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Abstract 

In the present paper, we study certain subclasses ( )βγλμδα ,,,,, qTp  

and ( )βγλμδα ,,,,, qC p  of analytic p-valent functions with negative 

coefficients in the unit disc. The results presented here include the 
modified Hadamard product, the radii of close-to-convexity, 
starlikeness and convexity for functions belonging to the above 
mentioned subclasses. 

1. Definition and Preliminaries 

Let pA  denote the class of functions of the form 
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which is analytic in the open unit disc { }.1: <= zzU  A function pAf ∈  

is called p-valent starlike of order β and type γ if it satisfies 
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where ,0 p<γ≤  10 ≤β<  and .N∈p  We denote by ( )βγ∗ ,,pS  the 

class of p-valent starlike functions of order γ and type β. 

A function pAf ∈  is called p-valent convex of order γ and type β if it 

satisfies 
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where ,0 p<γ≤  10 ≤β<  and .N∈p  We denote by ( )βγ,,pK  the 

class of p-valent convex functions of order γ and type β. 

From (1.1) and (1.2), we note that 

( ) ( )βγ∈ ,,pKzf  if and only if ( ) ( ).,, βγ∈
′ ∗ pSp

zfz  

The classes ( )βγ∗ ,,pS  and ( )βγ,,pK  were considered by Aouf [3] and 

Hossen [4]. For ,1=β  the class ( ) ( )γ=γ ∗∗ ,1,, pSpS  was studied by Patil 

and Thakare [5], and the class ( ) ( )γ=γ ,1,, pKpK  was introduced by Owa 

[6]. 
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Let pT  denote the subclass of pA  consisting of functions of the form 
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We denote by ( )βγ∗ ,,pT  and ( )βγ,,pC  the classes obtained by taking 

intersections, respectively, of the classes ( )βγ∗ ,,pS  and ( )βγ,,pK  with 

the class .pT  Thus, we have 

( ) ( ) pTpSpT ∩βγ=βγ ∗∗ ,,,,  

and 

( ) ( ) .,,,, pTpKpC ∩βγ=βγ  

The classes ( )βγ∗ ,,pT  and ( )βγ,,pC  were studied by Aouf [3] and 

Hossen [4]. In particular, the classes ( ) ( )γ=γ ∗∗ ,1,, pTpT  and ( ) =γ 1,,pC  

( )γ,pC  were introduced by Owa [6]. Also, the classes ( ) ( )γ=γ ∗∗ TT 1,,1  

and ( ) ( )γ=γ CC 1,,1  were studied by Silverman [7]. 

The authors in [1] have, recently, introduced a new generalized 

derivative operator ( )λμδα ,,, qDp  as follows: 

Definition 1.1. For ,pAf ∈  the operator ( )λμδα ,,, qDp  is defined by 

( ) ppp AAqD →λμδα :,,,  as the following: 
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Also, the authors in [2] have, recently, stated new subclasses of analytic 
functions with negative coefficients given as follows: 

Definition 1.2. For pTf ∈  is said to be in the class ( )βγλμδα ,,,,, qTp  

if and only if 
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where ( ) ( )zfqDp λμδα ,,,  is given by (1.4) and ,0,, ≥μλ q  0,, N∈αδk  

{ },...,2,1,0=  ,0 p<γ≤  10 ≤β<  and .N∈p  

Further, 

( )βγλμ∈ α ,,,,, qCf n
p  if and only if ( ).,,,, βλμ∈

′ α qTp
fz n

p  

We note that, by specializing the parameters α, δ, μ, λ, β and p, we 
obtain the following subclasses which were studied by various authors: 

1. For ,0=μ=δ=α  we obtain ( ) ( ),,,,,,,00,0 βγ=βγλ ∗ pTqTp  is 

the class of p-valent starlike functions of order γ and type β which was 
studied by Aouf [3] and Hossen [4]. 

2. For 0=μ=δ=α  and ,1=p  we obtain ( ) =βγλ ,,,,00,0
1 qT  

( ),, βγ∗S  is the class of starlike functions of order γ and type β which was 

studied by Gupta and Jain [8]. 

