ON SUBCLASSES OF p-VALENT FUNCTIONS DEFINED BY A DERIVATIVE OPERATOR

N. M. Mustafa and M. Darus*
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan
Malaysia
e-mail: nmma1975@yahoo.com
maslina@ukm.my

Abstract

In the present paper, we study certain subclasses $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$ and $C_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$ of analytic p-valent functions with negative coefficients in the unit disc. The results presented here include the modified Hadamard product, the radii of close-to-convexity, starlikeness and convexity for functions belonging to the above mentioned subclasses.

1. Definition and Preliminaries

Let A_{p} denote the class of functions of the form
© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 30C45.
Keywords and phrases: p-valent functions, coefficient, Hadamard product, close-to-convexity, starlikeness, convexity.
*Corresponding author
Received July 21, 2012

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}),
$$

which is analytic in the open unit disc $\mathbb{U}=\{z:|z|<1\}$. A function $f \in A_{p}$ is called p-valent starlike of order β and type γ if it satisfies

$$
\begin{equation*}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-p}{\frac{z f^{\prime}(z)}{f(z)}+p-2 \gamma}\right|<\beta \tag{1.1}
\end{equation*}
$$

where $0 \leq \gamma<p, \quad 0<\beta \leq 1$ and $p \in \mathbb{N}$. We denote by $S^{*}(p, \gamma, \beta)$ the class of p-valent starlike functions of order γ and type β.

A function $f \in A_{p}$ is called p-valent convex of order γ and type β if it satisfies

$$
\begin{equation*}
\left|\frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p}{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+p-2 \gamma}\right|<\beta \tag{1.2}
\end{equation*}
$$

where $0 \leq \gamma<p, \quad 0<\beta \leq 1$ and $p \in \mathbb{N}$. We denote by $K(p, \gamma, \beta)$ the class of p-valent convex functions of order γ and type β.

From (1.1) and (1.2), we note that

$$
f(z) \in K(p, \gamma, \beta) \text { if and only if } \frac{z f^{\prime}(z)}{p} \in S^{*}(p, \gamma, \beta) .
$$

The classes $S^{*}(p, \gamma, \beta)$ and $K(p, \gamma, \beta)$ were considered by Aouf [3] and Hossen [4]. For $\beta=1$, the class $S^{*}(p, \gamma, 1)=S^{*}(p, \gamma)$ was studied by Patil and Thakare [5], and the class $K(p, \gamma, 1)=K(p, \gamma)$ was introduced by Owa [6].

Let T_{p} denote the subclass of A_{p} consisting of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0, p \in \mathbb{N}\right) . \tag{1.3}
\end{equation*}
$$

We denote by $T^{*}(p, \gamma, \beta)$ and $C(p, \gamma, \beta)$ the classes obtained by taking intersections, respectively, of the classes $S^{*}(p, \gamma, \beta)$ and $K(p, \gamma, \beta)$ with the class T_{p}. Thus, we have

$$
T^{*}(p, \gamma, \beta)=S^{*}(p, \gamma, \beta) \cap T_{p}
$$

and

$$
C(p, \gamma, \beta)=K(p, \gamma, \beta) \cap T_{p} .
$$

The classes $T^{*}(p, \gamma, \beta)$ and $C(p, \gamma, \beta)$ were studied by Aouf [3] and Hossen [4]. In particular, the classes $T^{*}(p, \gamma, 1)=T^{*}(p, \gamma)$ and $C(p, \gamma, 1)=$ $C(p, \gamma)$ were introduced by Owa [6]. Also, the classes $T^{*}(1, \gamma, 1)=T^{*}(\gamma)$ and $C(1, \gamma, 1)=C(\gamma)$ were studied by Silverman [7].

