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Abstract

In this thesis, we study and investigate the following concepts :
The Lebesgue measure of a set , the class of measurable sets , the class of
u* - measurable sets , the class of measurable functions and Lebesgue

integration .
We give some properties of the above concepts. Also, we give some
facts, deductions , different connections , related examples and some

applications of Lebesgue integration .
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Chapter One
Preliminaries

In this chapter, we give some definitions and results which we shall need later in

this thesis . Also, we give some related examples and remarks .
Notations
[0 = the set of natural numbers

[J = the set of rational numbers

c
0 = thesetof irrational numbers

[0 = the set of real numbers .

We start with the basic definitions and results from set Theory .

Definition 1.1

Let A and B be subsets of the universal set X.

The intersection of A and B is defined by
ANB={x:xeA and xe B }.

Then A and B arecalled disjoint if ANB = &.

The union of A and B is defined by

AUB={x:xeA or xeB}.
Theorem 1.1

Let A,B and C be sets. Then
(i) ANBcA and ANBcB
(i) AcAuUB and B cAUB
(iii) ADBcAcAUB and ANB cBcAUB
(iv) An(BUC)=(AnNnB)U(ANC)
(v) Au(BnC)=(AUB)N((A UC).

The intersection of a finite number of sets Al : A2 , ..., A isdenoted by
n
ANA N..NA or kOl A

The intersection of an infinite number of sets Al,A2 .. ,An , ... Is denoted
by



ANAN..NA N.. or kOlAk.

The union of afinite number of sets A1 , A2 , ..., A isdenoted by
n
AUA U..UA or kL:Jl A .
The union of an infinite number of sets Al , A2 , .- A, ... Is denoted by

AUA U..UA U.. or kL:JlAk'

Definition 1.2
Let f : X > Y and let B beasubsetof Y .Theinverse of B under the

mapping f is defined by
f "(B)={xeX :f(x)eB}

Theorem 1.2
Let f : X —>Y and let A and B besubsets of Y .Then

(Vf (ANB)=f (A)n f (B)

(i) f (AUB)=f (A)UTf (B)

iy £ (AA)Y=Nf (A)
i=1 i=1
(v) £ (UA)=U T ea).
Definition 1.3

Let A < X.The complement of A is defined by
A ={x:xeXand xg A}.

Sometimes , we write AC= X \VA.

Theorem 1.3
Let A,B < X .Then

(i) X =@, 2 =X
(i) (A°) =A

(i) ANA =@, AUA = X



Theorem 1.4
Let A,Bc X .If AcB,then
(i) B c A
(ii) ANB =A, AUB=B

(ii)BUA =X, ANB = g.
Theorem 1.5
Let f: X —>Y and AcY.Then
-1 c -1 c
f (A)=(Cf (A)) .
Theorem 1.6 ( De Morgan laws )
Let A and B be sets. Then
. C c c
(i) (AUB) =A NB
.. C c C
(i) (ANB) =A UB .
The generalized of Demorgan Laws for any finite number of sets is

n c n
M (Ua) =Na

. L c " c
(i) () A) :UAk.
k=1 k=1
The generalized of Demorgan Laws for any infinite number of sets is
MHCUA) =NA
k=1 k =1
. = c . C
(||)(ﬂAk)=UAk.
k =1 k=1
Definition 1.4
The difference of aset A with respect to aset B is defined by
A-B={x:xeAand x¢ B},
while the difference of aset B with respect to aset A is defined by
B-A={x:xeBand x¢g A}

Sometimes, we write A— B = A\B.



Theorem 1.7
Let A,B < X .Then
(i) A~-Bc A, B-AcCB
(i) A~B= ANB"
(iii) If Ac B, then C\BcC\A
(V) A\(BUC)=(A\B)N(A\C)
A\(BNC)=(A\B)U(A\C).

More generally , we have

(i)A\k(_] B, ku (A\B, )

(i) AVUB =[] (A\B ).
k21 K k=1 k
Definition 1.5
Let X beaset. The powerset of X is the family of all subsets of X.

It is denoted by P (X).
If X contains n elements, then P (X ) contains 2" elements .

Note that X, @ eP (X).
Examples 1.1
(i) Let X ={1} Then
P(X)={2 {1}}
(i) Let X ={1,2} Then
P(X)={@.{1}{12} X}
(iii) Let X ={1,2,3} Then
P(X)={o {1}{2} {3} {12}{1,3} {23} X }.
Definition 1.6

Let X be anon-empty set.Let f be afunction from X into [J .

The positive part of f is defined by

f(x) if f(x)=0
f(x) =
0 otherwise.



The negative part of f is defined by

“f(x) if f(x)<0
f(x)=
0 otherwise.
Remarks 1.1
(i) f >0 and f >0.
(i) (f+g) =f +g
(f+g) =f +g

(iii) Let « > 0. Then

(af) =af’
(af) =af
(iv) Let a < 0. Then
(af) = —af
(af) = -af

Lemma 1.8
Let X be anon-empty set and let f be afunction from X into [ . Then
(i) f=f —f
- + -
(i) [ f|=1 +f
Lemma 1.9
Let x,y el and let € > 0 (verysmall).
(i)if | x—-y|<e, then x=y,

(i) if x<y+e,then x <y.

Definition 1.7

Let E be anon-empty subsetof [ and x e[ . Then we define

E+x ={y+x:yeE}



Theorem 1.10
Let X be anon-empty subsetof [ .Let E and A besubsetsof X and x el .

Then
(i) If EcA,then E+ x c A+ X
(i) (AVE)+x = (A+x)\(E+x)
(i) ((A-X)NE)+x =AN(E+x)
(iv) ((A=x)NES)+x =AN(E+x).
Definition 1.8

Let A be a non-empty subset of [1. Anelement X €[l called an upper bound
of A if a<x forall aeA.
If A has an upper bound, then A is called a bounded above set .

Definition 1.9

Let A be a non-empty subset of [1. Anelement y €[] called a lower bound
of A if y <a forall aeA.

If A hasa lower bound, then A is called a bounded below set .

Definition 1.10
Let A be a non-empty subset of [J . Then A is called a bounded if A is both
bounded above and bounded below .
Lemma 1.11
Any subset of a bounded set is bounded .
Theorem 1.12
A finite union of bounded sets is bounded .
Remark 1.2

An infinite union of bounded sets may not be bounded .
For example :
Let A =[-n.n] (n=123, ..).

Then An are bounded sets . We have



’ A = O [-n.n]

n=1

= (—o0,0),
which is not bounded .

Definition 1.11
Let A be a non-empty subset of [1 . A real number u is called a supremum of
A . denoted by sup (A), if

(i) a <u forall acA ( u isan upperboundof A)

(ii) u <v forany upper bound v of A ( u isthe least upper bound of A).

If sup(A) e A thenitiscalleda maximum of A isdenoted by max (A).
Theorem 1.13

Let A be a non-empty bounded above subset of [J. Then sup (A ) exists and
unique .
Theorem 1.14

Let A and B be non-empty bounded above subsets of [ . If A < B,then
sup(A) < sup(B).
Theorem 1.15

Let A bea non- empty bounded above subset of [ . Let € > 0 and
a = sup(A) . Then there exists ae A suchthat a > o — €.
Definition 1.12

Let A be a non-empty subset of [1. A real number w is called an infimum of
A, denoted by inf (A), if

(i)w<a forall acA (w isalowerboundof A)

(ii) t <w forany lower bound t of A ( w is the greatest lower bound of A).

If inf(A) e A, thenitiscalled a minimumof A, isdenoted by min(A).

Theorem 1.16
Let A be a non-empty bounded below subset of [ . Then inf (A) exists and

unique .



Theorem 1.17

Let A and B be non-empty bounded below subsets of 0. If A < B, then
inf (B) < inf(A).

Theorem 1.18

Let A be anon- empty bounded below subset of [1 . Let € > 0 and

f = inf (A).Thenthereexists acA suchthat a < g + €.
Definition 1.13
Let X be abounded set. Amapping f : X — [ iscalled bounded if there
exists a positive real number M such that
| f(x) | <M forall xeX.

Example 1.2
Let f(x)=3x+4, X =[-2,2]

Then X is abounded set .
Let x e[-2,2].Then | x |<2.
So | f(x)| =]3x+4|
<3| x|+4
<3(2)+4

= 10.
Thus f isa bounded functionon X with M = 10.

Theorem 1.19

Let X be a bounded subset of [1 andlet f : X — [J be abounded function .

Then

(i) sup (e f(x))=asuwp(f(x)) (a>0)

x eX X eX

(i) sup (@t (x))=a inf (f(x)) (a<0).
X e X X e



Definition 1.14
Let X be anon—emptyset. Let d be a function defined on the cartesian
product X x X into [J such that

(i)d(x.y)=0

(i) d(x,y)=0 < x =y

(i) d(x,y)=d(y.x)

(iv) d(x,y) <d(x,z)+d(z,y),
forall x,y,z € X . Then d is called ametric on X and (X, d) is called
a metric space .
Example 1.3
Let X = [ . Define d by

d(x,y)=|x-y| (x,yeX).
Then d is ametric on X and (X ,d ) is ametric space .
This metric space is called the usual metric space .
Definition 1.15
Let (X, d ) be ametric space and x € X and Let r > 0. The set
B(x,r)={yeX:d(x,y)<r}.

is called an open ball with center x and radius r .
Definition 1.16
Let (X, d ) be ametric space. Asubset A of X is said to be open in
X if for each xe A there is r >0 suchthat B(x ,r)cA.

Definition 1.17

A subset A of a metric space ( X, d ) iscalledaclosedset in (X, d) if its
complement A s open in (X,d).
Examples 1.4

Let ([J, d ) be the usual metric space.

(1) Theempty set & and the universal set [J are open and closed .
(i) Let 0 ={1,2,3,...}. Then
052 (—01) U (12) U (2,3) U...

c
So [0 isopenand hence [ isaclosed set.



(iii) Let A:{l,é,
¢ 1 11
A =(ol)u@li)u(=2)u..u(0,x).
2 2 3
So AC is open and hence A isaclosed set.

(iv) [ is neither open nor closed .
c
Also, [1 is neither open nor closed .

(v) Let A=(13)u{5}.
Then A is neither open nor closed .
Theorem 1.20
(1) The intersection of any finite number of open sets in a metric space ( X, d )
IS open .
(i) The union of any collection of open sets ( finite or infinite ) in a metric space
(X,d) isopen.
Remark 1.3
An infinite intersection of open sets may not be open .
For example :

1 1
Let An = (—n—,n—) (n:1,2,3, )

Then A areopen sets.\We have

o0

~ 11
Ay =1 (-5 50)

={0}.

n=1

which is not open.
Theorem 1.21
(1) The intersection of any collection of closed sets ( finite or infinite ) in a
metric space ( X, d ) isclosed .
(1) The union of any finite number of closed sets in a metric space ( X, d ) is
closed .
Remark 1.4

An infinite union of closed sets may not be closed .

10



For example :
1 1
Let Fn = [n—, 1- n—] (n :1,2,3, ) .

Then Fn are closed sets . We have

which is not closed .

Definition 1.18
Let (X,d) and (Y, d ) be two metric spaces. A function

f:(X,d)— (Y,d) is called continuous at X, in X if for each € > 0

there exists & > 0 such that
d(f (x),f (xo)) < e for all d(x,x0)<5.

The function f is called continuous on X if it is continuous at each point

of X.
Examples 1.5
(i) Let f : 0 — [ be defined by

f(x)=2x+1.
Let X, X, e[ .Then

| £(x) —f(xe) | =](2x+1)- (2x,+1) |
=2 ‘ X — X, ‘
Thusif | x —x, | < &, it follows that
| F(x)—f(x,) | <265
Choose ¢ = % . Therefore
| F(x)—f(x,)]<e

Hence f is continuous on 0O .

11



(i) Let f : 0 — O be defined by
f(x) =sinx .
Let x,Xx, e[ .Then

| f(x) =T (x,) |

| sinx — sinx, |

IN

| X =X, |.
Thusif | x —x, | < &, it follows that
| f(x)—f(xy) | <5,
Choose o6 = €. Therefore
| f(x) -f(x,)|<e
Hence f is continuous on [J .
Theorem 1.22

Let (X,d) and (Y,d) be twometric spaces. Let
f.g:(X,d) — (Y, d) becontinuous functions . Then

f+g, f-g,af ,fg,gf(g;tO)

are continuous functions .

Theorem 1.23

A function f : 0 — 0O is continuous if and only if f _1(0) is open for every
open O in [ .

Definition 1.19

Let X be a non-empty set whose elements are called vectors and let K be the field
of scalars and in which two operations called addition and scalar multiplication are
defined. Then X is called a linear space ( or a vector space ) over K if for all

X,y¥,zeX and «, B € K the following axioms hold :

(1) (x+y)+z =x+(y+12z).
(i) xX+y = y+x.
(i) There exists 0 in X such that

X+0=x=0+ X,

12



( O is called the zero vector) .

(iv) There exists —x in X such that
X+ (=-x)=0=(-x)+x,
( —x is called the additive inverse of X ).

(v) a(x+y)=ax+ay.

(vi) (a+8)x = ax+pXx.
(Vi) (af)x = a(fx).

(viii) 1-x=x,
( 1 iscalled the multiplicative identity ) .
Examples 1.6 [5]

(1) Let 0" :{(xl,xz, cee s X ) X Xy, e X, eD}
= n - Euclidean space .
The addition on 0" is given by :
(Xgseoon X ) + (Yyoeeen V) = (Xg4+ Yy, ooy X0+ Y,)
The scalar multiplicationon 0" is given by :
a (Xg,.on Xy ) = (@ Xy,ooe, aXx, ),

forall (x,, X, ,..c, X, ), (Vy, ¥Yp,eeeh ¥, ) €0 and aell.

Then 0" isa linear space over [ .
(i) Let X be the set of all polynomials
a +a x +a2x2 +...+a x",
with coefficients a (i =1,2,..,n) fromafield K.
Then X isa linear space over K with respect to the usual operations of
addition of polynomials and multiplication by a constant .

(1ii) Let X be the set of all m x n matrices with entries from an arbitrary field K .

Then X isa linear space over K with respect to the the operations of matrix
addition and multiplication by a constant .

13



Definition 1.20
Let X, Y be linear spaces over the same field K. A mapping f from X into

Y iscalled linear if
(i)f(x+y)="Ff(x)+f(y) forall X,y e X,

(i) f(ax)=af(x) forall xeX,aekK,

or f iscalled a linear mapping if

f(ax+py)=af(x)+pf(y) (X,y eX, apfcK).

Examples 1.7
(iYLet f : 0" — 0 be defined by

f(x,y,z) =2x-3y+4z.
Let u = (a,.b.c) and v = (a,.b .c ).
Let el .Then
au = a(al,bl,cl)

= (aal,abl,acl).

Therefore
f(au) =f (aal,abl,acl)
= 2aa -3ab +4«ac
1 1 1
= a(2 a1—3b1+4c1)
=af(u),
and we have

f(u+v) =" (al+a2,b1+b2, cl+cz)
= 2(a1+ az)—3( b1+ b2)+4(cl+ CZ)
:(2a1—3bl+4cl)+(2a2—3b2+4cz)
=f(u)+f(v).

Thus f is a linear mapping.

14



(i) Let f :0° =0 be defined by

f(x,y)=xy.

Let u =(a,b).Then

f(u)="f(ab)
= ab,
and we have
f(au) =f(a(ab))
= f (aa,ab)
= (aa) (ab)
= a2 ab
+ af(u).

Thus f is not a linear mapping .

Definition 1.21

Let (f ) be asequence of functionsdefined on X . Then for each xeX

we define the limit superior and the limit inferior by

lim inf ( f_(x)) = nIi_njooinf{fk(x): k>n}

n — o

= sup inf{fk(x) ck>=n}
n
and

lim sup ( f (x)) = lim sup{fk(x) ck>n}

n — o

= inf sup{fk(x) :k>=n}

Notation
liminf ( f (x))= lim f (x)

n - o

lim sup ( f_(x)) = lim f_(x).

n — o

15



Examples 1.8
(i) Define f : 0 — [-1,1] by

f.(x) =sinnx.
Then
liminf f_(x)=-1,

and

limsup f (x)=1.

n — o

(ii) Define the sequence of functions ( f,) by

1 if n iseven
f (x) =
(%) _1 if n isodd.
n
Then
liminf f (x) =0,
and

limsup f (x) =1

n —ow

Theorem 1.24

Let (f_ ) be asequence of functions defined on X and x e X . Then

(i) liminf ( f (x)) < limsup ( f (x))

(i) liminf (- f (x))=—limsup ( f (x)).

Theorem 1.25

Let (f_ ) be asequence of functions definedon X and xeX .If

f(x) = nliﬂww f (x), then

f(x) = limsup f (x) = liminf f (x).

n —» o n — o

16



Example 1.9
Define f :0 — U by

X2

f,.(x) = —-
1+nx

X

Then lim f (x) = lim

n— o«
n — oo 2

= 0.
It follows from Theorem 1.25 that

liminf f (x) =0,

n — oo

and
limsup f . (x)=20.

n — o

Definition 1.22

Let X be anon-empty set. Anon-empty family F of subsets of X is called
a field if
(i) X, D eF

(ii) for each A e F,then ACeF

n
(iii) If A A ..., A eF then kL_Jl A, eF.

Examples 1.10
(i) Let X be any set and let F={@, X}.

Then F is afield (the smallest field of X).
(ii) Let X ={1,2,3}.

et F={@,X,{1}.{2,3}}.
Then F is afield.

(iii) Let X =[0,1].
Let F:{Q,X,[O,%],(%,l]}.
Then F is afield.

17



(iv) Let X =0 = the set of all natural numbers .
Let F={@,0 {1}, {2} {12} 0\{1},0\{2} 0\{1,2}}
Then F is afield.

