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Abstract

In this thesis , we discuss the properties of finite topological spaces and their
different properties from other topological spaces including Alexandroff
spaces . And also we create and apply some Maple programming procedures
to compute the special points of a set in a space and the number of topological

spaces of a given cardinality .



Introduction

The finite topological spaces have recently captured topologists’s attention.
Since digital processing and image processing start of finite sets of
observations and seek to understand pictures that emerge from notion of
nearness of points .There was a brief early flurry of beautiful mathematical
works on this subject. Two independent papers, by McCord [2] and Stong
[7] , both published in 1966 ,are especially interesting . In this thesis we
will work through them , also through a lecture note by May J.P [1],
published on the internet in 2008.

Chapter one starts with the definition of finite topological spaces and minimal
basic open sets . And also we discuss the preorder relation and its relation with
separation axioms , then we discuss the different properties of finite
topological spaces in continuity and homeomorphisms , compactness ,

connectivity and path connectivity .

In chapter two we study Alexandroff spaces we show how to construct new
Alexandroff spaces from given ones and discuss some of the very important

properties of Alexandroff spaces .

In chapter three we create procedures of Maple 15 programming to compute
the six special points and the topologies and T, topologies on a finite set . Also

procedures to find minimal bases and connected components of a finite space .



There is appendix to introduce the most important information of maple

program and its packages of commands .

The list of used references is put at the end of the thesis . An abstract in

Arabic is provided also .

Two papers have been extracted from this thesis and published on the
following links:

Maple in Finite Topological Spaces — Special Points .
Kahtan H.Alzubaidy, Taha Guma El turki

http://www.maplesoft.com/applications/view.aspx?SID=145571 ,(April 2013)

Maple in Finite Topological Spaces —Connectedness .
Taha Guma El turki , Kahtan H.Alzubaidy,

http://www.maplesoft.com/applications/view.aspx?SID=150631 ,(August2013)



http://www.maplesoft.com/applications/view.aspx?SID=145571
http://www.maplesoft.com/applications/view.aspx?SID=150631

Chapter Zero

Preliminaries

Partially Ordered Sets

Definition 0.1:

A partially ordered set (poset) (A, <) consist :
a non empty set A and a binary relation < on A such that
foralla,b,ceA:
(i) < isreflexiveie., a<a .
(i) < isanti symmetric i.e.,if a<bandb<a,then a=b.
(iif) < is transitive i.e .,if a< band b<c,then a<c [5,p. 2].
X <y isread as x precedes (contained in) y or y dominate (contains) x .

Definition 0.2:

A partial order relation < is called a totally order (or linear order or

chain) if foranya,be A, wehaveeithera<b or b<al[5,p.2].

Examples 0.1:

(i) Rwith < (magnitude) (R, <) is aposet in fact it’s a chain .

(if) A is a family of sets with the inclusion < , (A , €) is a poset



(iii) Z * with division | Is a poset , but it is not a totally ordered set ,
since 3,7 €Z* and neither 3t7 nor 7+ 3.

Definition 0.3:
A preorder or quasiorder on a non empty set A is a binary relation

that is reflexive and transitive [5, p. 3].

Definition 0.4:
An equivalence relation on a non empty set A is a binary relation that is

reflexive, symmetric (i.e., if x <y, then y < x) and transitive. If x € A, then
the set [ x ] of elements of A that equivalent to x is called an equivalence class
of x [5,p.2].

Definition 0.5:

A binary relation < on a non empty set A is called a strict order if

foralla,b,ceA ,we have :

(1) < isirreflexive i.e., a<a.

(if) < istransitive ie., if a<band b<c,then a<c[5,p.4].
Relationships between < and <:

(a<biffa<bora=h.

(ia<biffa<b and a#=b[5,p. 4]

Remark:

The inverse order of an order < is denoted by > .

> isdefined as follows:a>biff b<a.



Definition 0.6:

Let (A, <)beaposet. Theny coversxin A, denoted by xc v, if
X < yand no element in A lies strictly between x and y , that is , if
X< z<y then x=zory=z.
If xcy,or x=y,wewritexSy[5,p.4].
For a finite poset A , the covering relation uniquely determines the order
on A, since x <y, if and only if there is a finite sequence of elements of A
suchthat,x cp;=p, = psC. .. p,=y.Small finite posets are often
described with a diagram called a Hasse diagram , which is a graph whose
nodes are labeled with the elements of the poset and whose edges indicate the

covering relation .This is illustrated in the following example .

Example 0.2:

Figure (1) shows the Hasse diagram of the poset
P={0,{a}, {b}, {a,b}{a,b c}}underinclusion .
{a,b,c}

{a, b}

{a} {b}



Definition 0.7:

If (A, <)isaposetand B € A, then (B, <) is a poset it is called

a subposet of a poset A .

Definition 0.8:

Let (A, <;)and (B, <,) betwo posets, suppose that C=A x B, then C

can be made a poset such that :
(i) Product order :
(@a,b)<(c,d)iff a<;c and b<,d .< isapartially orderon C.
Remark:
If <; and <, are total orders, then < may not be total .

(if) Lexicographical order (dictionary order):

(a,b)<(c,d)iffa<;cor (a=cand b <, d).< ispartially order
on C [5,p.4].
Remark:

iIf <, and <, aretotal orders, then < is a total order .

Definition 0.9 :

Let (A, <;)and (B, <,) be two posets. A function f: A — B is order

preserving if x <;y impliesf(x) <, f(y) where x,yeA.



Definition 0.10:

Two posets (A, <;) and (B, <,) are called order isomorphic, if there

exists a one-to-one onto function f: A — Bsuchthat f and f are order-

preserving .Also f is called order isomorphism [5, p.13].

Definition 0.11:

Let A be a poset .
(i) An element s € A is called smallest element of A, if s< x forall xe A.

(ii) An element g € A is called largest element of A | if x < g forall xe A.

(iii) An element m € A is called minimal element of A, if there is no

x € Asuchthat x<m.
I.e., if there is x e A such that x<m,thenx=m.
(iv) An element g € A is called maximal element of A , if there is no
X € Asuchthatg < x.
I.e., ifthereisxe Asuchthatg<x,thenx=g [5, p. 6].
Definition 0.12:
Let(A,<)beaposetand BS A.

(i) An element u € A is an upper bound of B if x<uforany xeB.
The least upper bound or Supremum of B is an upper bound
which precedes every other upper bound of B . It is denoted by

sup.(B) . i.e., sup.(B) < u for each upper bound u of B.
sup.(B) is the smallest upper bound of B .

8



(ii) An element | € A is an lower bound of Bif | <x forany xeB.
The greatest lower bound or Infimum of B is a lower bound
which dominates every other lower bound of B . It is denoted by inf.(B).
I.e., | < inf.(B) for each lower bound | of B.
inf.(B) is the greatest lower bound of B .

Lemma 0.1 :

Smallest and greatest elements are unique , if they exists .

Definition 0.13:

A poset (A, <) is called complete, if for every B € A, inf.(B) and sup.(B)

both exist .
Lattices :

Definition 0.14:

A poset L is a lattice if for every a, be L both sup.{a, b} and inf .{a, b}
existin L [5, p .53].

Notation:
sup{a,b}=avband Inf{a,b}=aAb
v iscalled join and A iscalled meet[5,p.53].

Examples 0.3:
() (R, <) isalattice .




Since foranyx,ye R ,xvy=max{x,y}and X Ay=min{x,y}
(i) if Aisaset, then (2%, <) is a lattice .

For any XY € A ,wehave XvY=XUY and XAY=XNY.
(iii) (Z*, | ) is a lattice

XAYy=(x,Yy) greatest common divisor

XVy=[x,y] least common multiple .

Definition 0.15:

A poset L is a complete lattice if L has arbitrary joins and arbitrary meets.

10



Topological Spaces

In this section we will introduce the basic definitions that are related to

topological spaces and also discuss the most important topological properties

Definition 0.16:

A topology on a set X consist of a collection T of subsets of X called

(open sets of X') .With the following properties :

() 0T and XeT.
(i) if O;,0,€T,then 0, N O, e T, and

(iii) if Oz e T forany aeJd ,then || OaeT.

ael

(if) and (iii) mean that the collection 7 is closed under finite intersections
and arbitrary unions [4,p .1].

Examples 0.4:

(i) Discrete Topology:

If X isaset,then § =2X={0:0< X} isatopologyon X, itis
called discrete topology . It’s the largest topology on X .

11



(i1) Indiscrete Topology :

If Xisaset,then T={@, X} is topology on X, it is called indiscrete

topology , it’s the smallest topology on X .

(iii) Cofinite_Topology :

If X is aset,T={0c X:X -0 sfinite} U {¢}, T is atopology on X
is called cofinite topology @ € T and X e T, since X—X=0@ is finite .

Let O;, 0, € T, then X — O, and X - O; are finite .
X-(0O:N0;)=(X—=0;) U(X—=0,)which is finite and hence
O:NO,eT.LetOaeT forany aed,then X — O« is finite

forany aeJ. X — U Oa = ﬂ ( X— O«) ,which is finite and hence

ael ael

J OweT.

ael

(iv) Metric Topology :

If (X, d)is ametric space then
T;={0c X:VaeO,3e€>0,staeBy(a;e)c0}

Is the metric topology on X induced by d . For example the usual metric

topology on R is

E={OcR:VaeO,3e>0,stae(a-€,a+¢€)<c O}

12



Definition 0.17:

An ordered topological space is a triple (X ,T, <) where (X ,T) is
a topological space and (X , <) is a totally order set .

Remark:
Infinite intersection of open sets may not be open set .Take the usual real
] -1 1 + ]
Ime(]Rl,S).Thesets(—,—):neZ areopenin (R, &),
n n
0 _ 1 _ ) ]
butnf]1 (77) = {0} isnotopenin (R, E).

Definition 0.18:

B is abase for atopology T if:

i) pcT

(i) T={Up" | p<p}[4p12]

Examples 0.5:

(i) {{x} : x e X} is basis for the discrete topology on X .
(ii) {X} is basis for the indiscrete topology on X .
(iii) The set of open balls {Bq(a, ¢):ae€ X and ¢ > 0 } is basis for the

metric topology on X

13



Theorem 0.1 [4]:

Let X be asetand 5 < 2%, then S is a basis for unique topology
on X iff :

(i) Foreach x e X there exist, B € fsuch that xe B< X.
(ii) Forany By, B, € f if x e B;N B,, then there is B; € f such that
XxeB;E€ B NB,.

Definition 0.19:

Let ( X ,T) be a topological space , ¢ is a subbasis for Ton X if :
MHhEceT.
(i) Finite intersection of members of éform a basis for T.

Members of ci are called subbasic open sets [4, p .15] .
Remark:

Let Oe T forany xeO, thereare S;,S,  S.eC st xe[]S cO.
i=1

Theorem 0.2:

Let X beasetand &< 2* | & forms a subbasis for a topology on X ,

moreover this topology is unique and it is the smallest topology contains ¢.

14



Sets in Spaces

Definition 0.20:

Let X beaspaceand A € X, apointx e X is called an interior point of A
If there exist an open set O such that x e O € A . The set of all interior point
of A is denoted by A°.

Theorem 0.3:

1-A°CA.

2- A’ is open .
3-AisopeniffA=A".

4- (A°) =A".

5-if ASB,then A° € B".

6- ANB) =A°NB".
7-A°'UB°C (AUB) [4,p.6].

Definition 0.21:

Let X beaspaceand A < X, apoint x € X is called a closure point of A

if for any open set O 3 x, we have that A N O #@ .The set of all closure

points of A is denoted by A .
Theorem 0.4:

1-AC A.
2- A is closed .

15



3- Ais closed iff A=A .
4- A=A .

5-if ACB,then A € B.

6- ANB c ANB.

D)

(=
ve)

7-(AU B)=A

Definition 0.22:

Let X be a space and A € X, a point x € X is called a boundary point of A
if for any open set O 5 x ,we have that ANO #@and O N( X — A)#@ . The
set of all boundary points of A is denoted by JdA .