The authors in [1] have, recently, introduced a new generalized derivative operator $D_{p}^{\alpha, \delta}(\mu, q, \lambda)$ as follows:

Definition 1.1. For $f \in A_{p}$, the operator $D_{p}^{\alpha, \delta}(\mu, q, \lambda)$ is defined by $D_{p}^{\alpha, \delta}(\mu, q, \lambda): A_{p} \rightarrow A_{p}$ as the following:

$$
\begin{equation*}
D_{p}^{\alpha, \delta}(\mu, q, \lambda) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} c(\delta, k) a_{k} z^{k}, \tag{1.4}
\end{equation*}
$$

where $\lambda, \mu, q \geq 0, k, \delta, \alpha \in \mathbb{N}_{0}$ and

$$
c(\delta, k)=z^{p}+\sum_{k=p+1}^{\infty} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)} z^{k} .
$$

Also, the authors in [2] have, recently, stated new subclasses of analytic functions with negative coefficients given as follows:

Definition 1.2. For $f \in T_{p}$ is said to be in the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$ if and only if

$$
\left|\frac{\frac{z\left(D_{p}^{\alpha, \delta}(\mu, q, \lambda) f\right)^{\prime}(z)}{D_{p}^{\alpha, \delta}(\mu, q, \lambda) f(z)}-p}{\frac{z\left(D_{p}^{\alpha, \delta}(\mu, q, \lambda) f\right)^{\prime}(z)}{D_{p}^{\alpha, \delta}(\mu, q, \lambda) f(z)}+p-2 \gamma}\right|<\beta,
$$

where $D_{p}^{\alpha, \delta}(\mu, q, \lambda) f(z)$ is given by (1.4) and $\lambda, \mu, q \geq 0, k, \delta, \alpha \in \mathbb{N}_{0}$ $=\{0,1,2, \ldots\}, 0 \leq \gamma<p, 0<\beta \leq 1$ and $p \in \mathbb{N}$.

Further,

$$
f \in C_{p}^{\alpha, n}(\mu, q, \lambda, \gamma, \beta) \text { if and only if } \frac{z f^{\prime}}{p} \in T_{p}^{\alpha, n}(\mu, q, \lambda, \beta) .
$$

We note that, by specializing the parameters $\alpha, \delta, \mu, \lambda, \beta$ and p, we obtain the following subclasses which were studied by various authors:

1. For $\alpha=\delta=\mu=0$, we obtain $T_{p}^{0,0}(0, q, \lambda, \gamma, \beta)=T^{*}(p, \gamma, \beta)$, is the class of p-valent starlike functions of order γ and type β which was studied by Aouf [3] and Hossen [4].
2. For $\alpha=\delta=\mu=0$ and $p=1$, we obtain $T_{1}^{0,0}(0, q, \lambda, \gamma, \beta)=$ $S^{*}(\gamma, \beta)$, is the class of starlike functions of order γ and type β which was studied by Gupta and Jain [8].
3. For $\alpha=\delta=\mu=0$ and $\beta=1$, we obtain the class $T_{p}^{0,0}(0, q, \lambda, \gamma, 1)$ $=T^{*}(p, \gamma)$, which was introduced by Owa [6].
4. For $\alpha=\delta=\mu=0, \quad p=1$ and $\beta=1$, we obtain the class $T_{1}^{0,0}(0, q, \lambda, \gamma, 1)=T^{*}(\gamma)$, which was studied by Silverman [7].

On Subclasses of p-valent Functions Defined by a Derivative Operator 5
5. For $\alpha=\delta=q=0, \mu=1$ and $p=1$, we obtain the class $C_{1}^{0,0}(1,0, \lambda, \gamma, \beta)=C^{*}(\gamma, \beta)$, which was studied by Gupta and Jain [8].
6. For $\alpha=\delta=q=0, \mu=1$, we obtain the class $C_{p}^{0,0}(1,0, \lambda, \gamma, \beta)=$ $C(p, \gamma, \beta)$, is the class of p-valent convex functions of order γ and type β which was studied by Aouf [3] and Hossen [4].
7. For $\alpha=\delta=q=0, \quad \mu=1$ and $\beta=1$, we obtain the class $C_{p}^{0,0}(1,0, \lambda, \gamma, 1)=C(p, \gamma)$, which was studied by Owa [6].
8. For $\alpha=\delta=q=0, \mu=1, \beta=1$ and $p=1$, we obtain the class $C_{1}^{0,0}(1,0, \lambda, \gamma, 1)=C(\gamma)$, which was studied by Silverman [7].