Lemma 1.26

Let F be a field of subsets of X and let A,B € F. Then

A-B eF.
Lemma 1.27

n

Let F be a field of subsetsof X . If A, A, ..., A e F,then N A <F.
k=1

Remark 1.5

Let F1 and F2 be two fields of subsets of X . Then Fl U F2 may not be a

field .
For example :

Let X ={1,2,3}
Let F ={2,X,{1},{2,3}},
F ={9g,X {2} {1,3}}
Then F1 and F, are fields of subsets of X .
We have
F UFZ={®,X,{1},{2},{1,3},{2,3}}.
Thus F UF is not afield of subsets of X.

Definition 1.23
Let X be anon-emptyset. A non-empty family F of subsets of X is called
a o—field if

(i) X, OeF

(ii) foreach A eF , then ACeF

(i) If A (k el )eF, then U A e€F.

=1

Examples 1.11
(i) Let X be anon-empty set and let F={&, 6 X }.

Then F is a o-field (the smallest o - field of X ).

18



(i) Let X be the set of all real numbers. Let F=P(X).
Then F is a o-field (the largest o - field of X).

Remark 1.6

Every o - field is a field . In general, the converse is not true .
For example :

Let X =(0,1].
Let F be the class consisting of < and of all finite disjoint unions of the form

A=U(a,b] (0<a<b <1)
i=1
We have

(i) X, B eF.

(i) Let AeF.Then

A= (0a,]u(b,a,] U ..uU(b,1]eF.
(iii) Let (a,b], (c,d]eF.Then
(a,b]u(c,d]eF.
Thus F is afield.
Let A, = (0,1- - ]eF.

Then 0 A,

n=1

U (0,121

= (0,1) ¢F.

Thus F is not a o - field.
Lemma 1.28

Let F be a o-field of subsets of X and let A,B € F. Then

A-B eF.
Lemma 1.29

Let F bea o-field of subsetsof X . If A (nei) e F, then (] A eF.
n=1

19



Definition 1.24
Let A < X . Then the real-valued function X, X — {0,1} defined by

1 if xeA
ZA(X): ) c
0 if xeA

is called the characteristic function of A .
Example 1.12

Let X =0 andlet A=4{1,2,3,4}.

Then » (1) =2,(2)=x,(3) = x,(4) =1

while , for examples
2,(5) =0 2,(6)=0 g, (7)=0

Some properties of characteristic functions
Let A,B <X . Then

(i) 2, =0

(ii) If A < B, then X, <X

(i) z =1-x

A

(iv) x

A

ANB - ZA';(B

V) X5 =20 2,

(V) Zy e = X0 Y 2 X,

Remark 1.7
If ANB = ¢ ,then (vi) becomes

X

+
AUB x

=ZA B

More generally ,if nelJ and A1 N A2 N ...N A = ¢ then we have

:/’L/+Z +...+/f{/

A UA U.UA A Ay An

20



Definition 1.25

Let A < X.A simple function isa function ¢ : X — [ of the form
p(x)= 2 ax (x)
i=1 A,

where a ,a ,...,a e[ and y are the characteristic functionsof A.
A

Theorem 1.30

Let ¢, ¢, be simple functions.Then ¢ + ¢ is a simple function.

The following theorem is a generalization of Theorem 1 .30
Theorem 1.31
Let nell and let ¢, ¢ ,..., ¢ be simple functions.Then ¢ + ¢ +.. + ¢

n

is a simple function .
Lemma 1.32
Let ¢ beasimple functionand let « be aconstant. Then « ¢ isasimple

function .

The next corollary follows from Theorem 1.31 and Lemma 1.32.
Corollary 1.33

Let nell and let ¢, ¢,,.., ¢ be simple functions. Let a, o, .., a

be constants . Then a g +oa p+ .. +af is a simple function .

21



Chapter Two

Properties of the Lebesgue measure of a set

In this chapter, we give some properties of the Lebesgue measure of open and closed
sets. Also, we give some properties of the Lebesgue exterior measure and the Lebesgue

interior measure .
2.1 The Lebesgue measure of open and closed sets

The length of an infinite interval suchas (a, o) or (—oo,b ) of [ defined to be

oo While the length of a bounded interval of [1 is defined to be the difference between
two end points . We begin with the measure of a bounded interval of 0 which
agree with the idea of length .

Definition 2.1.1
Let I = (a,b)or ( (a,b],[a,b),[a,b]) be abounded subset of [ .

We define the measure ( the Lebesgue measure ) or length of 1 by

m(l)=D>b —-a.
Remark 2.1.1

It is clear that O <m (1) < oo. That is, the measure of abounded interval 1

of 0 isanon-negative real number.
Examples 2.1.1
(i) m((=5.3)) =
(i) m([2,2)=2-2- 2
(i) m({x :y2 <x<{y3})=m((J2,y31])
_ 3 -2

(iv) Let S=[-1,1)U(0,2].

22



Then S=[-1,2].
So m(S)=m([-1,2])
= 2-(-1)
= 3.
The next lemma gives us some sets which have measure zero .

Lemma2.1.1
(1) The measure of an empty set & iszero. Thatis, m( @) =0.

(i) If Alisasingleton set, then m(A)=0.

Proof
(1) We have g =(a,a) = (a,a]l=1[a,a).
So
m(2)=m((aa))
—a-a
=0.

(ii) Let A be asingleton set. Then A={a} (acA).
We have {a}=[a,a].
Therefore m({a}) =m([a,a])

=a-—-a
=0.

Definition 2.1.2

Let S be anon-empty set such that S = LnJ | , where T DL

i=1 |
pairwise disjoint intervals . We define the measure of S by

m(S)=m(U 1)

:m(ll)+m(I2)+...+m(In)

n

> m(1).

i=1
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Remark 2.1.2
It is clear that 0 < m(S) < oo.

Examples 2.1.2
i _r1 1 1
(i)Let S =] g,E—)lJ[ E,1).
Then

m(s)=m([;.;)Ul;.1))

=m(l;.;))+m([;.1))

(ii) Let S=(-2,-1)U(0,1)u(2,4).
Then

m(S)=m((-2,-1)U(0,1)U(2,4))
=m((-2,-1))+m(((0,1))+m((2,4))
= (-1+2)+(1-0)+(4-2)
=4

(iii) Let S={xe :4< x <9}
Then

S=[-3,-2]1U[2,3].
So

m(S)=m([-3,-2]U[2,3])
=m([-3,-2]) +m([2,3])

=(-2-(=3))+(3-2)

= 2.
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In the next definition, we extend the idea of the measure of an open interval to
the measure of an open set .

Definition 2.1.3

Let G be anon-empty bounded open set of real numbers such that

G=U I,
i=1 |
where Ii are pairwise disjoint open intervals .

The measure of G is defined by

m(G)=m(CU I)

Remark 2.1.3

It is clear that 0 < m(G) < .

Example 2.1.3

Let G=J{x:—5<x< 11
k=1 2 2

Then G is abounded open subset of (0,1).

We have
3
I = — < x<1
1 4
3
I = - <x< =
2 8 2
3 1
l,= — < Xx< —.
16 4

So we have
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and so we have

Thus

m(G):m(kqll )

k

= i m(Ik)
K=1

= lim ) m(l )

n —w K=1

— n|Lnl(m(|l)+m(I2)+...+m(In))
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. 1 1 1 1 1 1 1
= lim I n)
T2 02 2 4 208 2

. 1 1 1 1
=lim (=2 (=+=>+=+ +—n))
no 2 2 4 8
=1Iim(1+3+3+. +ln)

2 now Y2 48

1 14K
=2 lim > ()

n‘)wkzl

Il
N |-
~
I\)‘I—‘
N

N

Thus m(G)

N |-

Theorem 2.1.2
Let G1 and 62 be disjoint bounded open sets. Then

m(Glu GZ) = m(Gl) + m(GZ).
Proof

Let Gl be abounded open set.Then

®
Il
18

Il ,where I Nl =a,i#]j.
i i j

Let G2 be abounded open set. Then
Ii’, where Ii’m IJ{ =g ,1# ],

where G1 and 62 are disjoint bounded open sets and Ii , Ii’ are pairwise disjoint

open intervals . Then
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We have

m(G,UG,) =m((U1)u(UI)

=m(U (1 u1))

1 =1
0

Zm(liuli’)

i=1

2MUJ+MHH

zimug+imug

1=1

=m (Gl) + m(GZ).
Hence
m(Glu GZ) = m(Gl) + m(GZ).

Theorem 2.1.3
Let Gl,GZ, ..., G be disjoint bounded open sets. Then

m(iL:jl Gi): Z m(Gi)'

1=1
Proof
We use mathematical induction .
Let n=1.Then m (G )= m (G ) istrue.
Let n=k .Then

k

k
m(U G) = m(G)
1= i=1
=m(G)+m(G)+..+m(G,).
We will show that it is true for n = k + 1.

We have

k+1
m(_Ul G)=m((GUG,U..uUG)uUG,,,)
i =
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=m(G,uUG,Uu..uUG,)+m(G,,,)( Theorem 2.1.2 )

=m(G)+m(G)+..+m (G, )+ m(G,,,)

k+1

= > m(G,).

i=1

Hence it is true for n. That is, we have

n

m(iL:nJl Gi)= Z m(Gi)'

1=1

Theorem 2.1.4

Let G ,G_,.. and U G _ be bounded sets.Let G ,G_,... be disjoint open
1 2 no n 1 2

=1
sets. Then

o0

m(@ G ) = Zm(Gi)'

= i=1

Proof

Let G = fj | " where { I_n}isthe family of pairwise disjoint open intervals of
i=1 ! !

G . Then
m(0 G)=m(U0 (U 1))
- i m(igl I'n)
= > m(G,)

Theorem 2.1.5 [ 2]
Let G1 and G2 be bounded open sets and G cG,. Then
(i) m(G, ) <m(G,)
(i) m(G, -G ) =m(G,) - m(G)).
Remark 2.1.4

Let G be abounded open set in [a, b]. Then
m(G) <b-a.
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Theorem 2.1.6 [ 2]
Let G1 and 62 be bounded open sets. Then
m(G, UG,) =m(G ) +m(G) -m(G NG)).
Theorem 2.1.7 [ 2]

Let G ,G_,.. and U G_ be bounded sets.Let G ,G _,... beopen sets. Then
1 2 no1 n 1 2

o0

m(U G )< m(G).

= i=1

Lemma 2.1.8

Let I be abounded openinterval and a <l . Then

m(l+a) =m(l).

Proof
Let 1 =(A,B)and ael].Then
l+a=(A,B)+a
=(A+a,B+a).
Trerefore

m(l+a)=m((A+a,B+a))
=(B+a)-(A+a)
=B - A

=m(l).
Theorem 2.1.9

Let G bea bounded open set and a<(].Then
m(G+a) =m(G).

Proof
Let G bea bounded open set. Then

G=0 1.

i=1 |

where | are pairwise disjoint open intervals.
|
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Let ael. Then G + a isabounded open set.

So we have

o0

m(G+a)=_Z m(l +a)

1=1

i m(l) (Lemma 2.1.8)

=m(G).
Definition 2.1.4
Let F be anon-empty closed set contained in [a, b ]. We define the measure of
F by

m(F)=(b-a)-m(F"),

where FC: [a,b] \ F.
Remarks 2.1.5
(1) Note that, if F is a non-empty closed set contained in [a, b ], then
0<m(F) < .
(i) It follows from Definition 2.1.4 that

m([a,b]\F)=m([a,b]) - m(F).

Examples 2.1.4
(i) Let F =[ 3, 5] be aclosed set contained in [1,7].

Then
FC o (1,3)U(5,7).
So
m(F)=(b-a)-m(F")

=(7-1)-m((1,3)U(5 7))

=(7-1)

(m((1,3)) +m((5,7)))

=(7-1)-((3-1)+(7-5))
=2.
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(ii) Let F =[ 0, 1] beaclosed set contained in [-1, 1].
Then
m(F)=(b-a)-m(F")
=(1-(1))-m((-1,0))

=(1-(-1)) -(0-(-1))
=1
Lemma 2.1.10 [ 3]

Le F beaclosed subsetof anopenset G of [a, b].Then

m(F) <m(G).
For the next lemma, we give another method of the proof .
Lemma 2.1.11
Let F.F c [a, b]. Let Fl be a closed subset of a closed set F2. Then
m(Fl) < m(FZ).
Proof
Let F . F be closed setsin [a, b]. Then [a, b]\ F and [a,b]\ F, are

open . Since F cF .so [a,b]\F <[ab]\F.

Then
m([a,b]\ FZ) <m([a,b]\ Fl) ( Theorem 2.1.5 (i)),

and hence by Remark 2.1.5 (iii ), we get
m([a,b]) - m(FZ) <m([a,b]) - m(Fl).

So
b—a—m(Fz)sb—a—m(Fl).

It follows that
-m(F) < -m(F).
Hence
m(F ) <m(F).
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Lemma 2.1.12

Let G be an open subset of a closed set F of [a, b]. Then

m(G) <m(F).
Proof

Let G bean open subset of aclosed set F of [a,b].Then G and [a,b] \ F

are open and disjointsets. So G v ([a,b] \ F ) isopen.

We have
Gu ([a,b]\F)c (a,b).
Therefore
m(Gu([a,b]\F))<m((a, b)) ( Theorem 2.1.5 (i)).
So

m(G)+m([a,b]\F) <m((a,b)) ( Theorem 2.1.2).
Since m([a,b]\F)=m([a,b])—-m(F),itfollows that

m(G)+ m([a,b])-m(F) <m((a,b)).
We have
m([a,b])=m((a,b))=Db-a.
It follows that
m(G)+(b-a)-m(F) <b-a.

Hence
m(G) <m(F).

2.2 The Lebesgue exterior measure

If E isanopen setor closed set, then we have defined its measure as sum of lengths
of intervals. Butif E is neither open or closed , we can not define its measure by the

above method . However, we can define its exterior measure as follows :
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Definition 2.2.1

Let E — [a,b ] We define the Lebesgue exterior measure or simply exterior
measure of E, denoted by m*(E ) by :
m(E)=inf{m(G):G isopenand E = G}
Remarks 2.2.1
(1) Let G beanopenset and E =G . Then
m(E)<m(G).
(ii) Let G be abounded open set in [a, b]. Then
m(G) <b-a.
It follows from (i ) that
0<m"(E) <b -a.
Hence m"( E) is finite and exists .
Example 2.2.1
let E=Qn[0,1]
= the set of all rational numbers between 0 and 1.

Let e>0 and let { g, : i €N } be the set of points of E . Then there is an open

interval of length % contains g _and there is an open interval of length % contains

q,. Ingeneral, there is an open interval of length in contains ¢ .
2

We have chj I, and G I, isopen.
i=1 i=1

It follows that
m*(E)<m(U I,)( ByRemark2.2.1(i))
i=1
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Thus m*(E) < e.
Since e is an arbitrary positive number, so

m*(E )= 0.
Lemma 2.2.1

Let a beareal number. Then m*({a}) =0.
Proof
Let € >0. Then
{a}c (a-¢, a+e).
Thus
m'({a})<m(a-¢, a+e)
=(a+e)-(a-e)
=2e.

Since e is an arbitrary positive number, so

m*({a}) =0.
Theorem 2.2.2

If E is an openset, then m"(E) = m(E).

Proof

Let E be an openset.Then

m(E)<m(E) — (i)
Let G be open and E < G.Then
m(E) <m(G) ( Theorem 2.1.5 (i)).
Taking infimum of both sides over E < G.Then we have
m(E)sinf{m(G) : G is open and E < G}.

Thus
m(E) <m"(E) — (ii)

It follows from (i) and (ii) that

m(E) =m(E).
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Examples 2.2.2
(1) Since < is anopen set, it follows from Theorem 2.2.2 that
m(g)=m(a).
Wehave m(@)=0 ( Lemma2.1.1 (i) )andhence m*(@) = 0.
3 1
2“1 <X < P }
Then G is abounded open subset of (0,1).

(ii) Let G = O{x ;
k=1

Wehave m(G) = i ( Example 2.1.3 ).

Therefore m*(G) = m (G ) (Theorem 2.2.2)

N

Theorem 2.2.3

Let E ,E < [a b] If ElcEZ,then
m*(E ) < m(E)).

Proof

Let

s={m(G):Gisopenand E G}
and

T={m(G):Gisopenand E <G}

Let m(G)eT .Then G is open and G SE,.

Since E c Ez,itfollows that G o EoE, andso G o E..

Hence m (G ) eS . Therefore T < S which implies inf (S) <inf (T ).
Thus m*(El) < m*(EZ).

Theorem 2.2.4
Let Ec [a,b] and ael] .Then

m*(E+a) =m"(E).
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Proof

Let € > 0. There exists an open set G containing E such that
m(G)<m"(E) +e.

Let ac) . Then E+a cG+a.

So
m*(E+a)

IA

m*(G +a ) ( Theorem 2.2.3)

m(G+a ) (Theorem 2.2.2)

m(G) (Theorem 2.1.9)

<m"(E)+e.
Since e is an arbitrary positive number, so
m*(E+a) <m"(E) — (i)
Replacing E by E+a and a by —a in (i), we get
m*((E+a)—-a) <m*(E+a).

Therefore
m(E) <m"(E+a) — (ii)

It follows from (i) and (i) that
m*(E+a) =m"(E).

Propostion 2.2.5

Let E.E, [a,b]. Then

m” (E,JUE ) + m” (E,NE,) < m*(E1)+m*(E2)..
Proof

Let € > 0. There exists an open set G and E =G such that
* S
m(G)<m (E1)+§'

Also, there exists an open set H and E,cH such that

m(H)<m*(E2)+§.
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Then EluEngUH and ElmEZgGmH.

