{R}: \forall a \in \mathrm{O}, \exists \epsilon>0, \text { s.t } a \in(a-\epsilon, a+\epsilon) \subseteq \mathrm{O}\}
$$

Definition 0.17:

An ordered topological space is a triple $(\mathrm{X}, \boldsymbol{\tau}, \leq)$ where $(\mathrm{X}, \boldsymbol{\tau})$ is a topological space and (X, \leq) is a totally order set .

Remark:

Infinite intersection of open sets may not be open set .Take the usual real line $(\mathbb{R}, \mathcal{E})$. The sets $\left(\frac{-1}{n}, \frac{1}{n}\right): n \in \mathbb{Z}^{+}$are open in $(\mathbb{R}, \mathcal{E})$,
$\operatorname{but} \bigcap_{n=1}^{\infty}\left(\frac{-1}{n}, \frac{1}{n}\right)=\{0\}$ is not open in $(\mathbb{R}, \mathcal{E})$.

Definition 0.18:

β is a base for a topology $\boldsymbol{\tau}$ if :
(i) $\beta \subseteq \tau$
(ii) $\boldsymbol{\tau}=\left\{\cup \beta^{\prime} \mid \beta^{\prime} \subseteq \beta\right\}[4, \mathrm{p} .12]$.

Examples 0.5:

(i) $\{\{x\}: x \in \mathrm{X}\}$ is basis for the discrete topology on X .
(ii) $\{\mathrm{X}\}$ is basis for the indiscrete topology on X .
(iii) The set of open balls $\left\{\mathrm{B}_{\mathrm{d}}(a, \epsilon): a \in \mathrm{X}\right.$ and $\left.\epsilon>0\right\}$ is basis for the metric topology on X .

Theorem 0.1 [4]:

Let X be a set and $\beta \subseteq 2^{\mathrm{X}}$, then β is a basis for unique topology on X iff :
(i) For each $x \in \mathrm{X}$ there exist, $\mathrm{B} \in \beta$ such that $x \in \mathrm{~B} \subseteq \mathrm{X}$.
(ii) For any $\mathrm{B}_{1}, \mathrm{~B}_{2} \in \beta$ if $x \in \mathrm{~B}_{1} \cap \mathrm{~B}_{2}$, then there is $\mathrm{B}_{3} \in \beta$ such that

$$
x \in \mathrm{~B}_{3} \subseteq \mathrm{~B}_{1} \cap \mathrm{~B}_{2} .
$$

Definition 0.19:

Let (X, τ) be a topological space, ξ is a subbasis for τ on X if :
(i) $\xi \subseteq \tau$.
(ii) Finite intersection of members of ξ form a basis for τ.

Members of ξ are called subbasic open sets [4, p .15].

Remark:

Let $\mathrm{O} \in \mathcal{T}$ for any $x \in \mathrm{O}$, there are $\mathrm{S}_{1}, \mathrm{~S}_{2, \ldots,} \mathrm{~S}_{n} \in \xi$ s.t $x \in \bigcap_{i=1}^{n} \mathrm{~S}_{i} \subseteq \mathrm{O}$.

Theorem 0.2:

Let X be a set and $\xi \subseteq 2^{\mathrm{X}}, \xi$ forms a subbasis for a topology on X , moreover this topology is unique and it is the smallest topology contains ξ.

Sets in Spaces

Definition 0.20:

Let X be a space and $\mathrm{A} \subseteq \mathrm{X}$, a point $x \in \mathrm{X}$ is called an interior point of A if there exist an open set O such that $x \in \mathrm{O} \subseteq \mathrm{A}$. The set of all interior point of A is denoted by A°.

Theorem 0.3:

$1-\mathrm{A}^{\circ} \subseteq \mathrm{A}$.
$2-\mathrm{A}^{\circ}$ is open.
3- A is open iff $\mathrm{A}=\mathrm{A}^{\circ}$.
4- $\left(\mathrm{A}^{\circ}\right)^{\circ}=\mathrm{A}^{\circ}$.
5- if $A \subseteq B$, then $A^{\circ} \subseteq B^{\circ}$.
6- $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$.
$7-A^{\circ} \cup B^{\circ} \subseteq(A \cup B)^{\circ}[4, p .6]$.

Definition 0.21:

Let X be a space and $\mathrm{A} \subseteq \mathrm{X}$, a point $x \in \mathrm{X}$ is called a closure point of A if for any open set $\mathrm{O} \ni x$, we have that $\mathrm{A} \cap \mathrm{O} \neq \emptyset$. The set of all closure points of A is denoted by $\overline{\mathrm{A}}$.

Theorem 0.4:

$1-\mathrm{A} \subseteq \overline{\mathrm{A}}$.
2- $\overline{\mathrm{A}}$ is closed.

3- A is closed iff $\mathrm{A}=\overline{\mathrm{A}}$.

4- $\overline{\overline{\mathrm{A}}}=\overline{\mathrm{A}}$.

5- if $\mathrm{A} \subseteq \mathrm{B}$, then $\overline{\mathrm{A}} \subseteq \overline{\mathrm{B}}$.
6- $\overline{(\mathrm{A} \cap \mathrm{B})} \subseteq \overline{\mathrm{A}} \cap \overline{\mathrm{B}}$.
$7-\overline{(\mathrm{A} \cup \mathrm{B})}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$.

Definition 0.22:

Let X be a space and $\mathrm{A} \subseteq \mathrm{X}$, a point $x \in \mathrm{X}$ is called a boundary point of A if for any open set $\mathrm{O} \ni x$, we have that $\mathrm{A} \cap \mathrm{O} \neq \varnothing$ and $\mathrm{O} \cap(\mathrm{X}-\mathrm{A}) \neq \emptyset$. The set of all boundary points of A is denoted by $\partial \mathrm{A}$.

Theorem 0.5 :

$1-\partial \mathrm{A}=\overline{\mathrm{A}} \cap \overline{(\mathrm{X}-\mathrm{A})}$.
$2-\partial \mathrm{A}=\partial(\mathrm{X}-\mathrm{A})$.
3- $\partial \mathrm{A}$ is closed.

4- $\overline{\mathrm{A}}=\mathrm{A} \cup \partial \mathrm{A}$.
$5-\mathrm{A}$ is closed iff $\partial \mathrm{A} \subseteq \mathrm{A}$.

6- $\partial \mathrm{A}=\overline{\mathrm{A}}-\mathrm{A}^{\circ}$.

Definition 0.23:

Let X be a space and $\mathrm{A} \subseteq \mathrm{X}$, a point $x \in \mathrm{X}$ is called a limit point of A if for any open set O э x, we have that $(\mathrm{O}-\{x\}) \cap \mathrm{A} \neq \emptyset$.

The set of all limit points of A is denoted by A^{\prime}.

Theorem 0.6:

$$
1-\overline{\mathrm{A}}=\mathrm{A} \cup \mathrm{~A}^{\prime} .
$$

$2-\mathrm{A}$ is closed iff $\mathrm{A}^{\prime} \subseteq \mathrm{A}$.
3 - if $\mathrm{A} \subseteq \mathrm{B}$, then $\mathrm{A}^{\prime} \subseteq \mathrm{B}^{\prime}$.
$4-(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$.
$5-(\mathrm{A} \cap \mathrm{B})^{\prime} \subseteq \mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$.

Definition 0.24:

Let X be a space and $\mathrm{A} \subseteq \mathrm{X}$, a point $x \in \mathrm{X}$ is called an exterior point of A if there exist an open set $\mathrm{O} \ni x$ such that $\mathrm{O} \subseteq(\mathrm{X}-\mathrm{A})$. The set of all exterior points of A is denoted by $\mathrm{A}^{e \mathrm{et}}$.

Theorem 0.7 :

1- $\mathrm{A}^{e t t}, \mathrm{~A}^{\circ}, \partial \mathrm{A}$ are pair wise disjoint and $\mathrm{A}^{\circ} \cup \partial \mathrm{A} \cup \mathrm{A}^{e t t}=\mathrm{X}$
$2-A^{e t t}=(X-A)^{\circ}$ and thus $A^{e t t}$ is open $[4, p .11]$.

Definition 0.25:

Let X be a space and $\mathrm{A} \subseteq \mathrm{X}$, a point $x \in \mathrm{X}$ is called isolated point of
A if there exist an open set O such that $\mathrm{O} \cap \mathrm{A}=\{x\}$. The set of all isolated points of A is denoted by $\mathrm{A}^{\text {iso }}$.

Theorem 0.8 :

1) $\mathrm{A}^{\mathrm{iso}} \subseteq \mathrm{A}$.
2) $A^{\text {iso }} \cap A^{\prime}=\emptyset$.
3) $\mathrm{A}^{i s o}=\mathrm{A}-\mathrm{A}^{\prime}$.

Separation Axioms

Definition 0.26:

A topological space $(\mathrm{X}, \boldsymbol{\tau})$ is called T_{0}-space if for every two distinct points $x, y \in \mathrm{X}$, there is an open set O , such that either :
$x \in \mathrm{O}$ and $y \notin \mathrm{O}$ or $x \notin \mathrm{O}$ and $y \in \mathrm{O}$.

Examples 0.6 :

(i) Right ray topology over R is T_{0}-space

$$
\tau_{\text {right }}=\{(a, \infty): a \in \mathbb{R}\} \cup\{\varnothing, \mathbb{R}\}
$$

(ii) Sierpiński space is T_{0}-space .

$$
\mathrm{X}=\{a, b\}, \tau=\{\emptyset,\{a\}, \mathrm{X}\} .
$$

(iii) Indiscrete space is not T_{0}-space .

Theorem 0.9:

X is T_{0}-space iff for any $a, b \in \mathrm{X} ; \overline{\{a\}}=\overline{\{b\}}$, implies that $a=b$

Proof:

If X is T_{0}-space, let $a \neq b$, then $a \notin \overline{\{b\}}$, but $a \in \overline{\{a\}}$, and hence

$$
\overline{\{a\}} \neq \overline{\{b\}} .
$$

Conversely
Let $a \neq b$, then $\overline{\{a\}} \neq \overline{\{b\}}$, Take $\mathrm{O}=\mathrm{X}-\overline{\{a\}}$, then O is open and $\mathrm{O} \ni b, \mathrm{O} \nexists a$.

Definition 0.27:

A topological space (X, τ) is called T_{1} - space if for every two distinct points $x, y \in \mathrm{X}$, there exist two open sets O_{1} and O_{2}, such that $x \in \mathrm{O}_{1}, y \notin \mathrm{O}_{1}$ and $x \notin \mathrm{O}_{2}, y \in \mathrm{O}_{2}$.

Examples 0.7:

(i) The cofinite topology $\tau=\{\mathrm{O} \subseteq \mathrm{X}: \mathrm{X}-\mathrm{O}$ is finite $\} \cup\{\varnothing\}$.

Let $x \neq y$ in X , Take $\mathrm{O}_{1}=\{x\}^{\mathrm{c}}$, and $\mathrm{O}_{2}=\{y\}^{\mathrm{c}}$, then O_{1} and O_{2} are open and $y \in \mathrm{O}_{1}, x \notin \mathrm{O}_{1}$ and $y \notin \mathrm{O}_{2}, x \in \mathrm{O}_{2}$.
(ii) The metric topological space $\left(X, T_{d}\right)$ is T_{1} - space

$$
\begin{aligned}
& \text { let } x \neq y \text { in } \mathrm{X}, \text { Take } \mathrm{O}_{1}=\mathrm{B}_{\mathrm{d}}\left(x, \frac{\epsilon}{2}\right), \text { and } \mathrm{O}_{2}=\mathrm{B}_{\mathrm{d}}\left(y, \frac{\epsilon}{2}\right) \text {, where } \\
& \epsilon=\mathrm{d}(x, y)>0, x \in \mathrm{O}_{1}, y \notin \mathrm{O}_{1} \text { and } x \notin \mathrm{O}_{2}, y \in \mathrm{O}_{2} .
\end{aligned}
$$

Theorem 0.10:

A space $(\mathrm{X}, \boldsymbol{\tau})$ is T_{1} - space iff for every $x \in \mathrm{X},\{x\}$ is closed.

Corollary 0.1:

A space (X, τ) is T_{1} - space iff every finite subset is closed .

Definition 0.28:

A topological space ($\mathrm{X}, \boldsymbol{\tau}$) is called Hausdorff space $\left(\mathrm{T}_{2}\right.$ - space $)$ if for every two distinct points $x, y \in \mathrm{X}$, there exist two open sets $\mathrm{O}_{1}, \mathrm{O}_{2}$, such that $x \in \mathrm{O}_{1}$ and $y \in \mathrm{O}_{2}$ and $\mathrm{O}_{1} \cap \mathrm{O}_{2}=\varnothing$.

Examples 0.8:

(i) Metric topology is T_{2} - space

Let $x, y \in \mathrm{X}$ with $x \neq y$ and let $\epsilon=\mathrm{d}(x, y)>0$.
Take $\mathrm{O}_{1}=\mathrm{B}_{\mathrm{d}}\left(x, \frac{\epsilon}{2}\right)$ and $\mathrm{O}_{2}=\mathrm{B}_{\mathrm{d}}\left(y, \frac{\epsilon}{2}\right)$;
Then $x \in \mathrm{O}_{1}$ and $y \in \mathrm{O}_{2}$ and $\mathrm{O}_{1} \cap \mathrm{O}_{2}=\varnothing$.
(ii) Infinite cofinite topology is not T_{2}
$x, y \in \mathrm{X} ; x \neq y$, suppose that X is $\mathrm{T}_{2^{-}}$space. Then there exist two
open sets O_{1} and O_{2}, such that:
$\mathrm{O}_{1} \ni x, \mathrm{O}_{2} \ni y$ and $\mathrm{O}_{1} \cap \mathrm{O}_{2}=\varnothing$.
Then $\mathrm{O}_{1}{ }^{\mathrm{C}} \mathrm{UO}_{2}{ }^{\mathrm{C}}=\mathrm{X}$, but $\mathrm{O}_{1}{ }^{\mathrm{c}}$ and $\mathrm{O}_{2}{ }^{\mathrm{c}}$ are finite sets, then X is finite, hence X is not T_{2} - space .

Definition 0.29:

A topological space (X, τ) is called regular if for every point $x \in \mathrm{X}$ and closed subset $\mathrm{F} \subseteq \mathrm{X}$ with $x \notin \mathrm{~F}$ there are two open sets $\mathrm{O}_{1}, \mathrm{O}_{2}$ such that $x \in \mathrm{O}_{1}$ and $\mathrm{F} \subseteq \mathrm{O}_{2}$ and $\mathrm{O}_{1} \cap \mathrm{O}_{2}=\varnothing$.
(X, τ) is called T_{3} - space iff its regular space and $\mathrm{T}_{1}-$ space.

Examples 0.9:

(i) $\mathrm{X}=\{a, b, c\}, \boldsymbol{\tau}=\{\varnothing,\{a\},\{b, c\}, \mathrm{X}\}$
is regular space but is not T_{1} - space since $\{b\}$ is not closed, then $(\mathrm{X}, \boldsymbol{\tau})$ is not T_{3}-space .
(ii) Metric topological space ($\mathrm{X}, \boldsymbol{\tau}_{\mathrm{d}}$) is regular and T_{3} - space let $x \in \mathrm{X}, \mathrm{F} \subseteq \mathrm{X}$ is closed set, and $x \notin \mathrm{~F}$.

