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Abstract

In the present paper, we study certain subclasses Tg’s(p, q, Ay, B)

and C%’g(p, g, A, v, B) of analytic p-valent functions with negative

coefficients in the unit disc. The results presented here include the
modified Hadamard product, the radii of close-to-convexity,
starlikeness and convexity for functions belonging to the above
mentioned subclasses.

1. Definition and Preliminaries

Let AIO denote the class of functions of the form
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f(z)=zP + Z azt (peN),
k=p+1

which is analytic in the open unitdisc U = {z :|z| <1}. Afunction f € A,
is called p-valent starlike of order  and type vy if it satisfies

zf'(2)

flg P

Z; '((ZZ)) +p- ZY

<B (1.1)

where 0<y<p, 0<B<1and peN. We denote by S*(p, v, B) the

class of p-valent starlike functions of order y and type p.

A function f e Ay is called p-valent convex of order y and type B if it
satisfies

7f"(z)

1+
SLACEES P (1.2
1+Z (Z)+p 2y
f'(z)

where 0<y<p, 0<B<1land peN. We denote by K(p, v, p) the

class of p-valent convex functions of order y and type p.

From (1.1) and (1.2), we note that

f(z) e K(p, v, B) ifand only if fé ) e S*(p, v, B).

The classes S™(p, v, B) and K(p, y, B) were considered by Aouf [3] and
Hossen [4]. For B =1, the class S*(p, y, 1) = S*(p, y) was studied by Patil
and Thakare [5], and the class K(p, y, 1) = K(p, y) was introduced by Owa
[6].
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Let T, denote the subclass of A, consisting of functions of the form
o0
f2)=2P- > a7 (a 20, peN) (1.3)
k=p+1

We denote by T*(p, v, B) and C(p, v, B) the classes obtained by taking
intersections, respectively, of the classes S*(p, v, B) and K(p, vy, B) with

the class Tp. Thus, we have

T(p. v, B)=S"(p. v, B)NT
and

C(p. v, B) = K(p, v, B)N T

The classes T*(p, vy, B) and C(p, v, B) were studied by Aouf [3] and
Hossen [4]. In particular, the classes T*(p,y,1)=T*(p,y) and C(p,y,1)=
C(p,y) were introduced by Owa [6]. Also, the classes T*(1,v,1)=T*(y)
and C(, v, 1) = C(y) were studied by Silverman [7].

The authors in [1] have, recently, introduced a new generalized
derivative operator DS'S(H, g, A) as follows:
Definition 1.1. For f € A, the operator Dg'g’(u, q, A) is defined by
D%’S(u, g, 1) : Ay = A, as the following:
0 o _ u
DY a, M () =2+ ) (i) (1+uxj c(5, k)a,z¥, (1.4)
k=p+1 P P+

where A, u, g 20, k, 3, a € Ny and

~ oo r(k +3)
c(8.k)=2"+ Zk:p+l(k - p)!lJ:(p 7 3) 2"
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Also, the authors in [2] have, recently, stated new subclasses of analytic
functions with negative coefficients given as follows:

Definition 1.2. For f €T, is said to be in the class Tg’a(u, aq A v, B)
if and only if

2(DF (1w, 0, 2) 1) (2)
Dy O, g, 1) F(2)
205w, 4. 1) ) (2) |
D& °(w 0, 4) F(2)

where Dg’6(u, q, A) f(z) isgiven by (1.4) and A, u, >0, k, 3, o € Ny
={0,1,2,..}, 0<y<p O0<PB<land peN.

Further,

. o Zf!
f eCp"(u g, A, v, B) if and only if o T (w0, 2, B).
We note that, by specializing the parameters a, 8, u, A, p and p, we
obtain the following subclasses which were studied by various authors:

1. For oo =8 =p =0, we obtain TS'O(O, 0 Ay B)=T"(p, v, B) is

the class of p-valent starlike functions of order y and type B which was
studied by Aouf [3] and Hossen [4].

2. For a=8=pn=0 and p=1 we obtain Tlo'O(O, q, Ay, B) =

S*(y, B), is the class of starlike functions of order y and type p which was
studied by Gupta and Jain [8].

3.For a =38 =p =0 and B =1, we obtain the class TF?’O(O, a A, v, 1)
=T%(p, y), which was introduced by Owa [6].

