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ABSTRACT 

 

In logistic regression analysis, as in ordinary linear regression when dealing 

with large number of variables, may have a high probability that 

multicollinearity to be present in the model, which effect in the parameters 

of model. This problem has actually bad impact on model parameters and 

results, such as large variances and unreliable predictions.   

In this thesis, the block ridge logistic regression is applied as a suggest 

solution to deal with the presence of moderate and severe cases of 

multicollinearity.  

The Block ridge solution attempts to give each collinear variable its 

appropriated "weight" so no "extra" bias is gained in the logistic model. 

This approach will be applied on a local data concerned with the Libyan 

imported an commodities from different countries around the world. The 

logistic model will classify these countries into major or minor exporters to 

Libya. Using the proposed block ridge solution, will lead to extra 

improvement in the application of the model.    
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CHPTER 1 

 

General introduction 

1.1 Introduction 

Multivariate approach is the most important part of the statistical analysis, 

in which more than one variable are considered simultaneously, give more 

information of phenomena under study rather than use only one variable. 

Although in some studies may isolate each variable and study it 

individually, to discover how much this variable help of understanding, but 

often fail to understanding the full structure of the data. Advantage of 

multivariate analysis, variables need to be examined simultaneously in 

order to uncover the manner and key features in the data.    

 Multivariate analysis is split to descriptive and inferential part. The first, 

particularly in new areas of research, involves data exploring in an attempt 

to recognize any structure requiring explanation. At this stage, finding the 

question is often of more interest than seeking the subsequent answer. 

Instead, methods are sought that allow possibly unanticipated patterns in 

the data to be detected, opening up a wide range of competing 

explanations. 

1.2 Overview Of Multivariate Methods  

William R, Dillon and Matthew Goldstein [11] may an interest exists about 

the association between two sets of variables, where one set is the 

realization of a dependent or  criterion measure then the appropriate class 



 

 

of techniques would be those designated as dependence methods. may an 

interested with the mutual  association across all variables with no 

distinction made among variable types, one uses interdependence methods. 

The dependence methods seek to explain or predict one or more criterion 

measures based upon the set of predictor variables. Interdependence 

methods, on the other hand, are less predictive in nature and attempt to 

provide seeing into the underlying structure of the data by simplifying the 

complexities, primarily through data reduction. 

1.2.1 Dependence Methods 

Depending on the nature and the number of variables the researcher wishes 

to study, there are several multivariate techniques that can analyze 

dependence structures among these methods; 

1. Multiple Regression: This is perhaps the most commonly known 

and used multivariate method . Multiple regression concerned with 

the study of the dependence of one variable, the dependent variable, 

on a set of  variables, the predictor variables, with a view toward 

estimating or predicting the mean value of the dependent variable 

on the basis of the known values of the predictor variables. 

2. Discriminant Analysis: Discriminant analysis, and specifically the 

two group models, is one of the more popular used techniques in 

the analysis of multiple measurements. Given a vector of   

observed scores, denoted by  , known to belong to one of two 

groups, the basic problem is to find some function of the   scores 

which can accurately assign observations with the reading   into 

one of the two groups.    



 

 

3. Logit Analysis: Logit analysis is appropriate when the single 

criterion measure is discrete and all the predictor variables are also 

categorical in nature.  

4. Multivariate Analysis Of Variance (MANOVA): When multiple 

criterion measures are available and the goal is to assess the impact 

of various levels of one or more (experimental) variables on the 

criterion measures, multivariate analysis-of-variance is the 

appropriate data analysis technique. 

5. Canonical Correlation Analysis: Canonical correlation analysis 

usually seek to determine the linear association between a set of 

predictor variables and a set of response variables.  

1.2.2 Interdependence Methods 

The choice of a multivariate technique for the analysis of interdependence 

structure among a set of variables depends on the nature of the data input. 

If the variables have at least interval scale properties then the following 

multivariate techniques form the most popular interdependence methods 

are; 

1. Principal Components Analysis: Principal components analysis is a 

data reduction technique where the primary goal is to construct linear 

combinations of the original variables that account for as much of the 

total variation as possible. 

2.  Factor Analysis: Factor analysis, or more precisely the common 

factor analysis model, is also a data reduction technique  

3. Cluster Analysis: Cluster analysis can be considered as another 

technique for data reduction. The goal in most studies that have used 



 

 

cluster analysis technique is to identify a smaller number of groups 

such that elements residing in a particular group are, in some sense, 

more similar to each that other than to elements belonging to other 

group .  

4. Non-metric Multidimensional Scaling: The goal of non-metric 

multidimensional scaling is to transform the perceived 

(dis)similarities between a set of objects into distances by placing 

those objects in multidimensional space of some dimensionality. In 

this sense , non-metric multidimensional scaling is identical to its 

metric counterpart.  

1.3 Regression Analysis  

In variety of statistical methodologies which are different from discipline to 

another, one of the most popular methodologies is the regression analysis, 

which is a statistical tool uses to study the relationship between one 

response variable and one or more of independent variables, to find the best 

model to fit the data. This technique is widely used in business, the social 

and behavioural sciences, the biological sciences, and many other 

disciplines. 

1.3.1  Linear Regression Mode 

Michael H, Christopher J& William Li [8] the model in linear regression is 

a linear combination of the parameter in the model (but need not be linear 

in the independent variables ). In simple linear regression, will have only 

two variables suppose them as    and    and suppose that they are related 

by an expression of the form             . will leave aside for a 



 

 

moment the nature of the variables and focus on the   ,   relationship. 

           is the equation of a straight line;     is the intercept (or 

constant) and    is the   coefficient, which represents the slope of the 

straight line the equation describes. 

 The main assumptions  of regression model 

1.   is related to x by the simple linear regression model. 

                            , (i = 1,...,n). 

2. The errors            are independent of each other. 

3. The errors             have a common variance   . 

4. The errors are normally distributed with a mean  0 and variance   , 

that is,             . 

The multiple linear regression has the same manner as in the simple linear 

regression model, but with more than one independent variable and the 

outcome effect by those dependent variables to give more information and 

nature relation between them and the outcome rather than one variable , in 

this case the model is called multiple linear regression model. 

In general, can state a linear regression model in the form: 

                              ;            

where    is the victor of the observation on the prediction variables for the 

 th case: 

   

 
 
 
 
 
 

 
   
 
 
 

       
 
 
 
 
 

 



 

 

Where   is number of independent variables,   is the vector of regression 

coefficients , and          represents the expected value       where, 

              

1.3.2  Nonlinear Regression Model 

Michael H, Christopher J& William Li [8] nonlinear regression models are 

of the same basic form as for linear regression models : 

                                     

An observation    is still the sum of a mean response          given by the 

nonlinear response function          and the error   . The error usually 

assumed to have expectation zero, constant variance and  to be uncorrelated 

, just as for linear regression model. Often, a normal error model is used 

which assumes that the error terms are independent normal random 

variables with constant variance. The parameter vector in the response 

function          is now denoted by   rather than   as before that the 

response function here is nonlinear in the parameters. The nonlinear model 

is similar in general form to linear regression model, each    observation is 

postulated to be the sum of a mean response          based on the given 

nonlinear response function and random error term   . 

