ON THE FEKETE-SZEGÖ PROBLEM FOR SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY LINEAR DERIVATIVE OPERATOR

Nagat M. Mustafa and Maslina Darus

Abstract

In applying a generalized linear derivative operator $D^{\alpha,\delta}(m,q,\lambda)$, a new subclass of analytic functions denoted by $S^{\alpha,\delta}(m,q,\lambda,\phi)$, is introduced. For this class, sharp bounds for the Fekete- Szegö functional $|a_3 - \mu a_2^2|$ are obtained. Also we give applications of our results to certain functions defined through convolution (or Hadamard product) and in particular, we consider a class of functions defined by fractional derivatives. The aim of this paper is to generalize the Fekete-Szegö inequalities given by Srivastava and Mishra [5].

1 Introduction

Let A denote the class of all analytic functions in the open unit disk $\mathbb{U}=\{z\in\mathbb{C}:|z|<1\}$ of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$
 (1.1)

Let S be the subclass of A consisting of univalent functions. For two analytic functions $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$, their convolution (or Hadamard product) is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

In order to derive our new linear derivative operator, we define the analytic function

$$\varphi^{\alpha}(m,q,\lambda)(z) = z + \sum_{k=2}^{\infty} k^{\alpha} \left(1 + \frac{k-1}{1+q}\lambda\right)^m z^k,$$

where $\lambda, m, q \in \mathbb{R}$, $\lambda, m, q \geq 0$.

Now, we introduce the new linear derivative operator as the following:

Definition 1.1 For $f \in A$ the linear operator $D^{\alpha,\delta}(m,q,\lambda)$ is defined by $D^{\alpha,\delta}(m,q,\lambda): A \to A$ as

$$D^{\alpha,\delta}(m,q,\lambda) = \varphi^{\alpha}(m,q,\lambda) * R^{\delta}, \qquad (z \in \mathbb{U}), \tag{1.2}$$

where $k, \delta \in \mathbb{N}_0 = \{0, 1, 2...\}$, and R^{δ} denote the Ruscheweyh derivative operator and given by

$$R^{\delta} = z + \sum_{k=2}^{\infty} c(\delta, k) a_k z^k$$
 for $k, \delta \in \mathbb{N}_0, (z \in \mathbb{U}),$

where $c(\delta, k) = \frac{(\delta+1)_{k-1}}{(1)_{k-1}}$.

If f is given by (1.1), then we can easily find from the equality (1.2) that

$$D^{\alpha,\delta}(m,q,\lambda) = z + \sum_{k=2}^{\infty} k^{\alpha} \left(1 + \frac{k-1}{1+q}\lambda\right)^m c(\delta,k) a_k z^k, \tag{1.3}$$

where $(x)_k$ denotes the Pochhammer symbol (or the shifted factorial) defined by

$$(x)_k = \begin{cases} 1 & for \quad k = 0, x \in \mathbb{C} - \{0\}, \\ x(x+1)(x+2)...(x+k-1) & for \quad k \in \mathbb{N} = 1, 2, 3, ...and \quad x \in \mathbb{C}. \end{cases}$$

Special cases of this operator listed as the following:

- $D^{0,n}(0,q,\lambda) \equiv \mathbb{R}^n$ [13] is the Ruscheweyh derivative operator.
- $D^{0,n}(\mu,0,\lambda) \equiv$ for $(m \in \mathbb{N}_0 = 0,1,2,...), R_{\lambda}^n$ [8] is the generalized Ruscheweyh derivative operator.
- $D^{\alpha,0}(0,q,\lambda) \equiv D_1^{0,0}(m,0,1) \equiv S^n$ [4] is the Salagean derivative operator.

- $D^{0,0}(m,0,\lambda) \equiv S_{\lambda}^{n}$ [3] is the generalized Salagean derivative operator introduced by Al-Oboudi.
- $D^{0,\delta}(m,0,\lambda) \equiv D^n_{\lambda}$ [9] is the generalized Al-Shaqsi and Darus derivative operator.
- $D_1^{0,0}(n,\lambda,1) \equiv I_1(n,\lambda), (n \in \mathbb{Z}), [5]$ is the operator investigated by Cho and Srivastava and also Cho and Kim [12].

Let $\phi(z)$ be an analytic function with positive real part on \mathbb{U} with $\phi(0) = 1$, $\phi'(0) > 0$ which maps the open unit disc onto a region starlike with respect to 1 and is symmetric with respect to the real axis.