In [2], sufficient conditions for a function $f(z) \in T_{P}$ to be in the subclasses $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$ and $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$, as stated in the following theorems are provided.

Theorem 1.3. Let the function f belong to the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$ if and only if

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty}\left(((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)} a_{k}\right) \\
& \leq 2 \beta(p-\gamma),
\end{aligned}
$$

the result is sharp for the function f of the form

$$
\begin{equation*}
f(z)=z^{p}-\frac{2 \beta(p-\gamma)}{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!(p+\delta)}} z^{k} . \tag{1.5}
\end{equation*}
$$

Theorem 1.4. Let f belong to the subclass $C_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$ if and only if

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty}\left(k[(k-p)+\beta(k+p-2 \gamma)]\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)} a_{k}\right) \\
& \leq 2 \beta p(p-\gamma)
\end{aligned}
$$

with equality only for functions of the form

$$
f(z)=z^{p}-\frac{2 \beta p(p-\gamma)}{k[(k-p)+\beta(k+p-2 \gamma)]\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}} z^{k} .
$$

2. Modified Hadamard Products

Let the functions $f_{j}(z)(j=1,2)$ be defined by

$$
\begin{equation*}
f_{j}(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k, i} z^{k} \quad(p \in \mathbb{N}) . \tag{2.1}
\end{equation*}
$$

The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\left(f_{1} * f_{2}\right)(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k, 1} a_{k, z^{2}} z^{k} \quad(p \in \mathbb{N}) .
$$

Theorem 2.1. Let the functions $f_{j}(z)(j=1,2)$ defined by (2.1) be in the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$. Then $\left(f_{1} * f_{2}\right)(z) \in T_{p}^{\alpha, \delta}(\mu, q, \lambda, \omega, \beta)$, where

$$
\omega \leq p-\frac{2 \beta^{2}(p-\gamma)^{2}+2 \beta(p-\gamma)^{2}}{(1+\beta(2 p+1-2 \gamma))^{2}\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{1}{p+q} \lambda\right)^{\mu} \frac{\Gamma(p+1+\delta)}{\Gamma(p+\delta)}-4 \beta^{2}(p-\gamma)^{2}} .
$$

The result is sharp

$$
f(z)=z^{p}-\frac{2 \beta(p-\gamma)}{(1+\beta(2 p+1-2 \gamma))^{2}\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{1}{p+q} \lambda\right)^{\mu} \frac{\Gamma(p+1+\delta)}{\Gamma(p+\delta)}} z^{p+1} .
$$

Proof. To prove the theorem, we need to find the largest ω such that

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} \frac{((k-p)+\beta(k+p-2 \omega))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\omega)} \\
& \cdot a_{k, 1} a_{k, 2} \leq 1
\end{aligned}
$$

since

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} \frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)} \\
& \cdot a_{k, 1} \leq 1
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} \frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)} \\
& \cdot a_{k, 2} \leq 1 .
\end{aligned}
$$

By the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} \frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)} \\
& \cdot \sqrt{a_{k, 1} a_{k, 2}} \leq 1 .
\end{aligned}
$$

Thus, it suffices to show that

$$
\frac{((k-p)+\beta(k+p-2 \omega))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\omega)} a_{k, 1} a_{k, 2}
$$

$$
\leq \frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)} \sqrt{a_{k, 1} a_{k, 2}} .
$$

That is,

$$
\sqrt{a_{k+p, 1} a_{k+p, 2}} \leq \frac{(p-\omega)((k-p)+\beta(k+p-2 \gamma))}{(p-\gamma)((k-p)+\beta(k+p-2 \omega))} .
$$

Note that

$$
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{2 \beta(p-\gamma)}{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}} .
$$