1.4 Goal of The Study 

In his study we applied logistic regression on import data, to modeling the 

data from classify the response variable (minor export, major export), some 

of important points of study are; 



 

 

 To deal with the problem of multicollinearity in logistic 

regression model, using the block ridge estimators, which 

includes modified ridge parameters that give weights to each 

collinear block of variables. 

 To introduce a statistical strategy that deals with datasets having 

relatively large number of predictors in the nominator of 

          in the multiple logistic model. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CAPTER 2 

Data Description and exploration  

2.1 Introduction 

Every statistical data analysis task starts by gathering, characterizing, and 

organizing a new, unfamiliar data set. After this process, the data can be 

analyzed and the results delivered. In our experience, the first step is far 

more difficult and time consuming than the second. To start with, data 

gathering is a challenging task complicated by problems both sociological 

(such as turf sensitivity) and technological (different software and hardware 

platforms make transferring and sharing data very difficult). Once the data 

are in place, acquiring the metadata (data descriptions, business rules) is 

another challenge. Very often the metadata are poorly documented. When 

we finally are ready to analyze the data, its quality is suspect. Furthermore, 

the data set is usually too large and complex for manual inspection. 

Sometimes, improved data quality is itself the goal of the analysis, usually 

to improve processes in a production database. Although the goal seems 

different than that of making an analysis, the methods and procedures are 

quite similar in both cases we need to understand the data, then take steps 

to improve data quality. 

2.2 Dataset of Study 

In this study an interest of economic dataset which have large number of 

variables comparing to small number of cases, the depended or response 



 

 

variable is a categorical variable describes the nature of the exporting 

country. 

The source of the data is the " National Authority of Information and 

Documentation " in Libya . And they represent the imports of individual 

commodities by countries of origin during 2003. 

The data features are quantities of imported commodities (measured by 

weight in kg and number of units ) from a set of countries . The data matrix 

contains 53 columns represent        imported commodity and 39 rows 

represent      countries, that are classified into 21 minor exporters and 

18 major exporters, for Libya . 

Table (2.1) gives a brief description of the variables of the data set. 

Table (2.1): Description of the variables 

Variable 

Number  

  

Variable Name 

Y Nature of the exporting country  

(minor exporter, major exporter ) 

1 Different dairy products and cheese 

2 Fish and Aquatic Products 

3 Wheat, barley and rice (milled and non-milled) 

4 Other food industries 

5   Dry beans 

6 Fruits and vegetables (fresh or preserved) 

7 Juices (natural or concentrated) 

8 Sugar confectionery 



 

 

Variable 

Number  

  

Variable Name 

9 Food containing chocolate 

10 Drinks 

11 Seeds (vegetables and fruits) 

12 Cooking oil 

13 Coffee (roasted and non-roasted) 

14 Raw sugar and refined 

15 Products and petroleum oils 

16 Industrial chemical compounds 

17 Supplies Plastics and rubber industry 

18 Chemical fertilizers and natural 

19 Coating material 

20 Medical equipment and furniture (human and veterinary) 

21 Medicines and medical supplies (human and veterinary) 

22 Cosmetics 

23 Pesticides (Insecticides and rodents) 

24 Building Materials 

25 Tires 

26 Paper Crafts 

27 Articles made of glass and ceramic 

28 Supplies iron industry 

29 Manufactures aluminium 

30 Ware and Bathroom 

31 Drilling machines and their parts 

32 Water treatment and gas 



 

 

Variable 

Number  

  

Variable Name 

33 Machines and various industrial pumps 

34 Air-conditioning and Refrigeration 

35 Parts and computer peripherals 

36 Projectors visual and audible and phone 

37 Parts monitors visual and audible and phone 

38 Electricity and lighting kits 

39 Electrical household appliances (MMS) 

40 Cars and mobile machines 

41 Auto Parts and Machinery 

42 Aircraft parts 

43 Furniture 

44 Different clothes and accessories 

45 Leather Shoes and plastic 

46 Stationery and School  tools 

47 Carpeting 

48 Tools and Home Furniture (non-electric) 

49 Different fabrics 

50 Books and Publications 

51 Toys and entertainment 

52 Parts and accessories of photography 

53 Installations and tanks (iron and aluminium) and 

components 

 



 

 

Some statistical procedures in a previous are applied on crude data 

(clustering and transformation ), so the data will be proper  for study.     

The use of  transformation is to overcome the presence of extreme values, 

and the use of clustering is performed to classify the original dataset into 

homogeneous groups or blocks. 

Table(2.2) shows the crude data after applied the procedures, where 

classified to five homogeneous blocks.   

Table (2.2): Membership of variables to the blocks 

Block 

Number 

Variable name      

  

1 16 , 25 , 28 , 30 , 31 , 34 , 35 , 40 , 

 41 

2 8 , 14 , 20 , 23 , 37 , 38 , 39 , 47 , 48 , 49 , 

53 

3 2 , 7, 13 , 22 , 27 , 32 , 33 , 36 , 42 , 43 , 

44 , 45 , 46 

4 3 , 9 , 18 , 21 , 24 , 26 , 50 , 51 , 

 52 

5 1 , 4 , 5 , 6 , 10 , 11 , 12 , 15 , 17 , 19 , 29 

    

The following part shows some diagnostic plots for predictors, which can 

be helpful in exploring the behavior of the data in general. First scatter plot 

of  predictor variable against each of other predictor variables in the blocks 

are done to study the nature relationship among the predictor variables and 

for finding gabs and detecting hidden outliers .  



 

 

Figure(2.1) of the scatter plot of block one shows no clear manner between 

the intersection variables in the plot. Also there is no clear direction in the  

data generally, because there are many extreme values in the variables.   

 

Figure (2.1) Scatter plot of block1 
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Other type of plot either can give us important and useful information of 

the data is boxplot, which is gives distribution of variables, dispersion, 

variation  and extreme values in each variable. 

      

 

Figure (2.2) Box plot of block1 

Figure (2.2) illustrates the description of the variables in block one, which a 

reflect an obvious difference between variable distributions, especially 

between(                ) and the other variables, which have less 

variation. 
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Figure(2.3) shows the boxplot of blocks(2,3,4,5), where in some variables  

(for example              ,   ) the extreme values a clearly present. 

Also it can be differences in variations between variables.  