Take $\epsilon=\mathrm{d}(x, \mathrm{~F})=\min \{\mathrm{d}(x, y): y \in \mathrm{~F}\}$, and take $\mathrm{O}_{1}=\mathrm{B}_{\mathrm{d}}\left(x, \frac{\epsilon}{4}\right)$ and $\mathrm{O}_{2}=\bigcup_{y \in F} \mathrm{~B}_{\mathrm{d}}(y, \mathrm{~F})$, then O_{1} and O_{2} are open sets and $x \in \mathrm{O}_{1}$ and $\mathrm{F} \subseteq \mathrm{O}_{2}$ and $\mathrm{O}_{1} \cap \mathrm{O}_{2}=\emptyset$, then (X, τ) is T_{3} - space .

Definition 0.30:

A topological space ($\mathrm{X}, \boldsymbol{\tau}$) is called Normal space if for any two disjoint closed sets F_{1} and F_{2} of X , there are two open sets O_{1} and O_{2} such that $\mathrm{F}_{1} \subseteq \mathrm{O}_{1}, \mathrm{~F}_{2} \subseteq \mathrm{O}_{2}$ and $\mathrm{O}_{1} \cap \mathrm{O}_{2}=\varnothing$.

A topological space is called T_{4} - space if it is Normal and T_{1} - space .

Examples 0.10:

(i) $\mathrm{X}=\{a, b, c, d\}, \tau=\{\emptyset,\{a, b\},\{c, d\}, \mathrm{X}\}$
(X, τ) is Normal , but not T_{1} - space since $\{a\}$ is not closed .
(ii) Metric topological space is T_{4} - space .

Continuous Functions and Homeomorphisms

Definition 0.31:

Let X and Y be two spaces A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous if for for every open set O in $\mathrm{Y}, f^{-1}(\mathrm{O})$ is open in X .

A continuous function is called " map " [4, p .31].

Theorem 0.11 [4]:

$f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous iff $f^{-1}(\mathrm{E})$ is closed in X for any closed set E in Y.

Definition 0.32:

A homeomorphism (Topological transformation) is a bijective map and its inverse is a map [4, p.35] .

Notation:

If there is a homeomorphism from X onto Y , we say that X and Y are
homeomorphic or topologically equivalent, it is denoted by $\mathrm{X} \cong \mathrm{Y}$.

Theorem 0.12:

\cong is an equivalent relation on spaces .

Definition 0.33:

If $\left(\mathrm{X}, \boldsymbol{\tau}_{1}, \leq_{1}\right)$ and $\left(\mathrm{Y}, \boldsymbol{\tau}_{2}, \leq_{2}\right)$ ordered topological spaces then a map
$f: \mathrm{X} \rightarrow \mathrm{Y}$ is an order-homeomorphism if it is an order isomorphism of posets and a homeomorphism of topological spaces [5, p .218].

Theorem (The pasting Lemma) 0.13:

Let $\mathrm{X}=\mathrm{A} \cup \mathrm{B}$, where A and B are closed in X , let $f: \mathrm{A} \rightarrow \mathrm{X}$ and $g: \mathrm{B} \rightarrow \mathrm{Y}$ be continuous. IF $f(x)=g(x)$ for every $x \in \mathrm{~A} \cap \mathrm{~B}$, then f and g combine to give a continuous function $h: \mathrm{X} \longrightarrow \mathrm{Y}$, defined by setting $h(x)=f(x)$ if $x \in \mathrm{~A}$, and $h(x)=g(x)$ if $x \in \mathrm{~B}$ [3, p. 108].

Note:

Theorem 0.13 is also hold if A and B are both open sets .

Notation:

If X and Y are two topological spaces, let
$\mathrm{Y}^{\mathrm{x}}=\{f \mid f: \mathrm{X} \rightarrow \mathrm{Y}, f$ is continuous function $\}$.

Compactness

Definition 0.34:

A space X is called compact space if every open cover of X can be reduced to a finite subcover .
i.e., if $\mathrm{X}=\bigcup_{\alpha \in \mathrm{J}} \mathrm{O}_{\alpha}$, then there exist a finite subcover $\left\{\mathrm{O}_{\alpha_{i}}\right\}_{i=1}^{n}$ such tahat $\mathrm{X}=\bigcup_{i=1}^{n} \mathrm{O}_{\alpha_{i}}[4, \mathrm{p} .139]$.

Examples 0.11:

(i) Any Indiscrete space is compact .
(ii)Any closed bounded subset of \mathbb{R}^{n} is compact (Hiene-Borle Theorem).

Theorem (Tychonov) 0.14 [4]:

Let ($\mathrm{X} \alpha, \boldsymbol{\tau}_{\alpha}$) be a topological spaces for any $\alpha \in \mathbf{J}$, then $\prod_{\alpha \in \mathrm{J}} \mathrm{X} \alpha$ is compact iff ($\mathrm{X} \alpha, \boldsymbol{\tau}_{\alpha}$) is compact topological space for each $\alpha \in \mathbf{J}$.

Corollary 0.2:

Compactness is a topological property.

Definition 0.35:

A topological space X is locally compact space if for any $x \in \mathrm{X}$ there is compact neighborhood of x [4, p.154].

Examples 0.12:

(i) $\mathbb{R}^{\boldsymbol{n}}$ is locally compact space.
(ii) Any compact space is locally compact.

Connectivity and Path Connectivity

Definition 0.36:

O_{1} and O_{2} Separate a topological space X if :
(i) O_{1} and O_{2} are both open .
(ii) O_{1} and O_{2} are both non-empty .
(iii) $\mathrm{O}_{1} \cap \mathrm{O}_{2}=\emptyset$.
(iv) $\mathrm{O}_{1} \cup \mathrm{O}_{2}=\mathrm{X}[4, \mathrm{p} .119]$.

Definition 0.37:

A space X is connected if there do not exist non-empty proper sets O_{1} and O_{2} which separate X [4, p .119].

Examples 0.13:

The following spaces are connected.
(i) Sierpinski space.
(ii) Any indiscrete space.
(iii) The usual real line $(\mathbb{R}, \mathcal{E})$.

Note:

If X is not connected, we generally say that X is disconnected.

Example 0.14:

The discrete topology over a set with more than one point is disconnected.

Theorem 0.15 [4]:

Let ($\mathrm{X} \alpha, \boldsymbol{\tau}_{\alpha}$) be a topological spaces for any $\alpha \in \mathbf{J}$, then $\prod_{\alpha \in \mathrm{J}} \mathrm{X} \alpha$ is connected iff ($\mathrm{X} \alpha, \boldsymbol{\tau}_{\alpha}$) is connected for each $\alpha \in \mathbf{J}$.

Corollary 0.3

Connectedness is topological property.

Definition 0.38:

Let $x \in \mathrm{X}$. Then $\mathrm{C}_{x}=\mathrm{U}\{\mathrm{A} \mid x \in \mathrm{~A} \subseteq \mathrm{X}$ and A is connected $\}, \mathrm{C}_{x}$ is called the connected component of x.

Examples 0.15:

(i) In the discrete space $\mathrm{C}_{x}=\{x\}$ for any $x \in \mathrm{X}$.
(ii) In the usual real line $(\mathbb{R}, \mathcal{E}) \mathrm{C}_{x}=\mathbb{R}$ for any $x \in \mathbb{R}$.

Definition 0.39:

A topological space X is said to be locally connected at x if for every neighborhood O of x, there is a connected neighborhood U of x contained in O. If X is locally connected at each of its points then it is said to be locally connected [3, p.161].

Example 0.16:

Each interval in the usual real line is locally connected .

Definition 0.40:

A function $p: \mathrm{I} \longrightarrow \mathrm{X}$ is called a path in X if p is continuous [4, p .131$]$.

Definition 0.41:

A map $p: \mathrm{I} \longrightarrow \mathrm{X}$ is called a path from x to y in X if p is a path in X and $p(0)=x$ and $p(1)=y, x$ is called initial point and y is called terminal point of p [4, p. 131].

Definition 0.42:

A loop p based at $x \in \mathrm{X}$ is a path in X if $p(0)=p(1)=x$, i.e., the beginning point and the terminal point are equal [3, p. 326].

Definition 0.43:

A space X is path connected if for any $x, y \in \mathrm{X}$ there is a path joining them in $X[3, p .155]$.

Definition 0.44:

If p is a path in X from x into y, and if g is a path in X from y to z, we define the composition $p_{*} g$ of p and g to be the path h given by the equation

$$
h(t)=\left\{\begin{array}{ll}
p(2 t) & \text { for all } t \in\left[0, \frac{1}{2}\right] \\
g(2 t-1) & \text { for ll } t \in\left[\frac{1}{2}, 1\right]
\end{array} .\right.
$$

The function h is well defined and continuous by pasting lemma .

Example 0.17:

$(\mathbb{R}, \mathcal{E})$ is path connected space .

Remark:

A connected space may not be path connected [4, p .131. Example 2.4].

Theorem 0.16 [4]:

Let X be path connected space then X is connected .

Theorem 0.17 [4]:

Let $\left(\mathrm{X} \alpha, \boldsymbol{\tau}_{\alpha}\right)$ be a topological spaces for each $\alpha \in \mathbf{J}$.Then $\prod_{\alpha \in \mathrm{J}} \mathrm{X} \alpha$
is path connected iff ($\mathrm{X} \alpha, \boldsymbol{\tau}_{\alpha}$) is path connected for each $\alpha \in \mathbf{J}$.

Corollary 0.4:

Path connectedness is a topological property.

Definition 0.45:

Let $x \in \mathrm{X}$. Then $H_{x}=\mathrm{U}\{\mathrm{A} \mid x \in \mathrm{~A} \subseteq \mathrm{X}$ and A is path connected $\}, H_{\mathrm{x}}$ is called the path connected component of $x[4, \mathrm{p} .134]$.

Definition 0.46:

A topological space X is said to be locally path connected at x
if for every neighborhood O of x, there is a path connected
neighborhood U of x contained in O . If X is locally path connected at each of its points then it is said to be locally path connected [3, p. 161]

Example 0.18:

(i) \mathbb{R}^{n} is locally path connected [3, p.161].

Quotient Spaces

Definition 0.47:

Let X and Y be a topological spaces, let $q: \mathrm{X} \rightarrow \mathrm{Y}$ be a surjective map. The map q is said to be a quotient map, provided a subset O of Y is open in Y if $q^{-1}(\mathrm{O})$ is open in $\mathrm{X}[3, \mathrm{p} .135]$.

Definition 0.48:

If X is a space and A is a set, $p: \mathrm{X} \rightarrow \mathrm{A}$ a surjective map, then there exists exactly one topology $\boldsymbol{\tau}$ on A relative to which p is a quotient map, it is called the quotient topology induced by p [$3, \mathrm{p} .136]$.

Definition 0.49:

Let X be a topological space, and let X^{*} be a partition of X into disjoint subsets whose union is X . Let $p: \mathrm{X} \rightarrow \mathrm{X}^{*}$ be a surjective map that carries each point of X to the element of X^{*} containing it .In the quotient topology induced by p, the space X^{*} is called a quotient space of X [3, p .136$]$.

Chapter One

Finite Topological Spaces

In this chapter we introduce the very important properties of finite topological spaces that are different from the general topological spaces. There was a brief early flurry of beautiful mathematical works on this subject .Two independent papers , by J.P.May and Stong [1, 7] , [7] published in 1966 , are especially interesting. We will work through them and also we create some computer procedures applications related to finite topological spaces in chapter three .

Basic Definitions

Now, if X is finite, then 2^{X} is finite and hence any topology $\boldsymbol{\tau}$ on X will consist only finitely many open sets and hence we can introduce the following definition .

Definition 1.1:

A topological space for which the underlying point set X is finite is called a finite topological space. Finite topological space can be redefine by the following conditions:
(i) $\varnothing \in \boldsymbol{\mathcal { T }}$ and $\mathrm{X} \in \boldsymbol{\mathcal { T }}$.
(ii) if $\mathrm{O}_{1}, \mathrm{O}_{2} \in \boldsymbol{\tau}$, then $\mathrm{O}_{1} \cup \mathrm{O}_{2} \in \boldsymbol{\tau}$, and
(iii) if $\mathrm{O}_{1}, \mathrm{O}_{2} \in \boldsymbol{\mathcal { T }}$, then $\mathrm{O}_{1} \cap \mathrm{O}_{2} \in \boldsymbol{\mathcal { T }}[1, \mathrm{p} .1]$.

Note:

A finite topological space is a complete lattice .

Definition 1.2:

Let X be a finite topological space. For $x \in \mathrm{X}$, define
$\mathrm{U}_{x}=\cap\{\mathrm{O} \subseteq \mathrm{X}: \mathrm{O}$ is open and $\mathrm{O} \ni x\}$
U_{x} called minimal basic open set [1, p.2].

Example 1.1:

$$
\begin{aligned}
\mathrm{X} & =\{a, b, c\} \& \tau=\{\emptyset,\{a\},\{a, b\},\{a, c\}, \mathrm{X}\} . \text { Then } \\
\mathrm{U}_{a} & =\{a\} \cap\{a, b\} \cap\{a, c\} \cap \mathrm{X}=\{a\} . \\
\mathrm{U}_{b} & =\{a, b\} \cap \mathrm{X}=\{a, b\} . \\
\mathrm{U}_{c} & =\{a, c\} \cap \mathrm{X}=\{a, c\} .
\end{aligned}
$$

Definition1.3:

Let \leq be relation on X defined by $x \leq y$ in X if $x \in \mathrm{U}_{y}$ or , equivalently , $\mathrm{U}_{x} \subseteq \mathrm{U}_{y}$, write $x<y$ if the inclusion is proper [1, p.2] .

Lemma 1.1:

The set of open sets U_{x} is basis for X . Indeed, it is the unique minimal basis for X .

Proof:

Let $\boldsymbol{\mu}$ be the set of all U_{x}, then for any $x \in \mathrm{X}$ there is $\mathrm{U}_{x} \ni x$ and hence
$\mathrm{X}=\bigcup_{x \in \mathrm{X}} \mathrm{U}_{x}$ i.e., $\boldsymbol{\mu}$ cover X.

Let $x, y, z \in \mathrm{X}$, if $z \in \mathrm{U}_{x} \cap \mathrm{U}_{y}$, then $z \in \mathrm{U}_{x}$ and $z \in \mathrm{U}_{y}$. Which implies that $\mathrm{U}_{z} \subseteq \mathrm{U}_{x}$ and
$\mathrm{U}_{z} \subseteq \mathrm{U}_{y}$, hence $z \in \mathrm{U}_{z} \subseteq \mathrm{U}_{x} \cap \mathrm{U}_{y}$.
Now suppose that ζ is another minimal basis, let $\mathrm{C} \in \zeta$ such that $x \in \mathrm{C} \subseteq \mathrm{U}_{x}$, then $\mathrm{C}=\mathrm{U}_{x}$ since U_{x} is the smallest open set contain x, so that $\mathrm{U}_{x} \in \boldsymbol{\zeta}$ for all $x \in \mathrm{X}$ and hence $\boldsymbol{\zeta}=\boldsymbol{\mu}$.

Lemma 1.2:

A set β of non-empty subsets of X is the minimal base for a topology iff
(i) Members of β cover X .
(ii) The intersection of any two sets in β is a union of some sets in β.
(iii) If $\mathrm{B} \alpha \in \beta$ for $\alpha \in \Delta$ and $\bigcup_{a \in S} \mathrm{~B} \alpha \in \beta$, then $\bigcup_{\alpha \in \Delta} \mathrm{B} \alpha=\mathrm{B} \alpha \dot{\alpha}$ for some $\dot{\alpha} \in \Delta$.