Wehave G NH and GUH are open.
Therefore

m(G)+m(H)<m*(El)+m*(E2)+e.
We have

m(G)+m(H)=m(GUH)+m(GnH) (Theorem2.1.6).
So
m(GUH)+m(GﬂH)<m*(E1)+m*(E2)+e,
and hence
m” (E,UE,) + m” (E,NE,) < m*(E1)+m*(E2)+e.
Since e is an arbitrary positive number, so
m” (E,UE,) + m” (E,nE,) < m*(E1)+m*(E2).

Theorem 2.2.6

Let E .E, ,....E, be bounded sets. Then
n n
m (UEk)SZm(E)
k =1 k =1
Proof

The proof is by inductionon n.

Theorem 2.2.7

0

Let E ,E ,... and [J E_ be bounded sets. Then
1 2 o1 n

0

m*(@ En)sz m*(E ).

Proof

Let € > 0. Then for each E_(n=1,2,3,...), there exists an open set G_ and

En cGn such that
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m(G, )< m'(E,) +€_n.

2
We have |J E < |J G, and |J G, is open.
n=1 n=1 n=1
Then  m*(|JE)<m(UJG,)
n=1 n=1

n=1
:im*(En)+ei -

n=1 n=1 2
= i m(E ) +e

n=1

Thus m*(o En)si m'(E ) +e.
n=1

n=1

Since e is an arbitrary positive number, so
m (U E,) <X m(E,).
n=1 n=1
2.3 The Lebesgue interior measure

Definition 2.3.1

Let E < [a,b]. We define the Lebesgue interior measure or simply interior
measure of E, denotedby m (E ) by :
m(E)=(b-a)-m(E")
where EC: [a,b]\E.
Remarks 2.3.1

(i)Since 0<m (E C) < b - a, it follows that
0<m (E)<b-a.

Hence m_( E ) is finite and exists.
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(11) It follows from the definition of an interior measure that
m (E°)=(b-a)-m(E)

(iii) Let E=1[a,b]. Then

m.([a,b]) =m([a,b])

Example 2.3.1

Let Gzo{x: il <x<%}.
k=1 2 2

Then G is a bounded open subset of (0,1).

Wehave m*(G) = i ( Example 2.2.2 (ii)).
Therefore m (G) = (1-0) — m™(G C)

1
= (1-0) -

N |

Thus m*(G):%.

Theorem 2.3.1
Let Ec [a,b] and ael .Then
m (E+a) =m_(E).
Proof
Let I be abounded open interval containing E .

Then Ecl and E+acl +a.

So
(IVE)+a=(l+a)\(E+a).

Therefore
m*((l+a)\(E+a))=m™"((1 VE) +a)

=m"(1 \ E) ( Theorem 2.2.4).
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We have
m(E+a)=m(l+a)-m'((l+a)\(E+a))
=m(1)-m((1+a)\(E+a))( Lemma 2.1.8 )
=m(1)-m(1\E)

:m*(E).
Theorem 2.3.2
Let E ,E_c [a,b].If E cE_,then
1 2 1 2

m*(El) < m*(EZ).
Proof
Let El, E2 c [a, b]. Then

m,(E,)=(b-a) - m'(E,)
m,(E,)= (b -a) - m*(E,).
let EcE .Then E‘c E . So
1 2 2 1

m”*( E:) < m*( Elc) ( Theorem 2.2.3),
and hence
Cc C
-m°(E )<-m'(E)).
It follows that

(b-a)-m'(E )< (b-a)-m(E,)
Thus
m (E ) <m(E)).

Proposition 2.3.3
Let El, E2 c [a, b].Then

m*(El) + m*(EZ) < m*(Elu EZ) + m*(Elm EZ).
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Proof
Let E.E, c [a,b]. Then
m,(E,) = (b -a) - m"(E, )

m,(E,) = (b—a) - m"(E.),
and
m,(E,UE,)=(b-a) -m((E,UE)).
We have
m” (E,UE,) + m” (E,NE,) < m*(E1)+m*(E2)

( Proposition 225 ) — (1)
Replacing El, E2 by ElC : EzC respectively and Elu E2 by (ElU Ez)C and
Elm E2 by (Elm EZ)C in (1), we obtain

m((E1UE2) )+m((ElﬂE2) ) < m(E1)+m(E2).
It follows that

(b-a)-m(EUE)+(b-a)-m(EMNE)<(b-a)-m(E)

+ (b-a)-m(E))
and so

- m*((Elu Ez) ) — m*(Elm E2) < - m*(E1 ) — m*(EZ).
Hence
m*(El) + m*(Ez) < m*(ElU Ez) + m*(Elm EZ).

Theorem 2.3.4 [ 7]
Let Ec[a,b]. Then

m (E) =sup{m(F): Fisclosed and F c E }.

Theorem 2.3.5
If F is aclosed set, then m (F)=m(F).
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Proof
Let F be aclosed set. Then
m(F)<m_(F) — (i)
Let H be closed and H < F . Then
m(H)<m(F) (Lemma 21.11).

Taking supremum of both sides over H — F . Then we have

sup{ m(H ) : H isclosed and HcF } < m(F).
Thus

m(F)<m(F) — (ii)
It follows from (i) and (ii) that
m(F)=m(F).
Examples 2.3.2
(i) m (D)=m(J).
Since m(J)=0,s0 m ()= 0.
(i)ym ({a}) =m({a})
Since m({a})=0,s0m ({a})=0.
Theorem 2.3.6
Let Ec[a,b]. Then
m(E)<m (E).
Proof
Let G be an open set containing E and let F bea closed subset of E .
Wehave Fc Ec G .Then
m(F)<m(G) ( Lemma 2.1.10 ).
That is, m (G) is an upper bound of the family { m ( F )}FCG .
We have

m (E) =sup{m(F): Fisclosed and F c E } ( Theorem 2.3.4)
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AN

<sup{m(F): Fisclosed and F =G }

m(G).

Thus
m (E)<m(G).

Taking infimum of both sides over E < G.Then we have
m (E)<inf{m(G):G isopenand E =G}
-m (E).
Hence m (E) < m*(E).

Theorem 2.3.7 [ 7]

Let F.F ... F. be pairwise disjoint bounded closed sets. Then
n

m(U Fi):im(Fi ).
Theorem 2.3.8
Let E.E, . ... E_ be pairwise disjoint bounded sets. Then

n

z m.(E)<m (UJE)

Proof

Let € > 0. Then for each E (n=1,2,3,..), there exists a closed set F_ and
F < E_such that
n n
S
m(F )>m(E ) - 2—n

Then the sets F_are pairwise disjoint closed sets .

We have
k

K k
U F c U E and [JF s closed.
n=1 n=1

n=1

So
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k
D>, m(F ) ( Theorem 2.3.7 )

n=1

k
2 (m.(E) - )

\Y

k

S
Zm*(En)_eZ n -’

n=1 n=1 2

Thus

and hence

Kk k
> m(E )y<sm (JE,)+e
n=1 n=1

Since e is an arbitrary positive number, so we have

Zm*(En)Sm*(UEn).
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Chapter Three

Properties of the class of measurable sets

Our goal in this chapter is to give some properties of the class of measurable sets. We

also obtain some useful characterizations of measurable sets.
Definition 3.1

Let E < [a,b]. Then E is called measurable if
m"(E)=m_(E),
andwewritt m*(E) =m (E)=m(E).

We give some examples concerning measurable sets.

Examples 3.1
(1) We have
m(a)=0 ( Lemma21.1 (i))
m*(@)=0 ( Example22.2 (i) )
m (@)=0 ( Examples 2.3.2 (i) ).
So

m(d)=m(J)=m(J)=0.

Hence & is measurable .

(1) We have
m({a})=0 ( Lemma2.1.1(ii))
m*({a}) =0 ( Lemma 221)
m ({a}) =0 ( Examples 2.3.2 (ii) ).
So

m({a})=m'({a})=m({a}) =0
Hence { a } is measurable .

3 1
+1 2k—l }

— < X<
2

(iii) Let G = O{x :
k=1
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We have

m(G)= ( Example 2.1.3 )

L
2

m'(G) = % (Example 2.2.2 (ii)),
and

m (G) (Example 2.3.1).

So
m(G)=m"(G) =m_(G)

Thus G isa measurable set .
Remark 3.1

A subset of a measurable set may not be measurable, see , for example [7].

Theorem 3.1
Let E < [a,b]. Then E is measurable if and onlyif E Cis measurable .

Proof
Let E be ameasurable set. Then m*(E ) = m_(E).

We have
c . c.c
m(E )=(b-a)-m((E ) )

—(b-a)-m'(E)
—(b-a)-m(E)
—(b-a)-((b-a) —m"(E"))

m*(E ).

C .
Hence E is measurable .

c
Conversely, let E be a measurable set. Then

* C Cc
m(E )=m(E ).
We have

m(E)=(b-a)-m(E")
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—(b-a)-m(E")

—(b-a)-((b-a)-m(E))
=m*(E).

Thus E is measurable.

Theorem 3.2

Let E < [a,b] and let E be ameasurable set.Then

m(E)+ m(E )=b-a.
Proof
Let E be ameasurable set. Then
m(E)=m"(E)=m(E).

c
Since E is ameasurable set ( Theorem 3.1), it follows that

m(E)=m'(E)=m(E").

We have

m(E)=(b-a)-m(E")
and hence

m(E)=(b-a)-m(E").
Thus

M(E)+m(E ) =b-a.
Lemma 3.3

Let E < [a,b]. If m"(E) + m*(EC) < b —a,then E is ameasurable
set .

Proof

Let m*(E)+ m* (E )<b—a.

Then
m (E)<b-a—-m(E")
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:m*(E).

So m*(E)<m_(E). We have
m (E) <m"(E) (Theorem 2.35).
Thus m* (E)=m_(E).

Hence E is a measurable set.

Theorem 3.4

Let E bea measurable set and a1 .Then E + a is measurable and

m(E+a) =m(E).
Proof

Let E be a measurable set. Then
m'(E)=m (E)=m(E).

Let E < [a,b] and aell .Then

m*(E+a) = m*(E) (Theorem 2.2.4),
and

m (E+a)=m_(E) (Theorem 2.3.1).

So we have
m'(E+a)=m(E+a).

Thus E + a is measurable and
m'(E+a)=m(E+a)=m(E+a),

and hence
m(E+a) =m(E).

Theorem 3.5
Let E, and E, be disjoint bounded measurable sets. Then E.UE s

measurable and

m(EluEz):m(E1)+m(E2).
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Proof

Let E ,E < [a,b]. Let E and E, be measurable sets.

Then
m(E )=m(E)=m(E).
and

m(E,)=m(E,)=m(E).
By definition of interior measures of E and E,. we have
. c
m(E )=(b-a)-m(E )

. c
m*(Ez):(b—a)—m(Ez).
It follows that

m*(E,)=(b-a)-m (E,)
—> (1)
m*(E,)=(b-a)-m (E,).

We will show that E UE is measurable . That is, we show that
m*(ElU EZ) =m( ElU Ez).
Weknowthat m (E UE ) <m’(E UE_ ) (Theorem236).
It remains to show that
m™( E,UE )<m(E UE)).

c c
Let > 0. Then there exist open sets G1 - El and GZD E2 such that

(S

m(G,) <m'(E,) + <

— (2)

m(Gz)<m*(EZC)+E.

c C
We have ElmEZ:Q.So E VE = [a, b].
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c c
Since there exist open sets Glz El and G23 E2 , it follows that
c c
E UE =G uG ,
1 2 1 2
and hence
(a,b)c[a,b]cGluGz,
and so we have
(a,b)c=G UG, .

So

m((a,b)) =m (G uwG)) ( Theorem 2.1.5(1) ).
Therefore

b-a<m(GuG)).
Thus

—m(GluGz) < —(b-a).
Since

m(G UG,))=m(G )+ m(G)-m(G NG,) ( Theorem 2.1.6),
which implies
m(Glﬂ Gz) = m(Gl) + m(Gz) - m(GlU Gz).

So we have

m(Glﬂ GZ) < m(Gl) + m(GZ) — (b -2a).
Since Elcﬂ EZC c Gl N Gz,sowe have

C c C
m'((E,UE,) )=m"(E NE)

IA

m (G, NG, ) ( Definition of m™)

< m(Gl) + m(GZ) — (b —-a).
It follows from (2) that

m'( (E,UE,))

IN

(m*(E) )+ =)+ (m(E)+ S)-(b-a)
- m"(E_ )+ m"(E,) - (b-a)+e.

Since € is an arbitrary positive number, so
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C C C
m*((E1U EZ) ) < m*(E1 ) + m*(E2 ) — (b -a),
or
C C C
(b —-a) —m*(E1 ) —m*(E2 ) S—m*((EIU Ez) ) = (3)
We have
m*(Elu E)) < m*(El) + m*(EZ) ( Propostion 2.2.5).

It follows from (1) that

m*(E,UE,) < (b-a) -m(E )+ (b-a)-m(E, )

IA

— (b-a)+((b-a)-m"(E )-m(E.)).

It follows from ( 3) that

x . c
m(EUE )<(b-a)-m((EUE)) )
= m*(ElU EZ).
Thus
m*(ElU E,)<m(E UE)).
and hence

m (E1U E2)= m*(Elu Ez).

Thus ElU E2 is measurable .

We have
m(E UE)) = m*(EIU E,)
< m*(El) + m*(Ez)
= m(El) + m(EZ).
So

m(ElU Ez)sm(El) + m(Ez).

Also , we have
m(E1U E2)=m*(E1U EZ)
> m*(El) + m*(EZ) ( Propostion 2.3.3)

= m(El) + m(EZ).
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So
m(E1U E2)2 m(El) + m (E2).
Therefore

m(E1U Ez)s m(El) + m(EZ)s m(ElU EZ).
Hence

m(EluEz)zm(E1)+m(E2).

We shall use the following remark in the next theorem .
Remark 3.2

Let E.E,. ... E be measurable sets. Then
m(E)=m(E )=m(E)
m(E,))=m(E )=m(E)),
and so we have
m(E )=m(E )=m(E_).
Then
n
> m*( Ei) =m"(E )+ m"(E,) +..+m(E )
i=1

:m(El)+m(E2)+...+m(En)
:i:m(Ei).

Also, we obtain i m_ ( Ei): > m (E.).

i=1 i=1

The following Theorem is a generalization of Theorem 3.5.
Theorem 3.6

n
Let E, E,, ..., E, be disjoint bounded measurable sets. Then U E. i
i=1

measurable and

m(.L_J Ei):_im(Ei).
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Proof

n
It follows from induction on n that U Ei is measurable .
i=1

Thatis, m*( Lnj Ei) = m*(iLiJl Ei) = m(iLZJl E).

i=1

We have
i m*( Ei ) = i m*(Ei ) = i:m(Ei).
Since
m”* ( LnJ Ei) < i m*(Ei) ( Theorem 2.2.6 ),
and 7

It follows that

n

Sm(e)<m(UE)<Y m(E)

i=1 i=1 i=1

Thus

n(UE)-3 m(E,)

i=1 i=1
Theorem 3.7

Let E.E, ... and U Ei be bounded sets. Let E.E, .. be disjoint bounded
i=1

o0
measurable sets. Then U Ei is measurable and
i1

m(O Ei):ZZm(Ei).

Proof

n
For every n, U Ei iIs measurable ( Theorem 3.6 ).
i-1

Then

n

> m(E) =Y m(E)

i=1
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=m( LnJ Ei) ( Theorem 3.6 )

i=1

:m*(.L[j_J1 Ei)

IN

Since n is an arbitrary, so

We have

It follows that

So

We have

Therefore

o0
Hence U E. is measurable .

1=1
Now, we put

and

m, ( O E. ) ( Theorem2.3.2).

i=1

i m*(Ei)Sm*(_Cj Ei)
m*(D E )< i m*(Ei) ( Theorem 2.2.7).
m*(_o Ei)s.i m*(Ei)g m([oj Ei) — (1)
m*(D E )< m*(_o E)
m, (0 Ei)s m*(o Ei) ( Theorem 2.3.5) .
m*(_u E)= m*(_U E.)
m(UE)=m(UE)

i m*(EI :_i m(Ei)

m (U E)=m(UE)

1 =1

i=1
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in (1), then we get

m ( fj i m(UE,).

i=1

Thus

3
CS

i m(E,).

I 1

Proposition 3.8 [ 18 ]

Let E1 and E2 be measurable sets. Then
C
m*(E NE,))+m"( ( E N EZ) ) < b -a.
Corollary 3.9

Let E, and E, be measurable sets. Then E N E, is measurable.

Proof

Let E1 and E2 be measurable sets. Then
C
m* (E NE))+m( ( E. N EZ) ) < b —a (Proposition 3.8 )
It follows from Lemma 3.3 that Elﬂ E2 is measurable .

Corollary 3.10

n
Let E .E, . ...E, be measurable sets. Then ﬂ Ei is measurable .
i=1
Proof
Let E. be measurable . Then EiC is measurable ( Theorem 3.1).
n c n c ¢
U E, is measurable ( Theorem 3.6 and hence (U E. ) s
i=1

i=1

measurable . We have

n
Hence ﬂ E. is measurable.
i=1
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Corollary 3.11

Let E . E, ... be measurable sets. Then ﬂ Ei is measurable .
i=1

Proof
Similar to the proof of Corollary 3. 10.
Corollary 3.12
Let El and E2 be measurable sets and E1 c E2 . Then
m ( El) <m (EZ),
Proof
Let El and E2 be measurable sets and Elc Ez.
We have
E2= Elu (E2\E1).
So
m(Ez):m(Elu (EZ\El))
=m ( El) + m( E2 \ El) ( Theorem 2.1.2).

Since m ( E1 ), m( E2 ), m( EZ\ El) are positive , so we have

m(E,)=m(E),

or
m(El)s m(EZ).