 

Figure (2.3) Boxplot of other blocks 
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CHAPTER 3 

Methodology of Block Ridge Logistic Regression 

3.1 Logistic  Regression 

This is chapter start with a brief explanation of the general case of logistic 

regression, Simon J. Sheather. et. al [9] where the response variable( ) has 

two outcomes or binomial random variable based on a single variable X. 

before considering the logistic regression we briefly review a few facts 

about the binomial distribution on which the logistic model based on. 

A binomial process has the following properties : 

 1 .  There are m identical trials. 

 2 .   Each trial results in one of two outcomes , either a "success" S  or a   

        "failure" F. 

 3 .     , the probability of "success" is the same for all trials. 

 4 .   Trials are independent. 

The trials of the binomial process are called Bernoulli trials. 

Let   be the number of successes in   trials of a binomial process (   ) 

which means that   is a binomial distribution with parameters   and  , the 

short-hand notation for this is as follows : 

y~    ( ,  ) 

The probability that y  takes an integer value  j (j =0,1,2,...,m) is given by 



 

 

(  = j ) =   
 
                   j=0,...,m 

the mean and variance of   are given by  

  (   ) =m      V (  ) =m          

In logistic regression setting, to model     and hence y on the basis of 

predictors           ... ,  , where   is the number of predictors. 

Begin with considering the case of a single predictor variable    In this case  

( |   ) ~ Bin(   ,   (  ))               

The sample proportion of "successes " at each   is given by      . Notice 

that the variance of the response       depends on   
(  ) and as such it is 

not constant. In addition, this variance is also therefore unknown. Thus, 

least square regression is an inappropriate technique for analyzing 

Binomial response.  

1. Explanation of deviance 

In logistic regression the concept  of the residual sum of squares is 

presented by a measurement known as the deviance. In logistic regression 

the deviance is defined to be 

  =2        
  

   
              

       

       
   

    

where, 

    =     (  ). 

2. Residuals for logistic regression 



 

 

There are at least three types of residuals for logistic regression, namely, 

• Response residuals. 

• Pearson residuals and standardized Pearson residuals. 

• Deviance residuals and standardized deviance residuals. 

Response residuals  is defined as the response minus the fitted values, that 

is, 

    = 
  

  
    (  )                         

where   (  ) is the  th fitted value from the logistic regression model. 

However, since the variance of       is not constant, response residual can 

be difficult to interpret in practice. 

   =
 
  
  

         

            
                            

where 

    
  

  = 
 
  
  

        

 

                   
       

    

this is commonly cited as the reason for the name Pearson residuals. 

Pearson residuals do not account for the variance of       . This issue is 

overcome  by standardized Pearson residuals , which are defined to be 

    =
 
  
  

        

                   
                  

     
 
  
  

        

                           
  

   

        
                 



 

 

where     is the  the diagonal element of the matrix obtained from the 

weighted least squares approximation to the Maximum Likelihood 

Estimate. 

   Deviance residuals are defined in an analogous manner to Pearson 

residuals with the Pearson goodness-of-fit statistic replaced by the deviance 

  , that is  

      
  

 =    

thus, deviance residuals are defined by  

     = sign(
  

  
       )                      

 

where   =    
   

  Furthermore, standardized deviance residuals are 

defined to be  

      =                                   

3.2 Binary Logistic Regression 

In regression analysis when the dependent variable of interest has only two 

possible outcomes dichotomous, in this case called logistic regression. 

Therefore can be represented by a binary indicator variable taking two 

values, namely, 0 or 1. 

Michael H, Christopher J and William Li [8] consider first the meaning of 

the response function when the outcome variable is binary, and then 



 

 

takeing up some special problems that arise with this type of response 

variable.  

Consider the simple linear regression model: 

  =    +      +                  = 0,1;             

where the outcome     is a binary variable takes only the value of either 0 

or 1. The expected response   (  ) has a special meaning in this case. Since 

  (  ) =0 which can state: 

  (  )=    +                               

consider    to be a Bernoulli random variable for which can state the 

probability distribution as follows : 

 Table (3.1) Probability of Bernoulli Distribution 

                                                                    probability 

        1                                                         p(    ) = 𝝅
 
    

        0                                                         p(    ) = 1- 𝝅
 
 

 

Thus, 𝝅
 
 is the probability that    = 1, whereas 1- 𝝅

 
 is the probability that    

  = 0. By the definition of expected value of a random variable obtain: 

  (  ) = 1(𝝅
 
) + 0(1 - 𝝅

 
) = 𝝅

 
 =p(   = 1)                 

then: 

  (  ) =    +      = 𝝅
 
                                              



 

 

The mean response  E(  )=    +      as given by the response function is 

therefore simply the probability that    = 1 when the level of the predictor 

variable is    . This interpretation of the mean response applies whether the 

response function is a simple linear one , as here , or a complex multiple 

regression one, the mean response , when the outcome variable is a 0,1 

indicator variable, always represents the probability that   = 1 for the given 

levels of the predictor variables. 

Special problems arise, unfortunately, when the response variable is an 

indicator variable, consider three now, using a simple linear regression 

model as an illustration. 

1 . Non-normal Error Terms   

For a binary  0,1 response variable, each error term     =   - (   +     ) 

can take on only two values: 

for     = 1 :        = 1                                       

and for     = 0 :         =                                  

Clearly, normal error for linear regression model, which assumes that the  

   are normally distributed, is not appropriate. 

2 . Non-constant Error Variance 

Another problem with the error terms    is that they do not have equal 

variances when the response variable is an indicator variable. To see this, 

shall obtain         for the simple linear regression model  

        =               
   =        

    +        
         



 

 

or 

        =           =                                

 

the variance of    is the same as that of    because    =         and    is a 

constant: 

        =           =                                

or  

        =     +                                         

Not from the last equation that         depends on   . Hence, the error 

variances will differ at  different levels of  , and ordinary least squares will 

no longer be optimal. 

3 . Constraints on Response Function  

since the response function represents probabilities when the outcome 

variable is a 0,1 indicator variable, the mean responses should be 

constrained as follows : 

             

Many response functions, do not automatically possess this constraint. A 

linear response function, for instance, may fall outside the constraint within 

the range of the predictor variable in the scope of model. 

The difficulties created by the need for the constrain on the response 

function are the most serious. One could use weighted least squares to 



 

 

handle the problem of unequal error variances. In addition, with large 

sample sizes the method of least squares provides estimators that are 

asymptotically normal. However, the constraint on the mean responses to 

fall between 0 and 1 frequently will rule out a linear response function.  

3.2.1 Simple Logistic Regression Model 

The whole text of this section is totally taken from Michael H, Christopher 

J and William Li [8].  

In simple logistic regression model use maximum likelihood to estimate the 

parameters of the logistic regression model. This method is well suited to 

deal with the problems associated with the response    being binary. First 

need to develop the joint probability function of the sample observations. 

