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SOME APPLICATIONS OF ALINEAR OPERATOR WITH
NEGATIVE COEFFICIENTS

Abstract:

The main object of this paper is to introduce and study the new subclasses TS/'}"f(/i,l ,a,C)

and TRg;ﬁ(ﬂ,l,a,c) of analytic functions with negative coefficients defined by a linear

operator .Coefficient bounds for functions belonging to these subclasses are determined.
Further, an application involving fractional calculus we are also given.
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1 Introduction

The theory of derivative and integral plays an important role in the theory of univalent
functions. It is believed that Ruscheweyh (1975) was the first to give a generalized derivative
operator in the theory of univalent function. Later, Salagean (1983) gave another generalized
derivative operator. In the same paper, he introduced an integral operator. Many properties
have been discussed and studied by many researchers for these two operators. For example,
Al-Oboudi (2004) introduced a generalized Salagean operator, Al-Shagsi and Darus (2009)
generalized the operator given by Ruscheweyh (1975), while Darus and Al-Shagsi (2008)
studied both derivatives of Ruscheweyh and Salagean. These operators motivate us to create
another type of derivative operator.

In this paper is to introduce and study the new subclasses of analytic functions with
negative coefficients defined by a linear operator [1,2]

Let A(n) denote the class of all analytic functions in the open unit disc

U={z €C:|z |<1}, of the form:

f(z)=z+iakzk,(neN). (1)

k=n+1

Denote T (n) the subclass of A(n) consisting of functions of the form:

fz)=2- Yaz*(a 20ncN). @)

k=n+1

For functions f € A(n) given by (1) and g e A(n) givenby g(z)=z +z
we define the Hadamard product (or convolution) of f and g by

n2n

(f xg)(z)=z + iakbkzk.

k =n+1

If f , g areanalyticin U, we say that f is subordinate to g , denoted by f < g, if there
exists a function w analytic in U with w(0)=0 and |w(z)|<1l (z €U), such that
f(z)=gWw(z)), (z eV). It IS known that
f(z)<g(z) zeU=f@0)=9g0 ad f U)cg(V).

Let the function ¢(a,c;z) be given by

p(@.c;z)= Zga;" z** (z eU,c#0,-1,-2,-3,..),

where (x), denotes the Pochhammer symbol (or the shifted factorial).
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Corresponding to the function ¢(a,c;z), Carlson and Shaffer [12] introduced a linear
operator L(a,c) by

L(a,c)f (z):=¢(a,c;z)=*f (z) :igsik a.z "

Note that:
L (a,a) is the identity operator,

and L(a,c)=L(a,b)L(b,c) (b,c=0,-1,..).

The author [1, 2] has recently introduced a new linear operator D"*(a,b)f (z) as the
following:

Definition 1.1 Let

4" (ab;z) = :Zi“ﬁlﬂ j ES;k A

where (z €U ,b #0,-1,-2,-3,...),A>20,m Z,1 >0, and (x), is the Pochhammer symbol.

We defines a linear operator D™*(a,b):A —A by the following Hadamard
product:

DI (ab)f 2):= g @biz)*f (2) =§(1+ﬂ‘l+'j g‘; a7 @)

Note that:
Dy (a,b)f (z)=L(a,b)f (2),

A+1)D™* (a,b)f (z) =(A-A+1)L(a,b)f (z)+4z (L(a,b)f (z)) =D, (L(ab)f (z)), A0,
D™ (a,b)f (z)=D, (D" (a,b)f (z)), where m eN ={1,2,3,...}.

Special cases of this operator includes:

e D"°(a,b)f (z)=D*(a,b)f (z)=L(ab)f (2).
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o the Ruscheweyh derivative  operator [8] in  the  cases:
D(B+1,1)f (z)=D"’f (z); B>-1.

« the Salagean derivative operator [10]: DJ"*(1,1)f (z).

ethe generalized Salagean derivative operator introduced by Al-Oboudi [9]:
DS (L) (2).

e the Catas drivative operator [15]: D™ (1,1)f (z), and finally

e The fractional operator introduced by Owa and Srivastava [6]

Dy (2,2-p)f (2) = () =T'(2-»)z2'D/f (2);
D/f (z) is the fractional derivative of f of order y; »#2,3,4,---.

Now, we introduce new subclasses of analytic functions involving our operator
D™ (a,b).

Definition 1.2 A function f T (n) is said to be in the subclass ngf(l,l,a,c), for
(0<p<1, yeC/{0}) ifandonly if:

1 zv’
‘—(——1) <p, 4)
y v
where
zv'_  z(D"*(a,b))' +52 (D" (a,b)f (z))" (5)
v (1-8)D"*(a,b)f (z)+5z (D" (a,b)f (z))"
(z eU, 0<65<1).
Definition 1.3 A function f T (n) is said to be in the subclass TRgf(ﬂ, I,a,c) if and only
if
1.,
‘;(v 1< B, (6)

(zeU, 0<06<1, 0<p<l, yeC/{0}).
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We note that there are some known subclasses of TS ;‘f (4,1,a,c) and
TR, (4,1 ,a,c)_
Remark 1.1 (1) If m=0, and a=c =0 then
TS52(4,1,0,0)=S,(B,7.9).
(2)If m=0, and a=c =0 then
TRE;";(A,I ,0,0) =R, (B,7,9).
The classes S, (f,7,9) and R, (f,7,0) were investigated in [3].
3)If m=0, a=c=0and 6=0, pB=lb|, y=1then
TSp(0,1,4,c) =S, (b),

where (b € C/{0}). The class S, (b) was studied in [4].