Corollary 3.13

Let E, and E, be measurable sets and E c Ez.Then E2\ E. is measurable and
m(EZ\El) = m(EZ)—m(El)_

Proof

Let E1 and E2 be measurable sets and Elc EZ.

We have
C
EZ\E1 = EzﬂEl )

) ) C.
Since El is measurable , so E1 is measurable.
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C
Thus E2 N E1 is measurable ( Corollary 3.9).
Hence E,\ E is measurable .

We have
m(E)) = m((Ez\El)uEl)

m(EZ\El)+m(E1).
Hence
m(EZ\El)zm(Ez)—m(El).

Corollary 3.14

Let Eland E, be measurable sets. Then Ez\ E. and El\ E, are measurable .

Proof
Let E and E, be measurable sets.
We have
E,\E, = E \(E NE).
Since E, and E, are measurable , so E1 N E2 is measurable ( Corollary 3.9 ).

Thus E2 \ ( E1 N E2 ) is measurable ( Corollary 3.13 ).
Hence E \ E is measurable .

In the same way, we can prove that E \E, is measurable .
Theorem 3.15

If m*(E) = 0,then E isa measurable set.

Proof

Let m*"(E) = 0.

Since m_(E ) < m"(E ) (Theorem2.36), so

0<m(E)<m'(E)=0.

Therefore
0 < m*( E)<O0.
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Therefore m (E) = 0. It follows that
m(E)=m"(E) =0.

Hence E is measurable .

We state and prove the next two lemmas .
Lemma 3.16
If m*"(E) =0 and AcE , then E — A is measurable.

Proof
Since E — A < E, sowe have

m(E-A) <m"(E) (Theorem2.2.3).
Let m*(E ) = 0.Then

m°(E-A) <0,
and so we have

0<m(E-A) <0
Thus
m(E-A)=0.

It follows from Theorem 3.15 that E — A is measurable .

Lemma 3.17

Let E be ameasurable set and Ac E. If m (E—-A) = 0,then A is
measurable.

Proof

Let E be ameasurable set and Ac E.
Let m*( E-A)=0.Then E - A is measurable ( Lemma 3.16 ).

c
Then (E — A) is measurable ( Theorem3.1 ).

We have
c
A=En(E-A) .

Thus A is measurable (Corollary 3.9) .
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Theorem 3.18 [ 18]

A bounded interval of 0 is a measurable set.

Theorem 3.19

(1) Every bounded open set isa measurable set.

(11) Every bounded closed set is a measurable set.

Proof
(1) Let G be abounded open set. Then

0

G=U I,

i=1 !
where | are pairwise disjoint open intervals.
|

Then Ii IS measurable ( Theorem 3.18) and G Ii is measurable
i=1

( Theorem 3.7 ) . Hence G is measurable .
C
(ii) Let F be abounded closed set. Then F is open and it follows from (i) that

c
F is measurable.So F is measurable .

Examples 3.2

(i) Since (a,b) isabounded open set, it follows that (a, b) is measurable

(Theorem 3.19 (i)).

(ii) Since A =[1,2] {3} isabounded closed set, it follows that A is
measurable ( Theorem 3.19 (ii)).
Propostion 3.20
Let E be ameasurable set. Then foreach e > 0, there exists an open set G o E
suchthat m (G -E) < e.
Proof
Let E be ameasurable set and let G be an open setsuchthat E =G . Then G is

a measurable set ( Theorem 3.19 (i)).
It follows that G — E is a measurable ( Corollary 3.13) .
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Let € > 0. There exists an open set G o E such that
m(G)<m*(E) +e.
Since E isameasurable set, so m*( E)=m(E)=m(E).
Therefore
m(G)<m(E) + e.

Let G be abounded open set of real numbers . Then

G=U I,
1=1

where | are pairwise disjoint open intervals .
I

We have

m(U Ii ) <m(E) + e,
and so -

i m(Ii)< m(E) +e.
Hence -

i m(Ii)—m(E)<e.
Thus -

m(G-E)=m(G) —m(E) (Corollary 3.13)

:im(li) -m(E)

< €.
Propostion 3.21
Let E bea measurable set. Then foreach e > 0, thereexistsaclosed set FcE
suchthat m(E-F ) < e.
Proof
Let E beameasurable set andlet F be aclosed setin E.Then F isa

measurable set ( Theorem 3.19 (ii)).

It follows that E — F isa measurable ( Corollary 3.13) .
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Let € > 0. There exists a closed set F< E such that
m(F)>m(E) - e
Since E isameasurable set, so m*( E)=m(E)=m(E).
Therefore
m(F)>m(E) - e
Let F be abounded closed set. Then

k
F=U F,
i=1 |
where Fi are pairwise disjoint closed sets .
We have
k
m(UF)>m(E)-¢g,
i=1 !
and so
k
> m(F)>m(E)-e
i-1 :
Hence
k
m(E)-> m(F)< e
i=1 '
Thus

m(E-F)=m(E) - m(F) (Corollary 3.13)

k
=m(E) - m(F)

i=1

< €.

Theorem 3.22

Let E.E.E . .. be measurable sets such that EDESE 5. and

m(El) < oo. Then

m(ﬁ Ek): lim m(E ).
K=1 n— o

Proof
Let E = E . We have
NE
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E-E=(E-E)U(E -E)U.

1
Then El — E2, E2 — Eg, ... are disjoint measurable sets .

So we have
m(El—E): m(El—E2)+m(E2—E3)+...
Since E oE,E oE ,E oE_,.. itfollows that
1 1 2 2 3
m(E)-m(E)= > m(E -E_)

k=1
n-1
= lim > m(E -E_ )

n — o« K =1

lim (m(El)—m(E2)+m(Ez)—m(E3)+...

+m(E ) -m(E))

= lim (m(E)-m(E))
=m (El)—nlimoo m(E ).

Since m(E1)<oo,SO
m(E) = lim m(E ).
Thus
m(ﬂEk)z lim m (E ).

Theorem 3.23
Let E.E,E . .. be measurable sets such that EcE cEc. Then

m ( O Ek): lim m(E ).
K21 n—ow
Proof

Let E = kL=J E, . We have

1

E=E U(E,-E)U(E-E)U.

63



Then El, E2 — El, E3 — E2, ... are disjoint measurable sets .

So we have
m(E):m(El)+m(E2—El) + m(Es—E2)+...

Since E1 c E2 c E3 c ... , it follows that

0

m(E)=m(E )+ > m(E -E)

k=1

= m(El) + lim nZ_:lm(EkH— Ek)

n — oo K=1

=m(E)+ lim (m(E)-m(E)+m(E)-m(E) +..
+m(E)-m(E _))

=m(E,)+lim (-m(E)+m(E))

= lim m (E ).

Hence
m(E) = lim m(E).
Thus

n — «©

m( | E )= lim m(E).
k=1
Theorem 3.24
Let E < [a,b] Then E is measurable if and only if for each > 0, there exist
c
open sets G1 and stuch that G1 oE, G2 > E and m (G1 N Gz) < €.
Proof

c
Let > 0. Then there exist open sets Gl o> E, G2 > E such that

S

m(Gl)<m*(E)+E
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* c (S
m(G )<m(E )+ =
2 2
Then
m(G,)+m(G,) <m(E)+m(E )+e
But we have
m(G )+ m(G,) =m (G, UG,) + m(G, nG,) ( Theorem 2.1.6 ).

It follows that

m(G, UG, )+m(G NG )<m(E)+m(E )+e — (1)

Cc
Since Gl > E and 62 > E it follows that

G,UG,>EUE =[ab].

We have

G1 U 62 c [a,b].
Hence

Gl U G2 = [a,b].
Thus

m(GluGz):m([a,b 1) =b-a.
It follows from (1) that

b-a+m(G NG )<m(E)+m(E )+e —(2).

Let E be a measurable set. Then

m(E)+m(E )=b—a ( Theorem 3.2 ).
Then (2 ) becomes

b—-a+ m(G1 ﬂGz)<b—a+e.
So we have

m(G1 ﬂG2)<e.

65



Conversely, let e > 0. Suppose there exist open sets G1 and 62 such that Gl S E,
c
623 E and m(G1 ﬂGZ)<e.
c
Since G1 oE, G2 > E it follows that

m'(E) <m(G,) ad m(E ) <m(G,).

Then
m*(E)+ m*(E ) <m (G )+ m(G,)
-m(G,UG,)+m(G NG)
<b-a+e.
Hence
m(E)<b-a-m(E )+e
and so

m(E)<m(E)+e

Since e is an arbitrary postitive number , so

m*°(E)<m_(E).
We have
m (E)<m"(E) (Theorem 236 ).

Hence
m (E)=m"(E).

Thus E is a measurable set.

66



Chapter Four

Properties of the class of x*- measurable sets

The main aim of this chapter is to give some difference properties of the class of
pu*-measurable sets .
Let us start with the following definition .
Definition 4.1
Let F be a field of subsets of X . A function x:F — is called positive if
u(A)=>0 forall AeF.
Examples 4.1
(i)Let X ={1,2,3}.
Let F={@,X ,{1},{2,3}}.
Then F is afield of subsets of X .
Let AcF.Define g:F —[0 by

4 (A) = the number of elementsin A .

If A, ={1} then u(A,) =1

If A,={2,3}, then u(A,) =2.

If A, =X ={1,2,3}, then u(A,) =3.
If A, =9,then u(A,) =0.
Thus u is positive .

(ii) Let X =[-37].
Let F = the power set of X
=P([-37]).
Then F is afield of all subsets of X .
Let 1 eP(X).Define x:F —> [ by

(1) = the length of the interval 1| .
If |1 = [-3,-1] ,then u( |1) = 2.

If |2= [0,1] , then u( I2) =1
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If 1 =1[47] then n(1 ) =3

Thus u is positive .
Remark 4.1

For the rest of this chapter, we assumethat 0 <u(A) <« forall Ae F.
Definition 4.2

Let F be a field and let A,B € F. A function x: F —0 is called
additive if

u(AUB) = u(A) + u(B),

where A, B are disjoint sets .
Example 4.2

Let X =0.
Let F=P([).
Then F is afield of all subsets of X .
Let m be the Lebesgue measure .

Let AeP(0).Define g :P()—>0 by

. m(ANn[Ln])
'U(A):nanl - (neld),

provided that the limit exists .

Let A,BeP(0) with An B = @.Then
m((AuUB)N[LNn])

4(AUB) = lim

n

. m((An[Ln])u(n[L,n]))
= lim

n— o n

- m(An[Ln])+m(BNI[1n])
= lim

n— o n

~ m(An[Lal) . m(Bn[LN])
= lim + lim

n— o n n— o n
= u(A) +u(B).

Hence x is additive .
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Lemma 4.1
Let « be additive on a field F. Then 4 (&) =0.
Proof
Let AeF with x#(A) <o .Then
AUo =A.
So wu(A)=u(AUD)
=u(A)+ u(9D).
Hence u (@) =0.
Theorem 4.2
Let x be additive on a field F and let A,BeF. If AcB, then
(1) u(BVA) = u(B)—u(A)

(i) u(A) < u(B).
Proof

(i) Let Ac=B.Then

B=AU(B\A).
So

u(B)=u(AU (B\A))
u(A)+pu(BVA).
Hence 4 (B\A) = u(B) - u(A).

(ii) From(i),we have
u(B)=u(A)+u(B\VA).
Since #u(A)>0 and u(B\VA) >0, it follows that
u(B)=u(A)+u(BNA)= u(A).
Thus u(B)=> u(A).
Theorem 4.3
Let x be additive on a field F and let A ,BeF. If AcB,then

u(AUB) < u(A)+ u(B).
Proof

Let AcB. Then
AUB =AU (B\A).
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So
u(AUB)=u(AU(B\A))
=u(A)+ u(BYA).
Since B\A < B, so by Theorem 4.2 (ii) we obtain

u#(B\A) < u(B),
and hence

u(AUB)<u(A)+u(B).
Lemma 4.4

Let x be additive on a field F and let A,B eF.Then

u(A\B)=u(A)-u(AnB).
Proof

We have

A\B = A\ (ANB).
So

u(ANB)=u(AN(ANB))
=u(A)—u(AnB) (Theorem4.2 (i)).

We state and prove the next two theorems .
Theorem 4.5
Let F be afield of subsets of X and let A,B eF. Let u be additive on
F.lLet AAB = (A\B) U (B \A).
If 4(AAB)=0,then u(A)=pu(B).
Proof
Let A,B eF. Then
#(AAB)=u((A\B)U(B\VA))
= u(A\B) + u(B\A)
=0.
Since x(A) >0 forall AcF and u(A\B) + u(B\VA) =0,it

follows that
u(A\B) = u(B\A) = 0.

70



We have

A =(A\B)u (AnB).
Then

u(A) =u((A\B)U (ANB))
=u(A\B)+u(ANB)
=0+ u(ANnB)

=u(ANB).
Similarly, we have
B=(B\A)U(ANB).

Then
#(B)=u((BVA)U(ANB))
=u(B\VA)+ u(BNA)
=0+ u(BNA)
= u(B NA).
It follows that
#(A)=pu(B).
Theorem 4.6

Let F be afield of subsets of X and let A,B € F.Let x be additive on
Fandlet AAB =(A\B)U(B\A).
Define arelation LI by

ALB if u(AAB)=0.

Then L is anequivalence relation on F .

Proof
Reflexive :
H(AAA) = u(D)
= 0.
Thus AL A.
Symmetric :

Let ALIB. Then u(A AB) = 0.
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Since AAB =BAA,s0
#(BAA) = u(AAB)= 0.
Hence B[] A.

Transitive :
Let ALUB.Then u(AAB)=0and ux(A)=u(B) (Theorem45).

Let B[JC .Then u4(BAC)=0 and hence (B ) = u(C).
Hence nx(A)=pu(B)=pu(C).
As in Theorem 4.5 , we can deduce that
u#(BVA) = u(B\C) = 0.
Since AAC =(A\C)U(C\VA),so
HU(AAC)=u(A\NC)+ u(C\VA).
For u(A\C):
#(A\C) = u(A) —u(ANC) ( Lemma 4.4)

= u(B) —u(ANC)

< p(B)-u(ANCNB)

= u(B\V(ANC))
=u((BVA)U(B\C))

< u(B\VA)+ u(B\C) ( Theorem 4.3)

= 0.
Hence #( A\C) = 0.

Now, we also have that
u(ANC) = u(A) —u(ANC)

= pu(C) —u(ANC)
= u(C\A)

= 0.
Thus
#(A\C)= u(C\A)=0.
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Therefore
#(A\C)+u (C\A) =u((A\C)U (C\A))

= u(AAC)
=0.
Thus All C.
Hence LI is anequivalence relationon F .
Definition 4.3

Let F be a o—field of subsets X . A function & : F — [0 is called an outer

measure on F if
(i) u()=0
(i) If A B eFand AcB,then u(A) < u(B)

(iii) If A, eF,then ,u(@ A) < S u(A).

n=1

Example 4.3
Let X ={1,2}.
Let F={2& X}
Then F isa o—field of subsets of X .
Let Ac X . Define v_: F —[01] by
vV, (A) = aZA(l) + (1—0!))(A(2) (0<a<l),

where X, is the characteristic function of A .

Then
V(@) =ay (1)+(1-a)x,(2)

=a(0)+(1-a)(0)
=0.

Let AcB < X . Then
V (A) =ay, (1) +(1-a)z,(2)

< axB(1)+(1—a);(B(2)

v_(B).
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Let A, eF.Then

VIUA)=ay, (W+1-a)y . (2)
U An U An

n=1

0

= Yaz, ()+ Y (1-a)z, (2)

n=1

= i(azAn(1>+ (1-a) 7, (2))

= DV _(A).
n=1
Thus v, iS an outer measure .

Theorem 4.7
Let F be a o—field and let A,B e F. Let x:F —[ be an outer

measure . Let u(A) = (AN B). Then u is an outer measure on F.

Proof
(i) u(g) = u(onB)
=u(QD)
=0.

(ii) Let Al,Aze F with AlgAz.Then
AlﬂB gAzﬂB.
So u(ANB) < ,u(AzﬂB),and hence
u(A) <u(A).
(iii) Let A e F.Then
u(0A)=u(U0ANB)
n=1 n=1

= u( U (A nB))

< Z ,u(Anﬂ B)
n=1
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= i u(A, ).

Thus u is an outer measureon F.

Lemma4.8 [2]

Let F be a o—field and let E e F. Let 4" :F —[1 be an outer measure

and let x € . Then

H(E+x) = (E).

Definition 4.4

Let x° be an outer measure on X . A set F < X is called measurable with

respectto u* or p*-measurable if forevery A < X ,then

LAY = '(ANF)+ u"(ANF ),
where A is called the test set .
Theorem 4.9
(i) The universal set X is - measurable set
(ii) The empty set & is u*- measurable set.
Proof
(i)Let Ac=X .Then
LOANX) + 4 (ANX ) = 4 (ANX) + 4'(AND)
= (A) + (D)
=u(A) +0
=1 (A).
Hence X is u"- measurable set.

(ii)Let A =X .Then
L(AND) + '(AND") = ' (AND) + u'(ANX)
= u(D) + 1(A)
= 0+ 4 (A)

=1 (A).

Hence & is u"- measurable set.
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Lemma 4.10

Aset F — X is u'-measurable if and only if forevery A cX ,

Cc
£ (A) > (ANF) + L(ANF )
Proof

Let A X . Itis clear that if F is u" - measurable, then

* % £ c

w(A) 2z (ANF) + £ (ANF )
Conversely, let 4*(A) > #'(ANF) + £ (ANF).
Since

Cc
A= (ANF)U(ANF )

so we have

£ ((ANF)U (ANFD))

C
< (ANF) + £'(ANF ).

u(A)

C
Thus #'(A) = ' (ANF) + £ '(ANF ).
Hence F is u'- measurable .