Instead of using the normal distribution for   observations as that of the 

ordinary linear regression, using the Bernoulli distribution for a binary 

random variable. 

First, a formal statement of the simple logistic regression model is required. 

Recall that when the response variable is binary, taking on the values 1 or 0 

with probabilities    and 1     respectively,   is a Bernoulli random 

variable with parameter        . The simple logistic regression model in 

the usual form : 

  =       +                             

Since the distribution of the error term    depends on the Bernoulli 

distribution of the response   , it is preferable to state the simple logistic 

regression model in the following fashion: 



 

 

   are independent Bernoulli random variables with expected values 

         , where: 

           
               

                 
                  

The    observations are assumed to be known constants. Alternatively, if 

the   observations are random,      ) is viewed as a conditional mean, 

given the value of   . 

 Likelihood function  

Since each    observation is an ordinary Bernoulli random variable , where: 

                                       

                                  

The probability distribution can be represented as follows: 

          
         

                      ;            

Note that          and           . Hence,        simply represents 

the probability that             

       Since the    observations are independent, their joint probability 

function is: 

                  

 

   

    
  

 

   

       
      

Again, it will be easier to find the maximum likelihood estimates by 

working with the logarithm of the joint probability function: 



 

 

                       
   

          
      

                                   

 

   

 

           
  

     
               

 

   

 

   

 

Since           for a binary variable , then, 

                         
                

and  

     
  

     
                                        

 Therefore, 

                                                       

 

   

 

   

 

where           replaces            to show explicitly that now view this 

function as a likelihood function of the parameters to be estimated, given 

the sample observations. 

 The Maximum Likelihood Estimation 

The maximum likelihood estimates of    and    in the simple logistic 

regression model are those values of    and    that maximize the log-

likelihood function. No closed-form solution exists for the values of    and 

  for the last equation that maximize the log-likelihood function.  



 

 

There are several widely used numerical search procedures, one of these 

employs iteratively reweighted least squares, will depend on standard 

statistical software programs specifically designed for logistic regression to 

obtain the maximum likelihood estimates. 

 Interpretation of    

The interpretation of the estimated regression coefficient    in the fitted of 

simple logistic regression response function is not the straightforward 

interpretation of the slope in a linear regression model. the reason is that 

effect of a unit increase in   varies for the logistic regression model 

according to the starting point on the   scale. An interpretation of    is 

found in the property of the fitted logistic function that the estimated odds  

         are multiplied by          for any unit increase in  . 

3.2.2  Multiple Logistic Regression Model 

The simple logistic regression model is easily extended more than one 

predictor variable. In fact, several variables are usually required with 

logistic regression to obtain adequate description and useful predictions.   

In extending the simple logistic regression model, by replace            

by                      . To simplify the formulas, the matrix 

notation and the following two vectors are used : 

         

 
 
 
 
 
 
   
   
 
 
 

     
 
 
 
 
 

                       

 
 
 
 
 
 
 
 
  
  
 
 
 
   
 
 
 
 
 
 

 



 

 

This yields the following two equations:  

                         

  
                          

with this notation, the simple logistic response function extends to multiple 

logistic response function as follows : 

      
         

           
 

and the equivalent simple logistic regression response is extends to: 

                      

the multiple logistic regression model can therefore be stated as follows 

           
          

            
                   

Again, the   observations are considered to be known constants. 

Alternatively, if the   variables are random,       is viewed as a 

conditional mean, given the values of                . 

Like the simple logistic response function, the multiple logistic response 

function is monotonic and sigmoidal in shape with respect to     and is 

almost linear when   is between 0.2 and 0.8. The   variables may be 

different predictor variables, or some may represent curvature and/or 

interaction effects. Also, the predictor variables may be quantitative, or 

they may be qualitative and represented by indicator variables. This 



 

 

flexibility makes the multiple logistic regression model very attractive.

 

Figure (3.1) Logistic Regression Curve 

 Fitting of logistic model 

Again, use the method of maximum likelihood to estimate the parameters 

of the multiple logistic regression. The log-likelihood function for simple 

logistic regression of simple logistic model extends directly for multiple 

logistic regression: 

                                    
    

 

   

 

   

 

Numerical search procedures are used to find the values of                

that maximize          . These maximum likelihood estimates will be 

denoted by               . Let   denote the vector of the maximum 

likelihood estimates: 



 

 

         

 
 
 
 
 
 
  
   
 
 

     
 
 
 
 
 

 

The fitted logistic response function and fitted values can then be expressed 

as follows: 

   
         

           
                   

    
          

            
                 

                    

where, 

                          

  
                            

3.3 Inferences of Logistic Regression Model 

The same type of inferences are of interest in logistic regression as for 

linear regression models inferences about the regression coefficients, 

estimation of mean responses , and predictions of new observations.  

The inference procedures will rely on large sample size. For large samples, 

under generally applicable conditions, maximum likelihood estimators for 

logistic regression are approximately normally distributed, with little or no 

bias. Also with approximate variance and matrix that are function of the 

second-order partial derivatives of the logarithm of the likelihood function. 



 

 

The estimated approximate variance and covariance matrix are routinely 

provided by most logistic regression computer packages. 

Inferences about the regression coefficients for the simple logistic 

regression model or the multiple logistic regression model are based on the 

following approximate result when the sample size is large : 

      

     
                            1 

where   is a standard normal random variable and       is the estimated 

approximate standard deviation of   . 

 Test concerning a single     :( Wald test ) 

A large  sample test of a single regression parameter can be constructed 

based on the last condition as, 

                                                               

               

an appropriate test statistic is :         
  

     
 

and the decision rule is : 

If               , accept    

If               , reject    

One-sided alternatives will involve a one-sided decision rule. The testing 

procedure for coefficients is commonly referred to as Wald test. On 

occasion , the square of    is used instead , and the test is then based on a 



 

 

chi-square distribution with 1 degree of freedom. This also referred to as 

the Wald test. 

Interval estimation of single    

From the last condition, the approximate (    ) confidence limits for    is 

obtained directly as follows: 

                 

where    is the parameter under test and         is the              

percentile of the standard normal distribution. 

 The corresponding limits for the odds ratio          are: 

                  

  Likelihood Ratio Test : Test whether several       

Frequently there is interest in determining whether a subset of the   

variables in a multiple logistic regression model can be dropped, that is, in 

testing whether the associated regression coefficients    equal zero. 

The test procedure employ here is a general one for use with maximum 

likelihood estimation, and is analogous to the general linear test procedure 

for linear models. The test is called the likelihood ratio test, and, like 

general linear test, is based on a comparison of full and reduced models. 