Theorem 0.5 :

1-0A= AN (X-A).

2- 0A =9 (X—A) .
3-0Ais closed .

4- A=A U0A.

5- Alisclosed iff A C A.

6-0A= A - A°.

16



Definition 0.23:

Let X beaspaceand A € X, apointx e X iscalled a limit point of A if
for any open set O > x , we have that (O -{x}) N A #0.

The set of all limit points of A is denoted by A’.

Theorem 0.6 :

1-A=AUA.

2- Alis closed iff A’ C A,
3-if AcB,thenA'CB".
4-(AUBY=A"UB".
5-(ANBYcA'NB"

Definition 0.24:

Let X beaspaceand A< X ,apoint x € X is called an exterior point
of A if there exist an open set O3 x such that O € ( X — A) . The set of all
exterior points of A is denoted by A*.

Theorem 0.7 :

1- A", A°, 0A are pair wise disjoint and A° U 0A U A*=X

2- A% = (X — A)° and thus A¥isopen[4,p.11].

17



Definition 0.25:

Let X be a space and A € X, a point x eX is called isolated point of

A if there exist an open set O such that O N A = {x}. The set of all isolated

points of A is denoted by A®.

Theorem 0.8 :

1) A® cA.
2)A" N A'=0.
3)A¥ =A— A"

Separation Axioms

Definition 0.26:

A topological space (X, T) is called T, -space if for every two distinct
points x,Yye X, there is an open set O, such that either :
xeO and yg O or x¢ O and yeO.

Examples 0.6 :

(i) Right ray topology over R is T, -space

Tign={(a, ) :ac R}U{D, R}.

(i) Sierpinski space is T, -space .
X={a,b} ,7={0,{a},X}.

18



(iii) Indiscrete space is not T, —space .

Theorem 0.9:

X is To—space iff forany a,be X ; {a} ={b}, implies thata =b
Proof :

If X is To-space, leta #b,thenae{b} ,butac{a} ,and hence

{a} # {b}.

Conversely

Let a # b, then {a} # {b}, Take O = X—{a} , then O is open and
O>3b,03a.

Definition 0.27:

A topological space (X ,T) is called T;- space if for every two distinct

points x,ye X, there exist two open sets O;and O, , such that
Xe€O;,yeg O, and x¢0,,ye 0, .

Examples 0.7:

(i) The cofinite topology 7T={O € X : X - O is finite}U{@} .

Let x#yin X, Take O; = {x},and O, = {y}, then O, and O, are

openand ye O;,x¢ O; and y¢ O, ,xeO,.

19



(if) The metric topological space (X, T4) is T;- space
letx#yin X, Take O;= By (x,f) , and O,= Bd(y,f) ,Where
e=d(x,y)>0, xeO; ,yegO; and x¢0, ,yeO,.

Theorem 0.10:

A space (X, T ) is T;- space iff for every x eX, {x} isclosed .

Corollary 0.1:

A space (X, T ) is T;- space iff every finite subset is closed .

Definition 0.28:

A topological space ( X, T) is called Hausdorff space (T,- space ) if for

every two distinct points x,ye X, there exist two open sets O, , O,, such
that x€ O;and ye O, and O;N0O,=0@.

Examples 0.8:

(i) Metric topology is T,- space

Let x,ye Xwith x=+y and let e=d(x,y)>0.
Take O, = Bd(x,g)and 02=Bd(y,§);
Then xeO;and ye O, andO; N O, =0 .

(i) Infinite cofinite topology is not T,

X,Y€EX;X#Y,supposethat X is T,- space .Then there exist two

20



open sets O, and O, , such that :
013X ,OQBy and O, N0O,=0.
Then OlC U OZC =X, but OlC and OZC are finite sets , then X is finite ,

hence X is not T,- space .

Definition 0.29:

A topological space (X, T ) is called regular if for every point xe X and

closed subset F € X with x ¢ F there are two open sets Oy, O, such that
xeO;and F€O,and O; N0, =0 .

(X, T )iscalled Ts-space iff its regular space and T, - space .

Examples 0.9:

()X ={a,b,c}, T={0,{a},{b,c}, X}

is regular space but is not T;- space since {b} is not closed ,

then (X, T ) is not T -space .
(ii) Metric topological space ( X ,Tq4) is regular and Ts- space

let xe X, FS X is closed set,and x ¢ F .

21



Take € =d(x, F)=min{d(x,y):ye F }, and take O; = B,4(x, S ) and

0, = U Ba(y, F) , then O;and O, are opensetsandx e O, and F < O,

y eF

and O; N O, =0 , then (X, T) is Ts- space .

Definition 0.30:

A topological space (X, T) is called Normal space if for any two disjoint

closed sets F; and F, of X, there are two open sets O, and O, such that
F€0,,FLcO, and Oo.N0,=0.
A topological space is called T,4- space if it is Normal and T, - space .

Examples 0.10:

X ={a,b,c,d} ,T={0,{a,b}, {c,d}, X}
(X, T)is Normal , but not T,- space since {a} is not closed .

(if) Metric topological space is T4- space .

Continuous Functions and Homeomorphisms

Definition 0.31:

Let X and Y be two spaces A function f: X —Y is continuous if for

for every openset O in, fffO) isopenin X.

A continuous function is called " map " [4, p .31].

22



Theorem 0.11 [4]:

f: X =Y is continuous iff ffl(E) Is closed in X for any closed set E
iny.

Definition 0.32:

A homeomorphism (Topological transformation) is a bijective map and its

inverse is a map [4, p.35] .
Notation:

If there is a homeomorphism from X onto Y, we say that X and Y are
homeomorphic or topologically equivalent , it is denoted by X = Y.

Theorem 0.12:

= |s an equivalent relation on spaces .

Definition 0.33:

If (X, T:,<y)and (Y ,T,, <,) ordered topological spaces then a map

f: X =Y is an order-homeomorphism if it is an order isomorphism of posets
and a homeomorphism of topological spaces [5, p .218].

Theorem (The pasting Lemma) 0.13:

Let X =AU B, where A and B are closed in X, let f: A— X and

g:B —Y be continuous . IFf (x) =g (x) foreveryxe AN B,thenfandg
combine to give a continuous function h:X — Y, defined by setting
h(x)=f (x) if xe A,and h (x) =g (x) ifxeB [3, p. 108].

23



Note:
Theorem 0.13 is also hold if A and B are both open sets .

Notation:
If X and Y are two topological spaces , let
Y '={f| f: X — Y, f iscontinuous function } .

Compactness

Definition 0.34:

A space X is called compact space if every open cover of X can be
reduced to a finite subcover .

i.e.,if X=|] O, ,then there exist a finite subcover {O,, }{.; such tahat

ael

X={) O, [4,p.139].

n
i=1

Examples 0.11:

(i) Any Indiscrete space is compact .
(i)Any closed bounded subset of R™ is compact (Hiene-Borle Theorem).

Theorem (Tychonov) 0.14 [ 4 1:

Let (Xa ,Ta) be atopological spaces for any a € J, then H Xa IS

ael

compact iff (Xa, Ta) is compact topological space for each a € J .

24



Corollary 0.2:

Compactness is a topological property.

Definition 0.35:

A topological space X is locally compact space if for any x € X
there is compact neighborhood of x [4,p .154].

Examples 0.12:

(i) R™ is locally compact space .
(i1) Any compact space is locally compact .

Connectivity and Path Connectivity

Definition 0.36:

O, and O, Separate a topological space X if :
(i) O, and O, are both open .
(i) O;and O, are both non-empty .
(i) O; N0, =9 .
(iv)O,UO,=X [4, p.119].

Definition 0.37:

A space X is connected if there do not exist non-empty proper sets O; and
O, which separate X [4, p .119].

25



Examples 0.13:

The following spaces are connected .
(i) Sierpinski space.

(i) Any indiscrete space.

(iii) The usual real line (R, &) .

Note:

If X is not connected , we generally say that X is disconnected .

Example 0.14:

The discrete topology over a set with more than one point is disconnected .

Theorem 0.15 [4]:

Let (Xa ,Ta) be atopological spaces for any a € J, then [[ Xa is

ael

connected iff (X a,Ta) is connected foreacha € J.

Corollary 0.3

Connectedness is topological property.

Definition 0.38:
Let xe X .Then C,= U{A| xe A € X and A is connected}, C,is called
the connected component of x .

Examples 0.15:

(i) In the discrete space C,={x} forany x e X.

26



(if) In the usual real line (R,£) C,= R forany xe R.

Definition 0.39:

A topological space X is said to be locally connected at x if for every
neighborhood O of X, there is a connected neighborhood U of x contained in
O. If Xis locally connected at each of its points then it is said to be locally
connected [3, p.161] .

Example 0.16:

Each interval in the usual real line is locally connected .

Definition 0.40:

A function p: I—Xis called a path in X if p is continuous [4 , p .131] .

Definition 0.41:

A map p: I—Xis called a path from x to y in X if p is a path in X and
p(0) =x and p(1) =y, x is called initial point and y is called terminal point
of p [4,p.131].

Definition 0.42:

A loop p based at x e X is a path in X if p(0) = p(1)=x, i.e., the beginning
point and the terminal point are equal [3, p. 326].

Definition 0.43:

A space X is path connected if for any x , y € X there is a path joining them
in X [3,p. 155].
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Definition 0.44:

If pisapathin X fromxintoy, and if g isapathin X from ytoz, we

define the composition p- g of p and g to be the path h given by the equation

p(2t) foralltefo, 3]

h(t) = 2

g(t—1) forlite [*,1]
2

The function h is well defined and continuous by pasting lemma .

Example 0.17:

(R, £ ) is path connected space .
Remark:
A connected space may not be path connected [4 , p .131 . Example 2.4].

Theorem 0.16 [4]:

Let X be path connected space then X is connected .

Theorem 0.17 [4]:

Let (Xa ,Ta) be atopological spaces for each « € J . Then H Xa

ael

is path connected iff (X« ,T«) is path connected for each a € J.
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Corollary 0.4 :

Path connectedness is a topological property.

Definition 0.45:

Let xe X . Then Hy,= U{A | xe A € X and A is path connected}, Hy is called
the path connected component of x [4, p. 134].

Definition 0.46:

A topological space X is said to be locally path connected at x
If for every neighborhood O of x, there is a path connected

neighborhood U of x contained in O. If X is locally path connected at each of

its points then it is said to be locally path connected [3, p. 161]

Example 0.18:

(i) R™ is locally path connected [3, p .161] .

Quotient Spaces

Definition 0.47:

Let X and Y be a topological spaces, let q : X —Y be a surjective
map . The map q is said to be a quotient map, provided a subset O of Y

isopeninY if g’ (0)isopeninX[3,p.135].
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Definition 0.48:

If Xisaspaceand Aisaset, p: X — A asurjective map , then there

exists exactly one topology T on A relative to which p is a quotient map ,

it is called the quotient topology induced by p [3, p .136] .

Definition 0.49:

Let X be a topological space , and let X be a partition of X into disjoint
subsets whose union is X . Let p : X — X be a surjective map that carries
each point of X to the element of X" containing it .In the quotient topology

induced by p , the space X is called a quotient space of X [3, p .136].
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Chapter One

Finite Topological Spaces

In this chapter we introduce the very important properties of finite topological
spaces that are different from the general topological spaces. There was a brief
early flurry of beautiful mathematical works on this subject . Two independent
papers , by J.P.May and Stong [1, 7], [7] published in 1966 , are especially
interesting . We will work through them and also we create some computer

procedures applications related to finite topological spaces in chapter three .

Basic Definitions

Now , if X is finite, then 2 is finite and hence any topology T on X

will consist only finitely many open sets and hence we can introduce the

following definition .

Definition 1.1:

A topological space for which the underlying point set X is finite is called a
finite topological space . Finite topological space can be redefine by the

following conditions:

(i) peTand XeT.

(i) if 0O;,0,€T, thenO; U0, €T, and

(iii) if 0;,0,eT ,thenO; N O, e T [1,p.1].
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Note:
A finite topological space is a complete lattice .