Lemma 4.11

Let F < X .Then F is " -measurable set if and only if F “is u* -
measurable set .

Proof

Let F be u"-measurable set and A = X . Then

£(A) = '(ANF) + 4" (ANF")

" c . c.c
=u(ANFE )+ u(ANCF ) ).
Hence F Cis 4" - measurable set .
Conversely, let F Cbe 4" - measurable set. Then
* * c . c.c
w(A)=pw(ANF )+ L(AN(CF ) )
c
= (ANF ) + L (ANF).

Hence F is u" - measurable set.
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Theorem 4.12

Let E and E, be u"- measurable sets. Then E VE, is u" - measurable set .

Proof

Let E, be u"- measurable set and for any testset A — X .Then
c
H(A)=uw(ANE)+u(ANE ) — (1)

C
Now apply the definition of 4" - measurablitity for Ezwith the test set A N E,
to get

Cc C c Cc
W(ANE ) =4 ((ANE )NE)+ 4« ((ANE )NE,)
. c . c
= #(ANE NE)+u(AN(EUE,) )~ (2)
It follows from (1) and (2) that
c Cc
W(A) =4 (ANE)+ 4 (ANE NE)+4(AN(E UE) )~ (3)
We have

c C
(AmEl)u(AnElmE2)=An(Elu(ElnE2))

An((E U Elc)ﬂ(EluEz))

:Aﬂ(Xm(EluEz))

=AnN ( E1 U EZ).
Therefore

(AN El)+,u*(A nElcn E,) 2 £ (AN (E1UE2))-
Substituting in ( 3) gives
w(A) 2 (AN(E UE)) + ' (AN(E UE))
It follows from Lemma 4.10 that El v, E2 is u" - measurable set.

Corollary 4.13

Let E and F be u"-measurable sets.Then E N F is x"- measurable set.
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Proof

Let E,F < X .Then
C CC
ENF=(E UF )

c
Since E is u"-measurable , so E is ux - measurable ( Lemma4.11).

: : c.
Also, since F is u"-measurable, so F is u" - measurable.

c
Then E CU F is 4 - measurable ( Theorem 4.12 ).
C
It follows that ( E CU F C) is u"-measurable set ( Lemma4.11).

Hence E N F is u"- measurable .
Corollary 4.14
C
Let E and F be u"-measurable sets. Then E N F is u"- measurable set.

Proof

Let E,F be u"- measurable sets. So F “is 4" - measurable .

Hence ENF ’ is u" - measurable ( Corollary 4.13 ).

Corollary 4.15

Let E and F be u"-measurable sets and let F < E .Then E—F is u"-
measurable set.

Proof

Let E and F be x"-measurable sets. Then E N F ’ is u"- measurable

( Corollary 4.14 ). We have
C
E-F=ENF .
Hence E —F is u" - measurable .
Theorem 4.16

n
Let E .E, .....E be u - measurable sets. Then kgl Ek IS

1" - measurable .

Proof
We use mathematical induction .

Let n =1. Then forall A =X , we have

78



W(A) = (ANE) + #(ANE ).

Suppose that it is true for a positive integer p ( p >1). Since Ep+1 IS

" -measurable , it follows that

* * * C
w(A)=pw(ANE )+ ,U(AﬂEp )

+1

Then

* % « C p
w(A)=w(ANnE )+ w(AnE N(U E))+

" Cc
#(ANE n(uU E ) ).
p+1 k =1 k
P c
Since U E cE , SO we have
k=1 Kk p+1

p
H(A) = (ANE )+ # (AN (U E))+

,u*(AﬂEpC nN(uU E ) ).

+1 k =1 k

p+1 c C
Also, since (kU Ek) = E N (kU Ek) it follows that
=1
* * % p % p+1 C
H(A)=pw(ANnE )+ pu(ANn(U E))+w(AN(CU E) )
+ k=1 Kk k=1 Kk
“((ANE A = “(An (U EHS
>
> ((ANE JVU(AN(U E)) + w(AN(U E) )
. p+1 . p+1 c
= (AN (U E)+4(An(U E) ).
k =1 k k =1 k
p+1 . .
Thus kU Ek IS u - measurable .
=1

n
Hence U Ek is u" - measurable .
k=1

Theorem 4.17

Let E .E, ... be u" - measurable sets. Then U Ek is u"- measurable.
k=1

Proof
Let AcX . Then

w(A) = @' (AN (0 E)) + w(AN (0 E)) ( Theorem 4. 16)
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v

a(AN (0 ED) + # (AN (0 EDD)

\%

L * * e ¢
2 M (ANE ) + 4 (An (U E) ),
& k=1 Kk
for every n.So we have
* = * * o C
WA= Y W(ANE) + (AN (D E))
k=1 k=1
© 0 C
> (AN (U E)) + £ (AN(U E) ).
k=1 Kk k=1 k
Hence E is 4" - measurable.
Y B
Theorem 4.18
Let A bea family of all x"- measurable sets. Then A is a o—field .

Proof

We can write A as follows :

A={Fc X :F is u"-measurable on X}
Then

X e A (Lemma4d.9(i)).
e A ( Lemmad.9(ii)).
c
Let Ec€A. Then E €A ( Lemma4.1l).
Let E ,E ,...c A. Then (J E e A ( Theorem4.17 ).

k =1
Thus A is a o—field.

Theorem 4.19

Let f : X —> [ be an onto function and let

A={B cl :f (B)is u-measurable}.
Then A isa o— field.
Proof
(1) f 71( &)= is u -measurable ( Lemma4.9 (ii)) .
So JeA.
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f _l(Y ) =X is u"-measurable (Y =0 )( Lemma4.9(i)).
So Y eA.

(i) Let BeA. Then f (B ) is ' -measurable.
. -1 c -1 c . -1 c - *
Since f (B )=(f (B)) ,itfollowsthat f (B ) is u -
measurable (Lemma4.11). So B “eA.

(iii) Let B ,B_ ... e A. Then
fcyUs=Ur (B
n=1 n=1

is u" - measurable ( Theorem 4.17 ). So U B, € A.
n

=1
Hence A is a o— field.

Theorem 4.20
Let E be u"-measurable set and x €] .Then E +x is u’- measurable set.

Proof
Let A =X .Then

w(A) = g"(A-x) (Lemma4d.8)

H((A=X)NE )+ 4 ((A-Xx)NE")

£ (((A=x)NE)+x )+ i (((A=x)NE ) +x).

Since
((A=x)NE)+x = AN (E+x),
and

((A-x)NE“)+x =AN(E+x),
it follows that
£(A) = (AN(E+x) )+ (AN(E+x)).
Hence E + x is " - measurable set.

Proposition 4.21

Let E be u"-measurable set and let E = F.Then

W(FNE) = 4'(F) - u'(E).
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Proof
Let E be u"-measurable set.Then for every A = X,
4(A) = ' (ANE) + w'(ANE").
Taking A = F (thetestset). Then we get
4(F) = @' (FNE) + f'(FNE').

Since Ec F,so ENF=E.

Therefore

W(F) = u'(E) + 4" (FNE),
and so

W(FNE') = 4'(F) - 4'(E).
Theorem 4.22

Let E be u"-measurable set and let F — X. Then

H(EUF) + /' (ENF) = 4 (E) + g (F).
Proof

Let E be u"-measurable set. Then for every A = X,
LAY = /(ANE) + #(ANE ) > (1)
Taking A = F (thetestset) in (1). Then we get
§(F) = @' (FNE) + g'(FNE') - (2)
Again  taking A = E U F (thetestset) in (1). Then we get
£(EUF) = ((EUF)NE) + #((EUF)NE")
Since (EUF)NE=E and (EUF)ﬂEC:FﬂEC,so

* * * C
#(EUF) =u(E)+ g (FNE ) —>(3)
It follows from (2) and (3) that

W (EUF) + i/ (ENF) = 4 (E) + 4 (F).
Lemma 4.23

Let Ec X and 4 (E) =0. Then E is 4" - measurable set.
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Proof
Let Ac=X . Then

A\E =ANE" .
Since ANE = A\VE cA,s0 #(ANE ) <u(A)

Also, since ANEcE,so £ '(ANE) < 4 (E).

Therefore
H(ANE )+ ' (ANE)< 4'(A)+ u'(E).

It follows that
L(ANE ) + £/(ANE) < 4 (A) (since #'(E)=0).

By Lemma4.10, E is u"- measurable .
Lemma 4.24
Let B be u"-measurable. If A< B and #"(B )= 0,then A is u"-
measurable .
Proof
Let A < B. Then

H(A) < /'(B).
Let (B )= 0. Then

0 < 4 (A) < u4(B) = 0.

IA

So
#(A)=0.

Hence A is u"- measurable (Lemma4.23).

Lemma 4.25

If A= C < B with A, B are u"-measurable sets and #"(B\A) = 0,
then C is u"- measurable .

Proof

let AcC < B and #'(B\VA) =0. Then
C\A c B\A.

So C\A is u"-measurable (Lemma 4.24).
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We have
C =(C\A)UA.

Since A is x4 - measurable and C\ Ais u’-measurable, so
(C\A) U A is u"-measurable ( Theorem 4.12).
Hence C is u"- measurable .

Theorem 4.26
Let F be a o—field of subsets of X. Let A,B € F with A(WB = &.

Let A be u"-measurable set.Then 4" is additive. That is,

#(AUB)=pu (A)+ 4 (B).
Proof

Let A be u'-measurable set.Then forevery E ¢ X, we have
W(E) = i (ENA)+ £ (ENA).
Replacing E with EN ( AwB ) (the testset), yields
L (EN(AUB)) = L' (EN(AUB)NA) +
(EN(AUB)NA)
=g (EN((AnA)U(BnNnA)))+

L(EN((AnA )U(BAA )
=t (EN(AUD))+ 4 (EN(uB))

= (ENA)+ 4 (ENB).
Taking E = X , so we have
£ (XN(AUB)) = £ (XNA)+ 4 (X NB).

Thus " (AUB)= 4" (A)+ u (B).
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Chapter Five

Properties of the class of measurable functions

The class of measurable functions will play a critical role in the theory of Lebesgue
integration . The concept of measurable functions is a natural outgrowth of the idea
of measurable sets. Measurable functions in measure theory are analogous to
continuous functions in topology. A continuous function pulls back open sets to open

sets, while a measurable function pulls back measurable sets to measurable sets..

Definition 5.1
Let X be anon-empty set and let F be a o—field of subsets of X . Then

(X, F) is called a measurable space .
Asubset E of X issaidtobe measurable if EcF.
Examples 5.1

(i) Let X be anon-empty set and let F={@, X}.

Then F is a o—field of subsets of X .

Thus (X, F) is ameasurable space .

(i) Let X be the set of all real numbers and let F =P (X)),
where P ( X ) isapowersetof X.

Then F is a o—field of subsets of X .

Thus (X, P( X)) is ameasurable space .

(iii) Let X ={1,2,3,4,5,6}.
Let F={2,{1,3,5},{2,4,6}. X .
Then F is a o—field of subsetsof X .
Thus (X, F) is ameasurable space.
Definition 5.2
Let X be aset and let F be a o-field of subsets of X . A function g on

F is called measure if
(i) u(2)=0

(i) If (A ) isadisjoint sequence of setsin F , then
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«( U A) = i m(A).
n=1 n-1
Example 5.2
Let X =0J.
Let F=P (0 ) be the family of all subsets of (1 .
Let ( «, ) beasequence of non-negative real numbers .

Let AeP (0 ).Define p:F —0 by

u(a) =0,

u(h) = 3 a, (Az2).
Let (A, ) beadisjoint sequence of setsin F . Then

/J(gAn) = 2 a

0
m e U An
n=1

Thus ,u(n@l An) = i #(A ).

Hence u is ameasure on F.

Remark 5.1
Let X be aset and let F be a o - field of subsets of X . If x4 isameasure

on F,then

K k
u(U A) = 2. H(A).

n=1

where A A .. Ak are disjoint setsin F .
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Definition 5.3
Let X be anon-empty set and F be a o—field of subsets of X . Let u be
ameasure on F.Then (X ,F, ) is called a measure space.
Example 5.3
Let X =0 .
Let F =P (X)) be the family of all subsets of X .

Define x asin Example5.2. Then (X ,P(X ), u#) is ameasure spaCe .

Lemma 5.1
Let (X ,F, u) be ameasure space and let x#(A) >0 forall A eF.Let
A,BeF. If AcB,then
u(A)<u(B).
Proof

Let A B .Then
B=AuU(B\A).

So
u(B) =u(AU(B\VA))
=u(A)+u(BVA)
> u(A).
Thus
“(A)<u(B).
Lemma 5.2

Let (X ,F, u) be ameasure space and let x#(E)>0 forall E eF.

Then
H(X\E) = u(X) - u(E).

Proof
Let Ec X . Then

X =EuU(X\E).
So
(X)) =wu(E)+ pu(X\E),

and hence
H(X\E) = u(X) - u(E).
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Most of the theory of measurable functions does not depend on the specific features
of the measure space on which the functions are defined , so we consider general

spaces.
Definition 5.4
Let (X, F) be ameasurable space. A function f:X — [ is called

measurable if for every aell ,then

{xeX : f(x)>a}eF.
Remark 5.2

Let ( X, F)be ameasurable space . It follows from Definition 5.4 that a

function f : X — [0 is measurable ifandonlyif forall ael ,
f '((a,w)) eF.
Lemma 5.3

Let (X, F) be ameasurable space. Afunction f : X —[1 is measurable

if and only if for each real number a, then

{xeX : f(x)<al}eF.
Proof

Let f be ameasurable function. Then for each real number a,the set

{xeX : f(x)>a}eF.
So

C
{xeX : f(x)>a} eF,
and hence
{xeX : f(x)<a}eF.
Conversely, let { xeX :f(x ) <a}eF, and hence

{xeX :f(x)<a}eF.

Therefore

{xeX :f(x)sa}cz {xeX :f(x)>a}eF.

Hence f is a measurable function .
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Remark 5.3

Let ( X, F)be ameasurable space . It follows from Lemma 5.3 that the
function f : X — 0O is measurable ifand only if forall a0,

f "((-»,a])eF.

Example 5.4

Let X =0 .

Let F={J, (-»,0], (0,),0 }.
Then F is a o - field of subsets of X .
Let f : 0 — 0 bedefined by

f(x)=x.
We have

f o ((~0,1]1) = {xeX : f(x)e(-n1]}
={xeX : —0o< f(x)<1}
={xeX : —o<x <1}

= (- 1] ¢F.
Thus f ((-o,1]1)eF.
Hence f isnota measurable functionon F .
Lemma 5.4

Let (X, F) be ameasurable space. Afunction f: X — [J is measurable

if and only if for each real number a,then

{xeX :f(x)=>a}eF.
Proof

Let f be ameasurable function. Then for each real number a, the set

{xeX : f(x)>a}eF.
It follows that

{XEX:f(x)>a—-%}eF(n:L23WJ.
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Thus

{xeX Zf(X)Za}:ﬁ{XEX :f(x)>a—%}eF.

Conversely, let {xeX : f (x)>a}eF.

Then {xeX :f(x)2a+£}eF.
n
So
* 1
{xeX :f(x)>a}=[J{xeX 1 f(x)=2a+=}eF.
n=1 n

Hence f is a measurable function.

Remark 5.4
Let ( X, F)be ameasurable space . It follows from Lemma5.4 that the

function f : X — 0O is measurable ifand only if forall a0,

f ([a,»))eF.

Lemma 5.5
Let (X, F) be ameasurable space. Afunction f: X —[1 is measurable

if and only if for each real number a,then

{xeX :f(x)<a}eF.
Proof

Let f be ameasurable function. Then for each real number a, the set
{xeX :f (x)>a}eF (Lemmab54).
We have
{xeX :f (x)<a}={xeX : f(x)>a}¥ eF.
Conversely, let { xeX : f (x) <a}eF.
It follows that

{xeX :f(x)<a} eF,
and so

{xeX :f (x)>a}eF.

Hence f is a measurable function .
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Remark 5.5
Let ( X, F)be ameasurable space . It follows from Lemmab5.5 that the

function f : X — 0O is measurable ifand only if forall a0,

f ((~o0,a)) eF.
Lemma 5.6
Let (X, F) be ameasurable space. Let f : X —[1 be ameasurable
function and let a<ll . Then
{xeX :f (x)=a}eF.

Proof
Let aell. Then

{xeX :f (x)=a}={xeX : f(x)<a}N

{xeX :f (x)=>a}.

Since

{xeX : f (x)<a}eF (Lemma 53),
and

{xeX : f (x)>a}eF (Lemma 54),
SO

{xeX : f (x)<a}N{xeX :f (x)=>a}eF.

It follows that
{xeX :f (x)=a}eF.

Lemma 5.7
Let (X, F) be ameasurable space. Let f : X — [ be ameasurable
function. Let a,b € . Then
{xeX :a<s<f(x)<b}eF.
Proof
Let a,bel] . Then

{xeX a<f(x)<b}={xeX :a<f(x)}n

{xeX :f(x)<b}eF.
Thus {xeX :a<f(x)<b}eF.
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Lemma 5.8
Let (X, F) be ameasurable space. Let f : X —[] be ameasurable
function. Let a,bel . Then f ((a,b))eF.
Proof
Let a,b el . Then

f ((a,b)) =f ((-»,b) N (a,x))

= f ((~».b))Nf ((a,®))eF.

Thus f ((a,b))eF.
Theorem 5.9

Let (X, F) be ameasurable space. Let f : X —[1 be ameasurable

function . Then f ( n isapositive integer ) is measurable.
Proof

Let a0 .If n isodd, then
1

{xeX an(X)Sa}Z{XGX :f(x)gaﬁ}eF.