The test valid for large sample size. 

will begin with the full logistic model with response function: 

                 
                   



 

 

where  

                         

Where   represent of model with all parameters ( all variables inter to fit 

model ). Now finding the maximum likelihood estimates for the full model, 

denoted by    and evaluate the likelihood function      when        

The value of the likelihood function for the full model is denoted by       

The hypothesis aimed to be tested is: 

                       

                   Against  

    Not all of the    equal zero  

Where, for convenience, arrange the model so that the last     

coefficients are those tested. The reduced logistic model therefore has the 

response function: 

                  
      

where, 

                          

Now obtain the maximum likelihood estimates    for the reduced model 

and evaluate the likelihood function for the reduced model containing    

parameters when       .  

Will denote this value of the likelihood function for the reduced model by 

    . It can be shown that      cannot exceed      since one cannot 



 

 

obtain a large maximum for the likelihood function using a subset of the 

parameters. 

The actual test statistic for the likelihood ratio test, denoted by   , is: 

          
    

    
                        

Note that if the ratio           is small , indicating    is the appropriate 

conclusion , then    is large . Which leads to conclusion of   . 

Large-sample theory states that when   is large,    is distributed 

approximately as    with degrees of freedom correspond to          

               . The appropriate decision rule therefore is: 

                      accept    

                      reject    

Note that if the large-sample conditions for inferences are not met, the 

bootstrap procedure can be employed to obtain confidence limits for the 

regression coefficients. 

3.4 Model Selection Criterion 

In the context of multiple regression models, some procedures are proposed 

to chose the variables of data. For logistic regression modelling, the      

and      criteria are easily adapted and are generally available in 

commercial software. The focus will be on the use of             
   

criteria. The modifications is as follows : 



 

 

                   

The          is the log-likelihood function for logistic regression model. 

Promising models will relatively have small values for this criteria . 

1. Best Subsets Procedures  

These procedures identify a group of subset models from all combination 

of independent variables(   model), those give the best values of a 

specified criterion. As long as the number of parameters is not large, these 

procedures can be useful. 

2. Stepwise Model Selection  

When the number of predictors is large the use of all-possible-regression 

procedures for model selection may not be feasible. Stepwise selection 

procedures are generally employed. Since obtain an analogous procedure 

by basing the decision on the Wald statistic     for  th estimated regression 

parameter, such as the forward stepwise, forward selection, and backward 

elimination algorithms is straightforward. 

3.5 Multicollinearity problem 

In multiple regression analysis, when there are highly correlated among the 

predictor variables (often referred to as multicollinearity), particularly, in 

the situation where regression coefficients can have the wrong sign and/or 

many of the predictor variables are not statistically significant where as the 

overall F-test is highly significant.  

 Effects of multicollinearity 



 

 

1. The fact that some or all predictor variables are correlated among 

themselves does not, in general, inhibit our ability to obtain a good 

fit nor does it tend to affect inferences about mean response or 

predictions of now observations, provided these inferences are made 

within the region of observations. 

2. The counterpart in real life to many different regression function 

providing equally good fits to the data and  the estimated regression 

coefficients tend to have large sampling variability when the 

predictor variables are highly correlated. Thus, the estimated 

regression coefficients tend to vary widely from one sample to 

another when the predictor variables are highly correlated. 

3. The common interpretation of a regression coefficient as measuring 

in the expected value of the response variable when the given 

predictor variable is increased by one unit while all other predictor 

variables are held constant is not fully applicable when 

multicollinearity exists. 

 Informal diagnostics 

1. Large change in the estimated regression coefficients when a predictor 

variable is added or deleted.  

2. Non significant results in individual tests on the regression coefficients 

for important predictor variables . 

3. Estimated regression coefficients with an algebraic sign that is the 

opposite of what expected from theoretical consideration or prior 

experience.  



 

 

4. Large coefficients of simple correlation between pairs of predictor 

variables in the correlation matrix . 

5. Wide confidence intervals for the regression coefficients representing 

important predictor variables. 

 Variance inflation factor  

A formal method of detecting the presence of multicollinearity that is 

widely accepted is the use of variance inflation factor. These factors 

measure how much the variances of the estimated regression coefficients 

are inflated as compared to those where the predictor variables are not 

linearly related. This gives us quantitative measurements of the impact of 

multicollinearity. 

The diagonal element        is called the variance inflation factor        

for   . It can be shown that this variance inflation factor is equal to : 

              
                            

Where   
  is the coefficient of determination when    is regressed on the 

    other   variables in the model . 

The largest     value among all   variables is often used as an indicator of 

the severity of multicollinearity. A maximum     value in excess of 10 is 

frequently taken as an indication that multicollinearity may be unduly 

influencing the least squares estimates. 

 Some remedial methods  



 

 

1. Eliminate some predictors from the model.                                         

2. Design an experiment in which the pattern of correlation is broken.  

3. Principal Components Regression      .                                            

4. Ridge Regression.   

3.6 Ridge Regression 

The ridge regression estimator    , is defined by Hoerl and Kennard, for 

some    , by 

                   

where   is ridge parameter, If    ,          , the least squares 

estimator, while large   will move      away from least squares, and 

increase the bias in the estimate. 

Ridge regression is one of several methods that have been proposed to 

remedy multicollinearity problems by modifying the method of least 

squares to allow biased estimators of the regression coefficients. When an 

estimator has only a small bias and is substantially more precise than an 

unbiased estimator, it may well be the preferred estimator since it will have 

a large probability of being close to the true parameter value. 



 

 

Figure (3.2) illustrates this situation. Estimator     is unbiased but 

imprecise, whereas estimator      is much more precise but has a small 

bias. The probability that      falls near the true value   is much greater 

than that for the unbiased estimator  .            

Generally,   is an unknown parameter which can be set by the analyst.        

A commonly used method of determining the ridge parameter   is based on 

the ridge trace. The ridge trace is a simultaneous plot of the values of   

estimated ridge regression coefficients for different values of  , usually 

between 0 and 1, as illustrated in figure(3.3) .  

Extensive experience has indicated that the estimated regression 

coefficients   
  may fluctuate widely as   is changed slightly from 0, and 

some may even change signs. Large value of   correspond to increased 

bias but lower variance, so a value of   must be chosen to balance bias 

against variance. 

 

 

Figure (3.2)  Ridge regression estimator  

source: Michael H, Christopher J and William Li [8] 



 

 

 

Figure (3.3) Ridge Trice(program with R software ) 

3.6.1 Generalized Ridge Regression 

One generalization of the ridge regression rule is replace the ridge 

parameter   by a victor of parameters                . In terms of the  

original coordinates , defined   to be the     matrix such that, if   is the 

diagonal matrix with               on the diagonal,        ,  with   as 

an orthogonal transformation . Then the generalized ridge estimator is  

                  

Note in particular if              , then     , and 

             , so ridge regression is a special case of generalized 

ridge regression. (Hoerl and Kennard; Bingham and Larntz.1970 ). 