4. For a=3=pn=0, p=1 and B=1 we obtain the class
Tlo‘O(O, a, A, 7, 1) = T*(y), which was studied by Silverman [7].
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5. For a=86=q9q=0, pn=1 and p=1 we obtain the class

Clo'o(l, 0, A, 7, B) = C*(y, ), which was studied by Gupta and Jain [8].

6. For . =86 =9 =0, u=1 we obtain the class Cg'o(l, 0,7 7Y, B)=

C(p, v, B), is the class of p-valent convex functions of order y and type B
which was studied by Aouf [3] and Hossen [4].

7. For a=8=q=0, p=1 and B=1 we obtain the class
Cg'o(l, 0, A, v, 1) = C(p, y), which was studied by Owa [6].

8. For a=8=0q=0, n=1 B=1and p=1 we obtain the class
c29(1, 0, %, v, ) = C(y), which was studied by Silverman [7].

In [2], sufficient conditions for a function f(z) e Tp to be in the

subclasses T[‘)’"S(u, a, A, v, B) and TF‘}'S(M, q, A, 7, B), as stated in the

following theorems are provided.

Theorem 1.3. Let the function f belong to the class TF‘,"’S(u, a A v, B)
if and only if
o0

> [((k - )+ bk p-2) ] (1o 2] i akj

k=p+1

< 2B(p—v),
the result is sharp for the function f of the form

f(2)= 2P - 2B(p —v) k

-ptero-20(3] (14550

(1.5)

Theorem 1.4. Let f belong to the subclass C%’S(u, a, A, v, B) if and only
if
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0

3 [ et n- (5] s G

k=p+1

< 2Bp(p—7)
with equality only for functions of the form
f(z)=2zP - 2Bp(p —v) X

- py bt p =20 1) (14 5580 o

2. Modified Hadamard Products

Let the functions f;(z) (j =1, 2) be defined by

fi(z) = 2P - i a iz (peN). (2.1)

k=p+1
The modified Hadamard product of fi(z) and f5(z) is defined by
(fix )@ =2 - Y acia 2" (peN).
k=p+1
Theorem 2.1. Let the functions f;(z) (j =1, 2) defined by (2.1) be in the
class Tg's(p, a4, A, v, B). Then (fy * f5)(z) e Tg'g(u, d, A, , B), where

282(p = v)* + 2B(p - 7)?

i 22 e g [ e

o< p-

The result is sharp

f(z)=2zP - 2B(p —v) 2P+,

A+p2p+1- 2y))2(pT+1)a(1+ > }L ; xju F(&;J{E)S)
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Proof. To prove the theorem, we need to find the largest o such that

o (= P+ s p-2o)( K] (14 K20y T D)

p+a ) (k-pI'T(p+9)
Neral] 28(p - @)
8y 182 <1,
since

omins oS )

k_zp_,_l ZB(p - Y)
. akyl <1
and
e, (- )ik p-2)( &) (1e Ko ) o U8
kzzp+1 2B(p - v)

V) <1

By the Cauchy-Schwarz inequality, we have

R D g e

2B(p-1v)

k=p+1

-1/ak,1ak,2 <1

Thus, it suffices to show that

K\ k—p. M r(k + 8)
(k= p)+B(k + p—200))(5j (“ p+q ) (k = p)'T(p +3)
28(p ~ ) s
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((k - p)+ Bk + p—2y))(%)a(1+ k-p xj“ r(k +8)

k —p)I’ )
< 2[3(p—y)p+q (k=p)'T(p+ )m_

That is,

(p-o)((k—p)+Bk+ p-2y))
&iﬁﬁaz;zﬁ(p_@«k_p):mk:p—Z;D'
Note that

a8 2 < 2B(p—7)

(k= p)+ple+ p-20)(£ (1 K220 Y

I'(k +8)
(k= p)T(p +9d)

Consequently, we need only to prove that

2B(p-7v)
k

(k- p)+ Bk + p —zm(%ja(u p;ng“

I'(k +3)
(k= p)'T'(p +3)

< (P—0)(k-p)+Pk+p-2y)
~(p=1)((k=p)+Bk + p-20)

or, equivalently, that

o<p- 2B(p — 1) (k - P)(B +1) - e
(k= p)+ Bl + p-20)? (] (14550
I'(k +98)

woprrpry -

is an increasing function of k, k > p+1, letting k = p+1 in (2.2), we
obtain

o <¢(p+1)
282(p —v)* + 2B(p - 7)?