Let a>0. If n iseven,then

_1 1
n

{xeX ZOan(X)Sa}={X€X a Sf(x)Saﬁ}eF.
(Lemma5.7)

Let a<0. If n iseven,then

Sl

{xeX : fn(X)Sa}={X€X f(x)<a }

=gekF.

n .
Thus f is measurable.

Lemma 5.10

Let (X, F) be ameasurable space. A constant function f : X — 1 is
measurable .

Proof

Let f be aconstant function. Then
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f(x) =k foral x in X.
We have

{xeX : f(x)>a}=

It follows that
{xeX : f(x)>a}eF.
Hence f is measurable .

Lemma 5.11

Let (X, F)be ameasurable space.Let f : X — [ be ameasurable
function and let 2 € 0. Then f + 4 is measurable.

Proof

Let a0 . Then

{xeX : f(x)+A>a}={xeX : f (x)>a- A}

={xeX 1 f (x)>a}eF,
where a = a—A1.
Hence f + A4 is measurable.
Theorem 5.12
Let (X, F) be ameasurable space. Let f : X — [ be ameasurable
function and let a0 . Then « f is measurable .
Proof
Let « € 0 . For a € [, we have three cases:
Case (i) : let « = 0. Then
af(x)=0,
which is measurable ( Lemma5.10).

Case (ii) : let « > 0 and let aell . Then

{xeX (af )(x)>a}={xeX :af(x)>a}
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={ xeX :f(x)>%}

={xeX 1 f(x)>a}eF,
where a = 2.
1 a
Hence o f is measurable .
Case (iii) : let ¢ <0 and let ael . Then
{xeX :af(x)>a}={xeX : f(x)<2}
o
={xeX : f(x)<al}eF ( Lemmas5 )

a
where a = —.
2 a

Hence « f is measurable .

Proposition 5.13
Let (X, F) be ameasurable space. Let f, g: X -0 be measurable
functions. Then for every ael , the set
{xeX : f(x) < g(x)+a}eF.
Proof
Let aell .Then

{xeX : f(x) <g(x)+a}={xeX:Frell,f(x)<r<g(x)+a}

= J{xexX : f(x)<r<g(x)+a}

rel

=J ({xexX :f(x)<r}N{xeX :g(x)>r-a})eF.

rel

Thus
{xeX : f(x) < g(x)+a}eF.

Theorem 5.14

Let (X, F) be ameasurable space. Let f , g : X — [ be measurable

functions. Then f + g is measurable.
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Proof

Let g be ameasurable function. Then — g is measurable function ( Theorem
512, = —1). Let ael] . Then

{xeX :f(x)+g(x)<a}={{xeX :f(x)<-9g(x)+a}teF

( Proposition 5.13).
Hence f + g is measurable.

The next theorem is a generalization of Theorem 5.14.
Theorem 5.15

Let (X, F) be ameasurable space. Let n € 0 and let fl, fz, ..., f_be
measurable functions. Then fl + f2 + ...+ f_is measurable .

Proof

We use mathematical induction .
Let n =1.Then f1 is measurable .
We assume it is true for n =k . Thatis,

f +f +...+f
1 2 k

is measurable .
Let n = k +1.We have

f +f +...+f =(f +f +...+f )+ f ,
k +1 1 2 k k +1

which is measurable ( Theorem 5.14).

Hence f1 + f2 + ...+ 1‘n is measurable .

Theorem 5.16
Let (X, F) be ameasurable space. Let n € J and let /11 ,/12 e A be

real constants. Let f1 , 1“2 fn be measurable functions. Then

Af + 1 f +...+4 f
1 1 2 2 n n
iS measurable.

Proof

Let f be ameasurable function. Then A f is measurable (Theorem5.12).

Let f2 be a measurable function. Then /12 f2 is measurable .
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In the same way, if f is measurable, then A4 f is measurable.
It follows that

Af +2fF +...+4f
1 1 2 2 n n

is measurable ( Theorem 5.15).
Corollary 5.17
Let (X, F) be ameasurable space. Let f, g : X — [ be measurable

functions . Then f — g is measurable .

Proof
Let g be ameasurable function.Then (—1) gis measurable function

( Theorem 5.12, = -1). We have

f-g=1f+(-1)g.
Since f is measurable and (—-1)g is measurable, so f + (-1)g is

measurable ( Theorem 5.14) .

Hence f — g is measurable .

Lemma 5.18

Let (X, F) be ameasurable space. Let f : X — 0 be ameasurable

function . Then | f | is measurable .

Proof
Let ael . Then

{xeX 1| f(x)|<a}={xeX :-—a<f (x)<a}
={xeX :f (x)>-a}{xeX :f (x)<al}teF.

Hence | f | is measurable .

Theorem 5.19
Let (X, F) be ameasurable space. Let f , g : X — [ be measurable

functions. Then
(i){xeX : f(x)>g(x) }eF
(ii){xeX : f(x)=>g(x) }eF.
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Proof

(i) {xeX : f(x)>g(x)¥={J ({xex : f(x)>r}

ref

ﬂ{XEX:g(x)<r})eF.
Thus {xeX : f(x)>g(x)}eF.

(ii) {xeX : f(x)>2g(x)}=X\{xeX : g(x)>f(x)}eF.

Thus {xeX : f(x)>9g(x) }eF.

By using the idea of the measurability of functions, we state and prove the next
proposition .
Proposition 5.20

Let (X ,F) be ameasurable space and let f : X — ] be ameasurable

function defined over E, (k =1,2,3,..) of X . Then f is a measurable function

on CJ E, .
K=1

Proof
Let f : X —> 0O be ameasurable function defined over E, (k =1,2,3,...).
Then for every aell,
{xeE, : f(x)>a}eF.

We have

{xelJE, :f(x)>a}= |J{x<eE, : f(x)>a}eF.
. K=1 K=1

{xe|JE, 1 f(x)>a}eF.

K=1

Hence f is ameasurable function on U E..
K=1

Theorem 5.21
Let (X, F) be ameasurable space. Let f : X — 1 be ameasurable

function and let O be anopen set. Then

{xeX : f(x)eO}eF.
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Proof
Let O be anopen set. Then

o=U 1.
k=1
where Ik = (ak, bk) are open disjoint intervals .

Then we have

{xeX : f(x)eO}={xeX : f(x)e le}

k=1

= |J{xex: f(x)el }

k=1

= O ({xeX : f(x)>a}

k =1
N{xeX : f(x)<bk})eF.

Theorem 5.22
Let (X, F) be ameasurable space. Let f, g : X — 0 be measurable

functions . Then fg is measurable .

Proof
We have

2 2
fg=2((f+9) - (f -g))
Since f, g are measurable functions, so ( f + g ) is measurable function

(Theorem 5.14) and hence ( f + g )2is measurable function ( Theorem 5.9 ,

n=2).Also,we have ( f — g) is ameasurable function ( Corollary 5.17 ),
it follows that ( f — g )2 is a measurable function .

Therefore ( f + ¢ )2 -(f -9 )zis a measurable function .

Thus fg = i(( f+g )2 - (f-g )2) is a measurable function

(Theorem 5.12 « = % ). Hence fg is measurable.
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Remark 5.6
Also, we can also define fg by

2 2

1 2
fg="((f+9) - f -9g)
Theorem 5.23
Let (X, F) be ameasurable space. Let f : X — 1 be ameasurable
function. If Ac X ,then f : A —[J is measurable.
Proof
Let f : X — 0 be ameasurable function .
Then for every aell ,we have
{xeX : f(x)>a}eF.
Let Ac X . Then AcF.

We have

{xeA:f(x)>a}={xeX : f(x)>a}NAeF.
Thus
{xeA:f(x)>a}eF.

Hence f : A— [ is measurable.
Theorem 5.24
Let (X, F) be ameasurable space. Let f : X — [ be ameasurable

function . Then fi ( f = 0) is measurable.

Proof
Let acl . If a > 0, then

<a ifandonlyif f(x)<0 or

1
f(x)

(f(x)>0and —=<f(x)).

1
a

Then we have

L cad=({xex :f(x)<o}U

{XEX : f(x) -
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{xex <f (x)}Nn{xex :f(x)>0})eF.

1
a

If a = 0, then <a ifandonlyif f(x)<0.
f(x)
Then we have
{xeX : <a}={xeX :f(x)<O0}eF.
f(x)
If a < 0, then <a ifandonlyif f(x)<0 and LAPY (x).
f(x) a

Then we have

1 <a}=({xex :f(x)<0})N

{xex : T

{xeX : Lo (x)}eF.
a
Hence fi isa measurable function .

Corollary 5.25

Let (X, F) be ameasurable space. Let f, g: X -0 be measurable

functions . Then g—f (g=0) is measurable.

Proof
We have
f 1
— =f — (g = 0).
g g
Since g is measurable, so S iIs measurable ( Theorem 5.24) .
g
It follows that f .i is also measurable ( Theorem 5.22).

g

f
Thus — is measurable .
g

Theorem 5.26
Let (X, F) be ameasurable space. Let f, g: X -0 be measurable

functions. Then max{ f , g} and min{ f , g} are measurable .
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Proof
We have
f+g+|f-g|

mex{ f, g} = 5

Since f and g are measurable, so f + g is measurable ( Theorem 5.14 ).

Also, since f and g are measurable , so f — g is measurable ( Corollary

517 ) and so | f — g | is measurable ( Lemma5.18). So we have

f+g + | f —g |is measurable. It follows that

f+g+|f-g]

2

is measurable ( Theorem5.12, « =% ).

Hence max{ f , g} is measurable.

We have
f+g9-|f -g|

2

min{f,g}=
In the same way, we can prove that min{ f , g} is measurable.
Theorem 5.27
Let (X, F) be ameasurable space. Let f: X — [ be ameasurable
function. Then f +, f are measurable functions.
Proof

(i) f (x)=max{f(x), O}
Since max{ f (x), 0} is measurable ( Theorem 5.26 ), so

+ -
f is measurable .

(i) f (x) =min{0, — f (x)}

Since min{0, — f (x)} is measurable ( Theorem5.26 ), so

f is measurable .
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Theorem 5.28

Let ( X, F) be ameasurable space. Then the characteristic function Xe IS

measurable if and only if E eF.
Proof
Let Xe be a measurable function. Then
E={xeX: ;(E(X) >0}eF.
Hence E e F.

Conversely, let E eF.

=
©
A

0,then {xeX : ;(E(x) < a} = @ whichisameasurable set.
If a>1then {xeX: ;(E(x) <a} =X whichisameasurable set.
If 0<a <1 ,then{xeX: ZE(X) < a} = X \E whichisameasurable set.

Hence Xe is a measurable function .

Theorem 5.29
Let ( X, F) be ameasurable space. Every simple function
n
$=2 a
i=1 i
is measurable if and only if El, E2 - ,En eF.

Proof
It follows from Theorem 5.28 that

X is a measurable function if and only if EecF.
1

and hence

a X is a measurable function if and only if Ele F (Theorem5.12) .
1

Aslo , we have

Xe IS a measurable function if and only if Eze F,
2

and hence

a, 2 IS a measurable function if and only if Eze F.
2

In the same way, we can obtain
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a, 1. is a measurable function ifandonlyif E eF.

It follows from Theorem 5.16 that
a ;gEl +a ZEz + ...+ a Xe is measurable if and only if
E.E,... E eF.
1 2 n
Hence the simple function ¢ is measurable .
Propostion 5.30
Let (X ,F ) be ameasurable space. Afunction f : X — [ is measurable

ifandonlyif f (O) eF forall opensets O in O .

Proof
Let f be ameasurable function and let O bean opensetin [ .
Then

0=1U (a,b).
n=1
Therefore
f0)=1 (U (a,b))

= U f '((a,b))eF.

Conversely, suppose that f 71(0) e F forall opensets O in [ .
Take O = (a, ») in 0 .Then

f "((a w))eF.
Hence f is ameasurable function .

Theorem 5.31 [ 20 ]
Let ( X, F) be ameasurable space. If f:[ —[] is continuous,then f is
measurable .

Examples 5.5

(i) Let f(X) =X +2x +3.

Then f is acontinuous function. So f is measurable ( Theorem 5.31).

(i) Let f(x) =sinx + cosx.
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Then f is acontinuous function. So f is measurable .

(iii) Let f(x)=x—¢e .

Then f is acontinuous function. So f is measurable.

(iv) Let f(x) =

X%+ 4

Then f is acontinuous function. So f is measurable .

Theorem 5.32

Let ( X, F) be ameasurable space. Let f : X — [ be ameasurable
function and let g : [ — [ be acontinuous function. Then gof : X — [
is measurable .

Proof
Forall aell, let O, = gfl((a, ©)). Since g : [0 — 0 is acontinuous

function, so O, is an open set in [J .

We have

(gof ) ((a®))="f (g ((a=x)))

- 0, ) € F (Proposition 5.30) .

Hence gof is measurable.

Lemma 5.33

Let (X ,F) be ameasurable space. Let ( f ) be asequence of

measurable functions. Then sup ( f_(x)) and ipf( f (x)) are
n

measurable functions.

Proof
Let a<l] . Then

{xeX tsup(f (x)) >a}= 0 {xeX :f (x)>a}eF.

n=1
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Then sup ( f_(x)) is measurable.
n

Also, we have

{xeX inf(f (x)) >a}= ﬁ{XEX cf (x) >a}eF.

n=1

Then ipf( f (X)) is measurable.

Lemma 5.34

Let (X, F) be ameasurable space. Let ( f ) be asequence of

measurable functions. Then lim f, (x) and lim f (x) are measurable

functions.
Proof
We have
lim f_(x)=sup(inf ( fk(x))),
I n k >n
and
lim f_(x)=inf (sup ( f (x))).
n k>n
Let
M (x)=sup(Tf (x))
k >n
and
m (x)=inf ( f (x)).
n k >n k
Then
lim f_(x)=inf (M _(x))
and

lim f_(x)=sup(m_(x)).
- n
Thus lim f (x) and lim f (x) are measurable (Lemma 5.33).

Theorem 5.35
Let (X ,F ) be ameasurable space. Let ( f ) be asequence of
measurable functions such that

f(x) = nliinw f(x).

Then f is measurable .
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Proof
Let f(x) = nIim f (x).Then
— ®©

f(x) =limsup f (x) = liminf f_(x).

n — o n — o

Hence f is measurable (Lemma5.34).

Definition 5.5

Let (X ,F, ) be ameasure space. Let ( f ) be asequence of
measurable functions. We say that ( f ) converges to afunction f almost

everywhere, denoted by f — f a.e if

u({xeX i f (x) $f(x)})=0.

Definition 5.6
A measure space ( X, F, ) is called complete if for A € F with
#(A)=0 and B cA, then B eF.

That is, any subset of a measurable set of measure zero is measurable .
Theorem 5.36

Let (X ,F,u) be acomplete measure space. If f —f a.e, then f is

a measurable function.

Proof
Let A={xeX:f (x) A f(x)}
Since f — f a.e, so u(A)=0.

Let ael. Then
{xeX 1 f(x)>a}=({xeX:f(x)>a}NA)U

({xeX :f(x)>a}NA")

Since {xeX : f(x) >a}NAcCA, u(A)=0and (X,F,pu) is

complete measure space, so we have

{xeX: f(x)>a}AeF.
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Also, we have
fxeX : f(x)>a}NA ={xeA :f(x)>a}
_ {xeA " : lim f (x)>a}eF.
It follows that {xeX : f(x) > a}eF.

Hence f is measurable .
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Chapter Six

Lebesgue Integration

In this chapter, we introduce the integral of real-valued functions on an
arbitrary measure space and give some of its properties . We refer to this
integral as the Lebesgue integral . We carry out the definition in three ways :

- for simple functions
- for non-negative measurable functions

- for measurable functions .

6.1 The Lebesgue integral of simple functions
Definition 6.1.1

Let (X, F, m) be ameasure space and Ez F. Let S= » a, c_ be a
i=1 i

simple function for real numbers a and measurable sets E..

The Lebesgue integral of s over E with respect to a measure mis defined by

sem= o a m(Ei ),

i=1

z

E

where Ez E and 0£ m(E )< ¥ (i=12,...,n).
Remark 6.1.1

It is clear that S dym< ¥ .Thatis, S gymexists.

z

E E

Examples 6.1.1
(i) Let E = [0,2].
Let s c ( the characteristic function of [in,in] ).
4" 4

1 6
[1.5]

Then s isasimple function .

Let m be the Lebesgue measure . We have
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4" 4"
- 6 1
4" 4"
= 5
4n

(ii) Let E =[0,7]. Let

S =27 + 2C .
[0,2] [3,7]

Then s isasimple function. We have

E

Lemma 6.1.1
Let (X,F,m)

function. Then

Proof

Let S

Since 0 £ m( Ei )< ¥ (i=1,2,...,n), it follows that

Thus

z

s dm = e +2C )dm

[0, 7] ’ [0, 7]
= 1m([0,2]) + 2m([3.7])
—1(2-0) + 2(7-3)

=10.

be ameasure space and E# F. Let s 3

sg¢m>3 0.

A\Y

n
Sdm= » aim(Ei)3 0.
i=1

z

E

s dm> 0.

z

E
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Proposition 6.1.2
Let (X ,F,m) be ameasure space and Ez F with m(E )= 0.Let S

be asimple function. Then s g¢m= 0.

z

E

Proof

n
Let S = » a . c_ and m(E) = 0.

i=1 i

Since EiCE (i=1,2,...,n),s0 m(Ei);,E m(E) ( Lemma 5.1).
Therefore 0 £ m( Ei)£ m(E)= 0.