 

 

3.6.2 Block Ridge Logistic  Regression 

Since the ridge regression is procedure to overcome of multicollinearity 

problem, this procedure is looking for one value (usually a small value 

between 0 and 1) to solve this problem, but the correlation between the 

independent variables difference from pair to pair or group to another in 

severity of multicollinearity, the ordinary ridge logistic regression 

introduced by Schaefer et. al. (1984), then by Duffy and Santner. (1989) 

the ridge logistic regression estimator is introduced as follows: 

                      

 Where   is the ridge parameter,                           is a 

diagonal matrix that contains the variance of    . 

 Block ridge logistic regression procedure work by partitioning the data to 

( ) blocks, with respect to severity of correlation between the predictors, 

which each block have variables that to be close in severity of 

multicollinearity, next step determining the ridge logistic regression 

parameter of each block, which the severity of multicollinearity difference 

from block to anther then will get different ridge parameter at each block, 

which it is work as weight of problem at each block, where replaced    in 

ordinary ridge logistic regression with diagonal matrix that contain ridge 

parameters of each block             , then the block ridge logistic 

regression can be written as: 

                    



 

 

Where   is a diagonal matrix contained             ,   if    , return 

to ordinary ridge logistic regression,  and               , 

return to ordinary logistic regression. 

On the other hand using the ordinary ridge logistic regression, will have 

one ridge parameter that work as weight for all variables to solve the 

problem, maybe some variables need less weight because the collinearity is 

weak, and some other high weight, then estimators don't be optimal in 

present of multicollinearity. 

Figure(3.4), illustrates the idea of block ridge logistic regression as solution 

of multicollinearity, it can be seen that each block will has an appropriate 

ridge parameter (weight) of collinear in the block.    

 

   

 

Figure (3.4) Block ridge logistic regression 
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CAPRER 4 

Application And Results 

4.1 Introduction 

In this chapter, the results of performing the strategy of block ridge logistic 

regression on the Libyan import data in the following order ; 

First, the procedure of "best subset variable selection" is applied on each 

block in order to choose those variables which possess most causal relation 

multicollinearity within each block of variables. Secondly, focusing on the 

effects of the presence of multicollinearity in each block. Third, the 

generalized matrix of ridge parameters will obtain use the original logistic 

regression parameters, and a justification is presented on the statistical 

importance of using this solution.         

4.2 Results of The Best Subset Procedure  

The method that adopted in the application to choose the best variables, the 

best subset procedure that give the best logistic model, which mean that the 

best variables from all, the best subset procedure to choose that variables at 

each block will be used, which will make combinations from all variables, 

from one to number of variables in block minus one (all possible subset 

available), the criteria to choose the best subset of variables is check the 

significant of the likelihood ratio test of the model, this feature of the study 

rather than get the best subset from all data, will get the best subset 

variables from blocks. 



 

 

Table(4.1) gives summary of the best subset method, all subset of models 

those contain one predictor variable, which have   
    available logistic 

model, with p-value of likelihood ratio test, which test of whether model of 

logistic regression with intercept difference of model with full parameters. 

Table (4.1) Summary of best subset procedure with one variable model of block 4 

Variable in the model p-value  

   0.000 

   0.737 

    0.608 

    0.603 

    0.000 

    0.000 

    0.745 

    0.206 

    0.728 

   

Table(4.1) shows that the variables those included in the models. There are 

three models those contain (  ,    ,     ) the alternative      were 

accepted, which means that, each variable when included in model gives 

information about the response variable from the model, it is found that 

(  ,    ,     ) are the best variables of block four in case of one predictor 

variable included in the model. 

Table(4.2) illustrates models those contain two predictor variables (all 

subset available of models contains two independent variables ). Which 

yields   
     models, where can see the effect in models those contain 



 

 

two variable in the logistic regression, with p-value of likelihood ratio test, 

which distributed with   distribution with degrees of freedom      . 

Table (4.2) Summary of best subset procedure with two variables model of block 4 

p-value 

Variable                                

   0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

   0.919 0.419 0.933 0.000 0.000 0.872 0.877  

    0.866 0.444 0.868 0.000 0.000 0.830   

    0.860 0.449 0.871 0.000 0.000    

    0.000 0.000 0.000 0.000     

    0.000 0.000 0.000      

    0.925 0.449       

    0.383        

 

Table(4.2) shows the variables included in the models, there are three 

variables those effect in the models. The alternative      was accepted 

when one or two of these variables (   ,     ,    ) included in the model, 

which the effects is clear, if one or two of these variables included in the 

models. In this step we note that (   ,     ,    ), are the best variables in 

this step too for block four. 

Applied this procedure on this block for four ,five ,…,eight predictor 

variables, conclude that the same variables (   ,     ,    ) are the best in 

the block four, where the effect of these variables is clear when included in 

all models. 



 

 

The same procedure is applied in order on the other blocks, the summary of 

best subset  procedure for variables selection is shown in table (4.3). Then 

from the summary of the best subset procedure, there is no variables were 

chosen in the block one and block two, one variable were chosen from 

block three, two variables were chosen from block five. 

Table (4.3) Summary of best subset procedure of all blocks 

Block number 1 2 3 4 5 

 

Variable name 

- -        

    

    

   

    

4.3 Check of Multicollinearity 

One of most important procedure in regression analysis, is detecting the 

multicollinearity in the regression model. There are many ways to detect 

this problem, one of them is Variance Inflation Factor      , which is 

special detecting technique, since it gives the numerical value of the 

severity of the multicollinearity in the model. Adopting this criterion leads 

to detect the severity of the multicollinearity in this study, which is an 

indication of the presence of multicollinearity if         . From the best 

subset procedure, there is no variable were chosen in the blocks one and 

two, have one variable in block three then there is no problem in this block, 

there are three variables in block four, two variables in block five. Using 

      is to detect the presence of multicollinearity problem in the last two 

blocks. 



 

 

Table(4.4)  Multicollinearity diagnostic  

 

Block 

 

Response 

 

 

   

(ANOVA ) 

p-value 

 

Multicollinearity 

VIF 

 

1 

 

- 

 

- 

 

- 

 

- 

 

2 

 

- 

 

- 

 

- 

 

- 

 

3 

 

    

                   

- 

 

- 

 

- 

 

4 

   

    

    

0.983 

0.988 

0.993 

0.000 

0.000 

0.000 

58.82 

83.33 

142.85 

 

5 

   

    

 

0.980 

 

0.000 

 

50.00 

 

Table(4.4) shows the result of applying linear regression for the 

independent variables, in blocks four and five with p-value (F-test) of each 

model. Coefficient of determination     , variance infliction factor      . 