Consequently, we need only to prove that

$$
\begin{aligned}
& \frac{2 \beta(p-\gamma)}{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}} \\
& \leq \frac{(p-\omega)((k-p)+\beta(k+p-2 \gamma))}{(p-\gamma)((k-p)+\beta(k+p-2 \omega))}
\end{aligned}
$$

or, equivalently, that

$$
\begin{align*}
\omega \leq p- & \frac{2 \beta(p-\gamma)^{2}(k-p)(\beta+1)}{((k-p)+\beta(k+p-2 \gamma))^{2}\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu}} \tag{2.2}\\
& \cdot \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}-4 \beta^{2}(p-\gamma)^{2}
\end{align*}
$$

is an increasing function of $k, k \geq p+1$, letting $k=p+1$ in (2.2), we obtain

$$
\begin{aligned}
& \omega \leq \phi(p+1) \\
& \leq p-\frac{2 \beta^{2}(p-\gamma)^{2}+2 \beta(p-\gamma)^{2}}{(1+\beta(2 p+1-2 \gamma))^{2}\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{1}{p+q} \lambda\right)^{\mu} \frac{\Gamma(p+1+\delta)}{\Gamma(p+\delta)}-4 \beta^{2}(p-\gamma)^{2}}
\end{aligned}
$$

which completes the assertion of theorem.

On Subclasses of p-valent Functions Defined by a Derivative Operator 9 Similarly, we can prove the following results.

Theorem 2.2. Let the functions $f_{j}(z)(j=1,2)$ defined by (2.1) be in the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$. Then $\left(f_{1} * f_{2}\right)(z) \in C_{p}^{\alpha, \delta}(\mu, q, \lambda, \chi, \beta)$, where

$$
\chi \leq p-\frac{2 p \beta(p-\gamma)^{2}(\beta+1)}{((p+1)+\beta(1+2 p-2 \gamma))^{2}\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{\lambda}{p+q}\right)^{\mu} \frac{\Gamma(p+1+\delta)}{\Gamma(p+\delta)}-4 \beta^{2} p(p-\gamma)^{2}} .
$$

Finally, by taking the function

$$
f(z)=z^{p}-\frac{2 \beta p(p-\gamma)}{(p+1)[1+\beta(2 p+1-2 \gamma)]\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{1}{p+q} \lambda\right)^{\mu} \frac{\Gamma(p+1+\delta)}{\Gamma(p+\delta)}} z^{p+1},
$$

we can see that the result is sharp.
Theorem 2.3. Let the functions $f_{j}(z)(j=1,2)$ defined by (2.1) be in the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$. Then the function

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=p+1}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{2.3}
\end{equation*}
$$

belongs to the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \xi, \beta)$, where

$$
\omega \leq p-\frac{4 \beta^{2}(p-\gamma)^{2}(\beta+1)}{\beta(1+\beta(2 p+1-2 \gamma))^{2}\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{1}{p+q} \lambda\right)^{\mu} \frac{\Gamma(p+1+\delta)}{\Gamma(p+\delta)}-8 \beta^{3}(p-\gamma)^{2}} .
$$

The result is sharp for the functions.
Proof. By virtue of Theorem 1.3, we obtain

$$
\sum_{k=p+1}^{\infty}\left[\frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)}\right]^{2} a_{k, 1}^{2}
$$

$$
\begin{equation*}
\leq\left[\sum_{k=p+1}^{\infty} \frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)}\right]^{2} \leq 1 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{k=p+1}^{\infty}\left[\frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)}\right]^{2} a_{k, 2}^{2} \\
\leq & {\left[\frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)}\right]^{2} \leq 1 . } \tag{2.5}
\end{align*}
$$

It follows from (2.4) and (2.5) that

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{1}{2}\left[\frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)}\right]^{2} \\
& \cdot\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leq 1
\end{aligned}
$$

Therefore, we need to find the largest ξ such that

$$
\begin{aligned}
& \frac{((k-p)+\beta(k+p-2 \xi))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\xi)} \\
\leq & \frac{1}{2}\left[\frac{((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta(p-\gamma)}\right]^{2},
\end{aligned}
$$