@ pp+ -2 R (10 2 HBELEO)gg2(p 2

<p-

which completes the assertion of theorem.
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Similarly, we can prove the following results.
Theorem 2.2. Let the functions f;(z) (j =1, 2) defined by (2.1) be in

the class TF‘,’"S(H, a Ay, B). Then (f*f,)(z)e Cg’s(u, a4 A % B,

where

2pB(p—v)°(B+1)

((p+1)+pa+2p -2 R (14 2P TRELED) g2y 2

X<P-

Finally, by taking the function

f(z):zp— ZBP(D—Y) Zp+l,

(p+ i pzp +1-20) 22 (10 o [ HRELE)

we can see that the result is sharp.

Theorem 2.3. Let the functions f;(z) (j =1, 2) defined by (2.1) be in

the class Tg’é(u, q, A, v, B). Then the function
0
h(z) = zP - Z (ag 1 +af 2)z* (2.3)
k=p+1

belongs to the class Tg's(u, a, A, &, B), where

4% (p-1)%@+1)

pu+p2p+1- 2P 22| (14 L P IRELLD) g3y

o< p-

The result is sharp for the functions.

Proof. By virtue of Theorem 1.3, we obtain

k\* k-—p., W r'(k +8)
< ((k"p“ﬁ(“p_zy»(ij (1+p+q j k=p)T(p+d) | .2
28(p-7) k.1

k=p+1
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o ((k-p)+pk+p- 2v))(%)a(1+ k=p x)” Lk +3)

< p+a ) (k—-p'T(p+5)
2, 280 1) =
(2.4)
and
k\* k — H k
e | Cpepirp-203) (14504 i |
2B(p — ) k.2

k=p+1

O k—p., W T(k+8)
(k- <8+ p-20(5) (15580 Gpinren <1 (25)

2B(p-7)

<

It follows from (2.4) and (2.5) that

~ ~ k\* k—p.\* I'(k +8)
31 (k=p)+Blk+p ZY))(p) (1+p+qxj (k= p)'T(p +9)
2 26(p - v)

2 2
. (ak,1 + ak’z) <1

Therefore, we need to find the largest & such that

~ B k\* k—p,\! I'(k +9)
(k=p)+Blk+p Zé))(p) (“ p+qx) (k= p)T(p +3)
2B(p - &)
k- pk+ p-20)(3) (1558 Gy

1
=2 2B(p—7)
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that is,
E<p- 42(p —1)* (k= p)(p +1) |
Bk )+ p- 2P (1 K2 TGO g3p 2
Since
o=p- 4°(p - 1)*( = P)(B +1)

B((k — p)+ Pk + p - 2v))2(%ja(1+ ‘;1 g x)“ 0 _rp(; ;(i)+ 5~ 883(p - 1)

is an increasing function of k, letting k = p+1, we obtain

4B*(p —)*(B +1)
d(p+1)=p-
2( p+1\* 1 H
pa -+ pzp +1- 20 2 (14 oo
- fracT(p +1+ 8)I(p +8) - 883(p — v)?

which completes the proof.
Theorem 2.4. Let the functions f;(z) (j =1, 2) defined by (2.1) be in
the class C%‘S(u, q, A, v, B). Then the function h(z) defined by (2.3)

belongs to the class C%'S(u, a4, A, % B), where

4pp?(p - v)°(B +1)

X< p-— .
2( p+1\* AW
B(sz + 1)1(1 +8§s(1+ 2p - 29 B3] (14 0]
p+1+
'W—SBS(D—Y)Z

The result is sharp for the functiong

f(z) = 7P _ 2Bp(p - v) ZPHL

(p+ D+ pEp+1-20) 22 (14 L) HELLD)
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3. Radii of Starlikeness, and Convexity

In the next theorems, we will find the radius of starlikeness, convexity

and close-to-convexity for the class TF‘,”S(“, q, A, v, B).

Theorem 3.1. Let the function f be defined by (1.3) belonging to the
class TF‘}'S(M, d, A, 7, B). Then f is p-valently close-to-convex of order p

(0<p< p)inthedisk |z]| < r, where

1
Ch p)[((" -0+ wcep-20( ) (1558 e S)J a
r:= inf '

k=p+ 2kB(p - )

(3.1)
The result is sharp with extremal function f given by (1.5).