Definition 1.2:

Let X be a finite topological space . For x e X, define
U=N{O0c X:0 isopenand O >x }
U, called minimal basic openset[1,p.2].

Example 1.1:

X ={a,b,c}&T={0,{a},{a,b} . {a,c},X}.Then
U.={a}N{a,b}n{a,ctnNX={a}.
Up={a,b} N X={a,b}.

U.={a,c} N X={a,c}.

Definitionl.3:

Let < Dberelation on X defined by x <y in Xif xe U, or

, equivalently ,Uy € U, ,write x <y if the inclusion is proper [1, p.2] .
Lemma 1.1:

The set of open sets Uy is basis for X . Indeed , it is the unique minimal

basis for X .
Proof :
Let u be the set of all U, , then for any x € X there is U,3x and hence
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X:U U, i.e., pcover X.

xe X

Let x,y,zeX,if zeU, N U, ,thenze U, and ze U, . Which implies that
U, € U, and

U,c U, hencezeU, c U, N Uy.
Now suppose that ¢ is another minimal basis , let C € ¢ such that
x e C < Uy, ,then C=U, since U, is the smallest open set contain x ,
sothat U, e ¢ forall xe X and hence { = .
Lemma 1.2:
A set B of non-empty subsets of X is the minimal base for a topology iff
(i) Members of S cover X.

(if) The intersection of any two sets in § is a union of some setsin S .

(i) If Baep foraeaand U Baeﬁ,thenU Ba = Bd for some ¢ € a.

el ael
Proof :

Conditions (i) and (ii) are equivalent to saying that g is a basis , for (iii).

Suppose that 8 is a minimal basis , then U,e g forall x e X, and if

U= Uy, thenU,c U, forall yeU, (1).

yel,

Also we have that x € U U, which implies U, U, forsomey eU, (2).
yEUx

33



From (1) and (2) we get that U U, = U, for certainy e Uy.

yey,

Conversely

Let u be a minimal basisand let B € 8, then B = U Uy for some U, e U

xeB
( Bisopen) . And by condition (iii) B = U, for a certain x e B, then B is
a minimal basic open set and hence £ is minimal basis .

Separation Properties

Lemma 1.3:

The relation < is apreorder . Itis a partial order iff X is To-space .
Proof :

The first statement is clear. For the second suppose that (X, <) is
aposet.Let x=y ,then x£y or y £ x whichimplies x ¢ U, or ye Uy

then there exist an open set U,sy and U, x or an open set U, > x and

U2y thus Xis To- space .

Conversely
Suppose that X is To- space , letx<y and y <x, then U, € U, and

U, € U, which gives U,=U, , hence we must have that x =y .

Proposition 1.1:

For a finite set X , the topologies on X are in bijective correspondence
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with the reflexive and transitive relations < on X . The topology

corresponding to <is T, if and only if the relation < is a partial order[1, p.3].

Lemma l.4:

Finite T;- space is discrete space.
Proof :

Suppose that X ={ x; , X2 ,.., X, } is a finite T, - space , take x € X then

{x¥ must be finite subset of X . Then {x} is closed and hence any single

point set {x} is open , thus topology is discrete .
Remark:
Finite T, ,T5,T4, spaces are obviously discrete .

Theorem 1.1:

Finite T,- space has at least one closed single point .
Proof:
By using mathematical induction
if | X|=1,thatis X={x} the result is true . Assume that the result is true
for |X|=n—1.Now1et |X|=n,|et AcX ,suchthat|A|=n—1,

then A is To- space by induction and there is a point p € A such that
{ p} isclosed setin A, then {p}=A N F for some closed set Fin X,
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then we will have F={ p } or F={ p, x,} if F={ p} then itis done .

Hence we may assume that F={p, x, }, let O; be open set in X such
that p € O, and X, ¢ O1.Then O: N F = {x,} is closed in X.

Let O, beopensetin X suchthat peO,and x, € O,,then O:N F={p}

closed in X.
Remark:

There are infinite To- spaces which do not have any closed single point , for

example right ray topology over R.
Remark :
Non — discrete finite space can also be Normal .

Example 1.2:

Excluded point topology on any finite set . Let X = {X1, Xo, X3}

define atopology Ton X by T={0 < X:x3¢ O} U {X}.

Then T is the Excluded point topology on X,

T={0 {x1 } {x},{X1, X2} , X} . It’s clear that ( X, T) is Normal .

The only disjoint closed sets are @ and X and they are separated by
themselves .
Number of topologies on a finite set

Topologies on a finite set are in one-to-one correspondence with preorders

on the set, and T, topologies are in one-to-one correspondence
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with partial orders . Therefore the number of topologies on a finite set is equal
to the number of preorders and the number of T, topologies is equal to the
number of partial orders . The table below lists the number of distinct (T)

topologies on a set with n elements. It also lists the number of inequivalent

(i.e. nonhomeomorphic ) topologies.

n Distinct Distinct Inequivalent | Inequivalent
topologies T, topologies | topologies T, opologies

0 |1 1 1 1

1 |1 1 1 1

2 |4 3 3 2

3 |29 19 9 5

4 | 355 219 33 16

5 |6942 4231 139 63

6 |209527 130023 718 318

7 19535241 6129859 4535 2045

8 | 642779354 431723379 35979 16999

9 63260289423 |44511042511 | 363083 183231

10 | 8977053873043 | 6611065248783 | 4717687 2567284
OEIS A000798 A001035 A001930 A000112

Let T(n) denote the number of distinct topologies on a set with n points.

There is no known simple formula to compute T(n) for arbitrary n. The

Online Encyclopedia of Integer Sequences presently lists T(n) for <18.
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The number of distinct T, topologies on a set with n points , denoted To(n) , is

related to T(n) by the formula T(n)= ZH:S(n,k) To(n, k) [10].
k=0

where S(n, k) is Stirling number of the second kind which is the the number

of ways to partition a set of n labelled objects into k non empty unlabelled

subsets

S(n. k=29 () =) 11,

Continuous Functions and Homeomorphisms

Lemmalb:

A function f: X — Y is continuous iff itis order preserving i.e. , if
x<yin X then f(x) <f(y) inY.
Proof :

Let f be a continuous function , suppose that x <y in X, then
-1
x e Uy &f (Ui and thus f (x)e Usy, which implies that f(x) < f(y).

Conversely
Let O be opensetinY if f(y)e O,then Uiy SO.If xe U, ,thenx <y
and thus f (x) < f (y) and f (x) € Us(;) €O . So that x e U, S f_(lo) , then

-1
f(O) = u Uy , therefore f is continuous .

yef (0)

Lemmal.6:
A map f: X — X is a homeomorphism iff f is either one -to- one or onto .
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Proof:

One-to-one and onto are equivalent by finiteness , since f is one-to-one
A- f(A) defines one-to-one correspondence g : 2° — 2% . If g(A) e T,

f (A) is open and by continuity and one-to-one nature of f, A is open. Since

tisfiniteand T g (T), g gives one-to-one correspondence

T — T .Thus A open implies f (A) open and hence f is a homeomorphism

Conversely
If f is a homeomorphism then f is one —to —one and onto .
Note:

In infinite topological spaces Lemma 1.6 is not held and we will discuss the

following example to explain that .

Example 1.3:

Let X be the set of integers with the topology t created by declaring a set to

be open if either it is a subset of N or it isthe entire setZ i.e.,

T ={0:0cN}IJ{Z}.Thenthemap f: X — X such that f(x)=x-1,

Is a continuous bijection from X to itself , but it is not a homeomorphism

since the image of N is not open .
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Compactness

1- Every finite space is compact .

2- A compact discrete space is a finite space .

Proof :

Let X = U {xi}ie., {{xi}}i em isanopen cover of X .Since X is

iel

compact , then X=U {xi} and hence X ={X1,%X,. . ., X }.
il

Definition 1.3 :

A space X is called smally compact if every open subset is locally
compact [1,p .9].

Theorem 1.2 :

Every finite space is smally compact space .
Proof :

Since every open subset is compact (since it’s finite) then every open subset

is locally compact .

Definition 1.4:

If Y is a finite space , then the point wise ordering < on Y is given by

f<gif f(x) <g(x)forall xe X [1,p.9].
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Definition 1.5:

A compact open topology (C-O-topology) on Y’ Is a topology in which

the subbasis are the sets W(C , O) = { f /f (C) €O} where C is compact in
XandOisopeninY [1,p.9].

Lemmal.7 :

If Xand Y are finite spaces , then

ﬂ{OgYX:Oisopen and Osg}={f/f<g}.
Proof :

Let Vyg=N{O<Y:0isopen and O3 g}andZ;={f/f<g}andlet
xe X, letfeVy.Since g e W({X}, Uy ) » W({X}, Ugy) isopenw.r.t C-O-
topology then feW({x}, Ugw) , S0 f(X)e Uy, there for f < g, then
Vy C Z,.

Conversely

Let f<gTake W(C,QO)>g then g(x) e O forsomexeC
since f(x) < g(x) then f(x) € Uy and hence f () is in any open set
containing g and hence Z; € V.

Connectivity and Path Connectivity

Lemma 1.8:

If x <y in X . Then there is a path connecting xand y .
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Proof :

DefineP: 1 — X by P(t)=x forallte[0,1) and P(1) =y, let O be
open in X if xeO and yg Othen P " (O)= [0, 1) whichisopenin I

w.r.t usual topology if x,yeO thenP (O)=1,if yeO,then xeO

(xe U, since x<y)thenP (O) =1 ,ifx¢ O, then P " (0)=@ and hence P

IS continuous .
Lemma 1.9:
Each U, is path connected .

Proof :

Let y,,y,€ U, then y, <x and Yy, < x (def of U,) then by
Lemma 1.8 there are twopaths p:y, —x and q:y, — X

Now , if we take the inverse path of g which denoted by g, in the following

path composition

defined by

p(zt) forallt efo, é]

P *q (1) - -
® ql@-1) forllte [= 1]
2

Which is continuous by pasting lemma and connecting Yy, and Y,

and hence U, is path connected .
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Lemma 1.10:

If X is afinite connected space and x,y € X, then there is either

an increasing or decreasing sequence of points {p; }.S

., connecting xandy

(i'e"X: < P=s...=P=yor Xx=p=02....2 ps:y).
Proof :

Let x € X and let O be a proper open subset of X containing X suppose

that O = { y € X : y connecting x by some sequence {p;}_ }.

Now if {p;} _, is decreasing sequence , then y e U, O for all y € O which is

implies that U, = 0O, if "y ¢ O, then neither is any point of U., , then O° is

open and hence O is clopen , since X is connected then

we must have that X = O, similarly if {p, }fl IS increasing sequence of points .

Lemmal.11:

Every finite space X is locally path connected .
Proof :

Let x € X suppose that O is an open set such that x e O then xe U, € O
where U, is path connected by Lemma 1.9 and hence X is locally

path connected .
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Theorem 1.3 :

A connected finite space is path connected space .
Proof :

By Lemma 1.8 and Lemma 1.10.
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Chapter Two
Alexandroff Space

In this chapter we study spaces that have topologies which satisfy
a stronger condition . Namely, arbitrary intersections of open sets are open
with this restriction , we lose important spaces such as Euclidean spaces,

but the specialized spaces in turn display interesting properties .

Basic Definitions:

Definition 2.1:

Let X be a topological space , then X is an Alexandroff space if arbitrary

intersections of open sets are open [2 , p. 465] .
Note:
We will denoted to Alexandroff space by A- space [1, p.5] .

Lemma?2.1l:

Any finite space is an A-space.
Proof:
It’s clear by property (iii) in the Definition of finite topological spaces in

the previous chapter .
Lemma 2.2:
Any discrete topological space is an A-space .
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Proof :

Let { Oa } a€; be a family of open sets, let x € ﬂ Oa , then x € O« for all

ael

a € J, and then x e{x}< Oa forall « € J, and then

X e{x}< ﬂ Oa , and hence ﬂ Oa is open.

el ael

Some examples of A-spaces .