Let $S^*(\phi)$ be the class of functions $f \in S$ for which

$$\frac{zf'(z)}{f(z)} \prec \phi(z), \qquad (z \in \mathbb{U}),$$

and let $C(\phi)$ be the class of functions $f \in S$ for which

$$1 + \frac{zf''(z)}{f(z)} \prec \phi(z), \qquad (z \in \mathbb{U}).$$

These classes were introduced and studied by Ma and Minda [15]. In the present paper, we obtain the Fekete-Szego inequality for functions in a more general class defined as follows:

Definition 1.2 Let $\phi(z)$ be a univalent starlike function with respect to 1 which maps the unit disk \mathbb{U} onto a region in the right half plane which is symmetric with respect to the real axis, $\phi(0) = 1$, $\phi'(0) > 0$. A function $f \in A$ is in the class $S^{\alpha,\delta}(m,q,\lambda,\phi)$, if

$$\frac{z(D^{\alpha,\delta}(m,q,\lambda)f(z))'}{D^{\alpha,\delta}(m,q,\lambda)f(z)} \prec \phi(z),$$

2 The Fekete-Szegö problem

In this section, we will give some upper bounds for the Fekete-Szegö functional $|a_3 - \mu a_2^2|$.

In order to prove our result, we have to recall the following lemmas:

Lemma 2.1 [15] If $p_1(z) = 1 + c_1 z + c_2 z^2 + ...$ is an analytic function with positive real part in \mathbb{U} , then

$$|c_2 - vc_1^2| \le \begin{cases} -4v + 2 & if \quad v \le 0, \\ 2 & if \quad 0 \le v \le 1, \\ 4v + 2 & if \quad v \ge 1. \end{cases}$$

When v < 0 or v > 1, the equality holds if and only if $p_1(z)$ is $\frac{(1+z)}{(1-z)}$, or one of its rotations. If 0 < v < 1, then the equality holds if and only if $p_1(z)$ is $\frac{(1+z^2)}{(1-z^2)}$, or one of its rotations. If v = 0, the equality holds if and only if

$$p_1(z) = \left(\frac{1}{2} + \frac{1}{2}a\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2}a\right)\frac{1-z}{1+z}, \quad (0 \le a < 1),$$

or one of its rotations. If v = 1, the equality holds if and only if $p_1(z)$ is the reciprocal of one of the functions such that the equality holds in the case of v = 0. Also the above upper bound is sharp, and it can be improved as follows when 0 < v < 1:

$$|c_2 - vc_1^2| + v|c_1| \le 2,$$
 $(0 < v \le \frac{1}{2}),$

and

$$|c_2 - vc_1^2| + (1 - v)|c_1| \le 2,$$
 $(\frac{1}{2} < v \le 1).$

Lemma 2.2 [15] If $p_1(z) = 1 + c_1 z + c_2 z^2 + ...$ is an analytic function with positive real part in \mathbb{U} , then

$$|c_2 - vc_1^2| \le 2\max\{1, |2v - 1|\}.$$

The result is sharp for the function

$$p_1(z) = \frac{(1+z)}{(1-z)}$$
 or $p_1(z) = \frac{(1+z^2)}{(1-z^2)}$,

Theorem 2.1 Let $\phi(z) = 1 + B_1 z + B_2 z^2 + \dots$ If f be given by (1.1) and belongs to the class $S^{\alpha,\delta}(m,q,\lambda,\phi)$. Then,

$$|a_3 - \mu a_2^2| \le$$

$$\begin{cases} \frac{B_1^2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} + \frac{B_2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} - \frac{\mu B_1^2(1+q)^m}{2^{2\alpha}(\delta+1)^2(1+q+\lambda)^m} & if \quad \mu \leq \sigma_1, \\ \frac{B_1(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} & if\sigma_1 \leq \mu \geq \sigma_2, \\ -\frac{B_1^2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} - \frac{B_2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} + \frac{\mu B_1^2(1+q)^m}{2^{2\alpha}(\delta+1)^2(1+q+\lambda)^m} & if \quad \mu \leq \sigma_2. \end{cases}$$

Where

$$\sigma_1 = \frac{2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}[B_1 - B_2 + B_1^2]}{3^{\alpha}B_1^2(1+q)^m(1+q+2\lambda)^m(\delta+2)},$$

$$\sigma_2 = \frac{2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}[B_1 + B_2 + B_1^2]}{3^{\alpha}B_1^2(1+q)^m(1+q+2\lambda)^m(\delta+2)}.$$