To determine severity of multicollinearity, in the block three                        

(         ) high multicollinearity is presented in each of the three 

models, which means that presence of the problem in this block, again in 

the block five (         ) which is very high among the variables, which 

means that multicollinearity is presented in this block too between the two 

variables where is very high. 

From the last summary it is clear that the variables in some blocks are high 

correlated, applying the logistic regression model, at time of expectation 

that, the coefficients have wrong sign and/or many of the predictor 



 

 

variables are not statistically significant, because the multicollinearity is 

present in the model.  

4.4The Effects of Multicollinearity 

To see the effect of multicollinearity, fit logistic regression model to the 

best variables. In the previous section it is seen that, the variables chosen 

are correlated in the blocks four and five. The parameters of the model will 

have  large variance and    , because the multicollinearity is presented in 

the model. 

Table (4.5) Summary of fitted logistic regression model 

Variable Coefficient Std. error MSE AIC 

    0.214 0.651 

   -3.612 3.744  

53.711 

 

19.424     -2.497 3.173 

    4.062 4.704 

   0.136 0.825 

    2.564 2.525 

 

Table(4.5) shows the summary of fitting the logistic regression model, note 

that the mean square error     is large, also the standard errors of the 

estimated  parameters have large values. The     is unrealistic, because it 

has a relatively small value with respecting to the number of variables, due 

to a high multicollinearity problem in the model. 

A Big change will be seen in the results of the fitting (coefficients, standard 

error,     and    ) after applying the block ridge logistic regression 

approach, as a solution of the multicollinearity. 



 

 

4.5 Determining the Ridge Parameters 

The beginning would be by applying the ordinary ridge logistic regression 

to the best variables. And the R software is used to compute    , and     

against set values usually between (0,1). First looking for the optimal value 

of the ridge parameter, in order to achieve more precise estimates. Some 

methods are proposed, such as ridge trace, in which the change in model 

parameters against the set of ridge parameter, are monitoring as follows. 

 

Figure (4.1) Ridge parameter of full logistic model(program with R software) 

From the above graph, it is clear that all coefficients change rabidly after 

the ridge parameter change from zero, the coefficients at zero point is 

ordinary logistic regression coefficients. Note that the stationary of the 

coefficients start at 0.2, choose the ridge parameter for the model at this 

point, fitting the ridge logistic regression at this point. Note that the fitted 



 

 

gives           and            , summary of ordinary ridge 

logistic regression, which note that     value of ordinary ridge is less than 

    of logistic regression in Table(4.5), and     of ordinary ridge is 

greater than     in Table(4.5). 

Note that the ridge logistic regression approach is proposed to solve the 

problem of  multicollinearity, but it gives the same weight (ridge 

parameter) for all variables in the model. From table(4.4) the problem of 

multicollinearity is not present in block3, because there is one variable in 

this block, where the ordinary ridge solution gave     weight (0.2), this is 

overweight or much more bias, the severity of multicollinearity in block4 

different from block5, where the ordinary ridge gave the same weight. In 

this study using block ridge solution, which gives weight with respect to 

severity of problem.  

To deal with this problem Gebril, R[5] proposed "Block Ridge Logistic 

Solution", in which each block can take weight according to the severity of 

problem in the block. In this study Table(4.4) gives three blocks those have 

the best variables, which gives the optimum results for the logistic 

model(minimum deviance). Now to find the optimum ridge regression 

parameters of each block, fit ridge logistic regression model to overcome  

the problem in each block. After applying the best subset method in each 

block, it was found  that there is no variables selected from the block1 and 

block2, one variable is selected from block3 with weight zero(ridge 

parameter). Using ridge trace to find ridge parameter for block4 and 

block5, which multicollinearity is present in them. The ridge trace for 

block4 is presented as follows. 



 

 

 

Figure(4.2) Ridge trace of block4(program with R software) 

From Figure(4.2),and since the coefficients almost stationary at value 0.65, 

choose ridge parameter to be 0.65 for block4, the ridge value is relatively 

large, because there is high problem in this block. Similarly as in  block4  

select the ridge value of block5, and accordingly the ridge parameter found 

to be 0.05. 

After determining the ridge parameters for all blocks, determine matrix  , 

where   is a diagonal matrix contains the values of ridge parameters of all 

blocks, the feature of this matrix giving a proper weight for each variable to 

solve the problem of multicollinearity. 

Now applying the block ridge logistic regression, as a solution of the 

problem of multicollinearity in  blocks, where the estimator of block ridge 

logistic regression as following; 

                    



 

 

where 

  

 
 
 
 
 
 
      
         
         
         
         
          

 
 
 
 
 

 

In the above matrix   the first element in the diagonal matrix is 0 because 

the first variable     from block3 where is no problem in this block, the 

second, third and fourth are 0.65 for the variables of block4, which is 

proper value (ridge parameter) for these variables, the fifth and sixth are 

0.05 for block5, which is proper  weight of variables in this block.          

Now fitting the block ridge logistic regression, which was expected to give 

a result better than that when applying ordinary logistic regression or 

ordinary ridge logistic regression.    

Table(4.6) Fitting block ridge logistic regression model  

Variable Coefficients Std. error         

    0.107 0.600  

 

1.880 

 

 

33.340 

   -0.339 0.491 

    0.139 0.406 

    0.093 0.393 

   -0.353 0.583 

    0.476 0.786 

 

Table(4.6) gives the summary of fitting block ridge logistic regression 

model. Compare this with the summary of Table (4.5), note that the values 



 

 

of the standard error of this model are smaller than those of logistic 

regression, indicating that those estimators are obtained with much more 

accuracy, the     of block ridge logistic model is less than both     of 

ordinary logistic model and     of ordinary ridge logistic model. 

4.6 Summary & Conclusion 

From the statistical analyses carried on imported commodities data can 

conclude that: 

 The block ridge logistic regression model gives a less     

compared to logistic regression or ordinary ridge logistic regression. 

 The coefficients of block ridge logistic regression model are much 

more precise. 

 Cannot depend on     as a criterion for variables selection, because 

it showed unrealistic quantity with high severity of  multicollinearity. 

 

   

 

  

 

  



 

 

Appendix A1 

 

Results of check of multicollinearity problem for variables. 

   : the regression model is insignificant. 

   : the regression model is significant.  

 p-value 0.05 accept   ,   p-value   0.05 reject   . 