Example 2.1: (Disjoint Minimal Open Neighborhoods)

Take X=R\Z and g ={(n,n+1):neZ} Then Xis an Alexandroff
space with Uy, = (n, n + 1) where n < x < n + 1. For any two minimal open
neighborhoods Uy # U, we have that UyNU, = @ .

Lemma 2.3:

Let X be a metric space , then X is an A-space iff X has the discrete

topology .

Proof :
Let x € X, then the open balls By ( x , %) with radius % , and centre x
ne N are openin X, since X is an A-space ﬂ Ba( X, %) is an open set ,
n=1

But by the properties of metric space we have that ﬂ Ba( X, %) ={x},
n=1

so we have shown that singletons are open , hence X has the discrete topology.
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Conversely
The reverse direction follows from Lemma 2.2.

Theorem 2.1 :

X is an A-space iff each point in X has minimal basic open set .
Proof:

Suppose that X is an A-space , let xe X then U, ={0O € X : O is open -
and x € O} is an open set, since X is an A- space .
Conversely

Suppose that each point x € X has minimal basic open set U, . Consider an

arbitrary intersection of open sets V = ﬂ Oa , where each O« is open in

aeA

X if V=0 ,thenwe are done . Butif V= @, then pick x e V and then

X € Oa forall €A and hence U,< Oa forall A, since U, is the

minimal basic open set at x , therefore x e U, €V, and hence V is open .

Theorem 2.2 :

If B is a collection of subsets of X such that for each x e X there is
a minimal set m(x) e £ with m(x) > x, then g is a basis for a topology on X

and X is an A- space with this topology , In addition U,= m(X) .
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Proof:
It’s clear that members of [ cover X, suppose that B;, B, € 8, and
x € By N B, , since m(x) is minimal set containing x , so we have
m(x) € B4, and m(x) € B,, and hence xe m(x)< B;N B, , so S is basis for
topology on X, to show that X is an A-space with this basis , let x € X and

O be an open set in X such that O s x, then O = U B« , where Ba € 8, then

a el

X € Ba for some a € A, there is m(x) € Ba €O , hence m(x) is minimal basic

open set containing x , therefore X is an A-space and U,=m(x) [6 ,p. 2] .

Example 2.2: (An Alexandroff Topology on R"™)

Take Xtobe R"and let g ={B(0,r) :re R, U {0}}. Note that B (0, r)is

the closed ball with center 0 and radius r and that B (0, 0)= {0}. If x e X

then B (0, \X\) is a minimal set in 8 containing X . 8 is a basis for an

Alexandroff topology on X .

Theorem 2.3:

If B is asubspace of an A-space X then B is an A-space .

Proof :

Let x e B and suppose that U is an open set in B with x e U , then

U=B N O, where Oisopen in X, this mean that U, € O, so that
BNU,cBNO=U, hence B is an A-space by Theorem 2.1 .
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Theorem 2.4 :

If X and Y are A-spaces, then XXY is also an A-space .
Proof:

XXY has as basis f = {U x V: U isopenin Xand V isopenin Y}, let
(X,y) e XXY , then U, x U, e B, and then claim that this is a minimal set

in B containing (x,Yy) . If (x,y)eUx Ve ,thenxeUandyeV,
so U, Uand U, €V . Therefore Uy x U, €U X V and hence by

Theorem 2.2 XxY is an A-space .

Separation Properties

Theorem 2.5:

X is a Hausdorff A-space iff forany x #yin X we have U,N U, = 0.
Proof:

Suppose that X is a Hausdorff A-space and let x #y in X, then there are
two open sets U and V such that Us xand VayandU N V=0,
sinceUyc Uand U, SV hence UyNU,=0.

Conversely
This is trivial , suppose for any x #y in X we have Uy,sxand U,>y,

such that U, N U, =@, then X is a Hausdorff A-space .

49



Corollary 2.1:

X is a Hausdorff A-space iff X is discrete .
Proof:
Suppose that X is Hausdroff , then we claim that U, = {x} to see this
suppose Yy € Uy, then Uy € U, and thus U,N U, = U, , and since U, # @,

then by Theorem 2.5 we must have y = x and have {x} is open in X, so X is

discrete .
Conversely
If X isdiscrete , then it is Hausdroff space .

Continuous Functions and Homeomorphisms

Note:
A continuous image of an A-space may not be an A-space [6, p.7] .

Example 2.3:

Let X = N with discrete topology and Let Y = Q with subspace topology
from (R, €) . Pick abijection f: N — Q, then f is continuous, since

the domain X is discrete but f (N)=Q isnot an A-space [6, p.7] .
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Theorem 2.6 :

Let f: X — Y be an open and continuous function if X is an A-space , then
so is f (X) . In addition if y e f (X) then Uy=f (Uy) , where f (x) =y.

Proof:

Letyef(X)andletxe X such thatf(x) =y, since U, is open in X , then
f (Uy) isopeninf (X) , because f is open function , suppose thaty € O for
some open set O in f (X) , then x e f () in X , where
f'(lO) Is open in X, since f is continuous , and we have U, € f&O) :
therefore f(U,) < O and hence y has a minimal basic open set ,
then by Theorem 2.1 f (X) isan A-space withf(U,)=U, [6,p.7].

Corollary 2.2:

If X is homeomorphicto Y and X is an A-space thensoisY .
Proof :

If a function f is homeomorphism between two spaces X and Y , then f is

open and continuous with f (X) =Y and by Theorem 2.6 Y is an A-space

Compactness

Theorem 2.7 :

If X'is an Alexandroff space , then U, is compact for all x € X .
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Proof:

Let {Oa}a <A be an open cover of U, . Then x € O« for some

a € A. So we must have U, € O« . Hence , {O«} is a finite subcover of

{0.}cs.

Quotient Spaces

Theorem 2.8:

If X isan A-space, then the quotient space X /~ is also an A-space .
Proof :

Let q: X — X /~ be the quotient map consider the arbitrary

ﬂ Oa of open sets in X/~ we have qfl(ﬂ Oa) = ﬂ dl(Oa)

() ael ael

Now qfth )isopenin X forall a € A because q is the quotient map

, hence ﬂ q7{0a) is open in X and therefore ﬂ Oa isopenin X / ~ by

teA aed

definition of quotient topology .
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Chapter Three

Finite Topological Spaces with Maple

In this chapter we create procedures of Maple 15 to do computations of

a lot of issues are related to finite topological spaces .

The Procedures Used in Finite Topological Spaces :

The following procedures have been improved:
1 - A procedure to get all possible intersections of a given subasis (S) .
Basis (S) ;
2 - A procedure to generate a Topology by a basis(B) .
Topology (B) ;
3 - A procedures to check if (T) is a topology over X or not .
(i) Closelntersection(T) ; (ii) CloseUnion(T) ; (iii) IsTopology(T) ;
4 - A procedure to find the clopen sets of the topology (T) .
CO(X,T);[8].
5 - A procedure to find the closed sets of the topology (T) .
CLO (X ,T);[8].
6- A procedure to obtain the relative topology on subset of X .
subspace (A, X, T); [8].
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7- A procedure to check if a given topology is connected .
iIsConn(X,T) ; [8] .

8- A procedure to find the connected components of a given point .
K(,X,T); [8].

9- A procedure to check if a Topology is totally Disconnected .

isTotDisc(X,T);[8].
10 —A procedure to check if a Topology is T,-spaces .

ISTO(X,T); [8] .

11- A procedure to check if a given topology is T, — space .
isT; (X, T); [8].

12 - A procedure to check if two spaces are homeomorphic or not .
ishomeo:=proc(t1,t2); [9] .

13- A procedure to find all inequivalent topologies on a finite set .
ishomeo:=proc(t1,t2); [9] .

The following procedures have been created in our study:

14 - A procedure to find the minimal basic open set at given point .

minbasic( ,X,T);

15 - A procedure to find the minimal basis of a given space X .
minibasis(X,T);
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16 - A procedure to find the connected components of a given space .
ALLCC(X,T);

17 - A procedure to check if a given point is a limit point or not .
IsLimitPoint(, A, X ,T);

18 - A procedure to find all limit points of given subset of X .
LimitPoints (A, X, T);

19 - A procedure to find the closure points of a given subset of X derived
from the limit points .
ClosurePoints(A, X ,T) ;

20 - A procedure to find the boundary points of a given subset of X

derived from the limit points .

BoundaryPoints(A , X ,T) ;

21 - A procedure to find the interior points of a given subset of X
derived from the limit points .

InteriorPoints(A , X, T);
22 - A procedure to find the Exterior points of a given subset of X.
InteriorPoints( X-A, X ,T);

23 - A procedure to find the isolated points of a given subset of X

by the definition .
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IsolatedPoints(A , X ,T) ;
24 - A procedure to find the isolated points of given subset of X
derived from limit points .
IsolatedPoints2 (A, X, T) ;
25 - A procedure to find all topologies on a given set X .
AllTop(T);

26- A procedure to find all T, spaces on a given set X .

ALLTO(ALLTopologies);

27- A procedure to find all inequivalent T, topologies .

ishomeo:=proc(t1,t2);

The Implementations :

>restart;
with (combinat) :

> #(1) A procedure to get all possible intersections of
a given subasis(S).

Basis:=proc(S)

local s,U,B;

if “subset’ (S,powerset (X)) then

U:=S;

for s in S do

U:=U union map( intersect ,U,s) ;od;

B:=U union {X} ;#to add empty intersection;
else false;fi;

end:
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#(2) A procedure to generate a Topology by a bsis(B).
> Topology:=proc (B)

local b,U,t;

U:=Basis (S) ;

for b in Basis(S) do

U:=U union map( union  ,U,Db) ;

od;

t:=U union {{}};#to add the empty union;

end:

#(3)A procedures to check if T is a topology over X or not.
> Closelntersection:=proc(T)

local A,U;

U:=T;

for A in T do

U:=U union map( intersect ,U,A);

od;

if U=T then U, else CloselIntersection(U); fi;
end:

> CloseUnion:=proc(T)

local A,U;U:=T;

for A in T do

U:=U union map( union’,U,A);

od;

if U=T then U; else CloseUnion (U) ;

fi;

end:

> IsTopology:=proc(T)

CloseIntersection(T)=T and CloseUnion(T)=T

and member ({},T) and member (X,T)

and " subset’ (T,powerset (X)) ;

end:

#(4)A procedure to find the clopen sets of the topology(T).
>CO:=proc (X, T)

local A,W;W:={};

for A in T do

if member (X minus A,T)then W:=W union{A};fi;

od;W;end:
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#(5)A procedure to find the closed sets of the topology(T).
> CLO:=proc (X, T)

{seg(X minus T[i],i=1..nops(T))};

end:

#(6) A procedure to obtain the relative topology on a subset
of X.

> subspace:=proc(A,X,T)
if “subset’ (A,X) then
map2 ( intersect’ ,A,T);
else false;

fi;

end:

#(7)A procedure to check that if the topology is connected.
> isConn:=proc(X,T)

evalb (CO(X,T)={X,{}});

end:

#(8)A procedure to find the connected components of
a given point.

> K:=proc(x,X,T)

local i,S,SK;

if “member (x,X)

then SK:={};

S:=map2 ( union’, {x} ,powerset (X)) ;

for i to nops(S) do

if isConn(S[i],subspace(S[i],X,T)) then SK:=SK union
S[i];fi;od; SK ;else flase;fi;end:

# (9)A procedure to check if a Topology is Totaly
Disconnected.

> isTotDisc:=proc(X,T)

local i;

for i to nops(X) do

if not(K(X[i],X,T)={X[i]}) then RETURN (false) fi;
od;RETURN (true) ;end:
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#(10)A procedure to check if agiven topology is TO-space.

> isTO:=proc (X, T)

local x,y,0,test;

if nops(X)=1 then true ;else

for x in X do

for y in X minus{x} do

for O in T do

test:=evalb ( (member (x,0) and not (member (y,0)))or (member (y,O)

and not (member (x,0))));

if test then break; fi;

od:

if not(test) then break;fi;

od:

if not(test) then break;fi;

od:

test;

fi;

end:

#(11) A procedure to check if a given topology is T,;-space.