The result is sharp

Proof: For $f \in S^{\alpha,\delta}(m,q,\lambda,\phi)$, let

$$p(z) = \frac{z(D^{\alpha,\delta}(m,q,\lambda)f(z))'}{D^{\alpha,\delta}(m,q,\lambda)f(z)} = 1 + b_1 z + b_2 z^2 + \cdots$$
 (2.1)

From (2.1), we obtain

$$2^{\alpha}(\delta+1)\frac{(1+q+\lambda)^m}{(1+q)^m}a_2 = b_1,$$

and

$$3^{\alpha}(\delta+1)(\delta+2)\frac{(1+q+2\lambda)^m}{(1+q)^m}a_3 = b_2 + b_1 2^{\alpha}(\delta+1)\frac{(1+q+\lambda)^m}{(1+q)^m}a_2.$$

Since $\phi(z)$ is univalent and $p \prec \phi(z)$, the function

$$p_1(z) = \frac{1 + \phi^{-1}(z)}{1 - \phi^{-1}(z)} = 1 + c_1 z + c_2 z^2 + \cdots,$$

is analytic and has positive real part in \mathbb{U} . Thus we have

$$p(z) = \phi(\frac{p_1(z) - 1}{p_1(z) + 1}), \tag{2.2}$$

and from this equation (2.2), we obtain

$$b_1 = \frac{1}{2}B_1c_1z,$$

and

$$b_2 = \frac{1}{2}B_1(c_2 - \frac{1}{2}c_1^2)z^2.$$

Therefore we have

$$a_{3} - \mu a_{2}^{2} = \frac{\left[(B_{1}^{2}c_{1}^{2} + 2B_{1}[c_{2} - \frac{1}{2}c_{1}^{2}] + B_{2}c_{1}^{2})(1+q)^{m} \right]}{4(3^{\alpha})(\delta + 1)(\delta + 2)(1+q+2\lambda)^{m}} - \frac{\mu B_{1}^{2}c_{1}^{2}(1+q^{2m})}{2^{2(\alpha+1)}(\delta+1)^{2}(1+q+\lambda)^{2}m},$$

$$a_{3} - \mu a_{2}^{2} = \frac{B_{1}(1+q)^{m}}{(3^{\alpha})(\delta+1)(\delta+2)(1+q+2\lambda)^{m}}$$

$$\left[c_{2} - c_{1}^{2} \left(\frac{1}{2} \left\{ 1 - B_{1} - \frac{B_{2}}{B_{1}} + \mu \frac{3^{\alpha}(1+q)^{m}(\delta+2)(1+q+2\lambda)^{m}}{2^{2\alpha}(\delta+1)(1+q+\lambda)^{m}} \right] \right) \right],$$

$$a_{3} - \mu a_{2}^{2} = \frac{B_{1}(1+q)^{m}}{2^{2\alpha}(\delta+1)(1+q+\lambda)^{m}} \left[c_{2} - vc_{1}^{2} \right].$$

$$a_3 - \mu a_2^2 = \frac{B_1(1+q)^m}{2(3^\alpha)(\delta+1)(\delta+2)(1+q+2\lambda)^m} [c_2 - \upsilon c_1^2],$$

where

$$\upsilon = \frac{1}{2} \left[1 - B_1 - \frac{B_2}{B_1} + \mu \frac{3^{\alpha} (1+q)^{\mu} (\delta+2) (1+q+2\lambda)^m}{2^{2\alpha} (\delta+1) (1+q+\lambda)^m} \right].$$

If $\mu \leq \sigma_1$, then by applying Lemma 2.1, we get

$$|a_3 - \mu a_2^2| = \frac{B_1^2 (1+q)^m}{3^\alpha (\delta+1)(\delta+2)(1+q+2\lambda)^m} + \frac{B_2 (1+q)^m}{3^\alpha (\delta+1)(\delta+2)(1+q+2\lambda)^m} - \frac{\mu B_1^2 (1+q)^m}{2^{2\alpha} (\delta+1)^2 (1+q+\lambda)^m},$$

if $\sigma_1 \leq \mu \leq \sigma_2$, we get

$$|a_3 - \mu a_2^2| = \frac{B_1(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m}.$$