It follows that m( Ei) =0 forall i=1,2,...,n.
Thus

sdm= o a m(E)
i=1

z

E

= 0.
Remark 6.1.2

Since m(=) & by Proposition 6.1.2 it follows that

s g¢m= 0.

s
Lemma 6.1.3
Let (X, F, m) be ameasure space and E # F. Let S be a simple function

and let 4 be areal constant. Then

Let S= » a c. be asimple function . Then

n
asdm= aflo a cE_) dm

E E =1 !
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1=1
n
=as a m(E)
I=l| 1
= a sdm
E

Theorem 6.1.4

Let (X, F, m) be ameasure space and E ¢z F. Let s,t be simple functions.

Then
(s+t)ydms= s dm+ bdm
E E E
Proof
n n
let S = » ac and t=o b c¢c (at!'b)
i=1 ' i=1 ' § ! :

be two simple functions. Then

n
(s+t)dm = A4 a c o+ bbeE ) dm
E E '

Thus

_ ( s+t ) dm= S dm+ tdm
E E E
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Corollary 6.1.5
Let (X, F, m) be ameasure space and E # F. Let s,t be simple functions

and let a, b be real constants. Then

(as+bt)dm= a sdm+ b ~bdm

=z z z

E E E
Proof

Let s,t be simple functions and let a, 6 be real constants.

Then

(as+ot)dm

z z z

E E E

I
v
w
o
+

=
gl
—~
_|
>
@D
(@)
=
@
3
o
=
SN
N—r

= a SsSdm+» tgm (Lemma 6.1.3).

E E
Remarks 6.1.3

(1) Corollary 6.1.5 shows that the mapping s a s ¢m is linear .

z

E
(i) If a=1, 6=-1 in Corollary 6.1.5, then
(s- t)dm= sdm- obdm
E E E
Lemma 6.1.6
Let (X, F, m) be ameasure space and E # F. Let S ,t besimple functions.
If s£ t, then
sdmg b g7

E E

Proof

Let h=1t- s.Then h3 0 is asimple function. So

hgm? 0 ( Lemma 6.1.1 ).
E
So

E E
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I
w
o
+

o
S
3
~—~
_|
o0
D
o
=
(9]
3
o
=
I
N

Hence sdmg£ teym.

z z

E E
Proposition 6.1.7
Let (X,F,m) be ameasure space and E # F. Let s be asimple function .

Then

E E
Proof

Wehave - |s|£ s£ |s].
Since - | s| £ s, it follows that

- |s|dm£&  s:gdym (Lemma6.16 ).
E E

Also,since s £ | s |, it follows that

sdmg .;jt;. Ss dm.
£ E ’
Therefore
- | S | dmg sdm¢g ;;::;;:[:;S::; dm,
£ E e
and so

- | S | dmg sdmg |’S

dm ( Lemma 6.1.3,a =-1).

z

E E E

Thus o sdm| £ | &) dm

E

113



Theorem 6.1.8 [9]

Let (X, F, m) be ameasure space and Ez F. Let S= s a ¢
i=1
non-negative simple function and A =F (i 182,...,n).Then
|
n
sdm= o a m( Ai\ E).
i=1

z

E

Remark 6.1.4
If E = X in Theorem 6.1.8, then

sdm= o a m(A).

i=1

z

X
Proposition 6.1.9

Let (X, F, m) be ameasure space and let A,BzF with A& B

Let s be anon-negative simple function. Then

sdm = sdm+ 3dm

Proof
Let Ez F and Ai =F (i 12,...,n). Then

n
sdm= o a m( Ai\ E) ( Theorem6.1.8 ).

i=1

z

E

Therefore

n
sdm= o a /77(Ai | (AUB))
A UB '

=5 am (Al A)U(AI B))

i=1

on a (m(AiI A)+ m(A B))

i=1

n n
4 a m(AiIA)+ aTQm(AiIB)

i=1 i=1

I
w
o
3
+
0
=y
R
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The next theorem is a generalization of Proposition 6.1.9 .
Theorem 6.1.10

Let (X, F, m) be ameasure space and let Al, A2 KA ¢ F with
Ai N A =@ (i#m). Let s be anon-negative simple function .

Then

Proof
let A,A K,A #F with A nA =2 (izm).
1 2 m i m

Then

s:dm = an a m( Al ( kﬂ Ak )) ( Theorem 6.1.8)
i i =1

i=1

U A
U
k=1 K
n m
= a. mgAl A)
i=1 ' k=1 : k
m n
= 4 am Al A)
. i i k
k=1 i=1
m
= » s@::m
k=1,

Theorem 6.1.11 [9]
¥
Let ( X, F, m) be ameasure space and let A, & F suchthat |J A, = X.

n=1
Let s be a non-negative simple function . Then

lim sdm= 8:¢l/7.

ne ¥ z z

Lemma 6.1.12
Let (X, F, m) be ameasure space and E# F. Let S be anon-negative

simple function and let

115



F(E) = sdm

z

E
Then £ is ameasure on F.
Proof

(i) (=) s¢m =B ( Remark6.1.2).

&
(i) Let Ait F. We have

n
sdm= o a m(Ai\ E).

i=1

z

E

and so
n

F(E)= "o a mA) E)

1=1

Let El,EZ,...éF and Ei1 EJ_ s (i ).

Then
¥ n ¥
FCUE )=» amA' (UE))
k=1 K i=1 ' k=1 K
n ¥
= 4 a ®/(A ) E )
i=1 ' k=1 : k
¥ n
= 4 aam(A ' E )
k=1 i=1 ! K
¥
= s fF(E).
k=1 k
Thus
¥ ¥
fCUE )= o Ff(E).
k=1 K k=1 k

Hence f is ameasureon F .

\Theorem 6.1.13
Let (X, F, m) be ameasure space and E & F. Let S be anon-negative

simple function . Then

sdm= sdm + el m.

= PR

X E X\E
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Proof
Let ( X, F, m) be ameasure space and E &z F. Let S be anon-negative

simple function such that

F(E) = sdm

z

E

Then £ is ameasure on F ( Lemma 6.1.12 ).

Let Ez X. Then

sdm + ~sdm= F(E)+ F(X\E).

E X\E

Since F(X\E)= Ff(X)- Ff(E) (Lemma5.2),it follows that

5sdm+ «~gdm= f(E)+ F(X)- F(E)

F(X)

= S ¢:m.

z

X

Corollary 6.1.14
Let (X, F, m) be ameasure space and Ez F with m(E ) = 0.Let s be

a non-negative simple function. Then

Proof
It follows from Theorem 6.1.13 that

sdm=  sdm+ :Sdm
X E X\E
Since S¢m= 0 (Proposition6.1.2), it follows that
:
sdm= :Sem
X X\E ]
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6.2 The Lebesgue integral of non-negative measurable
functions

Definition 6.2.1
Let ( X, F, m) be ameasure space and E # F. Let f be anon-negative

bounded measurable function on E . The Lebesgue integral of f over E

with respect to a measure /m is defined by

f d.m= sup{ Sedm: 0£ s(x )£ f(x) forall x ZE,S is simple},
E/ E

or briefly, we write

fdm= sup{ Sedm:0£ s£ f,s s simple}

E E
= sup ([ sdu).
s< f E
Remark 6.2.1
Iltisclearthat  f.dm<¥ .Thatis, f.dm exists.
E E
Lemma 6.2.1

Let (X, F, m) be ameasure space and E # F.Let f be anon-negative

bounded measurable function on E. If 4 (E) =0, then

Ifd,u=0.
E

Proof
Let E be ameasurable setwith # (E) = 0.
Let s be asimple function. Then
J. sdu = 0 (Proposition 6.1.2 ).

E
Therefore

J.fdy: sup(jsdy)

E s < f
= 0.
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Lemma 6.2.2
Let ( X, F, m) be ameasure space and E # F. Let f,g be non-negative

bounded measurable functions on E . If f £ g, then

) fdmg g,

E E
Proof

Let 0£ s¢£ f and f£ g.Then s£ g.

Since
[gdu = sup ([sdu),

E s<g E

it follows from the definition of a supremum that

sdm ¢ gdm

z z

E E

Taking supremum over s £ f , we have

sup ( sdm) ¢ g
sf£ f g -

Hence

Lemma 6.2.3
Let (X, F, m) be ameasure space and E & F.Let f be anon-negative

bounded measurable function on E. Let « > 0.Then

Iafd,uzajfd,u.
E E

Proof

Let f be a non - negative measurable function .

Let O£ s£ f and @ >0.Then O0f£ as £ af .

So as isasimple functionand a f isa non - negative measurable function .
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We have

Iafd,uz sup (Jasd,u)

E as <af E

sup (« Isd,u) ( Lemma 6.1.3 )
E

as <af

asup(jsdy)

s<f E
=« j fdu.
E

Theorem 6.2.4
Let ( X, F, m) be ameasure space and E # F. Let f,g be non-negative
bounded measurable functions on E . Then

[ (f+g)du= [ fdu+ [ gdu
E E E

Proof

Let f, g be non - negative bounded measurable functions .

Let s,t besimple functionssuchthat O£ s£ f and O£ t£ Q.

Then s+ t isasimple function and f + g isanon - negative measurable
function. So 0¢£ s+t £ f+qg.

We have

(f+g)dm

I
w
c

©
N
~

\\'.._";
—_

N
o
N

z

It follows that

(f+g)dm:  ¢sxt)dm

E E

= I s du + _[ t du (Theorem6.1.4).
E E
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Taking supremum over s and t, we have

_ ( f+ g)dm3 f dm+ ggm ® (1)
E E E

Let v be a simple function suchthat v= t + s.Then

jvdyz I(s+t)dy
E E

:jsdy+jtdy
E E

z

E E
Taking supremum over v, we have

’(f+g)dm£ f dm+ 9/@'/77@(2)
E E E

It follows from (1) and (2 ) that

J (f+g)du= ] fdu+ [gdu
E E E

Corollary 6.2.5
Let ( X, F, m) be ameasure space and E # F. Let f,g be non-negative
bounded measurable functions on E and let «, f>0.

Then

[ (af+pg)du=a [ fdu+p [ gdu
E E E

Proof

The proof follows from Lemma 6.2.3 and Theorem 6.2.4 .

Remark 6.2.2

Corollary 6.2.5 shows that the mapping f a f ¢y is linear.
E
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We have the following deduced lemmas.

Lemma 6.2.6

Let (X ,F, m) be ameasure space and Ez F. Let f,g: X® ¢« be
measurable functions. Then

() J (f +g)du= [ fdu+ [g du
E E E

(i) [ (f +g)du= [ fdu+ [ g du
E E E

(iii) _[(f++ g Vdu = jf+dy+_fg_dy.
E E E

Proof
The proof follows from Theorem 6.2.4.

Lemma 6.2.7
Let (X ,F, m) be ameasure space and Ez F. Let f : X® ¢« be

measurable function and let « > 0. Then

(i) jaf+d,u=a [ f du
E E

(i) [af du=a [ f du
E E
Proof
The proof follows from Lemma 6.2.3 .
Lemma 6.2.8

Let (X ,F, m) be ameasure space and E & F. Let f,g be non-negative
bounded measurable functions on E. If f > g, then

J (f-g)du= [ fdu-[gdu

E E E

Proof
We have

f=(f-g)+g.
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Then

[fdu=] ((f-g)+g)du
E E

= I (f-g)du + I g du ( Theorem 6.24 ).
E E
Therefore

[ (f-g)du= [ fdu-[gdu
E

E E

Lemma 6.2.9
Let ( X, F, m) be ameasure space and E# F. Let f,g: X® ¢« be

measurable functions suchthat f > g+ and f >g .

Then
(i) J (f —g)du= [ fdu-[g du
E E E
(i) [ (f -9 )du= [ fdu-[g du
E E E
Proof

The proof follows from Lemma 6.2.8.
Theorem 6.2.10 [19]
Let (X, F, m) be ameasure space and E & F.Let f bea non-negative

bounded measurable function on E . Then

Propsition 6.2.11
Let (X, F, m) be ameasure space.Let f bea non-negative bounded

measurable function on X .Let A, B ¢ F suchthat Az B. Then

fdmég f d m.
A B
Proof

Let Az B. Then ¢ £ ¢ .So fc £ fc_.
A B A B
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Therefore ch and ch are non-negative measurable functions.

It follows that

f c, dm £ .:;-f;;..;;'c_’;.B dm ( Lemmab6.2.2).

z

X X
Hence

z

fdm£ f:cdm ( Theorem6.2.10).
A B
Proposition 6.2.12
Let ( X, F, m) be ameasure space.Let f bea non-negative bounded

measurable function on X and let a¥ (0, ). Then

m{x£X :f(x) a} 331— fodm
X
Proof
Let A={x&X : f(x)* a} Then
fdm*  fodm
X A /
A
=a dm
A
= amA).
Thus
1 A
N fdm mA),
X
and hence
m{x£X 1 f(x) a} 351—  fodm
X
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6.3 The Lebesgue integral of measurable functions

Definition 6.3.1
Let (X, F, m) be ameasure space and E & F.Let f be anarbitrary bounded
measurable function on E (notnecessarily f 3> 0).Then f iscalled Lebesgue
integrable on E or briefly integrable if

f +d m< ¥ and f -dm< ¥

E E

The Lebesgue integral of f with respecttoameasure m is defined by

fdm-= f : dm - fd m.

z z Z

E E E
Remark 6.3.1
We have
| f = f + f
Then
| f |dm=  ¢f:+ f )dm
E E

z z

Theorem 6.3.1
Let (X, F, m) be ameasure space and E# F. Let f be abounded

measurable functionon E . Then f isintegrable if and only if
[ f]du<w
E

Proof
Let f be anintegrable functionon E . Then
fgj;;;dm< ¥ and fodm< ¥

z z

E E
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We have

[ f]du= [ f du+ [ f du(Remark 63.1).
E E E

Thus [ | f]du <
E

Conversely, let I | f]du < o,

E
Since f < | f|.s0 ) f dme .;;;j|;:..;;jj/;f | dm
E E i

and so ) f.;f;;;.dm< ¥ .

-
Also, since f < | f].s0 o f S dm¢ .:j::|j:~~:j;f | dm

E E i

and so  foidm< ¥

E

Thus f isintegrable .

Lemma 6.3.2
Let ( X, F, m) be ameasure space and E # F.Let f be abounded

measurable functionon E and let @ & < . Then

Proof
Let a # ¢« .Then we have two cases.
Case (i) : let a3 0.

The Lebesgue integral of a f is given by

afdm= (af) dm- ofaf) dn

= af +dm' adm

z z

E E
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E E
=a( f dm- findm)
E E
=a fdm
i

Since - a > 0, it follows that

afdm=-a f dm+ a sohedm(by(i))

E E E
=a( f dm-  A~dm)
E E
E

Theorem 6.3.3 [19]

Let (X, F, m) be ameasure space and E ¢z F.Let f be ahbounded

measurable function on E . Then

Theorem 6.3.4

Let (X, F, m) be ameasure spaceand E # F.Let f,g be bounded

measurable functions on E . Then

(f+g)dm= fdm+ grdm

z z

E E E
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Proof

We have
(f+g)dm= Gy + g)cEdm(Theorem6.3.3)
E X
= ((f+g)e ) dm-  f&f+g)e ) dm
X X
= (fe_+gc ) dm- (;;;..;f;;.cE+ch)- dm
X X
= (Gfe) + (ge,) )dm
X
- (Gfe) +(ge) )dm
X
= (fe ) dm+  (gec.) dm- olfe ) dm
X X X
- (gc) dn
X
=( (fec)) dm- () dm)
X X
+( (Cge)) dm- ge) dm)
X X
= fec_ dm+ g:c_dm
z E E
X X
= B f d/77+ g/dm
E E

Corollary 6.3.5
Let (X, F, m) be ameasure space and E # F.Let f,g be bounded

measurable functions on E and let a , b be real constants. Then

) (af+bg)dm=a fdm+ » .:;;;;;.q;:..;;gsm
E E E
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Proof
The proof follows from Lemma 6.3.2 and Theorem 6.3.4.
Remarks 6.3.2

(1) Corollary 6.3.5 shows that the mapping f a f gyn is linear.
E
(ii)Let a=1 and 6=- 1 in Corollary 6.3.5. Then

( f- g ) dm = f dm - gdﬁ]

z z z

E E E

Lemma 6.3.6
Let (X, F, m) be ameasure spaceand Ez F. Let f,g be bounded

measurable functions on E .If f £ g, then f dm £ Qe m.
E E

Proof

let f¢g.Then f - f £ g - g

Therefore we have

fof g and so f dm £ .;;g;.:j;;;.dm( Lemma6.2.2),

z

E E
and
g £ f and so g dm £ fromdm,
E E
and hence
- f dmg£ - A /m
E E
Thus
g dm = g dm - :d /.
E E E
s f dm- fomdm
E E
= fddm
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Proposition 6.3.7

Let ( X , F, m) beameasure space and E & F. Let f be abounded

measurable function on E . Then

- fdm| £ aﬁ:[:}{;f:- | dnm.
3 E
Proof

Since - | f |£ f £ | f |, it follows that

z

- | f | dm¢g ) frdmg |f

E E E

z

E E

Theorem 6.3.8

dm ( Lemma 6.3.6 ).