> isTl:=proc(X,T)

“subset’ ({seq({X[i]},i=1. .nops(X))},CLO(X,T));

end:

#(14) A procedure to find the minimal basic open set for
a certain point x

minbasic:= proc(x,X,T)

local i,O0,COUNT;

COUNT:={};

if member (x,X) then

for O in T do

if member (x,0) then COUNT:=COUNT union {O};

else COUNT:=COUNT;

fi;

od;

COUNT;

COUNTI[1] ;

else false;

fi;

end:
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#(15) A procedure to find the minimal basis of a given
topological space.

minibasis:=proc (X, T)

local x,minimalbasis:={};

for x in X do

minimalbasis:=minimalbasis union {minbasic(x,X,T)};

od;

minimalbasis;end:

#(16) procedure to find the connected components of
a given space

> ALLCC:=proc (X, T)

local x,CC;

CC:={};

for x in X do

CC:=CC union {K(x,X,T)};

od;

CC;

end:

#(17)A procedure to check if a given point is a limit
point or not.

>IsLimitPoint:=proc(x,A,X,T)

local i,o,L,Omx,0;

O0:={};

L:={}’

if member (x,X)= true then

for i to nops(T) do

if (member (x,T[i]))then O:= O union {T[i]};

else 0:=0;

fi;

od;

Omx:={seq(O[i] minus {x},i=1. .nops(0))};

for o in Omx do

if ((o intersect A) <> {}) then L:=L union {x};

else L:={};

break;

fi;

od;

L;
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else false;
fi;
end:

#(18)A procedure to find limit points of a given subset of

> LimitPoints:=proc(A,X,T)

local x,LI;

LI:={};

if “subset’ (A,X)= true then

for x in X do

if IsLimitPoint(x,A,X,T) <> {} then LI:=LI union {x};
else LI:=LI;

fi;

od;

LI,

else false ;

fi;

end:

#(19)A procedure to find the closure points of a given

subset of X derived from limit points

> ClosurePoints:=proc(A,X,T)
A union LimitPoints(A,X,T);
end:

#(20)A procedure to find the boundary points of a given
subset of X derived from limit points.

>BoundaryPoints:=proc(A,X,T)
ClosurePoints (A,X,T)intersect ClosurePoints (X minus A,X,T);
end:

#(21)A procedure to find the interior points of a given
subset of X derived from limit points
InteriorPoints:=proc(A,X,T)

ClosurePoints (A,X,T)minus BoundaryPoints (A,X,T) ;

end:
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#(22)A procedure to find the Exterior points of a given
subset of X derived from limit points.

> ExteriorPoints:= proc(A,X,T)

InteriorPoints (X minus A,A,X,T);

end:

#(23)A procedure to find the isolated points of a given

subset by definition.

IsolatedPoints:=proc (A,X,T)

local O,x,iso;

iso:={};

for x in X do

for O in T do

if ( member (x,0) and O intersect A ={x}) then iso:=iso union
{x};

fi;od;

od;iso; end:

#(24)A procedure to find all isolated points of a given
subset of X derived from limit points.

> IsolatedPoints2:=proc(A,X,T)
A minus LimitPoints(A,X,T);
end:

# Examples:-
# Indiscrete Space :

> X:={a,b,c} ;
X:={ab,c}
> S:={{}};
S={{}}
> B:=Basis(S) ;
B:={{},{a b c}}
> T:=Topology(B) ;
T={{},{a bc}}
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> IsTopology (T) ;

true
> A:={a};
A = {a}
> CLOPEN:=CO (X, T) ;
CLOPEN = {{},{a,b,c}}
> CLOSED:=CLO(X,T) ;
CLOSED = {{},{a,b,c}}
> subspace (A,X,T);
{{}. {a}}
> isConn (X,T) ;
true

> Cx:=K(b,X,T);

Cx = {a,b,c}
> isTotDisc(X,T);
false
> isTO(X,T);
false
> isT1(X,T);
false
> Ux:=minbasic(a,X,T);
Ux :={a,b, c}

> minimalbasis:=minibasis(X,T)

minimalbasis == {{a, b, c}}
> ALLCONNECTED_COMPONENTS:=ALLCC (X, T) ;
ALLCONNECTED COMPONENTS = {{a, b, c}}

> print ( The Number of the connected components is’
,nops (ALLCONNECTED COMPONENTS) ) ;

The Number of the connected components is, 1
> IsLimitPoint(a,A,X,T);
{}
> LimitPoints (A,X,T);
{b, c}
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> ClosurePoints (A,X,T) ;

{a, b, c}
> BoundaryPoints (A,X,T);
{a, b, c}
> InteriorPoints(A,X,T);
{}
> ExteriorPoints(A,X,T);
{}
> IsolatedPoints (A,X,T);
{a}
> IsolatedPoints2(A,X,T) ;
{a}

# Discrete Space :
# Examples :-

> X:={a,b,c,d} ;
X={ab,cd}
> S:={{a},{b},{c},{d}}’
§:={{a}, {b}, {c}, {d}}
> B:=Basis(S) ;
B:={{}, {a}, {b}, {c}, {d}, {a, b,c,d}}
> T:=Topology (B) ;

T:={{}{a}, {b}, {c}, {d}, {a, b}, {a, c}, {a,d}, {b, c}, {b,d}, {c, d},
{a,b,c},{a,b,d}, {a,c,d}, {b,cd},{ab,cd}}

>IsTopology (T) ;
true
> A:={a,c};
A={a,c}
> CLOPEN:=CO(X,T) ;
CLOPEN := {{ }, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a,d}, {b, c}, {b,
d}, {¢,d}, {a,b,c}, {a b,d}, {a,cd}, {bcd} {ab,cd}}

> CLOSED:=CLO (X, T) ;

CLOSED :={{ }, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a,d}, {b, c}, {b,
d}, {c,d}, {a,b,c}, {a b,d}, {a cd}, {b,cd}, {ab,cd}}
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> subspace (A,X,T);
{{}, {a}, {c}, {a,c}}

> isConn(X,T) ;

false
> Cx:=K(b,X,T);
Cx = {b}
> isTotDisc (X,T);
true
>isTO(X,T) ;
true
> isT1(X,T);
true
> Ux:=minbasic(a,X,T);
Ux = {a}

> minimalbasis:=minibasis(X,T)

minimalbasis == {{a}, {b}, {c}, {d}}
> ALLCONNECTED_ COMPONENTS:=ALLCC(X,T) ;

ALLCONNECTED COMPONENTS = {{a}, {b}, {c}, {d}}

> print( The Number of the connected components is’
,nops (ALLCONNECTED COMPONENTS) ) ;

The Number of the connected components is, 4

> IsLimitPoint(a,A,X,T);

{}
> LimitPoints (A,X,T);

{}
> ClosurePoints (A,X,T) ;

{a, c}
> BoundaryPoints (A ,X,T) ;

{}
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> InteriorPoints(A,X,T);

{a,c}
>ExteriorPoints (A,X,T); {b,d}
> IsolatedPoints(A,X,T);
{a,c}
> IsolatedPoints2 (A ,X,T);
{a,c}
#Sierpinski:
#Example:
> X:={a,b};
X:={a, b}
> S:={{b}};
§:={{b}}

> B:=Basis(S);
B :={{b}, {a, b}}

> T:=Topology(B) ;

T:={{}, {b},{a b}}
> IsTopology(T) ;

true
> A:={b};
A = {b}

> CLOPEN:=CO (X,T) ;

CLOPEN = {{}, {a,b}}
> CLOSED:=CLO (X,T);

CLOSED = {{ }, {a}, {a,b}}

> subspace (A,X,T);

{{}.{b}}
> isConn(X,T);
true
> Cx:=K(b,X,T);
Cx :={a, b}
> isTotDisc(X,T);
false

66



>isTO0(X,T) ;

true
> isT1(X,T);

false
> Ux:=minbasic(a,X,T);

Ux :={a, b}

> minimalbasis:=minibasis(X,T) ;
minimalbasis .= {{b}, {a, b}}

> ALLCONNECTED_COMPONENTS:=ALLCC(X,T) ;

ALLCONNECTED COMPONENTS := {{a, b}}

> print( The Number of the connected components is’
,nops (ALLCONNECTED COMPONENTS) ) ;

The Number of the connected components is, 1

> IsLimitPoint(b,A,X,T);
{}
>LimitPoints (A,X,T) ;

{a}
>ClosurePoints (A,X,T) ;

{a, b}
> BoundaryPoints (A ,X,T) ;

{a}
> InteriorPoints(A,X,T);

{b}
> ExteriorPoints(A,X,T);

{}

> IsolatedPoints (A ,X,T);
{b}
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> IsolatedPoints2(A,X,T);
{b}
# General Topological Space :
>#Examples: -
> X:={a,b,c,d} ;
X:={ab,c d}

>

T:={{},{a},{a,b},{c},{a,c},{a,b,c},X };
T:={{},{a}, {c}, {a, b}, {a, c}, {a,b,c},{a b, c d}}

IsTopology (T) ;
true
A:={a,c};
A:={a,c}
CLOPEN:=CO(X,T) ;

CLOPEN = {{},{a, b,c,d}}
CLOSED:=CLO (X,T) ;

CLOSED = {{}, {d}, {b,d}, {c,d}, {a,b,d}, {b,c,d}, {a,b,c,d}}
subspace (A,X,T) ;
{{ }. {a}, {c}, {a,c}}

> isConn(X,T);
true
> Cx:=K(b,X,T);
Cx:={a,b,c d}

> isTotDisc(X,T);

false
>isTO(X,T) ;

true
> isT1(X,T); false
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> Ux:=minbasic(a,X,T);

Ux = {a}

> minimalbasis:=minibasis(X,T)
minimalbasis .= {{a}, {c}, {a, b}, {a, b, c,d}}
> ALLCONNECTED COMPONENTS:=ALLCC(X,T) ;

ALLCONNECTED COMPONENTS = {{a, b, ¢, d}}

> print( The Number of the connected components is’
,nops (ALLCONNECTED COMPONENTS) ) ;

The Number of the connected components is, 1
> IsLimitPoint(d,A,X,T);

{d}
> LimitPoints (A,X,T);

{b,d}
> ClosurePoints (A,X,T) ;
{a,b,c,d}
> BoundaryPoints (A,X,T) ;
{b,d}

> InteriorPoints (A,X,T);

{a,c}
> ExteriorPoints (A,X,T);

{}
> IsolatedPoints (A ,X,T);

{a,c}
> IsolatedPoints2 (A,X,T);

{a,c}

> restart;
with (combinat) :

#(12) A procedure to check if two spaces are homeomorphic
or not
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> newjob:=proc(t,p)
local u:
> #apply a permutation p of the elements of a space to the
sets in a topology t.
{seq(subs({seq(X[i]=p[i],i=1. .nops(X))} ,u) , u = t)}:
end:
> ishomeo:=proc(tl,t2) #check to see if two spaces are
homeomorphic
local answer, p:
#we can first check for some trivial invariants, such as.
if nops(tl) <> nops(t2) then return(false) fi:
answer:=false:
for p in P do
if {op(newjob(tl,p))}={op(t2)} then answer:=true: break:
fi:od:
#Note that we have to compare _sets_ rather than _lists !.
answer:
end:
> #l1-Example;
> X:={a,b,c,d};
X=A{a,b,cd}
> P:=permute (X) ;

P=[[ab,cd] [ab,dCc],acb,d]]|acdb][adb,c][ad,c,
bl,[b,a,c d], [b,a,d,c), [bc,a,d] b cdal,l[bda,c]l[b,d,
c,al,[c,a,b,d],[c,ad bl [cb, adl [cb,dal,lcdab]]|c
d,b,al,[d,a,b,cl,[dac bl [db,ac][db,calldc,a,b],
[d, ¢, b,a]]

> tl:={{},{a}, {a,b}, X};
tl:={{},{a}, {a, b}, {a b c d}}
> t2:={{},{a,b},X};
2:={{},{a, b}, {abcd}}
> ishomeo (tl,t2);
false
#2-Example;
> X:={a,b,c,d}; X:={a,b,c d}
> P:=permute (X) :
> tl:={{},{a,b},{c,d} X};
t2:={{},{a},{b,c,d}, X};
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X:=[op(X)]:
tl ={{},{a b}, {c,d},{ab,cd}}

2:={{},{a}, {b,c,d},{a b, cd}}
> ishomeo (tl,t2);

false
> restart;
with (combinat) :
> X:={a};
X :={a}

> Y:=powerset (X) ;
Y={{} {a}}
> Z:=Y minus{{},X};
z:=1{}
> W:=powerset(Z) ;
w={{}}
> T:={seq(w union{{}, X}, w=W)};

T={{{}{a}}}

, nops(T), “candidate collection of

~

> print( there are

subsets of X!);
there are , 1, candidate collection of subsets of X!