On Subclasses of p-valent Functions Defined by a Derivative Operator 11 that is,

$$
\xi \leq p-\frac{4 \beta^{2}(p-\gamma)^{2}(k-p)(\beta+1)}{\beta((k-p)+\beta(k+p-2 \gamma))^{2}\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}-8 \beta^{3}(p-\gamma)^{2}} .
$$

Since
$\omega=p-\frac{4 \beta^{2}(p-\gamma)^{2}(k-p)(\beta+1)}{\beta((k-p)+\beta(k+p-2 \gamma))^{2}\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}-8 \beta^{3}(p-\gamma)^{2}}$
is an increasing function of k, letting $k=p+1$, we obtain

$$
\begin{aligned}
\phi(p+1)=p- & \frac{4 \beta^{2}(p-\gamma)^{2}(\beta+1)}{\beta(1+\beta(2 p+1-2 \gamma))^{2}\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{1}{p+q} \lambda\right)^{\mu}} \\
& \cdot \operatorname{frac\Gamma }(p+1+\delta) \Gamma(p+\delta)-8 \beta^{3}(p-\gamma)^{2}
\end{aligned}
$$

which completes the proof.
Theorem 2.4. Let the functions $f_{j}(z)(j=1,2)$ defined by (2.1) be in the class $C_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$. Then the function $h(z)$ defined by (2.3) belongs to the class $C_{p}^{\alpha, \delta}(\mu, q, \lambda, \chi, \beta)$, where

$$
\begin{aligned}
\chi \leq p- & \frac{4 p \beta^{2}(p-\gamma)^{2}(\beta+1)}{\beta(p+1)(1+\beta(1+2 p-2 \gamma))^{2}\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{\lambda}{p+q}\right)^{\mu}} . \\
& \cdot \frac{\Gamma(p+1+\delta)}{p \Gamma(p+\delta)}-8 \beta^{3}(p-\gamma)^{2}
\end{aligned}
$$

The result is sharp for the functions

$$
f(z)=z^{p}-\frac{2 \beta p(p-\gamma)}{(p+1)[1+\beta(2 p+1-2 \gamma)]\left(\frac{p+1}{p}\right)^{\alpha}\left(1+\frac{1}{p+q} \lambda\right)^{\mu} \frac{\Gamma(p+1+\delta)}{\Gamma(p+\delta)}} z^{p+1} .
$$

3. Radii of Starlikeness, and Convexity

In the next theorems, we will find the radius of starlikeness, convexity and close-to-convexity for the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$.

Theorem 3.1. Let the function f be defined by (1.3) belonging to the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$. Then f is p-valently close-to-convex of order ρ $(0 \leq \rho<p)$ in the disk $|z|<r$, where

$$
\begin{equation*}
r:=\inf _{k \geq p+1}\left(\frac{(p-\rho)\left(((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}\right)}{2 k \beta(p-\gamma)}\right)^{\frac{1}{k-1}} . \tag{3.1}
\end{equation*}
$$

The result is sharp with extremal function f given by (1.5).
Proof. Given $f \in T$ and f is p-valently close-to-convex of order ρ in the disc $|z|<r$ if and only if we have

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|<p-\rho, \text { whenever }|z|<1 . \tag{3.2}
\end{equation*}
$$

For the left hand side of (3.2), we have

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq \sum_{k=p+1}^{\infty} k a_{k}|z|^{k-1} .
$$

Then (3.2) is implied by

$$
\sum_{k=p+1}^{\infty} \frac{k}{p-\rho} a_{k}|z|^{k-1}<1 .
$$

Using the fact that $f(z) \in T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$ if and only if

On Subclasses of p-valent Functions Defined by a Derivative Operator 13

$$
\sum_{k=p+1}^{\infty} \frac{\left(((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}\right)}{2 \beta(p-\gamma)} \leq 1
$$

it follows that (3.2) is true if

$$
\frac{k}{p-\rho}|z|^{k-1} \leq \frac{\left(((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}\right)}{2 \beta(p-\gamma)}
$$

whenever $|z|<r$. We obtain

$$
r:=\inf _{k \geq p+1}\left(\frac{(p-\rho)\left(((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)} a_{k}\right)}{2 k \beta(p-\gamma)}\right)^{\frac{1}{k-1}} .
$$