 

lm(formula = x3 ~ x24 + x26 - 1) 

   Coefficients: 

    Estimate    Std. Error   t value    Pr(>|t|)     

x24  -0.0270     0.2117   -0.128     0.899     

x26   1.1413     0.2231     5.116     9.87e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 2.122 on 37 degrees of freedom 

Multiple R-squared: 0.983,      Adjusted R-squared: 0.9821  

F-statistic:  1068 on 2 and 37 DF,  p-value: < 2.2e-16  

 

lm(formula = x24 ~ x3 + x26 - 1) 

Coefficients: 



 

 

    Estimate    Std. Error   t value   Pr(>|t|)     

x3   -0.01627    0.12758  -0.128     0.899     

x26  1.06562    0.14323    7.440     7.41e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 1.647 on 37 degrees of freedom 

Multiple R-squared: 0.9884,     Adjusted R-squared: 0.9877  

F-statistic:  1570 on 2 and 37 DF,  p-value: < 2.2e-16   

 

lm(formula = x26 ~ x3 + x24 - 1) 

Coefficients: 

    Estimate     Std. Error   t value   Pr(>|t|)     

x3    0.36297    0.07095    5.116     9.87e-06 *** 

x24  0.56246    0.07560    7.440     7.41e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 1.197 on 37 degrees of freedom 

Multiple R-squared: 0.9932,     Adjusted R-squared: 0.9928  

F-statistic:  2692 on 2 and 37 DF,  p-value: < 2.2e-16  



 

 

 

lm(formula = x4 ~ x17 - 1) 

Coefficients: 

    

     Estimate    Std. Error   t value  Pr(>|t|)     

x17  0.97631    0.02209    44.19   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 2.065 on 38 degrees of freedom 

Multiple R-squared: 0.9809,     Adjusted R-squared: 0.9804  

F-statistic:  1953 on 1 and 38 DF,  p-value: < 2.2e-16  

Appendix A2 

  

Results of the best subset procedure of block one, with one predictor in the 

model, where we have   
    models. 

Logistic Model  p-value 

      0.236 

      0.097 

      0.074 

      1 



 

 

      0.577 

      0.110 

      0.296 

      0.613 

      0.123 

  

 Results of the best subset procedure of block one, with two predictors in 

the model, where we have   
     models. 

Logistic Model p-value 

          0.247 

          0.202 

          0.324 

          0.237 

          0.265 

          0.136 

Logistic Model  p-value 

          0.491 

          0.305 

          0.187 

          0.094 

          0.057 

          0.241 

          0.041 

          0.166 

          0.225 



 

 

          0.040 

          0.026 

          0.189 

          0.016 

          0.162 

          0.188 

          0.724 

          0.099 

          0.396 

          0.854 

          0.130 

          0.070 

          0.576 

          0.658 

          0.075 

          0.041 

Logistic Model  p-value 

          0.235 

          0.250 

          0.366 

          0.032 

          0.279 

 

Results of the best subset procedure of block two, with one predictor in the 

model, where we have   
      models. 



 

 

Logistic Model  p-value  

     0.285 

      0.710 

      0.841 

      0.452 

      0.899 

      0.145 

      0.222 

      0.816 

      0.714 

      0.855 

      0.167 

 

Results of the best subset procedure of block two, with two predictors in 

the model, where we have   
      models. 

Logistic Model  p-value  

         0.265 

         0.523 

         0.522 

         0.539 

         0.539 

         0.394 

         0.393 

         0.565 

         0.388 



 

 

         0.059 

          0.931 

          0.560 

          0.931 

          0.319 

          0.296 

          0.933 

          0.806 

          0.933 

          0.359 

          0.626 

          0.979 

          0.272 

          0.433 

          0.968 

          0.864 

Logistic Model  p-value 

          0.975 

          0.348 

          0.708 

          0.025 

          0.461 

          0.529 

          0.749 

          0.576 

          0.080 



 

 

          0.276 

          0.357 

          0.973 

          0.848 

          0.983 

          0.322 

          0.012 

          0.193 

          0.081 

          0.292 

          0.325 

          0.282 

          0.442 

          0.292 

          0.037 

          0.756 

Logistic Model  p-value 

          0.970 

          0.231 

          0.803 

          0.109 

          0.170 

 

Results of the best subset procedure of block three, with one predictor in 

the model, where we have   
      models. 



 

 

Logistic Model  p-value 

     0.607 

     0.504 

      0.510 

      0.840 

      0.789 

      0.658 

      8.7660e-05 

      0.485 

      0.887 

      0.685 

      0.685 

      0.051 

      0.942 

 

Results of the best subset procedure of block four, with one predictor in the 

model, where we have   
    models. 

Logistic Model  p-value  

     0.000 

     0.737 

      0.608 

      0.603 

      9.2724e-05 

      5.1542e-05 

      0.745 



 

 

      0.206 

      0.728 

 

Results of the best subset procedure of block four, with two predictors in 

the model, where we have   
     models. 

Logistic Model  p-value  

        0.000 

         4.0825e-05 

         0.000 

         2.6389e-05 

         1.0656e-08 

         0.000 

         2.5538e-07 

         0.000 

Logistic Model  p-value 

         0.876 

         0.871 

         1.6944e-05 

         9.6584e-06 

         0.932 

         0.418 

         0.919 

          0.830 

          1.7949e-06 

          1.0140e-06 



 

 

          0.867 

          0.444 

          0.865 

          9.1165e-06 

          4.0496e-06 

          0.870 

          0.448 

          0.859 

          0.000 

          1.6520e-05 

          6.2422e-09 

          3.0761e-05 

          1.1128e-05 

          1.2208e-11 

          1.3150e-05 

Logistic Model  p-value 

          0.448 

          0.924 

          0.382 

 

 

Results of the best subset procedure of block five, with one predictor in the 

model, where we have   
      models. 

Logistic Model  p-value  



 

 

     0.348 

     0.000 

     0.547 

     0.890 

      0.920 

      0.490 

      0.822 

      0.809 

      1.8662e-05 

      0.667 

      0.496 

 

Results of the best subset procedure of block five, with two predictors in 

the model, where we have   
      models. 

 

Logistic Model  p-value  

        4.1634e-05 

        0.644 

         0.436 

         0.211 

         0.392 

         0.606 

         2.3802e-07 

         0.643 



 

 

         0.209 

        2.9032e-05 

        2.6471e-05 

         2.6040e-05 

         1.9086e-05 

         7.1575e-05 

         5.2793e-05 

         8.3886e-08 

         3.6041e-05 

         3.3007e-07 

        0.525 

         0.707 

         0.433 

         0.740 

         0.834 

         1.3606e-09 

         0.818 

Logistic Model  p-value 

         0.487 

         0.990 

         0.732 

         0.975 

         0.934 

         4.1743e-09 

         0.832 

         0.786 



 

 

          0.778 

          0.975 

          0.949 

          6.8407e-07 

          0.874 

          0.683 

          0.779 

          0.653 

          3.9221e-07 

          0.403 

          0.714 

          0.827 

          2.5789e-06 

          0.772 

          0.776 

          1.6773e-06 

          0.910 

Logistic Model  p-value 

          0.665 

          6.0081e-07 

          5.1459e-12 

          0.550 
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