Similarly, if $\mu \leq \sigma_2$, we get

$$|a_3 - \mu a_2^2| = -\frac{B_1^2 (1+q)^m}{3^{\alpha} (\delta+1)(\delta+2)(1+q+2\lambda)^m} - \frac{B_2 (1+q)^m}{3^{\alpha} (\delta+1)(\delta+2)(1+q+2\lambda)^m} +$$

$$\frac{\mu B_1^2 (1+q)^m}{2^{2\alpha} (\delta+1)^2 (1+q+\lambda)^m}.$$

If $\mu = \sigma_1$, then equality holds if and only if

$$p_1(z) = \left(\frac{1}{2} + \frac{1}{2}a\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2}a\right)\frac{1-z}{1+z}, \quad (0 \le a < 1, z \in \mathbb{U}).$$

or one of its rotations. Also, if $\mu = \sigma_2$, then

$$\frac{1}{2}\left[1 - B_1 - \frac{B_2}{B_1} + \mu \frac{3^{\alpha}(1+q)^{\mu}(\delta+2)(1+q+2\lambda)^m}{2^{2\alpha}(\delta+1)(1+q+\lambda)^m}\right] = 0.$$

Therefore,

$$\frac{1}{p_1(z)} = \left(\frac{1}{2} + \frac{1}{2}a\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2}a\right)\frac{1-z}{1+z}, \quad (0 \le a < 1, z \in \mathbb{U}).$$

Remark 2.1 For q = 0, m = 1 and $\alpha = 0$ in Theorem 2.1, we get the results obtained by Al-Shaqsi and Darus [7]

Remark 2.2 If $\sigma_1 \leq \mu \leq \sigma_2$, then in view of Lemma 2.1, Theorem 2.1 can be improved. Let σ_3 be given by

$$\sigma_3 = \frac{2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}[B_2+B_1^2]}{3^{\alpha}B_1^2(1+q)^m(1+q+2\lambda)^m(\delta+2)},$$

If the value $\sigma_1 \leq \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| + \frac{2^{\alpha} (\delta + 1)(1 + q + \lambda)^{2m}}{3^{\alpha} B_1^2 (1 + q)^m (1 + q + 2\lambda)^m (\delta + 2)}$$

$$\left[B_1 - B_2 + \frac{(3^{\alpha} B_1^2 (1 + q)^m (1 + q + 2\lambda)^m (\delta + 2) + (\delta + 1)(1 + q + \lambda)^{2m} B_1^2)}{2^{\alpha} (\delta + 1)(1 + q + \lambda)^{2m}} \right] |a_2|^2 \le$$

$$\frac{B_1(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m}.$$

If the value $\sigma_2 \le \mu \le \sigma_3$, then

$$|a_{3} - \mu a_{2}^{2}| + \frac{2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}}{3^{\alpha}B_{1}^{2}(1+q)^{m}(1+q+2\lambda)^{m}(\delta+2)}$$

$$\left[B_{1} + B_{2} - \frac{(3^{\alpha}B_{1}^{2}(1+q)^{m}(1+q+2\lambda)^{m}(\delta+2) + (\delta+1)(1+q+\lambda)^{2m}B_{1}^{2})}{2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}}\right]|a_{2}|^{2} \leq \frac{B_{1}(1+q)^{m}}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^{m}}.$$

Proof. For the values of $\sigma_1 \leq \mu \leq \sigma_3$, we have

$$|a_{3} - \mu a_{2}^{2}| + (\mu - \sigma_{1})|a_{2}|^{2}$$

$$= \frac{B_{1}(1+q)^{m}}{2(3^{\alpha})(\delta+1)(\delta+2)(1+q+2\lambda)^{m}}[c_{2} - vc_{1}^{2}] +$$

$$(\mu - \sigma_{1})\frac{B_{1}^{2}(1+q)^{2m}}{2^{2(\alpha+1)}(\delta+1)^{2}(1+q+\lambda)^{2}m}|c_{1}|^{2}$$

$$= \frac{B_{1}(1+q)^{m}}{2(3^{\alpha})(\delta+1)(\delta+2)(1+q+2\lambda)^{m}}[c_{2} - vc_{1}^{2}] +$$

$$(\mu - \frac{2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}[B_{1} - B_{2} + B_{1}^{2}]}{3^{\alpha}B_{1}^{2}(1+q)^{m}(1+q+2\lambda)^{m}(\delta+2)})\frac{B_{1}^{2}(1+q)^{2m}}{2^{2(\alpha+1)}(\delta+1)^{2}(1+q+\lambda)^{2m}}|c_{1}|^{2}$$

$$= \frac{B_{1}(1+q)^{m}}{(3^{\alpha})(\delta+1)(\delta+2)(1+q+2\lambda)^{m}}\left\{\frac{1}{2}[|c_{2} - vc_{1}^{2}| + v|c_{1}|^{2}]\right\}$$

$$\leq \frac{B_{1}(1+q)^{m}}{(3^{\alpha})(\delta+1)(\delta+2)(1+q+2\lambda)^{m}}.$$