This completes the proof.
Theorem 3.2. Let the function f be defined by (1.3) belonging to the class $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$. Then:
(I) f is p-valently starlike of order $\rho(0 \leq \rho<1)$ in the disc $|z|<r$, that is,

$$
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\rho \quad(|z|<r, 0 \leq \rho<p),
$$

where

$$
r:=\inf _{k \geq p+1}\left(\frac{(p-\rho)\left(((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)} a_{k}\right)}{2(k-\rho) \beta(p-\gamma)}\right)^{\frac{1}{k-1}} .
$$

(II) f is p-valently convex of order $\rho(0 \leq \rho<1)$ in the disc $|z|<r$, that is,

$$
\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\rho \quad(|z|<r, 0 \leq \rho<p),
$$

where

$$
r:=\inf _{k \geq p+1}\left(\frac{\left(p(p-\rho)((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)} a_{k}\right)}{2 k(k-p) \beta(p-\gamma)}\right)^{\frac{1}{k-1}} .
$$

Each of these results is sharp for the extremal function given by (1.5).
Proof. (I) Given $f \in T$ and f is p-valently starlike of order ρ in the disc $|z|<r$ if and only if

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|<p-\rho \text { whenever }|z|<r . \tag{3.3}
\end{equation*}
$$

For the left hand side of (3.3), we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right| \leq \frac{\sum_{k=p+1}^{\infty}(k-p) a_{k}|z|^{k-1}}{1-\sum_{k=p+1}^{\infty} a_{n}|z|^{k-1}}
$$

Then (3.3) is implied by

$$
\sum_{n=2}^{\infty} \frac{k-\rho}{p-\rho} a_{k}|z|^{k-1}<1
$$

Using the fact that $T_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$ if and only if

$$
\sum_{k=p+1}^{\infty} \frac{\left(((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}\right)}{2 \beta(p-\gamma)} \leq 1 .
$$

(3.3) is true for every z in the disc $|z|<r$ if

On Subclasses of p-valent Functions Defined by a Derivative Operator 15

$$
\frac{k-\rho}{p-\rho}|z|^{k-1} \leq \frac{\left(((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}\right)}{2 \beta(p-\gamma)} .
$$

Thus,

$$
r:=\inf _{k \geq p+1}\left(\left((p-\rho)((k-p)+\beta(k+p-2 \gamma))\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)} a_{k}\right)\right)^{\frac{1}{k-1}} .
$$

This completes the proof.
(II) Using the fact that f is convex of order ρ if and only if $z f^{\prime}(z)$ is starlike of order ρ, we can prove (II) using similar methods to the proof of (I).

Similarly, we can prove the following results.
Theorem 3.3. Let the function f be defined by (1.3) belonging to the class $C_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$. Then f is p-valently close-to-convex of order ρ $(0 \leq \rho<p)$ in the disc $|z|<r$, where

$$
\begin{equation*}
r:=\inf _{k \geq p+1}\left(\frac{(p-\rho)[(k-p)+\beta(k+p-2 \gamma)]\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2 \beta p(p-\gamma)}\right)^{\frac{1}{k-1}} . \tag{3.4}
\end{equation*}
$$

The result is sharp with extremal function f given by (1.5).
Theorem 3.4. Let the function f be defined by (1.3) belonging to the class $C_{p}^{\alpha, \delta}(\mu, q, \lambda, \gamma, \beta)$. Then:
(I) f is p-valently starlike of order $\rho(0 \leq \rho<1)$ in the disc $|z|<r$, that is,

$$
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\rho \quad(|z|<r, 0 \leq \rho<p),
$$

where

$$
r:=\inf _{k \geq p+1}\left(\frac{k(p-\rho)[(k-p)+\beta(k+p-2 \gamma)]\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{(k-p) 2 \beta p(p-\gamma)}\right)^{\frac{1}{k-1}}
$$