Proof:

Conditions (i) and (ii) are equivalent to saying that β is a basis, for (iii).
Suppose that β is a minimal basis, then $\mathrm{U}_{x} \in \beta$ for all $x \in \mathrm{X}$, and if

$$
\begin{equation*}
\mathrm{U}_{x}=\bigcup_{y \in \mathrm{U}_{x}} \mathrm{U}_{y} \text {, then } \mathrm{U}_{y} \subseteq \mathrm{U}_{x} \text { for all } y \in \mathrm{U}_{x} \tag{1}
\end{equation*}
$$

Also we have that $x \in \bigcup_{y \in \mathrm{U}_{x}} \mathrm{U}_{y}$ which implies $\mathrm{U}_{x} \subseteq \mathrm{U}_{y}$ for some $y \in \mathrm{U}_{x}$

From (1) and (2) we get that $\bigcup_{y \in \mathrm{U}_{x}} \mathrm{U}_{y}=\mathrm{U}_{y}$ for certain $y \in \mathrm{U}_{x}$.

Conversely

Let $\boldsymbol{\mu}$ be a minimal basis and let $\mathrm{B} \in \beta$, then $\mathrm{B}=\bigcup_{x \in \mathrm{~B}} \mathrm{U}_{x}$ for some $\mathrm{U}_{x} \in \boldsymbol{\mu}$
(B is open). And by condition (iii) $\mathrm{B}=\mathrm{U}_{x}$ for a certain $x \in \mathrm{~B}$, then B is a minimal basic open set and hence β is minimal basis .

Separation Properties

Lemma 1.3:

The relation \leq is a preorder. It is a partial order iff X is T_{0}-space .

Proof:

The first statement is clear. For the second suppose that (X, \leq) is a poset. Let $x \neq y$, then $x \not \leq y$ or $y \nsubseteq x$ which implies $x \notin \mathrm{U}_{y}$ or $y \notin \mathrm{U}_{x}$ then there exist an open set $\mathrm{U}_{y} \ni y$ and $\mathrm{U}_{y} \nexists x$ or an open set $\mathrm{U}_{x} \ni x$ and $\mathrm{U}_{x} \nexists y$ thus X is T_{0} - space.

Conversely
Suppose that X is T_{0} - space, let $x \leq y$ and $y \leq x$, then $\mathrm{U}_{x} \subseteq \mathrm{U}_{y}$ and $\mathrm{U}_{y} \subseteq \mathrm{U}_{x}$ which gives $\mathrm{U}_{x}=\mathrm{U}_{y}$, hence we must have that $x=y$.

Proposition 1.1:

For a finite set X, the topologies on X are in bijective correspondence
with the reflexive and transitive relations \leq on X . The topology
corresponding to \leq is T_{0} if and only if the relation \leq is a partial order[1, p.3].

Lemma 1.4:

Finite T_{1} - space is discrete space.

Proof:

Suppose that $\mathrm{X}=\left\{x_{1}, x_{2}, . ., x_{n}\right\}$ is a finite T_{1} - space, take $x \in \mathrm{X}$ then $\{x\}^{c}$ must be finite subset of X . Then $\{x\}^{c}$ is closed and hence any single point set $\{x\}$ is open, thus topology is discrete .

Remark:

Finite $\mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$, spaces are obviously discrete .

Theorem 1.1:

Finite $\mathrm{T}_{0^{-}}$space has at least one closed single point .

Proof:

By using mathematical induction
if $|\mathrm{X}|=1$, that is $\mathrm{X}=\{x\}$ the result is true. Assume that the result is true for $|\mathrm{X}|=n-1$. Now let $|\mathrm{X}|=n$, let $\mathrm{A} \subseteq \mathrm{X}$, such that $|\mathrm{A}|=n-1$, then A is T_{0} - space by induction and there is a point $p \in \mathrm{~A}$ such that $\{p\}$ is closed set in A , then $\{p\}=\mathrm{A} \cap \mathrm{F}$ for some closed set F in X ,
then we will have $\mathrm{F}=\{p\}$ or $\mathrm{F}=\left\{p, x_{n}\right\}$ if $\mathrm{F}=\{p\}$ then it is done.
Hence we may assume that $\mathrm{F}=\left\{p, x_{n}\right\}$, let O_{1} be open set in X such that $p \in \mathrm{O}_{1}$ and $x_{n} \notin \mathrm{O}_{1}$. Then $\mathrm{O}_{1}^{c} \cap \mathrm{~F}=\left\{x_{n}\right\}$ is closed in X .

Let O_{2} be open set in X such that $p \notin \mathrm{O}_{2}$ and $x_{n} \in \mathrm{O}_{2}$, then $\mathrm{O}_{2}^{c} \cap \mathrm{~F}=\{p\}$ closed in X .

Remark:

There are infinite $\mathrm{T}_{0^{-}}$spaces which do not have any closed single point, for example right ray topology over \mathbb{R}.

Remark:

Non - discrete finite space can also be Normal .

Example 1.2:

Excluded point topology on any finite set. Let $\mathrm{X}=\left\{x_{1}, x_{2}, x_{3}\right\}$
define a topology τ on X by $\boldsymbol{\tau}=\left\{\mathrm{O} \subseteq \mathrm{X}: x_{3} \notin \mathrm{O}\right\} \cup\{\mathrm{X}\}$.

Then $\boldsymbol{\tau}$ is the Excluded point topology on X ,
$\boldsymbol{\tau}=\left\{\emptyset,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}, \mathrm{X}\right\}$. It's clear that $(\mathrm{X}, \boldsymbol{\tau})$ is Normal .
The only disjoint closed sets are \emptyset and X and they are separated by themselves .

Number of topologies on a finite set

Topologies on a finite set are in one-to-one correspondence with preorders on the set, and T_{0} topologies are in one-to-one correspondence
with partial orders. Therefore the number of topologies on a finite set is equal to the number of preorders and the number of T_{0} topologies is equal to the number of partial orders. The table below lists the number of distinct (T_{0}) topologies on a set with n elements. It also lists the number of inequivalent (i.e. nonhomeomorphic) topologies.

n	Distinct topologies	Distinct T_{0} topologies	Inequivalent topologies	Inequivalent T_{0} opologies
0	1	1	1	1
1	1	1	1	1
2	4	3	3	2
3	29	19	9	5
4	355	219	33	16
5	6942	4231	139	63
6	209527	130023	718	318
7	9535241	6129859	4535	2045
8	642779354	431723379	35979	16999
9	63260289423	44511042511	363083	183231
10	8977053873043	6611065248783	4717687	2567284
OEIS	A000798	A001035	A001930	A000112

Let $T(n)$ denote the number of distinct topologies on a set with n points. There is no known simple formula to compute $T(n)$ for arbitrary n. The Online Encyclopedia of Integer Sequences presently lists $T(n)$ for ≤ 18.

The number of distinct T_{0} topologies on a set with n points , denoted $T_{0}(n)$, is related to $T(n)$ by the formula $\mathrm{T}(n)=\sum_{k=0}^{n} S(n, k) \mathrm{T}_{0}(n, k)$ [10]. where $S(n, k)$ is Stirling number of the second kind which is the the number of ways to partition a set of n labelled objects into k non empty unlabelled subsets

$$
S(n, k)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n}[11] .
$$

Continuous Functions and Homeomorphisms

Lemma 1.5 :

A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous iff it is order preserving i.e., if $x \leq y$ in X then $f(x) \leq f(y)$ in Y.

Proof:

Let f be a continuous function, suppose that $x \leq y$ in X , then $x \in \mathrm{U}_{y} \subseteq f^{-1}\left(\mathrm{U}_{f(y)}\right)$ and thus $f(x) \in \mathrm{U}_{f(y)}$ which implies that $f(x) \leq f(y)$.

Conversely

Let O be open set in Y if $f(y) \in \mathrm{O}$, then $\mathrm{U}_{f(y)} \subseteq \mathrm{O}$. If $x \in \mathrm{U}_{y}$, then $x \leq y$
and thus $f(x) \leq f(y)$ and $f(x) \in \mathrm{U}_{f(y)} \subseteq \mathrm{O}$. So that $x \in \mathrm{U}_{y} \subseteq f^{-1}(\mathrm{O})$, then
$f^{-1}(\mathrm{O})=\bigcup_{y \in f^{-1}(0)} \mathrm{U}_{y}$, therefore f is continuous .

Lemma1.6:

A map $f: \mathrm{X} \rightarrow \mathrm{X}$ is a homeomorphism iff f is either one -to- one or onto .

Proof:

One-to-one and onto are equivalent by finiteness, since f is one-to-one
$\mathrm{A} \rightarrow f(\mathrm{~A})$ defines one-to-one correspondence $g: 2^{\mathrm{X}} \rightarrow 2^{\mathrm{X}}$. If $g(\mathrm{~A}) \in \boldsymbol{\tau}$,
$f(\mathrm{~A})$ is open and by continuity and one-to-one nature of $f, \mathrm{~A}$ is open. Since τ is finite and $\boldsymbol{\tau} \subseteq g(\boldsymbol{\tau}), \mathrm{g}$ gives one-to-one correspondence
$\boldsymbol{\tau} \rightarrow \boldsymbol{\tau}$.Thus A open implies $f(\mathrm{~A})$ open and hence f is a homeomorphism Conversely

If f is a homeomorphism then f is one - to - one and onto .

Note:

In infinite topological spaces Lemma 1.6 is not held and we will discuss the following example to explain that .

Example 1.3:

Let X be the set of integers with the topology τ created by declaring a set to be open if either it is a subset of \mathbb{N} or it is the entire set \mathbb{Z} i.e.,
$\boldsymbol{\tau}=\{\mathrm{O}: \mathrm{O} \subseteq \mathbb{N}\} \cup\{\mathbb{Z}\}$. Then the map $f: \mathrm{X} \rightarrow \mathrm{X}$ such that $f(x)=x-1$, is a continuous bijection from X to itself, but it is not a homeomorphism since the image of \mathbb{N} is not open .

Compactness

1- Every finite space is compact .
2- A compact discrete space is a finite space .

Proof:

Let $\mathrm{X}=\bigcup_{i \in I}\left\{x_{i}\right\}$ i.e., $\left\{\left\{x_{i}\right\}\right\}_{i \in \text { 团I }}$ is an open cover of X . Since X is compact, then $\mathrm{X}=\bigcup_{i=1}^{n}\left\{x_{i}\right\}$ and hence $\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

Definition 1.3:

A space X is called smally compact if every open subset is locally compact [1, p .9].

Theorem 1.2:

Every finite space is smally compact space .

Proof:

Since every open subset is compact (since it's finite) then every open subset is locally compact .

Definition 1.4:

If Y is a finite space, then the point wise ordering \leq on Y^{x} is given by $f \leq g$ if $f(x) \leq g(x)$ for all $x \in \mathrm{X}[1, \mathrm{p} .9]$.

Definition 1.5:

A compact open topology (C-O-topology) on Y^{x} is a topology in which the subbasis are the sets $\mathrm{W}(\mathrm{C}, \mathrm{O})=\{f / f(\mathrm{C}) \subseteq \mathrm{O}\}$ where C is compact in X and O is open in $Y[1, p .9]$.

Lemma 1.7 :

If X and Y are finite spaces, then
$\cap\left\{\mathrm{O} \subseteq \mathrm{Y}^{\mathrm{x}}: \mathrm{O}\right.$ is open and $\left.\mathrm{O} \ni g\right\}=\{f / f \leq g\}$.

Proof:

Let $\mathrm{V}_{g}=\cap\{\mathrm{O} \subseteq \mathrm{Y}: \mathrm{O}$ is open and $\mathrm{O} \ni g\}$ and $\mathrm{Z}_{g}=\{f / f \leq g\}$ and let $x \in \mathrm{X}$, let $f \in \mathrm{~V}_{g}$. Since $\mathrm{g} \in \mathrm{W}\left(\{x\}, \mathrm{U}_{g(x)}\right), \mathrm{W}\left(\{x\}, \mathrm{U}_{g(x)}\right)$ is open w. r. t C-Otopology then $f \in \mathrm{~W}\left(\{x\}, \mathrm{U}_{g(x)}\right)$, so $f(x) \in \mathrm{U}_{g(x)}$, there for $f \leq g$, then $\mathrm{V}_{g} \subseteq \mathrm{Z}_{g}$.

Conversely

$$
\text { Let } f \leq g \text { Take } \mathrm{W}(\mathrm{C}, \mathrm{O}) \ni g \text { then } g(x) \in \mathrm{O} \text { for some } x \in \mathrm{C}
$$

since $f(x) \leq g(x)$ then $f(x) \in \mathrm{U}_{\mathrm{g}(x)}$ and hence $f(x)$ is in any open set containing g and hence $\mathrm{Z}_{g} \subseteq \mathrm{~V}_{g}$.

Connectivity and Path Connectivity

Lemma 1.8:

If $x \leq y$ in X . Then there is a path connecting x and y.

Proof:
Define $P: \mathrm{I} \rightarrow \mathrm{X}$ by $P(t)=x$ for all $t \in[0,1)$ and $P(1)=y$, let O be open in X if $x \in \mathrm{O}$ and $y \notin \mathrm{O}$ then $P^{-1}(\mathrm{O})=[0,1)$ which is open in I w.r.t usual topology if $x, y \in \mathrm{O}$ then $P^{-1}(\mathrm{O})=\mathrm{I}$, if $y \in \mathrm{O}$, then $x \in \mathrm{O}$ $\left(x \in \mathrm{U}_{y}\right.$ since $\left.x \leq y\right)$ then $P^{-1}(\mathrm{O})=\mathrm{I}$, if $x \notin \mathrm{O}$, then $P^{-1}(\mathrm{O})=\varnothing$ and hence P is continuous .

Lemma 1.9:

Each U_{x} is path connected.

Proof:

Let $y_{1}, y_{2} \in \mathrm{U}_{x}$ then $y_{1} \leq x$ and $y_{2} \leq x\left(\right.$ def of $\left.\mathrm{U}_{x}\right)$ then by

Lemma 1.8 there are two paths $p: y_{1} \rightarrow x$ and $q: y_{2} \rightarrow x$

Now, if we take the inverse path of q which denoted by q^{-1}, in the following path composition
defined by
$p * q^{-1}(t)=\left\{\begin{array}{ll}p(2 t) \quad \text { for all } t \in\left[0, \frac{1}{2}\right] \\ q^{-1}(2 t-1) & \text { for } 11 t \in\left[\frac{1}{2}, 1\right]\end{array}\right.$.

Which is continuous by pasting lemma and connecting y_{1} and y_{2}
and hence U_{x} is path connected .

Lemma 1.10:

If X is a finite connected space and $x, y \in \mathrm{X}$, then there is either an increasing or decreasing sequence of points $\left\{p_{i}\right\}_{i=1}^{s}$ connecting x and y (i.e., $x=p_{1} \leq p_{2} \leq \ldots \leq p_{s}=y$ or $x=p_{1} \geq p_{2} \geq \ldots \geq p_{s}=y$).

Proof:

Let $x \in \mathrm{X}$ and let O be a proper open subset of X containing x suppose that $\mathrm{O}=\left\{y \in \mathrm{X}: y\right.$ connecting x by some sequence $\left.\left\{p_{i}\right\}_{i=1}^{s}\right\}$.