3. For 0=μ=δ=α  and ,1=β  we obtain the class ( )1,,,,00,0 γλqTp  

( ),, γ= ∗ pT  which was introduced by Owa [6]. 

4. For ,0=μ=δ=α  1=p  and ,1=β  we obtain the class 

( ) ( ),1,,,,00,0
1 γ=γλ ∗TqT  which was studied by Silverman [7]. 
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5. For ,0==δ=α q  1=μ  and ,1=p  we obtain the class 

( ) ( ),,,,,0,10,0
1 βγ=βγλ ∗CC  which was studied by Gupta and Jain [8]. 

6. For ,0==δ=α q  ,1=μ  we obtain the class ( ) =βγλ ,,,0,10,0
pC  

( ),,, βγpC  is the class of p-valent convex functions of order γ and type β 

which was studied by Aouf [3] and Hossen [4]. 

7. For ,0==δ=α q  1=μ  and ,1=β  we obtain the class 

( ) ( ),,1,,,0,10,0 γ=γλ pCCp  which was studied by Owa [6]. 

8. For ,0==δ=α q  ,1=μ  1=β  and ,1=p  we obtain the class 

( ) ( ),1,,,0,10,0
1 γ=γλ CC  which was studied by Silverman [7]. 

In [2], sufficient conditions for a function ( ) PTzf ∈  to be in the 

subclasses ( )βγλμδα ,,,,, qTp  and ( ),,,,,, βγλμδα qTp  as stated in the 

following theorems are provided. 

Theorem 1.3. Let the function f belong to the class ( )βγλμδα ,,,,, qTp  
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( ) ( )

( ) ( )( ) ( )
( ) ( )

.

!12

2 kp z

ppk
k

qp
pk

p
kpkpk

pzzf

δ+−
δ+Γ

⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−

γ−β−=
μα

 

 (1.5) 

Theorem 1.4. Let f belong to the subclass ( )βγλμδα ,,,,, qCp  if and only 

if 
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with equality only for functions of the form 
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2. Modified Hadamard Products 

Let the functions ( ) ( )2,1=jzf j  be defined by 
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The modified Hadamard product of ( )zf1  and ( )zf2  is defined by 
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Theorem 2.1. Let the functions ( ) ( )2,1=jzf j  defined by (2.1) be in the 

class ( ).,,,,, βγλμδα qTp  Then ( ) ( ) ( ),,,,,,
21 βωλμ∈∗ δα qTzff p  where 
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Proof. To prove the theorem, we need to find the largest ω such that 
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By the Cauchy-Schwarz inequality, we have 
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is an increasing function of k, ,1+≥ pk  letting 1+= pk  in (2.2), we 

obtain 

( )1+φ≤ω p  

( ) ( )

( )( ) ( )
( ) ( )222

222

411112121

22

γ−β−
δ+Γ
δ++Γ

⎟
⎠
⎞⎜

⎝
⎛ λ

+
+⎟

⎠
⎞⎜

⎝
⎛ +γ−+β+

γ−β+γ−β−≤ μα
pp

p
qpp

pp

ppp  

which completes the assertion of theorem. 
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Similarly, we can prove the following results. 

Theorem 2.2. Let the functions ( ) ( )2,1=jzf j  defined by (2.1) be in 

the class ( ).,,,,, βγλμδα qTp  Then ( ) ( ) ( ),,,,,,
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where 
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we can see that the result is sharp. 

Theorem 2.3. Let the functions ( ) ( )2,1=jzf j  defined by (2.1) be in 
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that is, 
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⎛ λ

+
+⎟

⎠
⎞⎜

⎝
⎛ +γ−+β+β

+βγ−β−=+φ μα

pppfrac
qpp

pp

ppp  

which completes the proof. 

Theorem 2.4. Let the functions ( ) ( )2,1=jzf j  defined by (2.1) be in 

the class ( ).,,,,, βγλμδα qCp  Then the function ( )zh  defined by (2.3) 

belongs to the class ( ),,,,,, βχλμδα qCp  where 

( ) ( )

( ) ( )( )

( )
( ) ( )

.