(II) f is p-valently convex of order $\rho(0 \leq \rho<1)$ in the disc $|z|<r$, that is,

$$
\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\rho \quad(|z|<r, 0 \leq \rho<p),
$$

where

$$
r:=\inf _{k \geq p+1}\left(\frac{p(p-\rho)[(k-p)+\beta(k+p-2 \gamma)]\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q} \lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k-p)!\Gamma(p+\delta)}}{2(k-p) \beta p(p-\gamma)}\right)^{\frac{1}{k-1}} .
$$

Each of these results is sharp for the extremal function given by (1.5).
Remark. Other works like the ones in [9-18] can be found by using this derivative operator.

Acknowledgement

The work here is supported by LRGS/TD/2011/UKM/ICT/03/02.

References

[1] N. Mustafa and M. Darus, Differential subordination and superordination for new linear derivative operator, Int. J. Pure Appl. Math.70(6) (2011), 825-835.
[2] N. Mustafa and M. Darus, Some properties of certain subclasses of p-valent functions defined by a linear derivative operator, J. Math. Comput. Sci. 1(1) (2011), 66-76.
[3] M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc. 25(1) (1988), 53-66.

On Subclasses of p-valent Functions Defined by a Derivative Operator 17

[4] H. M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstration Math. 33(2) (2000), 277-281.
[5] D. A. Partil and N. K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 27(75) (1983), 145-160.
[6] S. Owa, On certain classes of p-valent functions with negative coefficients, Bull. Belg. Math. Soc. Simon Stevin 59 (1985), 385-402.
[7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
[8] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc. 14 (1976), 409-416.
[9] R. W. Ibrahim and M. Darus, Subordination for meromorphic functions defined by an operator, Int. J. Pure Appl. Math. 69(4) (2011), 413-419.
[10] M. Haji Mohd and M. Darus, Differential subordination and superordination for Srivastava-Attiya operator, Int. J. Differ. Equ. 2011, Art. ID 902830, 19 pp.
[11] S. Sivasubramanian, A. Mohammed and M. Darus, Certain subordination properties for subclasses of analytic functions involving complex order, Abstract and Applied Analysis 2011, Art. ID 375897, 8 pp.
[12] A. Mohammed, M. Darus and D. Breaz, On subordination, starlikeness and convexity of certain integral operators, Mathematica 53(76)(2) (2011), 165-170.
[13] M. Darus and I. Faisal, Differential subordination for meromorphic multivalent quasi-convex functions, Facta Universitatis (NIS) Ser. Math. Inform. 26 (2011), 1-7.
[14] R. W. Ibrahim and M. Darus, Differential subordination for meromorphic multivalent quasi-convex functions, Acta Mathematica Universitatis Comenianae 79(1) (2010), 39-45.
[15] M. H. Al-Abbadi and M. Darus, Differential subordination defined by new generalized derivative operator for analytic functions, Int. J. Math. Math. Sci. 2010, Art. ID 369078, 15 pp.
[16] M. Darus and K. Al-Shaqsi, On subordinations for certain analytic functions associated with generalized integral operator, Lobachevskii J. Math. 29(2) (2008), 90-97.
[17] R. W. Ibrahim and M. Darus, Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl. 345(2) (2008), 871-879.
[18] R. W. Ibrahim and M. Darus, On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. 2(56) (2008), 2785-2794.

Paper No. PPH-1207050-MS	Proof read by: \qquad Copyright transferred to the Pushpa Publishing House
Kindly return the proof after correction to:	Signature:
The Publication Manager	Date:
Pushpa Publishing House Vijaya Niwas	Tel:
198, Mumfordganj Allahabad-211002 (India)	Fax:
	e-mail:
along with the print charges* by the fastest mail	Number of additional reprints required
*Invoice attached	Cost of a set of 25 copies of additional reprints @ U.S. Dollars 15.00 per page. (25 copies of reprints are provided to the corresponding author ex-gratis)