Now if $\left\{p_{i}\right\}_{i=1}^{s}$ is decreasing sequence, then $y \in \mathrm{U}_{x} \subseteq \mathrm{O}$ for all $y \in \mathrm{O}$ which is implies that $\mathrm{U}_{x}=\mathrm{O}$, if ${ }^{\prime} y \notin \mathrm{O}$, then neither is any point of $\mathrm{U}^{\prime} y$, then O^{c} is open and hence O is clopen, since X is connected then we must have that $\mathrm{X}=\mathrm{O}$, similarly if $\left\{p_{i}\right\}_{i=1}^{s}$ is increasing sequence of points .

Lemma 1.11:

Every finite space X is locally path connected .

Proof:

Let $x \in \mathrm{X}$ suppose that O is an open set such that $x \in \mathrm{O}$ then $x \in \mathrm{U}_{x} \subseteq \mathrm{O}$ where U_{x} is path connected by Lemma 1.9 and hence X is locally path connected.

Theorem 1.3:

A connected finite space is path connected space .

Proof:
By Lemma 1.8 and Lemma 1.10.

Chapter Two
 Alexandroff Space

In this chapter we study spaces that have topologies which satisfy a stronger condition. Namely, arbitrary intersections of open sets are open with this restriction, we lose important spaces such as Euclidean spaces, but the specialized spaces in turn display interesting properties .

Basic Definitions:

Definition 2.1:

Let X be a topological space, then X is an Alexandroff space if arbitrary intersections of open sets are open [2, p. 465].

Note:

We will denoted to Alexandroff space by A- space [1, p.5] .

Lemma 2.1 :

Any finite space is an A-space.

Proof:

It's clear by property (iii) in the Definition of finite topological spaces in the previous chapter .

Lemma 2.2:

Any discrete topological space is an A-space .

Proof:

Let $\{\mathrm{O} \alpha\} \alpha \in_{\mathrm{J}}$ be a family of open sets, let $x \in \bigcap_{\alpha \in \mathrm{J}} \mathrm{O} \alpha$, then $x \in \mathrm{O} \alpha$ for all $\alpha \in \mathbf{J}$, and then $x \in\{x\} \subseteq \mathrm{O} \alpha$ for all $\alpha \in \mathbf{J}$, and then $x \in\{x\} \subseteq \bigcap_{\alpha \in \mathrm{J}} \mathrm{O} \alpha$, and hence $\bigcap_{\alpha \in \mathrm{J}} \mathrm{O} \alpha$ is open.

Some examples of A-spaces .

Example 2.1: (Disjoint Minimal Open Neighborhoods)

Take $\mathrm{X}=\mathbb{R} \backslash \mathbb{Z}$ and $\beta=\{(n, n+1): n \in \mathbb{Z}\}$. Then X is an Alexandroff space with $\mathrm{U}_{x}=(n, n+1)$ where $n<x<n+1$. For any two minimal open neighborhoods $\mathrm{U}_{x} \neq \mathrm{U}_{y}$ we have that $\mathrm{U}_{x} \cap \mathrm{U}_{y}=\emptyset$.

Lemma 2.3:

Let X be a metric space, then X is an A -space iff X has the discrete topology .

Proof:

Let $x \in \mathrm{X}$, then the open balls $\mathrm{B}_{\mathrm{d}}\left(x, \frac{1}{n}\right)$ with radius $\frac{1}{n}$, and centre x $n \in \mathbb{N}$ are open in X , since X is an A-space $\bigcap_{n=1}^{\infty} \mathrm{B}_{\mathrm{d}}\left(x, \frac{1}{n}\right)$ is an open set,

But by the properties of metric space we have that $\bigcap_{n=1}^{\infty} \mathrm{B}_{\mathrm{d}}\left(x, \frac{1}{n}\right)=\{x\}$, so we have shown that singletons are open, hence X has the discrete topology.

Conversely

The reverse direction follows from Lemma 2.2.

Theorem 2.1 :

X is an A -space iff each point in X has minimal basic open set .

Proof:

Suppose that X is an A-space, let $x \in \mathrm{X}$ then $\mathrm{U}_{x}=\bigcap\{\mathrm{O} \subseteq \mathrm{X}: \mathrm{O}$ is open and $x \in O\}$ is an open set, since X is an A- space.

Conversely
Suppose that each point $x \in \mathrm{X}$ has minimal basic open set U_{x}. Consider an arbitrary intersection of open sets $\mathrm{V}=\bigcap_{\alpha \in \Delta} \mathrm{O} \alpha$, where each $\mathrm{O} \alpha$ is open in X if $\mathrm{V}=\varnothing$, then we are done. But if $\mathrm{V} \neq \emptyset$, then pick $x \in \mathrm{~V}$ and then $x \in \mathrm{O} \alpha$ for all $\alpha \in \Delta$ and hence $\mathrm{U}_{x} \subseteq \mathrm{O} \alpha$ for all $\alpha \in \Delta$, since U_{x} is the minimal basic open set at x, therefore $x \in \mathrm{U}_{x} \subseteq \mathrm{~V}$, and hence V is open .

Theorem 2.2:

If β is a collection of subsets of X such that for each $x \in \mathrm{X}$ there is a minimal set $m(x) \in \beta$ with $m(x) \ni x$, then β is a basis for a topology on X and X is an A- space with this topology, In addition $\mathrm{U}_{x}=m(x)$.

Proof:

It's clear that members of β cover X , suppose that $\mathrm{B}_{1}, \mathrm{~B}_{2} \in \beta$, and $x \in \mathrm{~B}_{1} \cap \mathrm{~B}_{2}$, since $m(x)$ is minimal set containing x, so we have $m(x) \subseteq \mathrm{B}_{1}$, and $m(x) \subseteq \mathrm{B}_{2}$, and hence $x \in m(x) \subseteq \mathrm{B}_{1} \cap \mathrm{~B}_{2}$, so β is basis for topology on X , to show that X is an A -space with this basis, let $x \in \mathrm{X}$ and O be an open set in X such that $\mathrm{O} \ni x$, then $\mathrm{O}=\bigcup_{\alpha \in \perp} \mathrm{B} \alpha$, where $\mathrm{B} \alpha \in \beta$, then $x \in \mathrm{~B} \alpha$ for some $\alpha \in \Delta$, there is $m(x) \subseteq \mathrm{B} \alpha \subseteq \mathrm{O}$, hence $m(x)$ is minimal basic open set containing x, therefore X is an A -space and $\mathrm{U}_{x}=m(x)[6, \mathrm{p} .2]$.

Example 2.2: (An Alexandroff Topology on \mathbb{R}^{n})

Take X to be \mathbb{R}^{n} and let $\beta=\left\{\overline{\mathrm{B}(0, r)}: r \in \mathbb{R}_{+} \mathrm{U}\{0\}\right\}$. Note that $\overline{\mathrm{B}(0, r)}$ is the closed ball with center 0 and radius r and that $\overline{\mathrm{B}(0,0)}=\{0\}$. If $x \in X$ then $\overline{\mathrm{B}(0,|x|)}$ is a minimal set in β containing $x . \beta$ is a basis for an Alexandroff topology on X .

Theorem 2.3:

If B is a subspace of an A-space X then B is an A-space .

Proof:

Let $x \in \mathrm{~B}$ and suppose that U is an open set in B with $x \in \mathrm{U}$, then
$\mathrm{U}=\mathrm{B} \cap \mathrm{O}$, where O is open in X , this mean that $\mathrm{U}_{x} \subseteq \mathrm{O}$, so that $\mathrm{B} \cap \mathrm{U}_{x} \subseteq \mathrm{~B} \cap \mathrm{O}=\mathrm{U}$, hence B is an A -space by Theorem 2.1.

Theorem 2.4:

If X and Y are A -spaces, then $\mathrm{X} \times \mathrm{Y}$ is also an A -space .

Proof:

$\mathrm{X} \times \mathrm{Y}$ has as basis $\beta=\{\mathrm{U} \times \mathrm{V}$: U is open in X and V is open in Y$\}$, let
$(x, y) \in \mathrm{X} \times \mathrm{Y}$, then $\mathrm{U}_{x} \times \mathrm{U}_{y} \in \beta$, and then claim that this is a minimal set
in β containing (x, y). If $(x, y) \in \mathrm{U} \times \mathrm{V} \in \beta$, then $x \in \mathrm{U}$ and $y \in \mathrm{~V}$, so $\mathrm{U}_{x} \subseteq \mathrm{U}$ and $\mathrm{U}_{y} \subseteq \mathrm{~V}$. Therefore $\mathrm{U}_{x} \times \mathrm{U}_{y} \subseteq \mathrm{U} \times \mathrm{V}$ and hence by Theorem 2.2 $\mathrm{X} \times \mathrm{Y}$ is an A-space.

Separation Properties

Theorem 2.5:

X is a Hausdorff A-space iff for any $x \neq y$ in X we have $\mathrm{U}_{x} \cap \mathrm{U}_{y}=\varnothing$.

Proof:

Suppose that X is a Hausdorff A -space and let $x \neq y$ in X , then there are two open sets U and V such that $\mathrm{U} \ni x$ and $\mathrm{V} \ni y$ and $\mathrm{U} \cap \mathrm{V}=\varnothing$, since $\mathrm{U}_{x} \subseteq \mathrm{U}$ and $\mathrm{U}_{y} \subseteq \mathrm{~V}$, hence $\mathrm{U}_{x} \cap \mathrm{U}_{y}=\emptyset$.

Conversely
This is trivial, suppose for any $x \neq y$ in X we have $\mathrm{U}_{x} \ni x$ and $\mathrm{U}_{y} \ni y$, such that $\mathrm{U}_{x} \cap \mathrm{U}_{y}=\emptyset$, then X is a Hausdorff A-space.

Corollary 2.1:

X is a Hausdorff A-space iff X is discrete .

Proof:

Suppose that X is Hausdroff, then we claim that $\mathrm{U}_{x}=\{x\}$ to see this suppose $y \in \mathrm{U}_{x}$, then $\mathrm{U}_{y} \subseteq \mathrm{U}_{x}$ and thus $\mathrm{U}_{x} \cap \mathrm{U}_{y}=\mathrm{U}_{y}$, and since $\mathrm{U}_{y} \neq \varnothing$, then by Theorem 2.5 we must have $y=x$ and have $\{x\}$ is open in X , so X is discrete.

Conversely
If X is discrete, then it is Hausdroff space .

Continuous Functions and Homeomorphisms

Note:

A continuous image of an A-space may not be an A-space [6, p.7] .

Example 2.3:

Let $\mathrm{X}=\mathbb{N}$ with discrete topology and Let $\mathrm{Y}=\mathbb{Q}$ with subspace topology
from $(\mathbb{R}, \mathcal{\varepsilon})$. Pick a bijection $f: \mathbb{N} \longrightarrow \mathbb{Q}$, then f is continuous, since the domain X is discrete but $f(\mathbb{N})=\mathbb{Q}$ is not an A-space $[6$, p.7].

Theorem 2.6:

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be an open and continuous function if X is an A-space, then so is $f(\mathrm{X})$. In addition if $y \in f(\mathrm{X})$ then $\mathrm{U}_{y}=f\left(\mathrm{U}_{x}\right)$, where $f(x)=y$.

Proof:

Let $y \in f(\mathrm{X})$ and let $x \in \mathrm{X}$ such that $f(x)=y$, since U_{x} is open in X , then
$f\left(\mathrm{U}_{x}\right)$ is open $\operatorname{in} f(\mathrm{X})$, because f is open function, suppose that $y \in \mathrm{O}$ for some open set O in $f(\mathrm{X})$, then $x \in f^{-1}(\mathrm{O})$ in X , where $\dot{f}(\mathrm{O})$ is open in X , since f is continuous, and we have $\mathrm{U}_{x} \subseteq \dot{f}^{1}(\mathrm{O})$, therefore $f\left(\mathrm{U}_{x}\right) \subseteq \mathrm{O}$ and hence y has a minimal basic open set , then by Theorem $2.1 f(\mathrm{X})$ is an A-space with $f\left(\mathrm{U}_{x}\right)=\mathrm{U}_{y}[6, \mathrm{p} .7]$.

Corollary 2.2:

If X is homeomorphic to Y and X is an A -space then so is Y .

Proof:

If a function f is homeomorphism between two spaces X and Y , then f is open and continuous with $f(\mathrm{X})=\mathrm{Y}$ and by Theorem 2.6 Y is an A-space

Compactness

Theorem 2.7:

If X is an Alexandroff space, then U_{x} is compact for all $x \in \mathrm{X}$.

Proof:

Let $\left\{\mathrm{O}_{\alpha}\right\}_{\alpha \in \Delta}$ be an open cover of U_{x}. Then $x \in \mathrm{O} \alpha$ for some $\alpha \in \Delta$. So we must have $\mathrm{U}_{x} \subseteq \mathrm{O} \alpha$. Hence, $\{\mathrm{O} \alpha\}$ is a finite subcover of $\left\{\mathrm{O}_{\alpha}\right\}_{\alpha \in \Delta}$.

Quotient Spaces

Theorem 2.8:

If X is an A -space, then the quotient space X / \sim is also an A -space .

Proof:

Let $q: \mathrm{X} \rightarrow \mathrm{X} / \sim$ be the quotient map consider the arbitrary
$\bigcap_{a \in \Lambda} \mathrm{O} \alpha$ of open sets in X / \sim we have $q^{-1}\left(\bigcap_{a \in \Lambda} \mathrm{O} \alpha\right)=\bigcap_{a \in \Lambda} q^{-1}(\mathrm{O} \alpha)$
Now $q^{-1}(\mathrm{O} \alpha)$ is open in X for all $\alpha \in \Delta$ because q is the quotient map
, hence $\bigcap_{a \in \Lambda} q^{-1}(\mathrm{O} \alpha)$ is open in X and therefore $\bigcap_{a \in \Lambda} \mathrm{O} \alpha$ is open in X / \sim by definition of quotient topology .

Chapter Three

Finite Topological Spaces with Maple

In this chapter we create procedures of Maple 15 to do computations of a lot of issues are related to finite topological spaces .

The Procedures Used in Finite Topological Spaces:

The following procedures have been improved:

1 - A procedure to get all possible intersections of a given subasis (S).

> Basis (S) ;

2 - A procedure to generate a Topology by a basis(B) .

Topology (B) ;

3 - A procedures to check if (T) is a topology over X or not.
(i) CloseIntersection(T) ; (ii) CloseUnion(T) ; (iii) IsTopology(T) ;

4 - A procedure to find the clopen sets of the topology (T). $\mathrm{CO}(\mathrm{X}, \mathrm{T}) ;[8]$.

5 - A procedure to find the closed sets of the topology (T).

$$
\mathrm{CLO}(\mathrm{X}, \mathrm{~T}) ;[8] .
$$

6- A procedure to obtain the relative topology on subset of X. subspace (A , X , T) ; [8] .

7- A procedure to check if a given topology is connected .

$$
\text { isConn }(\mathrm{X}, \mathrm{~T}) ;[8] \text {. }
$$

8- A procedure to find the connected components of a given point .
K(,X,T); [8].
9- A procedure to check if a Topology is totally Disconnected .
isTotDisc(X,T);[8].
10 -A procedure to check if a Topology is T_{0}-spaces .
isT0(X,T); [8] .
11- A procedure to check if a given topology is $\mathrm{T}_{1}-$ space .
$\operatorname{isT}_{1}(\mathrm{X}, \mathrm{T}) ;[8]$.
12 - A procedure to check if two spaces are homeomorphic or not .
ishomeo:=proc(t1,t2); [9] .
13- A procedure to find all inequivalent topologies on a finite set . ishomeo:=proc(t1,t2); [9] .