> #(25)A procedure to find all topologies on a given set X.

AllTop:=proc (T)

local i,0,A,U,B,c;

B:={};
for O in T do
U:=0;

for A in O do

U:=U union map( intersect’,U,A);

od;

U;

for ¢ in U do

U:=U union map( union’,U,c);

od;

U;

if U=0 then B:=B union {0O}; else B:=B;
fi;
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od;
B;
end:
ALLTopologies:=AllTop (T) ;
ALLTopologies = {{{ }, {a}}}

> print ( There are’ ,nops (ALLTopologies), "topologies on a set
of " ,nops(X), points’):

There are, 1, topologies on a set of, 1, points
>#(10)A procedure to check if agiven topology is TO-space
isTO:=proc(X,T)
local x,y,0,test;
if nop(X)=1 then true ; else
for x in X do
for y in X minus{x} do
for O in T do
test:=evalb ( (member (x,0) and not (member (y,0)))or (member (y,O)
and not (member (x,0))))
if test then break; fi;
od:
if not(test) then break;fi;
od:
if not(test) then break;fi;
od:
fi;
test;
end:
> #(26) A procedure to find all TO-spaces on a given set X.
> ALLTO:=proc (ALLTopologies)
local i,T,TOS;
TO0S:={};
if nops(X)=1] then TO0S:=ALLTopologies;else
for T in ALLTopologies do
if isTO(X,T)=true then T0S:= TO0S union {T} ; else T0S:=TO0S;
fi;
od;
fi;
TOS;
end:
> ALLTO_Topologies:=ALLTO (ALLTopologies) ;
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ALLTO Topologies = {{{ }, {a}}}
> print( there are’ ,nops(ALLTO0 Topologies), TO-spaces on set
with’ ,nops (X), 'points’);

there are, 1, TO-spaces on set with, 1, points
> #(13) A procedure to find all inequivalent topologies on a
given set X
#Let's tidy them up by size.
>
> bigger:=proc(tl,t2) if nops(tl) < nops(t2) then true else
false fi:end:
>
> #Apply this to all the elements in each topology, and to
the set of all top's.
>
> ALLTopologies:=sort([seq( sort([op(t)] ,f bigger)
, t=ALLTopologies) ] ,bigger) :
>
> $#Now think about homeomorphisms, i.e., permutations
preserving open sets.
P:=permute (X) :

X:=[op(X)]:
newjob:=proc(t, p) local u:

VVVVVY

#apply a permutation p of the elements of a space to the
sets in a topology t.

> {seq(subs ({seq(X[i]=p[i],i=1. .nops (X))} ,u), u = t)}:end:
> ishomeo:=proc(tl,t2) #check to see if two spaces are
homeomorphic

> 1local answer,p:

> #iwe can first check for some trivial invariants,such as.
> if nops(tl) <> nops(t2) then return(false) fi:

> answer:=false:

> for p in P do if {op(newjob(tl,p))}={op(t2)} then
answer:=true: break: fi:od:

>  {#iNote that we have to compare _sets_ rather than lists !.
> answer:> end:>

Types:=[]:
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for t in ALLTopologies do

isnew:=true:

for u in Types do

if ishomeo(t,u) then isnew:=false: break:fi:

od:

if isnew = true then Types:=[op (Types) , t] fi:

od:

print ( There are’ ,nops (Types), homeomorphism types of
topologies among them’):

VVVVVVVYV

for t in Types do lprint(t) od:
#quit.
#...or keep playing with these sets.

There are, 1, homeomorphism types of topologies among them

VVVVYV

[({}, {a}]

> #A procedure to find all Homeomorphosm types of
TO-spaces on a given set X;

#Let's tidy them up by size.

bigger:=proc(tl,t2) if nops(tl) < nops(t2) then true else
false fi:end:
>
> #Apply this to all the elements in each topology, and to
the set of all top's.
>
> ALLTO Topologies:=sort([seq( sort([op(t)], bigger)

, t=ALLTO0_Topologies) ] , bigger) :
>
> {#Now think about homeomorphisms, i.e., permutations
preserving open sets.
P:=permute (X) :

X:=[op(X)]:
newjob:=proc(t, p) local u:

VVVVVYV

#apply a permutation p of the elements of a space to the
sets in a topology t.
>{seq(subs ({seq(X[i]=p[i],i=1. .nops(X))} ,u) ,u =t)}: end:
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> ishomeo:=proc(tl,t2) #check to see if two spaces are
homeomorphic
local answer, p:
#iwe can first check for some trivial invariants, such as.
if nops(tl) <> nops(t2) then return(false) fi:
answer:=false:
for p in P do if {op(newjob(tl,p))}={op(t2)} then
answer:=true: break: fi:od:
#Note that we have to compare _sets_ rather than lists !.
answer: end:
Types:=[]:
for t in ALLTO Topologies do
isnew:=true:
for u in Types do
if ishomeo(t,u) then isnew:=false: break:fi:
od:
if isnew = true then Types:=[op(Types) , t] fi:
od:
print ( There are ,nops(Types), TO homeomorphism types of
topologies among them’):
for t in Types do lprint(t) od:
#quit.
#...or keep playing with these sets.
There are, 1, TO homeomorphism types of topologies among them
({}, {a}]
> restart;
with (combinat) :
> X:={a,b};
X :={a, b}
> Y:=powerset (X) ;
Y={{}, {a}, {b}, {a, b}}
> Z:=Y minus{{},X};
Z = {{a}, {b}}
> W:=powerset(Z) ;
w={{}, {{a}}. {{}}, {{a}, {b}}}
> T:={seq(w union{{},X},w=W)};,
T:={{{}{a b}, {{}{a}, {a, b}}, {{}, {b}. {a, b}}, {{ } {a}, {B},
{a,b}}}
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> print( there are ', nops(T), “candidate collection of
subsets of X!);
there are , 4, candidate collection of subsets of X!
> #(25)A procedure to find all topologies on a given set X.
AllTop:=proc(T)
local i,0,A,U,B,c;
B:={};
for O in T do
U:=0;
for A in O do
U:=U union map( intersect ,U,A);
od;
U;
for ¢ in U do
U:=U union map( union ,U,c);
od;
U;
if U=0 then B:=B union {0O}; else B:=B;
fi;
od;
B;
end:
ALLTopologies:=AllTop (T) ;
ALLTopologies == {{{ }, {a, b}}, {{ }, {a}, {a, b}}, {{}, {b}, {a, b},
{{}, {a}, {b}, {a,b}}}

> print ( There are ,nops (ALLTopologies), topologies on a set
of” ,nops(X), points’):
There are, 4, topologies on a set of, 2, points
> #A procedure to check if agiven topology is TO-space
isTO:=proc(X,T)
local x,y,0,test;
if nop(X)=1 then true ; else
for x in X do
for y in X minus{x} do
for O in T do
test:=evalb ( (member (x,0) and not (member (y,0)))or (member (y,O)
and not (member (x,0))))
if test then break;fi;od:
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if not(test) then break;fi;

od:

if not(test) then break;fi;

od:

fi;

test;

end:

> #(26) A procedure to find all TO-spaces on a given set X.

> ALLTO:=proc (ALLTopologies)

local i,T,TOS;

TOS:={};

if nops(X)=1 then TO0S:=ALLTopologies;else

for T in ALLTopologies do

if isTO(X,T)=true then T0S:= TO0S union {T} ; else T0S:=TO0S;

fi;

od;

fi;

TOS;

end:

> ALLTO_Topologies:=ALLTO (ALLTopologies) ;
ALLTO_Topologies == {{{ }, {a}, {a, b}}, {{ }, {b}, {a, b}}, {{ }, {a},

{b}, {a, b}}}

> print( there are’ ,nops(ALLTO Topologies), TO-spaces on set
with’ ,nops (X), 'points’);

there are, 3, TO-spaces on set with, 2, points
> #(13) A procedure to find all inequivalent topologies on a
given set X
#Let's tidy them up by size.
> bigger:=proc(tl,t2) if nops(tl) < nops(t2) then true else
false fi:end:
> $#Apply this to all the elements in each topology, and to
the set of all top's.
> ALLTopologies:=sort([seq( sort([op(t)],f bigger)
, t=ALLTopologies) ] ,bigger) :
>
> {#Now think about homeomorphisms, i.e., permutations
preserving open sets.
> P:=permute (X) :
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X:=[op(X)]:
newjob:=proc(t, p) local u:

VVVVYV

#apply a permutation p of the elements of a space to the
sets in a topology t.
>
> {seg(subs ({seq(X[i]=p[i],i=1l. .nops(X))} ,u), u = t)}:end:
> ishomeo:=proc(tl,t2) #check to see if two spaces are
homeomorphic
> local answer,p:
> #iwe can first check for some trivial invariants,such as.
> if nops(tl) <> nops(t2) then return(false) fi:
> answer:=false:
> for p in P do if {op(newjob(tl,p))}={op(t2)} then
answer:=true: break: fi:od:
>  {#Note that we have to compare _sets_ rather than
lists_!.
answer:

end:

Types:=[]:

for t in ALLTopologies do

isnew:=true:

for u in Types do

if ishomeo(t,u) then isnew:=false: break:fi:

od:

if isnew = true then Types:=[op (Types) , t] fi:

od:

print ( There are ,nops (Types), homeomorphism types of
topologies among them’):
for t in Types do lprint(t) od:

VVVVVVVYVVYVVI

>
>
> {#quit.

> #...or keep playing with these sets.

> There are, 3, homeomorphism types of topologies among them
({}, {a, b}]
[({}, {b}, {a, b}]
({}, {b}, {a}, {a, b}]
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> #(27)A procedure to find all Homeomorphosm types of TO-
spaces on a given set X;
#Let's tidy them up by size.
bigger:=proc(tl,t2) if nops(tl) < nops(t2) then true else
false fi:end:
>
> #Apply this to all the elements in each topology, and to
the set of all top's.
> ALLTO_Topologies:=sort([seq( sort([op(t)], bigger)
, t=ALLTO0_Topologies) ], bigger) :
>
> #Now think about homeomorphisms, i.e., permutations
preserving open sets.
> P:=permute (X) :
> X:=[op(X)]:
> newjob:=proc(t, p) local u:
> #apply a permutation p of the elements of a space to the
sets in a topology t.
>
> {seq(subs({seq(X[i]=p[i],i=1..nops(X))} ,u) ,u =t)}:
> end:
> ishomeo:=proc(tl,t2) #check to see if two spaces are
homeomorphic
local answer, p:
#we can first check for some trivial invariants, such as.
if nops(tl) <> nops(t2) then return(false) fi:
answer :=false:
for p in P do if {op(newjob(tl,p))}={op(t2)} then
answer:=true: break: fi:od:
#Note that we have to compare _sets_ rather than _lists !.
answer:end:
Types:=[]:
for t in ALLTO Topologies do
isnew:=true:
for u in Types do
if ishomeo(t,u) then isnew:=false: break:fi:
od:
if isnew = true then Types:=[op(Types) , t] fi:
od:
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print ( There are ,nops (Types), TO homeomorphism types of
topologies among them’):

for t in Types do lprint(t) od:
#quit.
#...0or keep playing with these sets.