Similarly, if $\sigma_2 \leq \mu \leq \sigma_3$, we can write

$$|a_3 - \mu a_2^2| + (\sigma_2 - \mu)|a_2|^2$$

$$= \frac{B_1(1+q)^m}{2(3^\alpha)(\delta+1)(\delta+2)(1+q+2\lambda)^m}[c_2 - \upsilon c_1^2] +$$

$$(\sigma_{2} - \mu) \frac{B_{1}^{2}(1+q)^{2m}}{2^{2(\alpha+1)}(\delta+1)^{2}(1+q+\lambda)^{2}m} |c_{1}|^{2}$$

$$= \frac{B_{1}(1+q)^{m}}{2(3^{\alpha})(\delta+1)(\delta+2)(1+q+2\lambda)^{m}} [c_{2} - \upsilon c_{1}^{2}] +$$

$$(\frac{2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}[B_{1}+B_{2}+B_{1}^{2}]}{3^{\alpha}B_{1}^{2}(1+q)^{m}(1+q+2\lambda)^{m}(\delta+2)} - \mu) \frac{B_{1}^{2}(1+q)^{2m}}{2^{2(\alpha+1)}(\delta+1)^{2}(1+q+\lambda)^{2m}} |c_{1}|^{2}$$

$$= \frac{B_{1}(1+q)^{m}}{(3^{\alpha})(\delta+1)(\delta+2)(1+q+2\lambda)^{m}} \left\{ \frac{1}{2} [|c_{2} - \upsilon c_{1}^{2}| + (1-\upsilon)|c_{1}|^{2}] \right\}$$

$$\leq \frac{B_{1}(1+q)^{m}}{(3^{\alpha})(\delta+1)(\delta+2)(1+q+2\lambda)^{m}}.$$

Theorem 2.2 Let $\phi(z) = 1 + B_1 z + B_2 z^2 + \cdots$. If f be given by (1.1) and belongs to the class $S^{\alpha,\delta}(m,q,\lambda,\phi)$. For a complex number μ we have:,

$$|a_3 - \mu a_2^2| \le \frac{B_1(1+q)^m}{(3^\alpha)(\delta+1)(\delta+2)(1+q+2\lambda)^m}$$

$$\max\{1, \left[-B_1 - \frac{B_2}{B_1} + \mu \frac{3^\alpha(1+q)^\mu(\delta+2)(1+q+2\lambda)^m}{2^{2\alpha}(\delta+1)(1+q+\lambda)^m}\right]\}.$$

3 Applications of fractional derivatives

For fixed $g \in A$, let $S^{\alpha,\delta,g}(m,q,\lambda,\phi)$, be the class of functions $f \in A$ for which $(f*g) \in S^{\alpha,\delta}(m,q,\lambda,\phi)$. In order to introduce the class $S^{\alpha,\delta,\gamma}(m,q,\lambda,\phi)$, we need the following:

Definition 3.1 [6] Let f(z) be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order γ is defined by

$$D_z^{\gamma} = \frac{1}{\Gamma(1-\gamma)} \frac{d}{dx} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\gamma}} d\zeta, \quad (0 \le \gamma < 1),$$

where the multiplicity of $(z-\zeta)^{\gamma}$ is removed by requiring that $\log(z-\zeta)$ is real for $z-\zeta>0$ Using the above Definition 3.1 and its known extensions

involving fractional derivatives and fractional integrals, Owa and Srivastava [14] introduced the operator $\Omega^{\gamma}: A \to A$ defined by

$$\Omega^{\gamma} f(z) = \Gamma(2 - \gamma) z^{\gamma} D_z^{\gamma} f(z) \quad (\gamma \neq 2, 3, 4 \cdots).$$