The following procedures have been created in our study:

14 - A procedure to find the minimal basic open set at given point . minbasic(,X,T);

15 - A procedure to find the minimal basis of a given space X . minibasis(X,T);

16-A procedure to find the connected components of a given space.
ALLCC(X,T);

17 - A procedure to check if a given point is a limit point or not .
IsLimitPoint(, A , X ,T) ;
18 - A procedure to find all limit points of given subset of X .

> LimitPoints (A , X , T) ;

19-A procedure to find the closure points of a given subset of X derived from the limit points .

ClosurePoints(A , X , T) ;
20 - A procedure to find the boundary points of a given subset of X derived from the limit points .

BoundaryPoints(A, X ,T) ;

21 - A procedure to find the interior points of a given subset of X derived from the limit points . InteriorPoints(A, X , T) ;

22 - A procedure to find the Exterior points of a given subset of X .
InteriorPoints(X-A , X , T) ;
23 - A procedure to find the isolated points of a given subset of X by the definition .

IsolatedPoints(A , X , T) ;
24-A procedure to find the isolated points of given subset of X derived from limit points .

IsolatedPoints2 (A, X , T) ;

25 - A procedure to find all topologies on a given set X .
AllTop(T);
26- A procedure to find all T_{0} spaces on a given set X .

ALLT0(ALLTopologies);

27- A procedure to find all inequivalent T_{0} topologies .
ishomeo:=proc(t1,t2);

The Implementations :

>restart
with (combinat):
> \#(1) A procedure to get all possible intersections of a given subasis(S).
Basis:=proc(S)
local s,U,B;
if ‘subset` (S, powerset (X)) then U: =S ; for \(s\) in \(S\) do \(\mathrm{U}:=\mathrm{U}\) union map(`intersect`, U,s);od;
$B:=U$ union $\{X\}$; \#to add empty intersection;
else false;fi;
end:

```
#(2) A procedure to generate a Topology by a bsis(B).
> Topology:=proc(B)
local b,U,t;
U:=Basis(S);
for b in Basis(S) do
U:=U union map(`union`,U,b);
od;
t:=U union {{}};#to add the empty union;
end:
#(3)A procedures to check if T is a topology over X or not.
> CloseIntersection:=proc(T)
local A,U;
U:=T;
for A in T do
U:=U union map(`intersect`,U,A);
od;
if U=T then U; else CloseIntersection(U); fi;
end:
> CloseUnion:=proc(T)
local A,U;U:=T;
for A in T do
U:=U union map(`union`,U,A);
od;
if U=T then U; else CloseUnion(U);
fi;
end:
> IsTopology:=proc(T)
    CloseIntersection(T)=T and CloseUnion(T)=T
and member({},T) and member (X,T)
and `subset`(T,powerset(X));
end:
#(4)A procedure to find the clopen sets of the topology(T).
>CO:=proc (X,T)
local A,W;W:={};
for A in T do
if member(X minus A,T) then W:=W union{A};fi;
od;W;end:
```

\#(5)A procedure to find the closed sets of the topology(T). > CLO: $=\operatorname{proc}(\mathrm{X}, \mathrm{T})$

```
{seq(X minus T[i],i=1..nops(T))};
```

end:
\#(6) A procedure to obtain the relative topology on a subset of X .
> subspace:=proc (A,X,T)
if `subset` (A, X) then
map2(`intersect`, A,T);
else false;
fi;
end:
\#(7)A procedure to check that if the topology is connected.
> isConn:=proc (X,T)
evalb (CO (X,T) =\{X,\{\}\});
end:
\#(8)A procedure to find the connected components of
a given point.
> K:=proc (x, X, T)
local i,S,SK;
if `member` (x, X)
then SK:=\{\};
S:=map2 (`union`, \{x\}, powerset(X));
for i to nops(S) do
if isConn(S[i],subspace(S[i],X,T)) then SK:=SK union
S[i];fi;od; SK ;else flase;fi;end:
\#(9)A procedure to check if a Topology is Totaly
Disconnected.
> isTotDisc:=proc (X,T)
local i;
for i to nops (X) do
if not(K (X[i],X,T)=\{X[i]\}) then RETURN (false)fi;
od;RETURN (true) ; end:
\#(10)A procedure to check if agiven topology is TO-space.

```
> isT0:=proc(X,T)
local x,y,O,test;
if nops(X)=1 then true ;else
for x in X do
for y in X minus{x} do
for O in T do
test:=evalb((member (x,0) and not (member (y,0))) or (member (y,0)
and not(member(x,0))));
```

if test then break; fi;
od:
if not(test) then break;fi;
od:
if not(test) then break;fi;
od:
test;
fi;
end:
\#(11) A procedure to check if a given topology is T_{1}-space.
> isT1:=proc (X,T)
`subset`(\{seq(\{X[i]\},i=1..nops(X))\},CLO (X,T));
end:
\#(14) A procedure to find the minimal basic open set for
a certain point \mathbf{x}.
minbasic:= proc (x,X,T)
local i,O,COUNT;
COUNT:=\{\};
if member (x, X) then
for O in T do
if member (x, O) then COUNT: $=C O U N T$ union $\{O\}$;
else COUNT:=COUNT;
fi;
od;
COUNT ;
COUNT[1];
else false;
fi;
end:
\#(15) A procedure to find the minimal basis of a given topological space.
minibasis:=proc (X,T)
local x,minimalbasis:=\{\};
for x in X do
minimalbasis:=minimalbasis union $\{\operatorname{minbasic}(\mathrm{x}, \mathrm{X}, \mathrm{T})\}$;
od;
minimalbasis;end:
\#(16) procedure to find the connected components of a given space .
> ALLCC: $=$ proc (X, T)
local x,CC;
CC:=\{\};
for x in X do
CC: =CC union $\{\mathrm{K}(\mathrm{x}, \mathrm{x}, \mathrm{T})\}$;
od;
CC ;
end:
\#(17)A procedure to check if a given point is a limit point or not.
>IsLimitPoint:=proc ($\mathrm{x}, \mathrm{A}, \mathrm{X}, \mathrm{T}$)
local i,o,L,Omx,O;
$0:=\{ \}$;
L: =\{\};
if member $(x, X)=$ true then
for i to nops(T) do
if (member (x,T[i])) then $O:=O$ union $\{T[i]\} ;$
else $0:=0$;
fi;
od;
Omx: $=\{$ seq($O[i]$ minus $\{x\}, i=1 . . n o p s(0))\}$;
for 0 in Omx do
if ((o intersect A) <> \{\}) then $L:=L$ union $\{x\}$;
else L:=\{\};
break;
fi;
od;
L;

```
else false;
```

fi;
end:
\#(18)A procedure to find limit points of a given subset of X;

```
> LimitPoints:=proc(A,X,T)
```

local $x, L I$;
LI:=\{\};
if `subset` $(A, X)=$ true then
for x in X do
if IsLimitPoint ($\mathbf{x}, \mathrm{A}, \mathrm{X}, \mathrm{T}$) $<>$ \{\} then $\mathrm{LI}:=\mathrm{LI}$ union $\{\mathrm{x}\} ;$
else LI:=LI;
fi;
od;
LI;
else false ;
fi;
end:
\#(19)A procedure to find the closure points of a given
subset of X derived from limit points.
$>$ ClosurePoints: $=\operatorname{proc}(A, X, T)$
A union LimitPoints (A,X,T);
end:
\#(20)A procedure to find the boundary points of a given subset of X derived from limit points.
>BoundaryPoints:=proc (A,X,T)
ClosurePoints ($\mathrm{A}, \mathrm{X}, \mathrm{T}$) intersect ClosurePoints (X minus $\mathrm{A}, \mathrm{X}, \mathrm{T}$) ; end:
\#(21)A procedure to find the interior points of a given subset of X derived from limit points .
InteriorPoints: $=\operatorname{proc}(\mathrm{A}, \mathrm{X}, \mathrm{T})$
ClosurePoints ($\mathrm{A}, \mathrm{X}, \mathrm{T}$) minus BoundaryPoints ($\mathrm{A}, \mathrm{X}, \mathrm{T}$) ;
end:
\#(22)A procedure to find the Exterior points of a given subset of X derived from limit points.

```
> ExteriorPoints:= proc(A,X,T)
```

InteriorPoints (X minus $\mathrm{A}, \mathrm{A}, \mathrm{X}, \mathrm{T}$) ;
end:
\#(23)A procedure to find the isolated points of a given subset by definition.

```
IsolatedPoints:=proc(A,X,T)
local O,x,iso;
iso:={};
for x in X do
for O in T do
if( member(x,0) and O intersect A ={x}) then iso:=iso union
{x};
fi;od;
od;iso; end:
#(24)A procedure to find all isolated points of a given
    subset of X derived from limit points.
> IsolatedPoints2:=proc(A,X,T)
A minus LimitPoints (A,X,T);
end:
```

\# Examples:-

\# Indiscrete Space :

> $\mathrm{X}:=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$;

$$
X:=\{a, b, c\}
$$

> S:=\{\{\}\};

$$
S:=\{\{ \}\}
$$

> B:=Basis(S);

$$
B:=\{\{ \},\{a, b, c\}\}
$$

> T:=Topology (B) ;

$$
T:=\{\{ \},\{a, b, c\}\}
$$

```
> IsTopology(T);
```

$>\mathbf{A}:=\{\mathbf{a}\} ;$	true
	$A:=\{a\}$

$>$ CLOPEN:=CO (X,T);

$$
C L O P E N:=\{\{ \},\{a, b, c\}\}
$$

$>$ CLOSED:=CLO (X,T);

$$
C L O S E D:=\{\{ \},\{a, b, c\}\}
$$

$>\operatorname{subspace}(\mathrm{A}, \mathrm{X}, \mathrm{T})$;
> isConn (X,T);
true
$>\mathrm{Cx}:=\mathrm{K}(\mathrm{b}, \mathrm{X}, \mathrm{T}) ;$

$$
C x:=\{a, b, c\}
$$

> isTotDisc (X,T);
false
> isTO (X,T) ;
false
> isT1 (X,T);
false
> Ux:=minbasic (a, X,T);

$$
U x:=\{a, b, c\}
$$

> minimalbasis:=minibasis (X,T);

$$
\text { minimalbasis }:=\{\{a, b, c\}\}
$$

> ALLCONNECTED_COMPONENTS:=ALLCC (X,T); ALLCONNECTED_COMPONENTS $:=\{\{a, b, c\}\}$
$>$ print(`The Number of the connected components is , nops (ALLCONNECTED_COMPONENTS)) ;

The Number of the connected components is, 1
> IsLimitPoint (a, A, X, T) ;
> LimitPoints (A, X, T) ;

$$
\{b, c\}
$$

```
> ClosurePoints(A,X,T);
```

> BoundaryPoints (A, X,T);
$\{a, b, c\}$
> InteriorPoints (A, X, T) ;

```
> ExteriorPoints(A,X,T);
```

> IsolatedPoints (A, X,T);
\{a\}
> IsolatedPoints2 (A,X,T);
$\{a\}$

\# Discrete Space :

```
# Examples :-
```

> $\mathrm{X}:=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$;

$$
X:=\{a, b, c, d\}
$$

$$
>S:=\{\{a\},\{b\},\{c\},\{d\}\} ;
$$

$$
S:=\{\{a\},\{b\},\{c\},\{d\}\}
$$

> B:=Basis(S);

$$
B:=\{\{ \},\{a\},\{b\},\{c\},\{d\},\{a, b, c, d\}\}
$$

> T:=Topology (B) ;

$$
\begin{aligned}
T:= & \{\},\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}, \\
& \{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\},\{a, b, c, d\}\}
\end{aligned}
$$

>IsTopology(T);

$$
\begin{array}{ll}
>\mathbf{A}:=\{\mathrm{a}, \mathrm{c}\} ; & \text { true } \\
& A:=\{a, c\}
\end{array}
$$

> CLOPEN:=CO (X,T);

$$
\text { CLOPEN }:=\{\{ \},\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b,
$$ $d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\},\{a, b, c, d\}\}$

> CLOSED:=CLO (X,T);
CLOSED $:=\{\{ \},\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b$, $d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\},\{a, b, c, d\}\}$

```
> subspace(A,X,T);
```

$$
\{\},\{a\},\{c\},\{a, c\}\}
$$

```
> isConn(X,T);
```

false

$$
>\mathrm{Cx}:=\mathrm{K}(\mathrm{~b}, \mathrm{x}, \mathrm{~T}) ;
$$

$$
C x:=\{b\}
$$

> isTotDisc(X,T);
true
> Ux:=minbasic (a,X,T);

$$
U x:=\{a\}
$$

> minimalbasis:=minibasis(X,T);

```
    minimalbasis:= {{a},{b},{c},{d}}
> ALLCONNECTED_COMPONENTS:=ALLCC (X,T) ;
    ALLCONNECTED_COMPONENTS := {{a}, {b}, {c}, {d}}
> print(`The Number of the connected components is
,nops (ALLCONNECTED_COMPONENTS));
```


The Number of the connected components is, 4

```
> IsLimitPoint(a,A,X,T);
```

> LimitPoints (A, X, T) ;
> ClosurePoints (A,X,T);

$$
\{a, c\}
$$

> BoundaryPoints (A, X,T);

```
> InteriorPoints(A,X,T);
                {a,c}
>ExteriorPoints(A,X,T);
{b,d}
> IsolatedPoints(A,X,T);
{a,c}
> IsolatedPoints2(A,X,T);
\[
\{a, c\}
\]
```


\#Sierpinski:

\#Example:
> $X:=\{a, b\} ;$

$$
X:=\{a, b\}
$$

> S:=\{\{b\}\};

$$
S:=\{\{b\}\}
$$

> B:=Basis(S) ;

$$
B:=\{\{b\},\{a, b\}\}
$$

> T:=Topology (B) ;

$$
T:=\{\{ \},\{b\},\{a, b\}\}
$$

> IsTopology(T);
true
$>A:=\{b\} ;$

$$
A:=\{b\}
$$

> CLOPEN: $=\mathrm{CO}(\mathrm{X}, \mathrm{T})$;

$$
\text { CLOPEN := \{\{\}, \{a,b\}\} }
$$

> CLOSED: $=$ CLO (X, T); CLOSED := $\{\},\{a\},\{a, b\}\}$
> subspace (A,X,T);
$\{\},\{b\}\}$
> isConn (X,T);
true
$>\mathrm{Cx}:=\mathrm{K}(\mathrm{b}, \mathrm{x}, \mathrm{T}) ;$

$$
C x:=\{a, b\}
$$

> isTotDisc (X,T);
false

```
>isTO(X,T);
    true
> isT1(X,T);
false
> Ux:=minbasic(a,X,T);
\[
U x:=\{a, b\}
\]
```

```
> minimalbasis:=minibasis(X,T);
```

> minimalbasis:=minibasis(X,T);
minimalbasis := {{b},{a,b}}
> ALLCONNECTED_COMPONENTS:=ALLCC (X,T);
ALLCONNECTED_COMPONENTS := {{a,b}}
> print(`The Number of the connected components is
, nops (ALLCONNECTED_COMPONENTS)) ;

```

\section*{The Number of the connected components is, 1}
> IsLimitPoint (b, A, X, T);
>LimitPoints (A, X,T) ;
>ClosurePoints ( \(\mathrm{A}, \mathrm{X}, \mathrm{T}\) ) ;
\(\{a, b\}\)
> BoundaryPoints (A, X, T) ;
> InteriorPoints (A,X,T);
> ExteriorPoints (A,X,T);
> IsolatedPoints (A,X,T);
```