2 Coefficient bounds

In this section, we obtain necessary and sufficient conditions for a function to be in
the subclasses TS 7’ (4,1,a,c) and TR;(4,1,a,c) respectively.

Theorem 2.1 Let the function f be defined by (3). Then f belongs to the subclass
TS"*(a,b) if and only if

S [+ sk -1k +41y]-1)

k=n+1

(Mk o j (a)“|ak <Blyl, )

1+1 O

(zeU, 0<5<1, 0<p<1, yeC/{O}.

Proof: Suppose f eTSEf (4,1,a,c). By making use of (4) we easily obtain

RE{¥—1}>—ﬁ|y| (z eV),

which, in view of (5), gives:
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_ Z [1+8(k —1)](k _1)(i(k —1)+1+l j (@) a z*?
Re {2 R
Z [1+5(k _1)](’1(k _1)+1+| j (a)k—l akZ k-1
K=n+1 1+1 )

Setting z =r (0<r <1) in ( 8) we observe that the expression in the denominator
on the left hand side of ( 8 ) is positive for r =0 and also for all r € (0,1). Thus by letting

r -1 dthrough real values ( 8) leads us to the desired condition ( 7 ) of the theorem.

Conversely, by applying the hypothesis ( 8 ) and setting |z |[=1, we find by using

(7)that

e Ak =) +1+1Y" @), . _«
) - > [1+8k -1)](k —1)( T j (C)k_lakz

i—l‘— k=n+1
Y z- 3 [1+6(k —1)](}“(k ‘fi*“' ) 8“ az"

k=n+1

- Ak -D)+1+1Y" @), . -z
> [+ok -1k —1)( Lo j (C)k_lakz

1 S [1+6(k —1)](}“(k —D)+1+] jm @1 g 5

k=n+1 1+| (C)kfl

ﬂ|7|(l— i [1+5(K _l)](/’t(k 1) +1+1 )m (a)k‘la J
< k=n+1

< k=n+1

1+1 ©)ey ¢

1- Y [+ 8k —1)](’1(k ‘113'*1*') g‘;k—l a,

k =n+1

=pBlrl.

Hence, by the maximum modulus principle, we have f eTS,Q“f(Z,I ,a,C).

Corollary 2.1
Let the function f be defined by (3)and f €TR;’(4,1,a,c), then

a, < Al . (k >n+1),

[1+5(k -1Ik +817]1-1) (Mk _11+)|+1JrI j E:;k_l

with equality only for functions of the form

(8)

(9)
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fo=z- Aly] 2%, (k >n+1).

[1+8(k ~D](k + 817 |-D) (“k SRS j @)

1+1 (C)k—l‘

By using the same arguments as in the proof of Theorem 2.1 we can establish the
next theorem.

Theorem 2.2 Let the function f be defined by (3). Then f belongs to the subclass
TR;(4,1,a,c) ifand only if

e

S K1+ 5(k ~1)]

k =n+1

(zeU, 0<6<1, 0<p<l, yeC/{0}).

(ﬁ(k -1)+1+1 ]m (a)k_1|ak <Blrl, (10)

1+1 (C)k—l‘

Corollary 2.2
Let function f be defined by (3) and f eTR;f(/I,I ,a,C). Then

a, < Aly] . (k >n +1), (11)
L+ 6(k —1)] (l(k ~1)+1+| ) @),
1+ ©)a)
with equality only for functions of the form
fo=z- Al _ 2%, (k >n+1).
[1+5(k —1)] (A(k -1)+1+1 j @), 4
1+1 €

3 An Application of Fractional Calculus

From among various definitions of fractional calculus (that is, fractional derivative
and fractional integral),we recall here the following definitions which have been used by
many authors including, for example(Owa [13], Srivastava and Owa, [14]).

Definition 3.1 The fractional integral of order 7 is defined by

D (2)= 1 I F®) 4
i L) (z -t)"

where 7 >0 f s an analytic function in a simply connected domain of the z-plane
containing the origin and the multiplicity of (z —t)”™ is removed by requiring log (z —t) to
be real when (z —t) > 0.

Definition 3.2 The fractional derivative of order 7 is defined by
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e 1 dpf@)
Dt @)= & J @

where 0<z <1 f is an analytic function in a simply connected domain of the z-plane

containing the origin and the multiplicity of (z —t)”™ is removed by requiring log (z —t) to
be real when z —t >0.

Theorem 3.3 Let the function f defined by (3) be in the subclass ngf(l, I,a,c). Then for
|z |=r<1.