There are, 2, TO homeomorphism types of topologies among them
>0{}, {b}, {a, b}]

({+, {b}, {at, {a, b}]
> restart;

with (combinat) :
> X:={a,b,c};

X:={a,b,c}
> Y:=powerset (X) ;

Yi={{}, {a}, {b}, {c}, {a, b}, {a,c}, {b,c}, {a b,c}}
> Z:=Y minus{{},X};

Z:={{a}, {b}, {c}, {a, b}, {a, c}, {b,c}}
> W:=powerset(Z) ;

w={{} {{a}}, {{6}}, {{c}}, {{a. b}}, {{a, c}}, {{b.c}}, {{a},
{b}}, {{a}, {c}}, {{a}, {a, b}}, {{a}, {a, c}}, {{a}, {b, c}}, {{b}.
{c}}, {{b}. {a, b}}, {{b}, {a, c}}, {{b}, {b, c}}, {{c}, {a b}},
{{eh {a, et} {{e}, {b, c}}, {{a. b}, {a, c}}, {{a, b}, {b, c}}, {{a,
c}, {b, c}}, {{a}, {b}, {c}}. {{a}, {b}, {a. b}}, {{a}, {b}, {a, c}},
{Ha}, (b}, {b, c}}, {{a}, {c}, {a. b}}, {{a}, {c}, {a. c}}, {{a},
{c}. {b. c}}, {{a}. {a. b}, {a. c}}, {{a}, {a, b}, {b, c}}, {{a}, {a,
c}, {b, c}}, {{b}, {c}. {a, b}}, {{b}, {c}, {a, c}}, {{b}. {c}, {5,
ct}, {{b}, {a, b}, {a, c}}, {{b}, {a, b}, {b, c}}, {{b}, {a, c}, {b,
ct}, {{c}. {a, b}, {a, c}}, {{c}, {a, b}, {b, c}}, {{c}, {a, c}, {b,
ct}y, {{a, b}, {a, c}, {b, c}}, {{a}, {b}, {c}, {a, b}}, {{a}, {b},
{c}. {a. c}}, {{a}, {b}. {c}, {b, c}}, {{a}, {b}, {a, b}, {a, c}},
{{a}, {b}, {a, b}, {b, c}}, {{a}, {b}, {a, c}, {b. c}}, {{a}, {c}. {a,
b}, {a, c}}, {{a}, {c}, {a. b}, {b, c}}, {{a}, {c}, {a. c}. {b, c}},
{{a}, {a, b}, {a, c}, {b, c}}, {{b}, {c}, {a, b}, {a, c}}, {{b}, {c},
{a, b}, {b,c}}, {{b}, {c}. {a. c}. {b, c}}, {{b}. {a, b}, {a. c}, {b,
ct}, {{c}. {a, b}, {a, c}, {b, c}}, {{a}, {b}, {c}, {a, b}, {a, c}},
{{a}, {b}, {c}. {a, b}, {b, c}}, {{a}, {b}, {c}, {a, c}, {b, c}},
{{a}, {b}, {a, b}, {a, c}, {b. c}}, {{a}, {c}, {a, b}, {a. ¢}, {b, c}},
{{b}, {c}. {a, b}, {a. c}. {b, c}}, {{a}, {b}, {c}. {a, b}, {a, c}, {b,
c}}}

T:={seq(w union{{},X}, w=W)};

80



T={{{}{abc}}. {{}{a}. {a b.c}}, {{}, {b}, {a, b, c}}. {{},
{c} {a,b,c}}, {{}, {a, b}, {a, b, c}}, {{ }. {a,c}. {a, b, c}}, {{ ],
{b,c}, {a, b,ct}, {{}, {a}, {b}, {a, b, c}}, {{}, {a}, {c}, {a, D,
et {{} {ah {a. b}, {a, b, c}}, {{ }. {a}, {a, ¢}, {a, b c}}, {{ }
{a}, {b. ¢}, {a. b, c}}, {{ }, {b}. {c}, {a. b, c}}, {{ }, (b}, {a. b},
{a.b,c}}, {{ }, {b}. {a.c}, {a. b, c}}. {{ }, {b}. {b. ¢}, {a, b, c}},
({5 {ch{a, b}, {a. b,c}}, {{}, {c}, {a, ¢}, {a, b, c}}, {{ }, {c},
{b,c}, {a, b,ct}, {{}, {a b}, {a,c}, {a, b,c}}, {{ }, {a b}, {b,c},
{a,b,c}}, {{}, {a,c}, {b.c}, {a, b, c}}, {{}, {a}, {b}, {c}, {a, b,
e} {{} {a}, {b}. {a, b}, {a, b, c}}, {{ }, {a}, {b}, {a. c}, {a, b.
e} {{} {a}, {b}. {b, ¢}, {a. b, c}}, {{ }. {a}, {c}, {a. b}, {a. b,
o} {{ 1 {a} {ch {a. ¢}, {a, b, c}}, {{ }, {a}, {c}, {b, c}. {a, b,
cth {{}. {a}, {a. b}, {a, ¢}, {a, b, c}}, {{ }, {a}, {a, b}, {b, ¢}, {a,
b,ct}, {{ }: {a}, {a, c}, {b, c}, {a, b, c}}, {{}, {b}. {c}, {a, b}, {a,
b,ct}, {{}, {b}, {c}, {a, ¢}, {a, b, c}}, {{ }, {b}, {c}, {b,c}, {a, b,
e} {{} (b} {a. b}, {a, ¢}, {a. b, c}}, {{ }, (b}, {a. b}, {b, ¢}, {a,
b,c}}, {{ }, {b}. {a. c}, {b,c}, {a, b, c}}. {{}, {c}. {a, b}, {a, c},
{a.b,c}}, {{ }. {c}, {a, b}, {b,c}, {a, b, c}}, {{ }, {c}, {a, c}, {b,
c}h {a b, c}}, {{}, {a b}, {a,c}, {b,c}, {a, b, c}}, {{}, {a}, {b},
{c}, {a, b}, {a, b, c}}, {{ }, {a}, {b}, {c}. {a. c}, {a, b c}}, {{},
{a}, {b}, {c}, {b, ¢}, {a, b, c}}, {{ }, {a}, {b}. {a, b}, {a,c}, {a, D,
e}, {{} {a} {b}. {a, b}, {b, ¢}, {a. b, c}}, {{ }. {a}, {b}, {a, c},
{b.c}, {a, b, c}}, {{ )}, {a}, {c}, {a, b}, {a. c}, {a, b, c}}, {{}, {a},
{c}. {a. b}, {b,c}, {a, b, c}}, {{ }, {a}, {c}, {a, c}, {b, ¢}, {a, b,
cth {{}. {a}, {a. b}, {a, c}, {b, c}, {a, b, c}}, {{}, {b}. {c}, {a,
b}, {a,c}, {a, b, ct}, {{ }, {b}, {c}, {a, b}, {b,c}, {a, b,c}}, {{},
(b}, {c}. {a. c}, {b,c}, {a, b, c}}, {{ }, {b}, {a, b}, {a, c}, {b, c},
{a.b,c}}, {{}. {c}, {a. b}, {a, c}, {b,c}. {a, b, c}}, {{ }. {a}, {B},
{c}. {a. b}, {a. c}, {a, b, c}}, {{ }, {a}, {b}, {c}, {a. b}, {b, c}. {a,
b,c}}, {{ }. {a}, {b}. {c}. {a. ¢}, {b,c}, {a, b, c}}, {{ }, {a}, {b},
{a, b}, {a,c}, {b,c}, {a, b, c}}, {{ }, {a}, {c}, {a, b}, {a. c}, {D,
ch {a b, c}}, {{}, {b}, {c}, {a, b}, {a. ¢}, {b, c}, {a, b, c}}, {{ },
{a}, {b}, {c}. {a, b}, {a, c}, (b, c}, {a, b, c}}}

> print ( there are ', nops(T), "candidate collection of
subsets of X!);

there are , 64, candidate collection of subsets of X!
> #(25)A procedure to find all topologies on a given set X.
AllTop:=proc(T)
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local i,0,A,U,B,c;

B:={};
for O in T do
U:=0;

for A in O do

U:=U union map( intersect’,U,A);
od;

U;

for ¢ in U do

U:=U union map( union”,U,c);

od;

U;

if U=0 then B:=B union {0O}; else B:=B;
fi;

od;

B;

end:

ALLTopologies:=AllTop (T) ;

ALLTopologies = {{{ }, {a, b, c}}, {{ }. {a}, {a, b, c}}, {{ }. {b}. {a,
b,c}, ({1} {ch {a. b, c}}, {{ }, {a, b}, {a, b, c}}, {{ }, {a, ¢}, {a,
b,ci}, ({1 {b. ¢} {a, b, c}}, {{}, {a}, {a, b}, {a, b, c}}, {{ },
{a}, {a,c}, {a. b, c}}, {{}, {a}, {b,c}, {a, b, c}}, {{ }, {b}, {a, b},
{a, b, c}}, ({1}, {b}, {a, ¢}, {a, b, c}}, {{ }, {b}, {b, ¢}, {a, b, c}},
{1 {ch {a. b}, {a, b, c}}, {{ }. {c}, {a, ¢}, {a. b, c}}, {{}, {c},
{b,c}, {a, b, c}}, {{ }, {a}, {b}, {a, b}, {a, b, c}}, {{ }, {a}, {c},
{a,c}, {a, b, c}}, {{}. {a}, {a, b}, {a, ¢}, {a, b, c}}, {{ }, {b}, {c},
{b,c}, {a, b, c}}, {{ }, {b}, {a, b}, {b, ¢}, {a, b, c}}, {{ }, {c}. {a,
c}, {b, e}, {a, b, c}}, {{ ), {a}, {b}, {a, b}, {a, ¢}, {a, b, c}}, {{},
{a}, {b}, {a, b}, {b,c}, {a,b,c}}, {{}, {a}, {c}, {a, b}, {a, ¢}, {a,
b,cty, {{}, {a}, {c}, {a,c}, {b, ¢}, {a, b, c}}, {{ }, {b}, {c}, {a,
b}, {b,c}, {a,b,c}}, {{}, (b}, {c}, {a,c}, {b,c}, {a, b, c}}, {{},
{a}, {b}, {c}. {a, b}, {a, ¢}, {b, ¢}, {a, b, c}}}

> print ( There are’ ,nops (ALLTopologies), topologies on a set
of " ,nops(X), points’):

There are, 29, topologies on a set of, 3, points
> #A procedure to check if agiven topology is TO-space .
isTO:=proc(X,T)
local x,y,0,test;
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if nop(X)=1 then true ; else

for x in X do

for y in X minus{x} do

for O in T do

test:=evalb ( (member (x,0) and not (member (y,0)))or (member (y,O)
and not (member (x,0))))

if test then break; fi;

od:if not(test) then break;fi;

od:

if not(test) then break;fi;

od:

fi;

test;

end:

> #(26) A procedure to find all TO-spaces on a given set X.
> ALLTO:=proc (ALLTopologies)

local i,T,TOS;

TO0S:={};

if nops(X)=1 then TO0S:=ALLTopologies;else

for T in ALLTopologies do

if isTO(X,T)=true then T0S:= TO0S union {T} ; else T0S:=TO0S;
fi;

od;

fi;

TOS;

end:

> ALLTO_Topologies:=ALLTO (ALLTopologies) ;

ALLTO Topologies = {{{ }, {a}, {a, b}, {a, b,c}}, {{}, {a}, {a, c},
{a,b,c}}, {{}. {6}, {a. b}, {a, b,c}}, {{}, {b}, {b,c}, {a, b,c}},
H{hAch{a ek, {a b, c}}, {{}. {c}. {b,c}. {a b, c}}, {{ }. {a},
{6}, {a, b}, {a b, c}}, {{},{a}, {c}, {a. c}, {a, b,c}}, {{}, {a},
{a,b},{a,c},{a,b,c}}, {{}, {b}, {c}, {b,c},{a, b,c}} {{}, {D},
{a,b},{b,c},{a,b,c}}, {{}, {c}. {a c}. {b c}.{a b, c}}, {{},
{a}, {b}, {a b}, {a c}, {a b, c}}, {{}, {a}. {b}, {a b}, {D,c}, {a,
b, c}}, {{}. {a}t. {c}. {a, b}. {a,c}. {a b, c}}, {{ }. {a}, {c}. {a,
et {b.c}, {a, b,c}}, {{}, {b}, {c},{a b}, {b.c},{a b,c}}, {{}
{6}, {c}. {a,c}, {D,c}, {a, b,c}}. {{}. {a}, {b}, {c}, {a b}, {a,
ct, {b.c},{a, b,c}}}
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>print (" there are’ ,nops(ALLTO_Topologies), TO-spaces on set
with ,nops (X), 'points’);

there are, 19, TO-spaces on set with, 3, points

> #(13) A procedure to find all inequivalent topologies on a
given set X

#Let's tidy them up by size.