> IsolatedPoints2(A,X,T);

```
\(\{b\}\)
\# General Topological Space :
```

>\#Examples:-
> X:={a,b,c,d} ;
X:= {a,b,c,d}
> T:={{},{a},{a,b},{c},{a,c},{a,b,c},X };
T : = \{ \{ \} , \{ a \} , \{ c \} , \{ a , b \} , \{ a , c \} , \{ a , b , c \} , \{ a , b , c , d \} \}
> IsTopology(T);
true
>A:={a,c};
A:= {a,c}
> CLOPEN:=CO(X,T);
CLOPEN := {{ }, {a,b,c,d}}
> CLOSED:=CLO(X,T);
CLOSED := {{},{d},{b,d},{c,d},{a,b,d},{b,c,d},{a,b,c,d}}
> subspace(A,X,T);
{{},{a},{c},{a,c}}
> isConn(X,T);
true
> Cx:=K(b,X,T);

$$
C x:=\{a, b, c, d\}
$$

> isTotDisc(X,T);
false
>isT0(X,T);
true
> isT1(X,T); false

```
```

> Ux:=minbasic(a,X,T);

```
\[
U x:=\{a\}
\]
```

> minimalbasis:=minibasis(X,T);

```
    minimalbasis \(:=\{\{a\},\{c\},\{a, b\},\{a, b, c, d\}\}\)
> ALLCONNECTED_COMPONENTS:=ALLCC (X,T);
\[
\text { ALLCONNECTED_COMPONENTS }:=\{\{a, b, c, d\}\}
\]
> print(`The Number of the connected components is , nops (ALLCONNECTED_COMPONENTS) ) ;

\section*{The Number of the connected components is, 1}
> IsLimitPoint(d,A,X,T);
> LimitPoints (A,X,T);
\[
\{b, d\}
\]
> ClosurePoints (A, X,T);
\[
\{a, b, c, d\}
\]
> BoundaryPoints (A, X, T) ;
\[
\{b, d\}
\]
> InteriorPoints (A, X, T) ;
\[
\{a, c\}
\]
> ExteriorPoints (A, X, T) ;
> IsolatedPoints (A, X, T) ;
\[
\{a, c\}
\]
> IsolatedPoints2 ( \(\mathrm{A}, \mathrm{X}, \mathrm{T}\) ) ;
\[
\{a, c\}
\]
> restart;
with (combinat):
\#(12) A procedure to check if two spaces are homeomorphic or not.
```

> newjob:=proc(t,p)
local u:
> \#apply a permutation p of the elements of a space to the
sets in a topology t.
{seq(subs({seq(X[i]=p[i],i=1..nops(X))} ,u) , u = t)}:
end:
> ishomeo:=proc(t1,t2) \#check to see if two spaces are
homeomorphic
local answer, p:
\#we can first check for some trivial invariants, such as.
if nops(t1) <> nops(t2) then return(false) fi:
answer:=false:
for p in P do
if {op(newjob(t1,p))}={op(t2) } then answer:=true: break:
fi:od:
\#Note that we have to compare _sets_ rather than _lists_!.
answer:
end:
> \#1-Example;
> X:={a,b,c,d};

$$
X:=\{a, b, c, d\}
$$

> P:=permute(X);
P:= [[a,b,c,d],[a,b,d,c],[a,c,b,d],[a,c,d,b],[a,d,b,c],[a,d,c,
b],[b,a,c,d],[b,a,d,c],[b,c,a,d],[b,c,d,a],[b,d,a,c],[b,d,
c,a],[c,a,b,d],[c,a,d,b],[c,b,a,d],[c,b,d,a],[c,d,a,b],[c,
d,b,a],[d,a,b,c],[d,a,c,b],[d,b,a,c],[d,b,c,a],[d,c,a,b],
[d,c,b,a]]
> t1:={{},{a},{a,b},X};
t1:= {{}, {a}, {a,b}, {a,b,c,d}}
> t2:={{},{a,b},X};

$$
t 2:=\{\{ \},\{a, b\},\{a, b, c, d\}\}
$$

```
```

> ishomeo(t1,t2);

```
```

> ishomeo(t1,t2);

```

\section*{false}
```

\#2-Example;

```
```

> X:={a,b,c,d}; X:= {a,b,c,d}

```
> X:={a,b,c,d}; X:= {a,b,c,d}
> P:=permute(X):
> t1:={{},{a,b},{c,d},X};
t2:={{},{a},{b,c,d},x};
```

$\mathrm{X}:=[\mathrm{op}(\mathrm{X})]:$

$$
\begin{aligned}
t 1 & :=\{\{ \},\{a, b\},\{c, d\},\{a, b, c, d\}\} \\
t 2 & :=\{\{ \},\{a\},\{b, c, d\},\{a, b, c, d\}\}
\end{aligned}
$$

$>$ ishomeo(t1,t2);

> false
> restart;
with (combinat):
> X:=\{a\};

$$
X:=\{a\}
$$

> Y:=powerset (X);

$$
Y:=\{\{ \},\{a\}\}
$$

$>\mathrm{Z}:=\mathrm{Y}$ minus $\{\}, \mathrm{X}\}$;

$$
Z:=\{ \}
$$

> W:=powerset(Z);

$$
W:=\{\{ \}\}
$$

$>T:=\{\operatorname{seq}(w$ union $\{\{ \}, X\}, w=W)\} ;$

$$
T:=\{\{\{ \},\{a\}\}\}
$$

> print(`there are ` , nops (T), `candidate collection of subsets of X!') ; there are , 1, candidate collection of subsets of \(X\) ! \(>\) \# (25)A procedure to find all topologies on a given set X. AllTop:=proc (T) local i,O,A,U,B,C; B: = \{ \} ; for \(O\) in \(T\) do \(\mathrm{U}:=0\); for A in O do \(\mathrm{U}:=\mathrm{U}\) union map (`intersect`, \(\mathrm{U}, \mathrm{A}\)) ; od; U; for \(C\) in \(U\) do \(\mathrm{U}:=\mathrm{U}\) union map (`union` $, \mathrm{U}, \mathrm{C}$) ;
od;
U ;
if $\mathrm{U}=\mathrm{O}$ then $\mathrm{B}:=\mathrm{B}$ union $\{\mathrm{O}\}$; else $\mathrm{B}:=\mathrm{B}$;
fi;

```
od;
B ;
end:
ALLTopologies:=AllTop(T) ;
    ALLTopologies:= {{{},{a}}}
> print(`There are`,nops(ALLTopologies),`topologies on a set
of`,nops(X),`points`):
There are, 1, topologies on a set of, 1, points
>#(10)A procedure to check if agiven topology is TO-space.
isT0:=proc(X,T)
local x,y,O,test;
if nop(X)=1 then true ; else
for x in X do
for }Y\mathrm{ in }X\mathrm{ minus{x} do
for O in T do
test:=evalb((member (x,0) and not (member (y,0))) or (member (y,0)
and not(member (x,0)))) ;
if test then break; fi;
od:
if not(test) then break;fi;
od:
if not(test) then break;fi;
od:
fi;
test;
end:
> #(26) A procedure to find all TO-spaces on a given set X.
> ALLT0:=proc (ALLTopologies)
local i,T,TOS;
TOS:={} ;
if nops(X)=1 then TOS:=ALLTopologies;else
for T in ALLTopologies do
if isTO(X,T)=true then TOS:= TOS union {T} ; else TOS:=TOS;
fi;
od;
fi;
TOS;
end:
> ALLTO_Topologies:=ALLTO(ALLTopologies) ;
```

> print(`there are`, nops (ALLTO_Topologies), 'TO-spaces on set with , nops (X) , points`) ;
there are, 1, T0-spaces on set with, 1, points
> \#(13) A procedure to find all inequivalent topologies on a given set X.
\#Let's tidy them up by size.
$>$
$>$ bigger:=proc(t1,t2) if nops(t1) < nops(t2) then true else false fi:end:
$>$
$>$ \#Apply this to all the elements in each topology, and to the set of all top's.
$>$
> ALLTopologies:=sort([seq(sort([op(t)],bigger)
,t=ALLTopologies)],bigger) :
$>$
> \#Now think about homeomorphisms, i.e., permutations preserving open sets.
$>$ P:=permute (X):
$>$
$>\quad \mathrm{X}:=[\mathrm{op}(\mathrm{X})]:$
$>$ newjob:=proc(t, p) local u:
$>$
> \#apply a permutation p of the elements of a space to the sets in a topology t.
$>\quad\{\operatorname{seq}(\operatorname{subs}(\{\operatorname{seq}(X[i]=p[i], i=1 . \operatorname{nops}(X))\}, u), u=t)\}: e n d:$
$>$ ishomeo:=proc (t1,t2) \#check to see if two spaces are homeomorphic
$>$ local answer,p:
$>$ \#we can first check for some trivial invariants, such as.
$>\quad i f$ nops(t1) <> nops (t2) then return (false) fi:
> answer:=false:
$>$ for p in P do if $\{o p(n e w j o b(t 1, p))\}=\{o p(t 2)\}$ then
answer:=true: break: fi:od:
$>$ \#Note that we have to compare _sets_ rather than_lists_!.
$>$ answer:> end:>
Types:=[]:

```
> for t in ALLTopologies do
> isnew:=true:
> for u in Types do
> if ishomeo(t,u) then isnew:=false: break:fi:
> od:
> if isnew = true then Types:=[op(Types),t] fi:
> od:
> print(`There are`,nops(Types),`homeomorphism types of
topologies among them`):
> for t in Types do lprint(t) od:
> #quit.
> #...or keep playing with these sets.
> There are, 1, homeomorphism types of topologies among them
> [{}, {a}]
> #A procedure to find all Homeomorphosm types of
    TO-spaces on a given set X;
    #Let's tidy them up by size.
    bigger:=proc(t1,t2) if nops(t1) < nops(t2) then true else
false fi:end:
>
> #Apply this to all the elements in each topology, and to
the set of all top's.
>
> ALLT0_Topologies:=sort([seq( sort([op(t)],bigger)
,t=ALLTO_Topologies)],bigger):
>
> #Now think about homeomorphisms, i.e., permutations
preserving open sets.
> P:=permute (X) :
>
> X:=[op(X)]:
> newjob:=proc(t, p) local u:
>
> #apply a permutation p of the elements of a space to the
sets in a topology t.
>{seq(subs({seq(X[i]=p[i],i=1..nops(X))},u) ,u =t)}: end:
```

```
> ishomeo:=proc(t1,t2) #check to see if two spaces are
homeomorphic
    local answer, p:
        #we can first check for some trivial invariants, such as.
            if nops(t1) <> nops(t2) then return(false) fi:
    answer:=false:
    for p in P do if {op(newjob(t1,p))}={op(t2)} then
answer:=true: break: fi:od:
    #Note that we have to compare _sets_ rather than_lists_!.
    answer: end:
    Types:=[]:
    for t in ALLTO_Topologies do
        isnew:=true:
    for u in Types do
            if ishomeo(t,u) then isnew:=false: break:fi:
        od:
        if isnew = true then Types:=[op(Types),t] fi:
    od:
    print(`There are`,nops(Types),`TO homeomorphism types of
topologies among them`):
    for t in Types do lprint(t) od:
#quit.
#...or keep playing with these sets.
                                    There are, 1,T0 homeomorphism types of topologies among them
[{}, {a}]
> restart;
with(combinat):
> X:={a,b};
\[
X:=\{a, b\}
\]
> Y:=powerset(X);
\[
Y:=\{\{ \},\{a\},\{b\},\{a, b\}\}
\]
\(>\mathrm{Z}:=\mathrm{Y}\) minus \(\{\}, \mathrm{X}\} ;\)
\[
Z:=\{\{a\},\{b\}\}
\]
> W:=powerset(Z);
\[
W:=\{\{ \},\{\{a\}\},\{\{b\}\},\{\{a\},\{b\}\}\}
\]
> \(\mathrm{T}:=\{\) seq \((\mathrm{w}\) union \(\{\{ \}, \mathrm{X}\}, \mathrm{w}=\mathrm{W})\}\);
\[
\begin{aligned}
T:= & \{\{\},\{a, b\}\},\{\{ \},\{a\},\{a, b\}\},\{\{ \},\{b\},\{a, b\}\},\{\{ \},\{a\},\{b\}, \\
& \{a, b\}\}\}
\end{aligned}
\]
```

```
> print(`there are `, nops(T), `candidate collection of
subsets of X!`);
there are,4, candidate collection of subsets of X!
> #(25)A procedure to find all topologies on a given set X.
AllTop:=proc(T)
local i,O,A,U,B,C;
B:={};
for O in T do
U:=O;
for A in O do
U:=U union map(`intersect`,U,A);
od;
U ;
for c in U do
U:=U union map(`union`,U,C);
od;
U;
if U=O then B:=B union {O}; else B:=B;
fi;
od;
B;
end:
ALLTopologies:=AllTop(T);
    ALLTopologies:= {{{}, {a,b}}, {{},{a}, {a,b}}, {{},{b},{a,b}},
        {{}, {a},{b},{a,b}}}
> print(`There are`,nops(ALLTopologies),`topologies on a set
of`,nops(X),`points`):
                                    There are, 4, topologies on a set of, 2, points
> #A procedure to check if agiven topology is TO-space.
isT0:=proc(X,T)
local x,y,O,test;
if nop(X)=1 then true ; else
for }x\mathrm{ in }X\mathrm{ do
for y in X minus{x} do
for O in T do
test:=evalb((member (x,0) and not(member (y,0))) or (member (y,0)
and not(member(x,0))));
if test then break;fi;od:
```

```
if not(test) then break;fi;
od:
if not(test) then break;fi;
od:
fi;
test;
end:
> #(26) A procedure to find all T0-spaces on a given set X.
> ALLT0:=proc(ALLTopologies)
local i,T,TOS;
TOS:={};
if nops(X)=1 then TOS:=ALLTopologies;else
for T in ALLTopologies do
if isTO(X,T)=true then TOS:= TOS union {T} ; else TOS:=TOS;
fi;
od;
fi;
TOS;
end:
> ALLT0_Topologies:=ALLT0 (ALLTopologies);
    ALLTO_Topologies := {{{}, {a}, {a,b}}, {{}, {b}, {a,b}}, {{}, {a},
        {b},{a,b}}}
> print(`there are` ,nops(ALLT0_Topologies),`TO-spaces on set
with`,nops(X),`points`);
                                    there are, 3, T0-spaces on set with, 2, points
> #(13) A procedure to find all inequivalent topologies on a
given set X .
#Let's tidy them up by size.
> bigger:=proc(t1,t2) if nops(t1) < nops(t2) then true else
false fi:end:
> #Apply this to all the elements in each topology, and to
the set of all top's.
> ALLTopologies:=sort([seq( sort([op(t)],bigger)
,t=ALLTopologies)],bigger):
>
> #Now think about homeomorphisms, i.e., permutations
preserving open sets.
> P:=permute(X):
```

```
>
> X:=[op(X)]:
> newjob:=proc(t, p) local u:
>
> #apply a permutation p of the elements of a space to the
sets in a topology t.
>
> {seq(subs({seq(X[i]=p[i],i=1..nops(X))},u), u = t)}:end:
> ishomeo:=proc(t1,t2) #check to see if two spaces are
homeomorphic
> local answer,p:
> #we can first check for some trivial invariants,such as.
> if nops(t1) <> nops(t2) then return(false) fi:
> answer:=false:
> for p in P do if {op(newjob(t1,p))}={op(t2)} then
answer:=true: break: fi:od:
> #Note that we have to compare _sets_ rather than
    lists_!.
> answer:
> end:
> Types:=[]:
> for t in ALLTopologies do
> isnew:=true:
> for u in Types do
> if ishomeo(t,u) then isnew:=false: break:fi:
> od:
> if isnew = true then Types:=[op(Types),t] fi:
> od:
> print(`There are`,nops(Types),`homeomorphism types of
topologies among them`):
> for t in Types do lprint(t) od:
>
> #quit.
> #...or keep playing with these sets.
> There are, 3, homeomorphism types of topologies among them
[{}, {a, b}]
[{}, {b}, {a, b}]
[{}, {b}, {a}, {a,b}]
```

```
> #(27)A procedure to find all Homeomorphosm types of TO-
spaces on a given set X;
    #Let's tidy them up by size.
    bigger:=proc(t1,t2) if nops(t1) < nops(t2) then true else
false fi:end:
>
> #Apply this to all the elements in each topology, and to
the set of all top's.
> ALLT0_Topologies:=sort([seq( sort([op(t)],bigger)
,t=ALLT0_Topologies)],bigger):
>
> #Now think about homeomorphisms, i.e., permutations
preserving open sets.
> P:=permute(X):
> X:=[op(X)]:
> newjob:=proc(t, p) local u:
> #apply a permutation p of the elements of a space to the
sets in a topology t.
>
> {seq(subs({seq(X[i]=p[i],i=1..nops(X))},u) ,u =t)}:
> end:
> ishomeo:=proc(t1,t2) #check to see if two spaces are
homeomorphic
    local answer, p:
    #we can first check for some trivial invariants, such as.
        if nops(t1) <> nops(t2) then return(false) fi:
    answer:=false:
    for p in P do if {op(newjob(t1,p))}={op(t2)} then
answer:=true: break: fi:od:
    #Note that we have to compare _sets_ rather than _lists_!.
    answer:end:
Types:=[]:
for t in ALLTO_Topologies do
    isnew:=true:
for u in Types do
            if ishomeo(t,u) then isnew:=false: break:fi:
    od:
    if isnew = true then Types:=[op(Types),t] fi:
od:
```

```
    print(`There are`,nops(Types),`TO homeomorphism types of
topologies among them`):
    for t in Types do lprint(t) od:
#quit.
#...or keep playing with these sets.
There are, 2, T0 homeomorphism types of topologies among them
>[{}, {b}, {a, b}]
    [{}, {b}, {a}, {a, b}]
> restart;
with(combinat):
> X:={a,b,c};
        X:= {a,b,c}
> Y:=powerset(X);
    Y:= {{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}
> Z:=Y minus{{},X};
    Z:= {{a},{b},{c},{a,b},{a,c},{b,c}}
> W:=powerset(Z);
```