81

1122111

14

23

2

22

γ−β−
δ+Γ
δ++Γ⋅

⎟
⎠
⎞⎜

⎝
⎛

+
λ+⎟

⎠
⎞⎜

⎝
⎛ +γ−+β++β

+βγ−β−≤χ μα

ppp
p

qpp
ppp

ppp  

The result is sharp for the functions 

( ) ( )

( ) ( )[ ] ( )
( )

.
111121211

2 1+
μα

δ+Γ
δ++Γ

⎟
⎠
⎞⎜

⎝
⎛ λ

+
+⎟

⎠
⎞⎜

⎝
⎛ +γ−+β++

γ−β−= pp z

p
p

qpp
ppp

ppzzf  
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3. Radii of Starlikeness, and Convexity 

In the next theorems, we will find the radius of starlikeness, convexity 

and close-to-convexity for the class ( ).,,,,, βγλμδα qTp  

Theorem 3.1. Let the function f be defined by (1.3) belonging to the 

class ( ).,,,,, βγλμδα qTp  Then f is p-valently close-to-convex of order ρ  

( )p<ρ≤0  in the disk ,rz <  where 

( ) ( ) ( )( ) ( )
( ) ( )

( ) .2
!12

inf:

1
1

1

−μα

+≥

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

γ−β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−ρ−

=

k

pk pk
ppk

k
qp
pk

p
kpkpkp

r  

 (3.1) 

The result is sharp with extremal function f given by (1.5). 

Proof. Given Tf ∈  and f is p-valently close-to-convex of order ρ in the 

disc rz <  if and only if we have 

( ) ,1 ρ−<−
′
− pp

z
zf

p  whenever .1<z  (3.2) 

For the left hand side of (3.2), we have 

( ) ∑
∞

+=

−
− ≤−
′

1

1
1 .

pk

k
kp zkap

z
zf  

Then (3.2) is implied by 

∑
∞

+=

− <
ρ−

1

1 .1
pk

k
k zap

k  

Using the fact that ( ) ( )βγλμ∈ δα ,,,,, qTzf p  if and only if 
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( ) ( )( ) ( )
( ) ( )

( )∑
∞

+=

μα

≤
γ−β

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−

1
,12

!12

pk
p

ppk
k

qp
pk

p
kpkpk

 

it follows that (3.2) is true if 

( ) ( )( ) ( )
( ) ( )

( )γ−β

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−

≤
ρ−

μα

−
p

ppk
k

qp
pk

p
kpkpk

zp
k k

2
!12

1  

whenever .rz <  We obtain 

( ) ( ) ( )( ) ( )
( ) ( )

( ) .2
!12

inf:

1
1

1

−μα

+≥
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

γ−β

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−ρ−

=

k
k

pk pk

appk
k

qp
pk

p
kpkpkp

r  

This completes the proof. 

Theorem 3.2. Let the function f be defined by (1.3) belonging to the 

class ( ).,,,,, βγλμδα qTp  Then: 

(I) f is p-valently starlike of order ρ  ( )10 <ρ≤  in the disc ,rz <  

that is, 

( )
( ) ( ),0, przzf

zfz <ρ≤<ρ>
⎭⎬
⎫

⎩⎨
⎧ ′
R  

where 

( ) ( ) ( )( ) ( )
( ) ( )

( ) ( ) .2
!12

inf:

1
1

1

−μα

+≥
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

γ−βρ−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−ρ−

=

k
k

pk pk

appk
k

qp
pk

p
kpkpkp

r  

(II) f is p-valently convex of order ρ  ( )10 <ρ≤  in the disc ,rz <  that 

is, 
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( )
( ) ( ),0,1 przzf

zfz <ρ≤<ρ>
⎭⎬
⎫

⎩⎨
⎧

′
′′

+R  

where 

( ) ( ) ( )( ) ( )
( ) ( )

( ) ( ) .2
!12

inf:

1
1

1

−μα

+≥
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

γ−β−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−ρ−

=

k
k

pk ppkk

appk
k

qp
pk

p
kpkpkpp

r  

Each of these results is sharp for the extremal function given by (1.5). 