Proof. Given f e T and fis p-valently close-to-convex of order p in the

disc | z| < r if and only if we have

f'(z)

2Pt

- p| < p-p, Whenever |z| <1 (3.2)

For the left hand side of (3.2), we have

o]

f'(z _
%—p < Z kay| z <71,
z k=p+1
Then (3.2) is implied by
Z a |z <1
k=p+1 P—p

Using the fact that f(z) e TF‘}*S(M, a, A, v, B) if and only if
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o [ (o b i)

2B(p - )

k=p+1

it follows that (3.2) is true if

_ B K4, k=p. W T(k+53)
L|z|k—1<(«k P)+Blk+p ZY))(pj (1+p+q7‘) (k—p)!F(p+8)j

p-p 2B(p -7v)

whenever | z | < r. We obtain

1
o-afi s 5] e o2 1
r=inf

k=>p+ 2kB(p —v)

This completes the proof.

Theorem 3.2. Let the function f be defined by (1.3) belonging to the
class Tg's(p, d, A, v, B). Then:

(1) fis p-valently starlike of order p (0 <p <1) in the disc |z| <,
that is,

SEE L o,

f(z)
where
1
o B P
(p—p)[((k—p)+l3(k+ p-2)(X) (1 K2 TS 6)akj 1
i &P 7)

(1) f is p-valently convex of order p (0 < p <1) inthedisc |z|<r, that

is,
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m{1+zlf,’;((zz))}>p (z|<r,0<p<p),

where
[p(p o)k )+ ik p- 2 ) (1 KBy ) TS ak] -
"= 2k(k — p)B(p—7) '

Each of these results is sharp for the extremal function given by (1.5).
Proof. (I) Given f € T and f is p-valently starlike of order p in the disc

|z| < r ifandonly if

’
e,

< p—p whenever | z| <. (3.3)

For the left hand side of (3.3), we have

. ~ k-1
‘ £) p‘< Zk:p+1(k p)ak|z|
f(z) - 0 k-1

1 zk:p+1an| z|

Then (3.3) is implied by

0

zk:pak|z|k_1<1.
n:2p P

Using the fact that TF‘,’"S(H, d, A, v, B) if and only if

o, [0 mem nmn (k) )
2B(p - v) =t

k=p+1

(3.3) is true for every z in the disc | z|<r if
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[((k — p)+Blk + p- zy))(hj‘*(u k-p %]M r(k +9) J

K—p k-1 p p+a-) (k-pIT(p+3)
Pzt S |
p-p B(p—1v)

Thus,

1
(o= n-ao &) e b8 Gt
r= inf .

k>p+ 2(k = p)B(p-1v)

This completes the proof.

(11) Using the fact that f is convex of order p if and only if zf'(z) is

starlike of order p, we can prove (Il) using similar methods to the proof
of (I).

Similarly, we can prove the following results.

Theorem 3.3. Let the function f be defined by (1.3) belonging to the

class C%‘B(u, q, A, v, B). Then f is p-valently close-to-convex of order p

(0<p<p)inthedisc|z|<r, where

1
r(k+s) |k1
k- p)IT(p +8)

~ o[k - oKV 1+ k=)
ek k-2l ) (15
k>p+ 2Bp(p—7v)

(3.4)
The result is sharp with extremal function f given by (1.5).
Theorem 3.4. Let the function f be defined by (1.3) belonging to the
class C%’S(p, d, A, v, B). Then:

(1) f is p-valently starlike of order p (0 <p <1) in the disc |z| <,
that is,

%{ZI’((ZZ))} >p (z|<r,0<p<p),
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where
1
-p)l(k - Cot(K (1 k=R M T(k+8) |k
- k(p-p)l(k—p)+Bk+p 2y)](p) (1+p+qxj I CED)
k2p+ (k- p)2pp(p-7)

(1) f is p-valently convex of order p (0 < p <1) in the disc | z|<r, that

is,
f/!
9“{“Zf'((zz))}”’ (zl<r.0<p<p)
where
1
_ _ o[k (4 k=P, T(k+9) k-1
I L R 2)( &) (14 K522) oD

k>p+ 2(k = p)Bp(p —v)

Each of these results is sharp for the extremal function given by (1.5).

Remark. Other works like the ones in [9-18] can be found by using this
derivative operator.
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