$W:=\{\{ \},\{\{a\}\},\{\{b\}\},\{\{c\}\},\{\{a, b\}\},\{\{a, c\}\},\{\{b, c\}\},\{\{a\}$,
$\{b\}\},\{\{a\},\{c\}\},\{\{a\},\{a, b\}\},\{\{a\},\{a, c\}\},\{\{a\},\{b, c\}\},\{\{b\}$,
$\{c\}\},\{\{b\},\{a, b\}\},\{\{b\},\{a, c\}\},\{\{b\},\{b, c\}\},\{\{c\},\{a, b\}\}$,
$\{\{c\},\{a, c\}\},\{\{c\},\{b, c\}\},\{\{a, b\},\{a, c\}\},\{\{a, b\},\{b, c\}\},\{\{a$,
$c\},\{b, c\}\},\{\{a\},\{b\},\{c\}\},\{\{a\},\{b\},\{a, b\}\},\{\{a\},\{b\},\{a, c\}\}$,
$\{\{a\},\{b\},\{b, c\}\},\{\{a\},\{c\},\{a, b\}\},\{\{a\},\{c\},\{a, c\}\},\{\{a\}$,
$\{c\},\{b, c\}\},\{\{a\},\{a, b\},\{a, c\}\},\{\{a\},\{a, b\},\{b, c\}\},\{\{a\},\{a$,
$c\},\{b, c\}\},\{\{b\},\{c\},\{a, b\}\},\{\{b\},\{c\},\{a, c\}\},\{\{b\},\{c\},\{b$,
$c\}\},\{\{b\},\{a, b\},\{a, c\}\},\{\{b\},\{a, b\},\{b, c\}\},\{\{b\},\{a, c\},\{b$,
$c\}\},\{\{c\},\{a, b\},\{a, c\}\},\{\{c\},\{a, b\},\{b, c\}\},\{\{c\},\{a, c\},\{b$,
$c\}\},\{\{a, b\},\{a, c\},\{b, c\}\},\{\{a\},\{b\},\{c\},\{a, b\}\},\{\{a\},\{b\}$,
$\{c\},\{a, c\}\},\{\{a\},\{b\},\{c\},\{b, c\}\},\{\{a\},\{b\},\{a, b\},\{a, c\}\}$,
$\{\{a\},\{b\},\{a, b\},\{b, c\}\},\{\{a\},\{b\},\{a, c\},\{b, c\}\},\{\{a\},\{c\},\{a$,
$b\},\{a, c\}\},\{\{a\},\{c\},\{a, b\},\{b, c\}\},\{\{a\},\{c\},\{a, c\},\{b, c\}\}$,
$\{\{a\},\{a, b\},\{a, c\},\{b, c\}\},\{\{b\},\{c\},\{a, b\},\{a, c\}\},\{\{b\},\{c\}$,
$\{a, b\},\{b, c\}\},\{\{b\},\{c\},\{a, c\},\{b, c\}\},\{\{b\},\{a, b\},\{a, c\},\{b$,
$c\}\},\{\{c\},\{a, b\},\{a, c\},\{b, c\}\},\{\{a\},\{b\},\{c\},\{a, b\},\{a, c\}\}$,
$\{\{a\},\{b\},\{c\},\{a, b\},\{b, c\}\},\{\{a\},\{b\},\{c\},\{a, c\},\{b, c\}\}$,
$\{\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}\},\{\{a\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$,
$\{\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\},\{\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b$,
c\} \}\}
$T:=\{$ seq (w union $\{\{ \}, X\}, w=W)\} ;$
$T:=\{\{\{ \},\{a, b, c\}\},\{\{ \},\{a\},\{a, b, c\}\},\{\{ \},\{b\},\{a, b, c\}\},\{\{ \}$, $\{c\},\{a, b, c\}\},\{\{ \},\{a, b\},\{a, b, c\}\},\{\{ \},\{a, c\},\{a, b, c\}\},\{\{ \}$, $\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{b\},\{a, b, c\}\},\{\{ \},\{a\},\{c\},\{a, b$, $c\}\},\{\{ \},\{a\},\{a, b\},\{a, b, c\}\},\{\{ \},\{a\},\{a, c\},\{a, b, c\}\},\{\{ \}$, $\{a\},\{b, c\},\{a, b, c\}\},\{\{ \},\{b\},\{c\},\{a, b, c\}\},\{\{ \},\{b\},\{a, b\}$, $\{a, b, c\}\},\{\{ \},\{b\},\{a, c\},\{a, b, c\}\},\{\{ \},\{b\},\{b, c\},\{a, b, c\}\}$, $\{\},\{c\},\{a, b\},\{a, b, c\}\},\{\{ \},\{c\},\{a, c\},\{a, b, c\}\},\{\{ \},\{c\}$, $\{b, c\},\{a, b, c\}\},\{\{ \},\{a, b\},\{a, c\},\{a, b, c\}\},\{\{ \},\{a, b\},\{b, c\}$, $\{a, b, c\}\},\{\{ \},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{b\},\{c\},\{a, b$, $c\}\},\{\{ \},\{a\},\{b\},\{a, b\},\{a, b, c\}\},\{\{ \},\{a\},\{b\},\{a, c\},\{a, b$, $c\}\},\{\{ \},\{a\},\{b\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{c\},\{a, b\},\{a, b$, $c\}\},\{\{ \},\{a\},\{c\},\{a, c\},\{a, b, c\}\},\{\{ \},\{a\},\{c\},\{b, c\},\{a, b$, $c\}\},\{\{ \},\{a\},\{a, b\},\{a, c\},\{a, b, c\}\},\{\{ \},\{a\},\{a, b\},\{b, c\},\{a$, $b, c\}\},\{\{ \},\{a\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{b\},\{c\},\{a, b\},\{a$, $b, c\}\},\{\{ \},\{b\},\{c\},\{a, c\},\{a, b, c\}\},\{\{ \},\{b\},\{c\},\{b, c\},\{a, b$, $c\}\},\{\{ \},\{b\},\{a, b\},\{a, c\},\{a, b, c\}\},\{\{ \},\{b\},\{a, b\},\{b, c\},\{a$, $b, c\}\},\{\{ \},\{b\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{c\},\{a, b\},\{a, c\}$, $\{a, b, c\}\},\{\{ \},\{c\},\{a, b\},\{b, c\},\{a, b, c\}\},\{\{ \},\{c\},\{a, c\},\{b$, $c\},\{a, b, c\}\},\{\{ \},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{b\}$, $\{c\},\{a, b\},\{a, b, c\}\},\{\{ \},\{a\},\{b\},\{c\},\{a, c\},\{a, b, c\}\},\{\{ \}$, $\{a\},\{b\},\{c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{b\},\{a, b\},\{a, c\},\{a, b$, $c\}\},\{\{ \},\{a\},\{b\},\{a, b\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{b\},\{a, c\}$, $\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{c\},\{a, b\},\{a, c\},\{a, b, c\}\},\{\{ \},\{a\}$, $\{c\},\{a, b\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{c\},\{a, c\},\{b, c\},\{a, b$, $c\}\},\{\{ \},\{a\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{b\},\{c\},\{a$, $b\},\{a, c\},\{a, b, c\}\},\{\{ \},\{b\},\{c\},\{a, b\},\{b, c\},\{a, b, c\}\},\{\{ \}$, $\{b\},\{c\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{b\},\{a, b\},\{a, c\},\{b, c\}$, $\{a, b, c\}\},\{\{ \},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{b\}$, $\{c\},\{a, b\},\{a, c\},\{a, b, c\}\},\{\{ \},\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a$, $b, c\}\},\{\{ \},\{a\},\{b\},\{c\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{b\}$, $\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \},\{a\},\{c\},\{a, b\},\{a, c\},\{b$, $c\},\{a, b, c\}\},\{\{ \},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\},\{\{ \}$, $\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}\}$

```
> print(`there are `, nops(T), `candidate collection of
subsets of X!`);
there are , 64, candidate collection of subsets of X!
```

```
> #(25)A procedure to find all topologies on a given set X.
```

> \#(25)A procedure to find all topologies on a given set X.
AllTop:=proc(T)

```
AllTop:=proc(T)
```

```
local i,O,A,U,B,C;
B:={};
for O in T do
U:=O;
for A in O do
U:=U union map(`intersect`,U,A);
od;
U;
for c in U do
U:=U union map(`union`,U,C);
od;
U;
if U=O then B:=B union {O}; else B:=B;
fi;
od;
B;
end:
ALLTopologies:=AllTop(T);
    ALLTopologies:= {{{}, {a,b,c}},{{}, {a}, {a,b,c}},{{},{b},{a,
    b,c}},{{},{c},{a,b,c}},{{},{a,b},{a,b,c}},{{},{a,c},{a,
    b,c}},{{},{b,c},{a,b,c}},{{},{a},{a,b},{a,b,c}},{{},
    {a},{a,c},{a,b,c}},{{},{a},{b,c},{a,b,c}},{{},{b},{a,b},
    {a,b,c}},{{},{b},{a,c},{a,b,c}},{{},{b},{b,c},{a,b,c}},
    {{},{c},{a,b},{a,b,c}},{{},{c},{a,c},{a,b,c}},{{},{c},
    {b,c},{a,b,c}},{{},{a},{b},{a,b},{a,b,c}},{{}, {a},{c},
    {a,c},{a,b,c}},{{},{a},{a,b},{a,c},{a,b,c}},{{},{b},{c},
    {b,c},{a,b,c}},{{},{b},{a,b},{b,c},{a,b,c}},{{},{c},{a,
    c},{b,c},{a,b,c}},{{},{a},{b},{a,b},{a,c},{a,b,c}},{{},
    {a},{b},{a,b},{b,c},{a,b,c}},{{},{a},{c},{a,b},{a,c},{a,
    b,c}},{{},{a},{c},{a,c},{b,c},{a,b,c}},{{},{b},{c},{a,
    b},{b,c}, {a,b,c}},{{},{b},{c},{a,c},{b,c},{a,b,c}},{{},
    {a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}}
```

```
> print(`There are`,nops(ALLTopologies),`topologies on a set
of`,nops(X),`points`):
```

There are, 29, topologies on a set of, 3, points

```
> #A procedure to check if agiven topology is T0-space .
```

isT0:=proc (X,T)
local x, y, O,test;

```
if nop(X)=1 then true ; else
for }x\mathrm{ in }X\mathrm{ do
for Y in X minus{x} do
for O in T do
test:=evalb((member (x,0) and not(member (y,0))) or (member (y,0)
and not(member(x,0))));
if test then break; fi;
od:if not(test) then break;fi;
od:
if not(test) then break;fi;
od:
fi;
test;
end:
> #(26) A procedure to find all T0-spaces on a given set X.
> ALLT0:=proc(ALLTopologies)
local i,T,TOS;
TOS:={};
if nops(X)=1 then TOS:=ALLTopologies;else
for T in ALLTopologies do
if isTO(X,T)=true then TOS:= TOS union {T} ; else TOS:=TOS;
fi;
od;
fi;
TOS;
end:
> ALLT0_Topologies:=ALLT0 (ALLTopologies);
    ALLTO_Topologies := {{{},{a},{a,b}, {a,b,c}}, {{},{a},{a,c},
        {a,b,c}},{{},{b},{a,b},{a,b,c}},{{},{b},{b,c},{a,b,c}},
        {{},{c},{a,c},{a,b,c}},{{},{c},{b,c},{a,b,c}},{{},{a},
        {b},{a,b},{a,b,c}},{{},{a},{c},{a,c},{a,b,c}},{{},{a},
        {a,b},{a,c},{a,b,c}},{{},{b},{c},{b,c},{a,b,c}},{{},{b},
        {a,b},{b,c},{a,b,c}},{{},{c},{a,c},{b,c},{a,b,c}},{{},
        {a},{b},{a,b},{a,c},{a,b,c}},{{},{a},{b},{a,b},{b,c},{a,
        b,c}},{{},{a},{c},{a,b},{a,c},{a,b,c}},{{},{a},{c},{a,
        c},{b,c},{a,b,c}},{{},{b},{c},{a,b},{b,c},{a,b,c}},{{},
        {b},{c},{a,c},{b,c},{a,b,c}},{{},{a},{b},{c},{a,b},{a,
        c}, {b,c},{a,b,c}}}
```

```
>print(`there are` ,nops(ALLTO_Topologies),`TO-spaces on set
    with`,nops(X),`points`);
```