The class $S^{\alpha,\delta,\gamma}(m,q,\lambda,\phi)$, consists of functions $f \in A$ for which $\Omega^{\gamma} \in S^{\alpha,\delta}(m,q,\lambda,\phi)$. Note that $S^{\alpha,\delta,\gamma}(m,q,\lambda,\phi)$, is the special case of the class $S^{\alpha,\delta,g}(m,q,\lambda,\phi)$. when

$$g(z) = z + \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} z^k,$$
$$g(z) = z + \sum_{k=2}^{\infty} g_k z^k.$$

Since $D^{\alpha,\delta}(m,q,\lambda) \in S^{\alpha,\delta,g}(m,q,\lambda)$ if and only if $D^{\alpha,\delta}(m,q,\lambda f(z)) * g(z) \in S^{\alpha,\delta}(m,q,\lambda,\phi)$. We obtain the coefficient estimate for functions in the class $S^{\alpha,\delta,g}(m,q,\lambda,\phi)$, from the corresponding estimate for functions in the class $S^{\alpha,\delta,g}(m,q,\lambda)$. Applying Theorem 2.1 for the function

$$D^{\alpha,\delta}(m,c,\lambda) * g(z) = z + \sum_{k=2}^{\infty} k^{\alpha} \left(1 + \frac{k-1}{1+q}\lambda\right)^m c(\delta,k) g_k a_k z^k.$$

we get the following Theorem 3.1 after an obvious change of the parameter μ

Theorem 3.1 Let $g(z) = z + \sum_{k=2}^{\infty} g_k z^k$, $(g_k > 0)$ and $\phi(z) = 1 + B_1 z + B_2 z^2 + \cdots$. If $D^{\alpha,\delta}(m,q,\lambda,\phi)$ be given by (1.3) and belongs to the class $S^{\alpha,\delta,g}(m,q,\lambda,\phi)$, then

$$\begin{cases} \frac{1}{g_3} \left[\frac{B_1^2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} + \frac{B_2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} - \frac{\mu g_3 B_1^2(1+q)^m}{g_2^2 2^{2\alpha}(\delta+1)^2(1+q+\lambda)^m} \right] & if \quad \mu \leq \sigma_1, \\ \frac{1}{g_3} \left[\frac{B_1(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} \right] & if\sigma_1 \leq \mu \geq \sigma_2, \\ \frac{1}{g_3} \left[-\frac{B_1^2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} - \frac{B_2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} + \frac{g_3 \mu B_1^2(1+q)^m}{g_2^2 2^{2\alpha}(\delta+1)^2(1+q+\lambda)^m} \right] & if \quad \mu \leq \sigma_2. \end{cases}$$

Where

$$\sigma_1 = \frac{g_2^2 2^{\alpha} (\delta + 1)(1 + q + \lambda)^{2m} [B_1 - B_2 + B_1^2]}{g_3 3^{\alpha} B_1^2 (1 + q)^m (1 + q + 2\lambda)^m (\delta + 2)},$$

$$\sigma_2 = \frac{g_2^2 2^{\alpha} (\delta + 1)(1 + q + \lambda)^{2m} [B_1 + B_2 + B_1^2]}{g_3 3^{\alpha} B_1^2 (1 + q)^m (1 + q + 2\lambda)^m (\delta + 2)}.$$

The result is sharp.

Since

$$\Omega^{\gamma} D^{\alpha,\delta}(m,q,\lambda) = z + \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} \left[k^{\alpha} \left(1 + \frac{k-1}{1+q}\lambda\right)^{m} c(\delta,k)\right] a_{k} z^{k}.$$

We have

$$g_2 = \frac{\Gamma(3)\Gamma(2-\gamma)}{\Gamma(3-\gamma)} = \frac{2}{(2-\gamma)},$$
$$g_3 = \frac{\Gamma(4)\Gamma(2-\gamma)}{\Gamma(4-\gamma)} = \frac{6}{(2-\gamma)(3-\gamma)},$$

For g_2 and g_3 given by the above equalities, Theorem 3.1 reduces to the following.