Proof. (I) Given Tf ∈  and f is p-valently starlike of order ρ in the disc 

rz <  if and only if 

( )
( ) ρ−<−
′ ppzf

zfz  whenever .rz <  (3.3) 

For the left hand side of (3.3), we have 

( )
( )

( )
.

1
1

1
1

1

∑
∑

∞

+=
−

∞

+=
−

−

−
≤−

′

pk
k

n

pk
k

k

za

zapk
pzf

zfz  

Then (3.3) is implied by 

∑
∞

=

− <
ρ−
ρ−

2

1 .1
n

k
k zap

k  

Using the fact that ( )βγλμδα ,,,,, qTp  if and only if 

( ) ( )( ) ( )
( ) ( )

( )∑
∞

+=

μα

≤
γ−β

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−

1
.12

!12

pk
p

ppk
k

qp
pk

p
kpkpk

 

(3.3) is true for every z in the disc rz <  if 
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( ) ( )( ) ( )
( ) ( )

( ) .2
!12

1
γ−β

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−

≤
ρ−
ρ−

μα

−
p

ppk
k

qp
pk

p
kpkpk

zp
k k  

Thus, 

( ) ( ) ( )( ) ( )
( ) ( )

( ) ( ) .2
!12

inf:

1
1

1

−μα

+≥
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

γ−β−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−ρ−

=

k
k

pk ppk

appk
k

qp
pk

p
kpkpkp

r  

This completes the proof. 

(II) Using the fact that f is convex of order ρ if and only if ( )zfz ′  is 

starlike of order ρ, we can prove (II) using similar methods to the proof       
of (I). 

Similarly, we can prove the following results. 

Theorem 3.3. Let the function f be defined by (1.3) belonging to the 

class ( ).,,,,, βγλμδα qC p  Then f is p-valently close-to-convex of order ρ  

( )p<ρ≤0  in the disc ,rz <  where 

( ) ( ) ( )[ ] ( )
( ) ( )

( ) .2
!12

inf:

1
1

1

−μα

+≥
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

γ−β
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−ρ−

=

k

pk pp
ppk

k
qp
pk

p
kpkpkp

r  

 (3.4) 

The result is sharp with extremal function f given by (1.5). 

Theorem 3.4. Let the function f be defined by (1.3) belonging to the 

class ( ).,,,,, βγλμδα qCp  Then: 

(I) f is p-valently starlike of order ρ  ( )10 <ρ≤  in the disc ,rz <  

that is, 

( )
( ) ( ),0, przzf

zfz <ρ≤<ρ>
⎭⎬
⎫

⎩⎨
⎧ ′
R  
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where 

( ) ( ) ( )[ ] ( )
( ) ( )

( ) ( ) .2
!12

inf:

1
1

1

−μα

+≥
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

γ−β−
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−ρ−

=

k

pk pppk
ppk

k
qp
pk

p
kpkpkpk

r  

(II) f is p-valently convex of order ρ  ( )10 <ρ≤  in the disc ,rz <  that 

is, 

( )
( ) ( ),0,1 przzf

zfz <ρ≤<ρ>
⎭⎬
⎫

⎩⎨
⎧

′
′′

+R  

where 

( ) ( ) ( )[ ] ( )
( ) ( )

( ) ( ) .2
!12

inf:

1
1

1

−μα

+≥
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

γ−β−
δ+Γ−

δ+Γ
⎟
⎠
⎞⎜

⎝
⎛ λ

+
−+⎟

⎠
⎞⎜

⎝
⎛γ−+β+−ρ−

=

k

pk pppk
ppk

k
qp
pk

p
kpkpkpp

r  

Each of these results is sharp for the extremal function given by (1.5). 

Remark. Other works like the ones in [9-18] can be found by using this 
derivative operator. 
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