there are, 19, T0-spaces on set with, 3, points

```
> #(13) A procedure to find all inequivalent topologies on a
given set X .
#Let's tidy them up by size.
>bigger:=proc(t1,t2) if nops(t1) < nops(t2) then true else
false fi:end:
>
> #Apply this to all the elements in each topology, and to
the set of all top's.
>
ALLTopologies:=sort([seq(ort([op (t)],bigger),t=ALLTopologies)
],bigger):
>#Now think about homeomorphisms, i.e., permutations
preserving open sets.
> P:=permute(X):
> X:=[op(X)]:
> newjob:=proc(t, p) local u:
>
> #apply a permutation p of the elements of a space to the
sets in a topology t.
>
> {seq(subs({seq(X[i]=p[i],i=1..nops(X))},u), u=t)}:end:
> ishomeo:=proc(t1,t2) #check to see if two spaces are
homeomorphic
> local answer,p:
> #we can first check for some trivial invariants,such as.
> if nops(t1) <> nops(t2) then return(false) fi:
> answer:=false:
> for p in P do if {op(newjob(t1,p))}={op(t2)} then
answer:=true: break: fi:od:
> #Note that we have to compare _sets_ rather than
    lists_!.
> answer:
> end:
>Types:=[]:
```

```
> for t in ALLTopologies do
> isnew:=true:
> for u in Types do
> if ishomeo(t,u) then isnew:=false: break:fi:
> od:
> if isnew = true then Types:=[op(Types),t] fi:
> od:
> print(`There are`,nops(Types),`homeomorphism types of
topologies among them`):
>
> for t in Types do lprint(t) od:
>
> #quit.
> #...or keep playing with these sets.
                            There are, 9, homeomorphism types of topologies among them
[{}, {a, b, c}]
[{}, {b, c}, {a, b, c}]
[{}, {c}, {a, b, c}]
[{}, {c}, {b, c}, {a,b, c}]
[{}, {c}, {a, b}, {a, b, c}]
[{}, {c}, {b, c}, {a,c}, {a, b, c}]
[{}, {c}, {b}, {b, c}, {a, b, c}]
[{}, {c}, {b}, {b, c}, {a, c}, {a, b, c}]
[{}, {c}, {b}, {a}, {b, c}, {a, c}, {a, b}, {a, b, c}]
>
> #A procedure to find all Homeomorphosm types of TO-spaces
on a given set X;
    #Let's tidy them up by size.
    bigger:=proc(t1,t2) if nops(t1) < nops(t2) then true else
false fi:end:
>
> #Apply this to all the elements in each topology, and to
the set of all top's.
> ALLT0_Topologies:=sort([seq( sort([op(t)],bigger)
,t=ALLTO_Topologies)],bigger) :
> #Now think about homeomorphisms, i.e., permutations
preserving open sets.
> P:=permute (X) :
```

```
>
> X:=[op(X)]:
> newjob:=proc(t, p) local u:
> #apply a permutation p of the elements of a space to the
sets in a topology t.
>
> {seq(subs({seq(X[i]=p[i],i=1..nops(X))} ,u) ,u =t)}:
end:
> ishomeo:=proc(t1,t2) #check to see if two spaces are
homeomorphic
    local answer, p:
        #we can first check for some trivial invariants, such as.
            if nops(t1) <> nops(t2) then return(false) fi:
        answer:=false:
        for p in P do if {op(newjob(t1,p))}={op(t2)} then
answer:=true: break: fi:od:
    #Note that we have to compare _sets_ rather than_lists_!.
    answer:
    end:
    Types:=[]:
    for t in ALLTO_Topologies do
        isnew:=true:
    for u in Types do
        if ishomeo(t,u) then isnew:=false: break:fi:
        od:
        if isnew = true then Types:=[op(Types),t] fi:
    od:
    print(`There are`,nops(Types),`T0 homeomorphism types of
topologies among them`):
    for t in Types do lprint(t) od:
#quit.
#...or keep playing with these sets.
                                    There are, 5,T0 homeomorphism types of topologies among them
[{}, {c}, {b, c}, {a, b, c}]
[{}, {c}, {b, c}, {a, c}, {a, b, c}]
[{}, {c}, {b}, {b, c}, {a,b, c}]
[{}, {c}, {b}, {b, c}, {a, c}, {a, b, c}]
[{},{c},{b}, {a}, {b, c}, {a, c}, {a,b}, {a,b, c}]
```


Appendix

Maple. 15

The Software:

Maple is a commercial computer algebra system .It was first developed in 1980 by the symbolic computation group at The University of Waterloo in Waterloo, Ontario , Canada since 1988 , it has been developed and sold commercially by Waterloo Maple Inc (also known as Maple soft) a Canadian company based in Waterloo, Ontario Canada .The current major version is version 16 which was released in March 2012.

History:

The first concept of Maple arose from a meeting in November 1980 at The University of Waterloo in Waterloo . Researchers at The University wished to purchase a computer powerful enough to run Macsyma , instead, it was decided that they would their own computer algebra system that would be able to run on lower cost computers.

The first limited version appearing in December 1980 with Maple demonstrated first at conferences beginning in 1982 .

The name is conference to Maple`s condition heritage by The end of 1983, over 50 Universities had copies of Maple installed on their machines .

Releases:

1- Maple 1.0 : January, 1982 .

2- Maple 1.1: January, 1982 .
3- Maple 2.0 : May, 1982 .
4- Maple 2.1 : Jun, 1982 .
5- Maple 2.15 : August, 1982 .
6- Maple 2.2 : December, 1982 .
7- Maple 3.0 : May, 1982 .
8- Maple 3.1 : October, 1983.
9- Maple 3.2 : April, 1984.
10- Maple 3.3 : March , 1985 (first public available version) .
11- Maple 4.0 : April, 1986.
12- Maple 4.1 : May, 1987.
13- Maple 4.2 : December, 1987 .
14- Maple 4.3 : March, 1989.
15- Maple V : August, 1990 .
16- Maple V R 2 : November, 1992.
17- Maple V R 3_{3} : March $15,1994$.
18- Maple $\mathrm{V} \mathrm{R}_{4}$: January, 1996 .

19- Maple V R F_{5} : November 1, 1992 .
20- Maple 6 : December 6, 1999 .
21- Maple 7 : July 1, 2001.
22- Maple 8 : April 16, 2002 .
23- Maple 9 : June 30, 2003.
24- Maple 9.5 : April 15, 2004 .
25- Maple 10 : May 10, 2005.
26- Maple 11 : February 21, 2007.
27- Maple 12 : May, 2008.
28- Maple 13 : April, 2009 .
29- Maple 14 : April, 2010.
30- Maple 14.01 : October 28 , 2010 .
31- Maple 15 : April 13, 2011.
32- Maple 15.01 : June 21, 2011.
33- Maple 16 : March 28 , 2012 .
34- Maple 16.02 : November 27, 2012.

Architecture:

Maple is based on small kernel, written in C , which provides the maple language, most functionality is provided by libraries, which come from
a variety of sources, many numerical computations are performed by NAG numerical libraries, ATLAS libraries, or GMP libraries, most of the libraries are written in the maple language ; these have viewable source code . Different functionality in maple requires numerical data in different formats, symbolic expressions are stored in memory as directed a cyclic graphs, the classic interface is written in C .

Note :

There are general commands and commands in specialized packages.

Packages:

Index of Descriptions for Packages of Library Functions .

Description:

The following packages are available

Algcurves	CUDA Curve Fitting	$\underline{\text { Genfunc }}$
(Algebraic	$\underline{\text { Database }}$	geom3d
$\underline{\text { Array Tools }}$	$\underline{\text { DEtools }}$	geometry
$\underline{\text { Audio Tools }}$		gfun

$\begin{aligned} & \underline{\text { Bits }} \\ & \text { Cache } \end{aligned}$	DifferentialGeometry	Global Optimization
CAD	Difforms	Graph Theory
Codagen	Discrete Transforme	Grid
Code Generation	DocumentTools	Groebner
Code Tools	DynamicSystems	group
Combinat	ExcelTools	$\underline{\text { hashmest }}$
Combstruct	ExternalCalling	
	File Tools	Heap
Contex Menu	GaussInt	HTTP
	Magma Maplets	Image Tools
Installer Builder	MathematicalFunctions	Padic
IntegerRelations	MathML	priqueue
IntegrationTools	Matlab	PDEtools
$\underline{\text { Inttrans }}$	MatrixPolynomialAlgebra	$\underline{\text { Physic }}$
Large Expression	MmaTranslator	plots

$\underline{\text { ScientificErrorAnalysis }}$		Worksheet
Simplex	Student[Vector-Calculus]	
Solde	SumTools	
SNAP		
Sockets		
SoftwareMetrics		
SolveTools		
SpreadStudent		

Packages used in Finite Topological Spaces:

1-Combinat:

Combinatorial functions, including commands for calculating
permutations and combinations of lists, and partitions of integers .

List of combinat package commands :

Ball	Catpord

Chi	Composition
Decodepart	Eulerian 1
Fibonacci	Graycode
Lastpart	Nextpart
Numbcomp	Numbperm
Permute	Prevpart
Randpart	setpartition
Stirling 2	$\underline{\text { vectoint }}$
Binomial	Character
Choose	Conjpart
Encodepart	eulerian 2
first part multinomial	inttovec
numbpart	Numbcomb

powerset	$\underline{\text { Partition }}$
$\underline{\text { randperm }}$	$\underline{\text { Randcomb }}$
Subse	$\underline{\text { Striling 1 }}$

2-network:

Description :

A network is represented by a graph consisting of vertices and edges, The edges may be directed, and loops and multiple edges are allowed .

The basic commands in this packages perform the manipulation of the underlying graphs .

List of Networks Packages Commands :

The following is a list of available commands :

$\underline{\text { acycpoly }}$	$\underline{\text { addedge }}$	$\underline{\text { addvertex }}$	$\underline{\text { allpairs }}$
$\underline{\text { ancestor }}$	$\underline{\text { arrivals }}$	$\underline{\text { bicomponents }}$	$\underline{\text { charpoly }}$
$\underline{\text { chrompoly }}$	$\underline{\text { complement }}$	$\underline{\text { complete }}$	$\underline{\text { components }}$

connect	connectivity	contracr	cuntcuts
countrees	cube	cycle	cyclebase
doughter	degreeseq	delete	departures
diameter	dinic	djspantree	dodecahedron
draw	draw3d	duplicate	edges
ends	eweight	flow	flowpoly
fundcyc	getlabel	girth	graph
graphical	gsimp	gunion	head
icosahedrons	incidence	incident	indgree
induce	isplanar	maxdegree	mincut
mindegree	neighbors	new	octahedron
outdegree	path	Petersen	random

rank	rankpoly	shortpathree	show
$\underline{\text { shirk }}$	$\underline{\text { span }}$	spanpoly	spantree
Lail	$\underline{\text { tetrahedron }}$	$\underline{\text { tuttpoly }}$	vdegree
$\underline{\text { vertices }}$	$\underline{\text { void }}$	$\underline{\text { vweight }}$	

2- ploottools :

Description:

The plottools packages contains routines that can generate basic graphical objects for use in plot structures. You can generate and alter plot structures using the commands in this packages .

List of Plottools Package Commands :

$\underline{\text { arc }}$	$\underline{\text { arrow }}$	$\underline{\text { circle }}$	$\underline{\text { cone }}$
$\underline{\text { cuboid }}$	$\underline{\text { curve }}$	$\underline{\text { cutin }}$	$\underline{\text { cutout }}$
$\underline{\text { cylinder }}$	$\underline{\text { disc }}$	$\underline{\text { dodecahedron }}$	$\underline{\text { ellipse }}$

ellipticalArc	$\underline{\text { hemisphere }}$	$\underline{\text { hexahedron }}$	$\underline{\text { hyperbola }}$
$\underline{\text { icosahedrons }}$	$\underline{\text { line }}$	$\underline{\text { octahedron }}$	parallelepiped
pieslice	$\underline{\text { point }}$	polygon	$\underline{\text { rectangle }}$
$\underline{\text { semitorus }}$	$\underline{\text { sphere }}$	$\underline{\text { tetrahedron }}$	$\underline{\text { torus }}$

The commands to alter or examine plot structure are :

getdata	project
$\underline{\text { rotate }}$	$\underline{\text { stellate }}$
$\underline{\text { translate }}$	$\underline{\text { reflect }}$
$\underline{\text { homothety }}$	$\underline{\text { ransform }}$
$\underline{\text { scale }}$	

References:

[1] May, J.P, Finite Topological Spaces(Notes for REU), (Lecture Notes),(2008) .
[2] McCord . M . Singular homology groups and homotopy groups of finite topological spaces, Duke Mathematical Journal 33, 465-474, (1996).
[3] Munkers , R . J, Topology A First Course, Prentice Hall, Massachusetts Institute of Technology, (1975).
[4] P .V .O' neil , Fundamental concepts of topology, GORDON and BREACH SCIENCE PUBLISHER HALL, college of William and Mary in Virginia, (1972).
[5] Roman Steven, Lattice and Ordered Sets, Springer Science+ Business Media, (2008)
[6] Speer, Timothy, A short study of Alexandroff space, New York university , July 2000.
[7] Stong . R . E. Finite topological spaces. Transaction of the American Mathematical Society Vol.123, No , pp . 325-340, (Jun , 1966).

Internet articles:

[8]http://www.maplesoft.com/applications/view.aspx?SID=4122\&view=html .
[9] http://www.math.niu.edu/~rusin/known-math/99/top_proc (1999) .
[10] http://en.wikipedia.org/wiki/Finite_topological_space .
[11] http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html .

خُـــــاصة

الفضاءات التبولوجية النهائية باستخدام المابل

قد استحوذت الفضاءات التُبولوجية النهائية مُؤخرًا على اهتمام علماء التُبولوجي حيث أن المعالجة الرقمية و الصورية تتطــلق من مفهوم تقارب النقاط وتسعى لفهم النتائج التي تتطلق من هذا المفهوم , توجد مجموعة من الأعمال الرياضية في هذا الموضوع ور أهمها ور قتتن مستقلتّنِ نُشرتا عام 1966 وهي من الأعمال الرياضية الجميلة ولهما أهمية بشكل خاص , و في هنه الأطروحة سوف نعمل من خلالهمان، وأيضا من خلال مُنكرة مُلاحَطات نُشُرت على الانترنت في عام 2008.

الفصل الأول بدايةً مع تعريف الفضاءات النوبولوجية النهائيةّ و والفئات المفتوحة . الأساسية الصغرى ـ وأيضا ناشنش بديهيات الانفصال، ثم ناقش الخصائص الممبزة لهذه الفضاءات من ناحية الاستمرارية و المتشابهات والتنراص و التنرابط و التزرابط المساري . أيضا هناك أمثلك تُظهر هذه الخصائص المخلفة في كثير من الحالات.

في الفصل الثاني ندرس فضاءات الكسندروف و أغلب خواصها الميزة وكيفية اشنتقاق فضاءات الكسندروفية جديدة من فضاءات الكسندروفية سابقة

> في الفصل الثالت نقوم بإنثاء إجراءات مستخدمين برنامج Maple 15

لحساب الكثّر من القضايا المتعلقة بالفر اغات التوبولوجية النهائيةً. مثل حساب
النقاط الخاصة و الفضـاءات النتوبولوجية و فضناءات To

المككن تعريفها لفئة منتية النقاط. أيضا إجر أت لحساب القو اعد الالساسية الصغرى و و المركبات المتر ابطة لفضاء منتهي . الملحق يتضمن وصف للبرنامج وفي نهاية الأطروحة تم وضع قائمة بالمر اجع المستخدمة.