>bigger:=proc(tl,t2) if nops(tl) < nops(t2) then true else
false fi:end:

>

> #Apply this to all the elements in each topology, and to
the set of all top's.

>
ALLTopologies:=sort([seq(ort([op(t) ], bigger) , t=ALLTopologies)
] ,bigger) :

>#Now think about homeomorphisms, i.e., permutations
preserving open sets.

> P:=permute (X) :

> X:=[op(X)]:

> newjob:=proc(t, p) local u:

>

>

#apply a permutation p of the elements of a space to the
sets in a topology t.
>
> {seqg(subs ({seq(X[i]=p[i],i=1. .nops (X))} ,u), u=t)}:end:
> ishomeo:=proc(tl,t2) #check to see if two spaces are
homeomorphic
> 1local answer,p:
> #we can first check for some trivial invariants,such as.
> if nops(tl) <> nops(t2) then return(false) fi:
> answer:=false:
> for p in P do if {op(newjob(tl,p))}={op(t2)} then
answer:=true: break: fi:od:
> #Note that we have to compare _sets_ rather than
_lists !.
> answer:
> end:
>Types:=[]:
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> for t in ALLTopologies do
> isnew:=true:
> for u in Types do
> if ishomeo(t,u) then isnew:=false: break:fi:
> od:
> if isnew = true then Types:=[op(Types) , t] fi:
> od:
> print( There are’ ,nops (Types), homeomorphism types of
topologies among them’):
>
> for t in Types do lprint(t) od:
>
> $#quit.
> #...or keep playing with these sets.
There are, 9, homeomorphism types of topologies among them
({}, {a, b, c}]
[({}, {b, ¢}, {a, b, c}]
({}, {c}, {a, b, c}]
({t, {ct, {b, c}, {a, b, c}]
({t, {ct, {a, b}, {a, b, c}]
({y, {c}, {b, c}t, {a, c}, {a, b, c}]
({t, {ct, {b}l, {b, c}, {a, b, c}]
({t, {ct, {b}l, {b, ¢}, {a, c}, {a, b, c}]
({t, {ct, {b}, {a}, {b, c}, {a, c}, {a, b}, {a, b, c}]
>

> #A procedure to find all Homeomorphosm types of TO-spaces
on a given set X;

#Let's tidy them up by size.

bigger:=proc(tl,t2) if nops(tl) < nops(t2) then true else
false fi:end:
>
> #Apply this to all the elements in each topology, and to
the set of all top's.
> ALLTO_Topologies:=sort([seq( sort([op(t)], bigger)

, t=ALLTO0_Topologies) ] , bigger):
> #Now think about homeomorphisms, i.e., permutations
preserving open sets.
> P:=permute (X) :
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X:=[op(X)]:

newjob:=proc(t, p) local u:

#apply a permutation p of the elements of a space to the
sets in a topology t.

>

> {seq(subs({seq(X[i]=p[i],i=1..nops(X))} ,u) ,u =t)}:

> end:

>
>
>
>

> ishomeo:=proc(tl,t2) #check to see if two spaces are
homeomorphic
local answer, p:
#iwe can first check for some trivial invariants, such as.
if nops(tl) <> nops(t2) then return(false) fi:
answer:=false:
for p in P do if {op(newjob(tl,p))}={op(t2)} then
answer:=true: break: fi:od:
#Note that we have to compare _sets_ rather than lists !.
answer:
end:
Types:=[]:
for t in ALLTO_Topologies do
isnew:=true:
for u in Types do
if ishomeo(t,u) then isnew:=false: break:fi:
od:
if isnew = true then Types:=[op (Types) , t] fi:
od:
print ( There are ,nops(Types), TO homeomorphism types of
topologies among them’):
for t in Types do lprint(t) od:
#quit.
#...or keep playing with these sets.

There are, 5, TO homeomorphism types of topologies among them

{+, {ct, {b, c}, {a, b, c}]

[

({y, {ct, {b, ct, {a, c}, {a, b, c}]

({+, {c}t, {b}, {b, c}, {a, b, c}]

({+, {c}t, {b}, {b, c}, {a, c}, {a, b, c}]

({+, {ct, {b}, {a}, {b, c}, {a, c}, {a, b}, {a, b, c}]
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Appendix
Maple.15

The Software :

Maple is a commercial computer algebra system .It was first developed in
1980 by the symbolic computation group at The University of Waterloo in
Waterloo , Ontario , Canada since 1988 , it has been developed and sold
commercially by Waterloo Maple Inc ( also known as Maple soft )

a Canadian company based in Waterloo , Ontario Canada .The current major

version is version 16 which was released in March 2012 .
History:

The first concept of Maple arose from a meeting in November 1980 at The

University of Waterloo in Waterloo . Researchers at The University wished
to purchase a computer powerful enough to run Macsyma , instead , it was
decided that they would their own computer algebra system that would be
able to run on lower cost computers.

The first limited version appearing in December 1980 with Maple
demonstrated first at conferences beginning in 1982 .

The name is conference to Maple's condition heritage by The end of 1983,

over 50 Universities had copies of Maple installed on their machines .
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Releases:

1- Maple 1.0 : January , 1982 .

2- Maple 1.1 : January , 1982 .

3- Maple 2.0 : May , 1982 .

4- Maple 2.1 : Jun, 1982 .

5- Maple 2.15 : August , 1982 .

6- Maple 2.2 : December , 1982 .
7- Maple 3.0 : May, 1982 .

8- Maple 3.1 : October , 1983 .

9- Maple 3.2 : April , 1984 .

10- Maple 3.3 : March , 1985 ( first public available version ) .
11- Maple 4.0 : April , 1986 .

12- Maple 4.1 : May , 1987.

13- Maple 4.2 : December , 1987 .
14- Maple 4.3 : March , 1989 .
15- Maple V : August, 1990 .

16- Maple V R, : November , 1992 .
17- Maple V R5 : March 15, 1994 .
18- Maple V R, : January , 1996 .
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19- Maple V R : November 1, 1992 .
20- Maple 6 : December 6, 1999 .

21- Maple 7 : July 1, 2001 .

22- Maple 8 : April 16 , 2002 .

23- Maple 9 : June 30, 2003 ..

24- Maple 9.5 : April 15, 2004 .

25- Maple 10 : May 10, 2005 .

26- Maple 11 : February 21 , 2007 .
27- Maple 12 : May , 2008 .

28- Maple 13 : April , 2009 .

29- Maple 14 : April , 2010 .

30- Maple 14.01 : October 28 , 2010 .
31- Maple 15 : April 13, 2011 .

32- Maple 15.01 : June 21, 2011.

33- Maple 16 : March 28 , 2012 .

34- Maple 16.02 : November 27, 2012 .

Architecture:
Maple is based on small kernel , written in C, which provides the maple

language , most functionality is provided by libraries , which come from
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a variety of sources , many numerical computations are performed by NAG
numerical libraries , ATLAS libraries , or GMP libraries , most of the
libraries are written in the maple language ; these have viewable source
code . Different functionality in maple requires numerical data in different
formats , symbolic expressions are stored in memory as directed a cyclic
graphs , the classic interface is written in C .
Note :

There are general commands and commands in specialized packages.
Packages :

Index of Descriptions for Packages of Library Functions .
Description:

The following packages are available

Algcurves CUDA Genfunc
Curve Fitting
Algebraic eom3d
Array Tools Database geometry
Audio Tools DEtools gfun
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Bits

Cache

CAD

Codagen

Code Generation

Code Tools

Combinat

Combstruct

Contex Menu

Installer Builder

IntegerRelations

IntegrationTools

Inttrans

Large Expression

Differential Geometry

Difforms

Discrete Transforme

DocumentTools

DynamicSystems

ExcelTools

ExternalCalling

File Tools
Gausslnt

Magma

Maplets

MathematicalFunctions

Global

Optimization

Graph Theory

MathML

Matlab

MatrixPolynomial Algebra

MmaTranslator

Grid
Groebner

rou

hashmest

Heap
HTTP

Image Tools
Padic

prigueue
PDEtools

Physic

plots
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Library Tools

liesymm

Linear Algebra

LinearFunctionalSystem

LinearOperators

List Tools

Logic
LREtools

RandomTools

RationalNormalForms

RealDomain

RegularChains

RootFinding

ScientificConstants

MTM

MultiSeries

numapporox

numtheory

Optimization

Ore_algera

OreTools

OrthogonalSeries

Orthopoly

Student[Calculusl]

Student[LinearAlgebral

Plottoos

Polynomialldeals

PolynomialTools

powseries

prigueue

processControl

ODifferenceEquatio

Student][Multivariate-
Calculus]

Student[Numerical-

Analysis]

-NS

gueue
Tolerances
Typesetting

TypeTools
Units

VariationalCalculus

VectorCalculus
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ScientificErrorAnalysis Worksheet
Student[Precalculus]

Security
XMLTools

Student[Vector-Calculus]

Simplex

Solde
SumTools

SNAP

Sockets

SoftwareMetrics

SolveTools
SpreadStudent

Packages used in Finite Topological Spaces:

1-Combinat:

Combinatorial functions , including commands for calculating
permutations and combinations of lists , and partitions of integers .

List of combinat package commands :

Ball Catpord
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Decodepart

Fibonacci

Lastpart

Numbcomp

Permute

Randpart

Stirling 2

Binomial

Choose

Encodepart
first part

multinomial

numbpart

Composition

Eulerian 1

Graycode

Nextpart

Numbperm

Prevpart

setpartition

vectoint

Character
Conjpart

eulerian 2

inttovec

Numbcomb
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powerset Partition

randperm Randcomb
Subse Striling 1

2-network :

Description :

A network is represented by a graph consisting of vertices and edges , The
edges may be directed , and loops and multiple edges are allowed .

The basic commands in this packages perform the manipulation of the

underlying graphs .

List of Networks Packages Commands :

The following is a list of available commands :

acycpoly addedge addvertex allpairs
ancestor arrivals bicomponents charpoly
chrompoly complement complete components
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connect

counttrees

doughter

diameter

draw

ends

fundcyc

graphical

icosahedrons

induce

mindegree

outdegree

connectivity

cube

degreeseq

dinic

draw3d

eweight

getlabel

sim

incidence

isplanar

neighbors

path

contracr

cycle

delete

djspantree

duplicate

flow

girth

union

incident

maxdeqgree

new

Petersen

cuntcuts

cyclebase

departures

dodecahedron

edges

flowpol

graph

head

indgree

mincut

octahedron

random
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rank rankpoly shortpathree show
shirk span spanpoly Spantree
tail tetrahedron tuttpoly vdegree
2- ploottools :
Description :

The plottools packages contains routines that can generate basic graphical

objects for use in plot structures .You can generate and alter plot structures

using the commands in this packages .

List of Plottools Package Commands :

arc

cuboid

cylinder

arrow

curve

=
w
o

cutin

dodecahedron

cone

cutout

ellipse
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elliptical Arc

icosahedrons

pieslice

semitorus

hemisphere

S
@

point

sphere

hexahedron

octahedron

olygon

tetrahedron

hyperbola

parallelepiped

rectangle

torus

The commands to alter or examine plot structure are :

getdata
rotate

translate

homothety
scale

project
stellate

reflect

transform
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