Let (X, F, m) be ameasure space and El, E2 ¢ F with El‘ E2 =,

Let f be abounded measurable function on E . Then

f dm= fdm+ fod i
E @E E E
1 2 1 2
Proof
We have
f dm= f (. dm ( Theorem 6.3.3)
E @F X v
1 2
= ) (chgE ) dm - (t CE
X o2 X
= f (¢ -+ e )dm- f
X 1 2 X
+ +
= f ¢ dm+ f-onc_ dm
Z E s s E
X ! X 2
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X ! X 2
=( (te )dm-  fdic ) dm)
X ! X !
.
+ ( ) (f CE ) dm (t CE ) dm)
X 2 X 2
= fc dm+ f~c. dm
z E :E
X ! X 2
= f dm-+ f-.dm
E E
1 2
Theorem 6.3.9
Let ( X, F, m) be ameasure space and El,EZ,..., E ¢ F with
En\ Ej = & (n! j).Let f be abounded measurable function on E .
Then
n
fdm= o» f.odm
z k=1 z
n E
u E “
k=1 k
Proof
let E.E ,....,E ¢F with EanEj = (h' j).
Then
f dm= f0 dm
D x
k=1 K
= (fc ) dm- {ific ) dm
X kL:JlEk X kflEk
= fer (¢ +c_ +..+c_ )dm
z - E E E
X 1 2 n

131



132




Chapter Seven

Applications of Lebesgue Integration

In this chapter, we introduce some mathematical applications of the Lebesgue

integration .
7.1 Convergence of the Lebesgue integral

In this section, we give convergence theorems for Lebesgue integrals . Also,we

give some related examples and consequences.

Let ( X, F, m) be ameasure spaceand EzF.Let f : X ® ¢ Dbe a

measurable function and Let ( f, ) be asequence of measurable functions

defined on E such that

lim fn(x)z f(x) (xgzE).

n® ¥

In general , is not true that

lim f, dm= dm f, dm
ne ¥ z n ®%¥

E

E

For example :
Let E= [0,1] and define the sequence of functions fn by :

when 0£ X £ % the graph of f consists of the sides of the triangle with
altitude n and base [0,1]. when ni £ x £ 1, then f =0
1

Since fn® 0 on [0,1],so ) lim f (x)dx = 0.
O’ n® ¥

We have

fegx)dx = 2 () (n)

N |~
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1

It follows that  lim fitx)dx = L
ney¥ 2
1 1
Thus lim f (x)dx ' lim Frx)dx.
o nN®¥ n®¥ g
Notation

Let X beanon-emptyset.Let f : X ® « and let ( f,) be asequence of
functions defined on X .
The notation f,(x)Z f(x) (n¢Z ¥ )on X means that

f (x)£ fn+1(x) for all n and xz X (Monotonicity ),

and
f(x) = Ilim fn(x).

ne® ¥

We have the following properties :

Let f,(x)Z f(x) and g,(x) Z g(x)as n® ¥ and forall
x¢ X and let h: X ® « . Let (4, ) be asequence of positive real

constants and let @ bea positive real constant.
Then

(i) f,(x) + g,(x) Z f(x)+ g(x)
(ii) f,(x)- hzZ f(x)- h
(i) If a,Z a,then a, f,(x)Z a f(x).

Let X beanon-emptyset.Let g: X ® ¢« and let ( g, ) be asequence of

functions defined on X .

The notation g,(x) ] g(x)on X means that

Jh.1(x) £ g (x) forall n and x& X,

and

g(x) = lim g (x).

ne® ¥
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We have the following properties :
Let g,(x) ] 9g(x). Then

(1) - g.(x) Z - g(x)
(it) h- g,(x) Z h- g(x).

Theorem 7.1.1 [ 3]

Let ( X, F) be ameasurable space and let f be anon -negative bounded

measurable function on X . Then there is a sequence of non-negative simple

functions ('S, ) suchthat S,(x)Z f(x) as n® ¥ and forall x & X.

Theorem 7.1.2 ( Monotone Convergence Theorem )

Let ( X, F, m) be ameasure space and Ez F. Let ( f, ) be asequence of

non-negative measurable functions defined on E such that

Then

ne ¥ z z
E

Proof
Since 0£ f (x) £ f(x) forall n,so

z

E E

f,dm£  f@m (Lemma 6.2.2).

It follows that

lim  f.dm& fadm ® (i)

ne ¥ z z
E E

Let 0O<a<1 and O£ h£ f beasimplefunction.
Set
E,={xeE : f ,(x)>ah(x)}

f(x)Z f(x).

Then E,cE,cE,c.. and E, are measurable sets ( Theorem 5.19 (ii) ) .

¥
Also,wehave |J E, = E.

n=1
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Therefore

£ f,odm (Proposition 6.2.11).
E
So

lim ahdmg£ lim frr
ne ¥ E; ne ¥ '

n

Y o
X

It follows from Theorem 6.1.11 that

ahdmg£ lim fuodm,
E‘ n® ¥ z

and so

a hdmg£ lim frcd m.
& n® ¥ g

Since a isan arbitrary in (0,1), taking
a=1- L.
2n
Therefore
(1- L) hdme lim  fdm
2n Eg ne ¥ e TE

Letting n® ¥ , so we have

hdmg£ lim fruodm.

n® ¥
E
Taking asupremumoverall h suchthat 0£ h£ f ,so

sup ( hdm) £ lim  f.dm
het € ne ¥ i

and hence

fdmg lim  fudm ® (ii)
Eﬁ ne ¥ z

It follows from (i) and (ii) that

lim f
ne ¥ z z
E
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Remark 7.1.1

The monotonicity condition in the monotone convergence theorem cannot be
dropped.

For example :
Let E = [0,1].
Let F be the o—field of all open sets in [0,1].

Let m= m (the Lebesgue measure ) and define

f, = nc (n=123,...).

Then ( f ) is adecreasing sequence of non-negative measurable functions.

Clearly lim f =0 and so lim f,dm = 0.
ne® ¥ Z n® ¥
E
We have
fodm = nm((0 1))
-
=n(l)
n
= ]_,
and hence

ne ¥ z
X

Thus

lim f, dm < lim froodm .
E’ ne ¥ ne ¥ z

The next two corollaries are consequences of Monotone Convergence
Theorem .

Corollary 7.1.3
Let ( X, F, m) be ameasure spaceand EZ F .let f be anon -negative

bounded measurable functionon E .Let ( f,) be asequence of measurable
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functions definedon E suchthat f (x)Z f(x).Let f,* h forall n and

h dm> - ¥ . Then
E

lim f
ne ¥ z z
E

Proof
Let f,(x)Z f(x).Then

f (x)- hz f(x)- h.

Since f,* h, it follows that f, - h3 0.

n

Since ( f, - h ) is asequence of non-negative measurable functions and

f,- hZ f - h,so Monotone Convergence Theorem 7.1.2 gives us

(f-h)dm = lim (f4+- h)dm
z ne ¥ z
E
Therefore
fdm- hdm = lim ( f dm-:hdm) (Lemma 6.2.8)
E E Yk E
= lim f,dm- br-gh-m.
ne ¥ z z
E E
Thus
fdm= lim fudm.
z ne ¥ i
E E

Corollary 7.1.4

Let ( X, F, m) be ameasure spaceand E# F .Let g be anon-negative
bounded measurable functionon E . Let ( g, ) be asequence of measurable

functions defined on E suchthat g,(x) ] 9(x). Let g, £ h forall n

and hdm< ¥ . Then

z

E

lim dn dm = gdm
ne ¥ E; z
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Proof
Let g,(x)] 9g(x). Then
h-g.(x)Z h- g(x).
Since g, £ h, it follows that h - g, * O.
Since (h - g, ) is asequence of non-negative measurable functions and

h- g Z h- g,soMonotone Convergence Theorem gives us
n

(h- g)dm = lim ¢hs- g, )dm
z ne ¥ z
E E
Therefore
hdm- gdm = lim ( hdm- megsed m) .
z n® ¥ z 2z 7z
E E E E
So
h dm- gdm-= hdm- 1imogged o,
E E E Y
and hence
gdm= lim gicd /.
< ne ¥ z
E E

Monotone Convergence Theorem allows to prove linearity of the Lebesgue integral

for non-negative measurable functions .
Theorem 7.1.5
Let ( X, F, m) be ameasure spaceand Ez F .Let f be anon-negative

bounded measurable function on E and let @ be a positive real constant.
Then

Proof
Let f be anon-negative bounded measurable function on E . There exists a

sequence of non-negative simple functions ( S, ) such that

s, Z f ( Theorem7.1.1).
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It follows from Monotone Convergence Theorem that

fdm= Ilim Sdm.
z ne ¥ i
E E

Choose a positive sequence ( a, ) of positive real constants and & isa positive

real constant suchthat a, Z a.

It follows that a s Z af.

Again, Monotone Convergence Theorem gives us

afdm= Ilim a8 dm

z ne ¥ z
E E

nICEDn; (a” - S”igm)
E

(tima_ ) (lim s «dm)
ne ¥ ne ¥ z

Theorem 7.1.6

Let ( X, F, m) be ameasure spaceand Ez F. Let f, g be non-negative

measurable functions on E . Then

(f+g)dm= fdm+ g:dm
E E E )
Proof

Let f,g be non-negative measurable functions on E . There exist two
sequences of non-negative simple functions (s ) and ( t,) such that
s, Z f and t, Z g (Theorem7.1.1).

It follows from Monotone Convergence Theorem that

fdm= Iim $::dm,
z ne ¥ z
E
and
gdm= lim tidm
i ne ¥ z
E E
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Wehave s +t, Z f+g.

n

It follows from Monotone Convergence Theorem that

~(f+g)dm= lim Cs;+ t,)dm
E’ n® ¥ £ z
= lim (s dm+  gdm)
ne ¥ z z
E E
= lim s, dm+ lim tuedm.
ne ¥ z ne ¥ z
E E
Thus
E E E
Remark 7.1.2

Let (X, F, m) be ameasure space and El, Ez,...c F with

E ) Ej =& (1" j). Let f be a bounded measurable function .

Then

and

Theorem 7.1.7

Let (X, F, m) be ameasure space and El, Ez,...c F with

E ) Ej = (i' j). Let f be abounded measurable function.

Then
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Proof

We have
z z ¥
¥ X u E
u E k=1 X
k=1 k
= (fe, ) dm- {f2c, ) dm
X kL:J1Ek X kL:J1Ek
By Remark 7.1.2, we have
f'c. z ' ¢, and f ¢, Z f c,
U E, U E, U E, U E,

It follows from Monotone Convergence Theorem that

fdm= lim (fec, ) dm- lim {0, ) dm
z ne ¥ U e, ne ¥ =7 UE,
¥ k=1 k=1
u E
k=1 k
=dim( (fec, ) dm- ffc, ) dm)
nw¥ X kL:JlEk X |«l;J1Ek
= lim fo, dm
ne ¥ z UEk
= lim f~dm
ne® ¥ n’
|<l=J1Ek
n
= lim o» f:dm ( Theorem 6.3.9)
ne ¥ k=1 z
Ek
¥
= (<] fdm
k=1 ~
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Theorem 7.1.8 ( Fatous Lemma )

Let (X, F,m) be ameasure space and E¢ F. Let ( f ) be asequence

of non-negative measurable functions defined on E . Then

lim f dmf£ lim ;:'f::- i dm.
n iy

z JRE— —_—

E E

=z

Proof
We have
lim f (x) = lim ( inf fk(x))—>(i)

n—ow k >n

Set g, (x)= inf fk(x).

k >n

Then g,(x) < gn+1(x) and so 9, Z I|_m fn.

By Monotone Convergence Theorem , we have

lim g, dm= oim f_dm® (ii)

ne ¥ z -

E E
Since 0 < g,(x) < fk(x), it follows that
g, dm£ .;;;j!‘;;..-l-;;;;;.dm (Lemma 6.2.2).
E E

Taking an infimum over k >n, we get

g, dmg£ inf fomdme (Hii).
- g ke
We have
lim  f dm=lim (inf ;;;f;;é;sdm) (by(i))
E " ken g
s lim go:dm by (iii))
ne¥ z
E
= lim f_dm (by(ii)).
-
Thus
z —_— n —_— )
E E
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Example 7.1.1
Let E = ¢ and define the sequence ( f,) definedon E by

?{51 Xz[n,n+1]

fn(x) = ¢
io otherwise.
Thatis, f, = ¢ :
[n,n+1]
- I, N+ 1]

=m([n,n+1])

=1.
Therefore

lim fordm = 1

z

3

Wehave lim f_ (x) = 0. Itfollows that

ne® ¥
lim f (x)= lim f (x)=0,
ne ¥ -
andhence  lim f dm = 0.
Thus lim f dmg¢ lim  f-dm

13

Corollary 7.1.9

Let (X, F,m) be ameasure space and E¢ F. Let ( f ) be asequence

of non-negative measurable functions defined on E such that f ® f. If

there exist a positive constant M such that fesdm£& M forall n, then

z

E

z

E
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Proof

We have
lim f dm£ lim :fipdm ( Fatous Lemma ).
E E ]

Since fo-dm£ M forall n itfollowsthat lim fdm€& M,

E E
and hence lim f_ dm& M.

o

Since. f ® f ,sowehave lim f = ITim f = f.
Hence fedmeg M.

Eﬁ

Theorem 7.1.10 ( Lebesgue Dominated Convergence Theorem )
Let ( X, F, m) be ameasure space and E¢ F. Let ( f,) be asequence

of measurable functions defined on E suchthat f ® f . Let g be anon-
negative measurable function such that ‘ f ‘ £ g forall n and

g:dm< ¥ . Then

z

E

lim f dm= f-gm.
ne ¥ 2 T

Proof

Let ‘ fn‘£ g. Then
'g£ fn£ 9,

andso g- f,* 0 and f,+ g * O.
Therefore

g- f,® g- f
and

f.+9g® f+g.

n
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So

(g-f)dm dMm (g- f,)dm

- e
E

lim (g- f,)dm

E

Since g - f, arenon-negative measurable functions, so

(g-f)dm£ lim g - f, )dm (Fatous Lemma )
E E

So we have

and hence

Similarly, Since f, + g arenon-negative measurable functions, so

(g+f)dm= dHm (g+f,)dm
E; £ n ®*

= lim (g +f,) dm

E
£ lim (9 +f,) dm
So

gdm+ f dm £ gdm+ limgesdy-dm,
E E E E
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and hence

(P dme lim o fyndme (i)

E E

It follows from (i) and (i) that

n

fdme& lim f dmg lim  f, dmErefudn

E E E E
Therefore
f dm= lim fo dm= lim f-dm
E E E
Hence
lim f dm = £
ne ¥ z E T

Example 7.1.2
Let E =1[0,1] and fn(x)zn«/TG-n (nz¥.x¢zE).

We will find the limit of the integral

by using the Lebesgue Dominated Convergence Theorem .

We have

lim f (x)
ne® ¥

Then

>
]
D
1
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£ .

,f X

Thus
- n?x?
n«/x e £ forall n,

X

where
1
1l dx <y .

«3
>
R
D
o
<
I
o)
&
=<

7.2 LP - Spaces

We introduce LP spaces for every p (1t p< ¥ ). An important application

of Lebesgue intergation is LP and these spaces play important roles in functional

analysis and its applications .
Definition 7.2.1

Let ( X, F, m) be ameasure spaceand E& F. Let f be ameasurable

functionon E and 1t p < ¥ .We define Lp(E, F, u) by

LP(E Fow)={f:[|f| du<w}

E

We shall give some properties of L P (E, F, ¢) in the next results.

Lemma 7.2.1

Let f €L P (E, F, ) and let a be anon-zero constant. Then

af € Lp(E,F,,u).

148



Proof
et f eL"(E,F, u).Then

p
J.|f| du<omo.
E

We have o f isameasurable function ( Theorem5.12 ).

Then

p p p
[lat"du=[lal|t] du
E E

p p
=la| JIf] du
E

< 00,
Hence o f eLp(E,F,,u).
Lemma 7.2.2
et f,geL"(E,F, u).Then f+geL”(E, F, u).
Proof

Let f,g eLp(E,F,,u).Then

p p
[1f] du<o and [[g] du<w.
E E

We have f + g isameasurable function ( Theorem 5.14 ).

Then

p
[1f+gldu< [ (1f]+lg]) du
E E

p p
<f2 ([f] +]al)du
E

p p
—2 ([ | du+ [ o] du)
E E

< .

Hence f +g eLp(E,F,,u).
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Corollary 7.2.3

let f ,g € L P (E, F, £) and let a,b be non-zero constants . Then

af +BgelL”(E,F u).
Proof

The proof follows from Lemma7.2.1 and Lemma7.2.2.

Remark 7.2.1

Let a=1and 6=- 1 in Corollary 7.2 .3. Then
f—geL’(E,F u)

Theorem 7.2.4

let f eL"(E,F, u) and g<f.Then ge L’ (E,F, ).

Proof
Let f ELp(E,F,,u) and g < f .Then

{x:g(x)>c}r={x:c<g(x)<f(x)}
={x:c< f(x)}eF.
Thus g is a measurable function .

Since g<f,so |g |p$|f|pforall le p< ¥ .

Then

[ lol"dus| 1] du
E E

and so

[ lo ' dus| |t du<ew
E E

p
Hence I | g | du <.
E

Thus ¢ eLp(E,F,y).
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Lemma 7.2.5

et f e L"(E, F, u) Then | f |eL"(E,F,u).

Proof
Since f is a measurable function, so | f | is measurable (Lemma5.18).

Also,since | f | < | f |IO (12 p< ¥ ), it follows that

[ 16 ldas] |1 du<o
E E

Hence

[ [ f]du<w
E

Thus | f € L (E, F, u).

In next two theorems,we take E = [0,1] and p =2.

Theorem 7.2.6 [4]

Let f,g eL?[0,1]. Then
1

1 2

[1talans ([1e1aa) (Jlol au)

0 0

Theorem 7.2.7

Let f €L?[0,1]. Then

1

S(Ojl|f|2d,u)2.

1
‘Ifd,u

0

Proof

Let f,g eL?[0,1]. Then
1

1

[1talaus([107aw) ([lolow)

0

( Theorem 7.2.6 ).
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Taking g(x) =1 forall x,we get

1

1 1 2 2
[l o ldas (o] du)
0 0

1
Since < J' | f | du ( Proposition 6.3.7 ), it follows that
0

1
_[fd,u
0

1

g(j|ffdy) |

1
‘Ifd,u

0
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