Theorem 3.2 Let $g(z) = z + \sum_{k=2}^{\infty} g_k z^k$, $(g_k > 0)$ and $\phi(z) = 1 + B_1 z + B_2 z^2 + \dots$ If $D^{\alpha,\delta}(m,q,\lambda,\phi)$ be given by (1.3) and belongs to the class $S^{\alpha,\delta,g}(m,q,\lambda,\phi)$, then $|a_3 - \mu a_2^2| \le$

$$\begin{cases} \frac{(2-\gamma)(3-\gamma)}{6} \left[\frac{B_1^2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} + \frac{B_2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} - \frac{\mu 3(2-\gamma)B_1^2(1+q)^m}{2(3-\gamma)2^{2\alpha}(\delta+1)^2(1+q+\lambda)^m} \right] if \quad \mu \leq \sigma_1, \\ \frac{2-\gamma)(3-\gamma)}{6} \left[\frac{B_1(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} \right] & if \sigma_1 \leq \mu \geq \sigma_2, \\ \frac{2-\gamma)(3-\gamma)}{6} \left[-\frac{B_1^2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} - \frac{B_2(1+q)^m}{3^{\alpha}(\delta+1)(\delta+2)(1+q+2\lambda)^m} + \frac{3(2-\gamma)\mu B_1^2(1+q)^m}{2(3-\gamma)2^{2\alpha}(\delta+1)^2(1+q+\lambda)^m} \right] if \quad \mu \leq \sigma_2. \end{cases}$$

Where

$$\sigma_1 = \frac{(3-\gamma)2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}[B_1 - B_2 + B_1^2]}{3(2-\gamma)3^{\alpha}B_1^2(1+q)^m(1+q+2\lambda)^m(\delta+2)},$$

$$\sigma_2 = \frac{(3-\gamma)2^{\alpha}(\delta+1)(1+q+\lambda)^{2m}[B_1 + B_2 + B_1^2]}{3(2-\gamma)3^{\alpha}B_1^2(1+q)^m(1+q+2\lambda)^m(\delta+2)}.$$

The result is sharp.

Remark 3.1 When $\lambda = 0$, $\delta = 0$, m = 0, $B_1 = \frac{8}{\pi^2}$, and $B_2 = \frac{16}{3\pi^2}$ the above Theorem 3.2 reduces to a recent result of Srivastava and Mishra ([5], Theorem 8, p.64) for a class of functions for which $\Omega^{\gamma} f(z)$ is a parabolic starlike function [1].

Note that other work related to generalized differential operators can be found in ([2] and [10]).

Acknowledgement: This work is partially supported by UKM-ST-06-FRGS0244-2010, MOHE Malaysia.

References

- [1] A. W. Goodman, Uniformly convex functions, Ann. Polon. Math, 56)(1991),87-92.
- [2] Afaf A. Ali Abubaker and M. Darus, First order linear differential subordinations for a generalized operator, *Acta Universitatis Apulensis*, 25(2011), 133-144.
- [3] F.M. AL-Oboudi, On univalent functions defined by a generalized Salagean Operator, *int. J. Math. Math. Sci*, **27**, (2004), 1429-1436.
- [4] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math Springer-Verlag, 1013, (1983), 362-372.
- [5] H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, *Computer Math. Appl.* **39**,(2000),57-69.
- [6] H. M. Srivastava and S. Owa, An application of the fractional derivative, *Math. Japon*, **29(3)**,(1984),383-389.
- [7] K. Al-Shaqsi and M. Darus, On Fekete-Szego Problems for Certain Subclass of Analytic Functions, *Applied. Math. Sci* **2(9)**, (2008), 431 441.
- [8] K. Al-Shaqsi and M. Darus, On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivatives operator, $Jour.\ Anal.\ Appl$, 7(1), (2009), 53-61.
- [9] M. Darus and K. Al-Shaqsi, Differential Subordination with generalised derivative operator, *Int. J. Comp. Math. Sci.*, **2(2)** (2008),75-78.
- [10] M.H. Al-Abbadi and M. Darus, Certain application of differential subordination associated with generalized derivative operator, *Acta Universitatis Apulensis*, 21(2010), 65-78.
- [11] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, *Math. Comput.Modelling*, **37**, (2003), 39-49.
- [12] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close to-convex functions, *Bull. Korean Math. Soc*, **40**, (2003), 399-410.

- [13] St. Ruscheweyh, New criteria for univalent functions, *Proc. Amer. Math. Soc.*, **49** (1975), 109-115.
- [14] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(5),(1987),1057-1077.
- [15] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions ,in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren,L. Yang, and S. Zhang(Eds.) Internat. Press (1994), 157-169.

Nagat.M. Mustafa, *Maslina Darus School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600 Selangor D. Ehsan, Malaysia. Email:*maslina@ukm.my (corresponding author)