D" (2)]<
|z |1+n Ls Bly|(k +1)IT(2+7n) 12 |k (12)
I'(2- m )
G 001k + 817 ) (ﬂ("l):l“'j g‘;‘; Ik +2+7)
and
D7 (2) 2
|z |1+77 L Bly|(k +1)IT(2+7n) 12 |k . (13)
I(2- m
G L s001k + 817 (ﬂ("l)jl“'j 8 I(k +2+7)

The estimates in (12) and (13) are sharps.

Proof:
From Definition 3.1,we get
r@2+nz"D;"=z2- ) Pk +DIR+7) , 4
k=n+1 1—‘(k +1+77)
=z- > ®dk)az, (14)
k=n+1
where

_ Ik +1)I'(2+n)

@) 'k +1+n)

Since ®(k) is a decreasing function of k we have
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0<d(k) <k +1)= KDTC+n)
'k +2+n)
in view of Theorem 2.1, we have
AK)+1+1 jm @), | <
1+6(k)](k + <
ot a0 LT B Sia
o Ak —1) +1+1 )m @), .|
1+o(k —1D)](k + -1 < ,
k;l[ (k =Dk +B1 7] )( To] (C)H‘ak Blyl
iak < Blrl T
k=n+1 Ak)+1+1 a
1 k)](k k
ol -1 A1 O
Using (15) and (10) we have
|T(2+7n)z "D, (z)|<z |+P(k +1) |z <+ iak <
k=n+1
’ |+(krz(1>!1“2(2+)77> ply| s
+24
" sl + plp| A1 O
+1 ©)|

and
[IT2+7)z "D,"f (z) ]2z |-P(k +1)|z [t Zak >

k =n+1

|Z |k+1’

12 |_(k +DIT(2+7) Bl

'k +2 m
(crzem [1+5(k)]<k+ﬁ|y|)[*(kl)jl“'j @.

Which prove the inequalities of Theorem 3.3. Finally, we can easily see that the results

(12) and (13) are sharp for the function f defined by

z

Dz‘ﬂf (Z) _ 1+7 1 ﬂ | 4 | (k +1)!F(2+77) v '

z

PED 1 s001k 4817

AK)+1+1Y" (@),
( 1r] j ©), 'k +2+n)

10

(15)
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By using the same arguments as in the proof of Theorem 3.3, we can establish the next
theorem.

Theorem 3.4 Let the function f defined by (3) be in the class TR[Tf(/’L, I,a,c). Then
for |z |=r<1

|D,"f (z) <
r|(zf) 5 A7 IR+ ) Gl
T« +1)[1+§(k)](’1(k)+1+|) (a)k|r(k +247)
1+1 ©)|
and
D7 ()2
F|(zf) . By Ik + 1T @ 1) bl W
T« +1)[1+§(k)](ﬂ(k)+l+|J @ik +24 1)
1+1 ),

The estimates in (16) and (17) are sharps.

Theorem 3.5 Let the function f defined by (3) be in the subclass TSZf(l,I ,a,¢). Then for
|z |=r<1.

|D;T (z)I

|z [
r'@2-n)

KBy Tk +1)T(2+7)

ook + o1 D A0 Bz

1+ |z [ ¢, (18)

and

DT (2) ]2

11
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1z ) KBy Tk +1)I'(2+7)

I(2- m
&= [1+5<k)]<k+ﬁ|y|)[“"l)++l“'] 8 I(k +2+7)

1z [ (19)

The estimates in (18) and (19) are sharps.

Proof:
From Definition 3.2,we get

1—*(2_77)2 lezn =7 — Z F(k +1)r(2_77)ak k
k=n+1 r(k +1+77)

=7 - Y kwk)az", (20)

k=n+1
where
_T(k)C2+mn)

¥k) Ik +1+7)

Since W(k) is a decreasing function of k we have

'k +1)r@2+n)

0<¥(k)<W(k +1) = 2o

in view of Theorem 2.1, we have

(DIL+ 30Kk + 17 [“k)”“ j @] $ <

1+ ©) |5

o0

B Ak =D+ @), |
k;‘11[“5(k DIk + 8171 1)( To] j (C)H‘ak <Blrl
S ka, < ilvd 21)

k=n+1

[1+5(K)Ik + 517 1)

(ﬂ(k)+1+l ) @), |
1+1 ©),

12
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Using(21) we have
ITQR+n)2"D/f (z)|<]z | +P(k +1)|z [ Z ka, <
k=n+1
’ |+kr§k(k+1)2r(2;n) ply| e
tetn A(K)+1+1 a
o)k -+ g1 ) 2L
1+1 ),
and
|IT2+n)z2"Df (2) ]2z -W(k +1) |z [* D ka, >
k=n+1
12 |_kF(k +1)I'(2+17) Blrl 12 [

I'k+2+n)

(i(k)+l+l jm (@),
1+1 ),

which prove the inequalities of Theorem 3.5. Finally, we can easily see that the results
(18)and (19) are sharp for the function f defined by

[1+6()Ik +2171)

D’ (z)|= 2" 1— kBly|T(k +1)I'(2+1) 7k
PED L s001k + 817D (“kl)jl“' j 8 I(k +2+7)

Many other work on analytic functions related to derivative operator and integral operator
can be read in [16] < [17] and [18].
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