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Abstract. Making use of an integral operator which is defined by means of a general
Hurwitz-Lerch Zeta function. This operator is a generalized Srivastava and Attiya
operator. We give some properties of the class Q5% (9, 3,7). Indeed, we obtain integral
means inequalities, modified Hadamard products and establish some results concerning
the partial sums for functions f belonging to the class Q% (4, 3,7).

Keywords: Analytic functions, Hurwitz-Lerch Zeta function, Srivastava-Attiya
operator,Integral means, Hadamard product, Partial sums.

1. Introduction

Let A denote the class of all analytic functions in the open unit disk U= {z € C:
|z| < 1}, of the form

(1.1) f) =2+ az*, (z€D).
We follow the similar approach Srivastava and Attiya operator using Hurwitz-Lerch

Zeta function and Owa and Srivastava operator, the authors [1] have recently intro-
duced a new generalized integral operator Img ;, f(2) as we will show in the following:

Definition 1.1. (Srivastava and Choi [6]) A general HurwitzLerch Zeta function

®(z,s,b) defined by
(z,s,b) Z
k:O k: +b)*
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where (s€ C,be C—Z;) when (|z| <1),and (Re(b) >1) when (|z|=1).

Note that:

bs
akzk.

(0 = (072200 0) +J) =24 D oy

Owa and Srivastava [2] introduced the operator Q% : 4 — A, which is known as an

extension of fractional derivative and fractional integral as follows:

Q% (z2) =T(2—a)z*DSf +Z k—;ila)a)akzk (a #£2,3,4,--+),

where D¢ f(z) the fractional derivative of f of order « (see [3]).

For s € C, b€ C—Zy,and 0 < a < 1, the generalized integral operator (Img, f) :
A — A is defined by

Im?,b f(Z) = F(2_a)ZQD?(I)*(Z7S7b)a (0[7&2,3,4,“')
T(k+ 12— a) b s
= Z+kz F(k+1—a)a (k—l—i—b) axt,  (z€).
=2

Note that : Imgyb (z) = f(2).

Special cases of this operator includes:

e Img, f(2) = Q¥f(2) is the Owa and Srivastava operator [2].
. Im(s),b+1 f(2) = Jspf(2) is the Srivastava and Attiya integral operator [4].
. Img’Q f(z) = I° f(z) is the Jung Kim Srivastava integral operator [5].

Also, the authors [1] have recently introduced a new subclass of analytic functions
with negative coefficients, and stated as follows:

For (0<d6<1),(0<B<1)and (3 <y<1)ifd=0,and (3 << &)if § #0,
we let Q¢ (3, 3,7) be the subclass of A consisting of functions of the form (1.1) and
satisfying the inequality

(Img, f(2))" — 1

o (I, F(2)) — 0) — (%, FY —1)| =
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We further let
(12) Q:%(&Ba'y) = Q?,b((s?ﬁvry) ﬁT,

where

T:= {fGA:f(z)zZakzk, where ar >0 for all kZQ},
k=2
is a subclass of A introduced and studied by Silverman [9].

In [1], it was also shown that the sufficient condition for a function f to be in the
class Q3%(0, 8,7)-

Theorem 1.2. Let the function f be defined by (1.2). Then f € Q:%(5,8,7) if
and only if

(1.3) ik[1+ﬂ(27* 1)] <F(§(Z_1F)E(E a)a)> ‘(k—li—&-b)s

k=2

|ak| <26~(1—6).

The result is sharp.

2. Integral Means Inequalities

In order to prove the results regarding integral means inequalities, we need the
concept of subordination between analytic functions and also the following lemma.

Lemma 2.1. [§]
If f, g are analytic in U,such that f < g, then

2m 2m
| uera < [T lgras, = ret 0 <<y >0,
0 0
Theorem 2.2. Let f € Q:%(0,8,7). Then for z = re?, 0 <r < 1, we have
2w ) 2w )
|ttt < [ ipietpas, 0 <r<y>0),
0 0
where the function fa(z) defined by

257(1 - 5) 2

(2.1) fa(z) =2 — z°.
2[1+ 82y - D] (M%) | (25)°
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Proof: Let f € Q7%(4,8,7) and satisfying (1.3), and f2(2) be given by (2.1). We
must show that
y

27 o0 27
26v(1 -0
/ 1-— Zakzk_l df §/ 1-— /67(1“(3)1“()27 ) ; z| do.
0 h=2 0 2[1+ B2y —1)] (w) ’(m)s
By Lemma 2.1, it suffices to show that
- 26v(1 —
1-— Zakzk_l <1- 57(1“(3)1“()2 ) . Z.
= 2[1+B(2y - 1)] (W) ’(m)s
Setting
— 267(1 - 9)
(22) 1= Z a2 =1 L(3)L(2—a) b w(2).
- 2[1+B(2y - 1)) (W) ‘(m)s‘
From (2.2), we obtain
268v(1 -6
\<\z|z fr(1 = 9) lax| < |2| < 1.

I(k+D)I(2—a s
k=2 k[1+B(2 )]( I‘(k-‘,)-l(—oc) )) ‘(k—z{+b) ‘

This completes the proof of the theorem.

3. Modified Hadamard Products
Let the functions f;(z)(j = 1;2) be defined by
(3.1) filz) =2— Zak’jzk, for all (ax; > 0,z€U).

The modified Hadamard product of fi(z) and fa(2) is defined by

(f1* f2)(z —Z_Zaklak2z

Using the techniques of Schild and Silverman [7], we prove the following results.

Theorem 3.1. For functions f;(2)(j = 1;2) deﬁned by (3.1), let f1(2) € Q:%(&ﬁ,v),
f2( )E Q*(¥<67Ma ) Then fl *f?)(z) E :(i( (6 6 122500 ))7 where

29(1 - 6)Bp

S0 Qaal, 61 = 1746/172(1 —0)—2 (%) ‘(1%))

(1+ w2y — 1)1+ B2y - 1))
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Proof: To prove the theorem, we need to find the largest £ = 35 (6, Q5 (5, 3, p, 7))
such that

k(1 + €y - ) (MRS | (i)

>

agak2 <1,
P 26v(1 = 9)
since
i B+ 82y - D] (MHES2) | () ,
ap1 > 1,
—~ 2Bv(1=6)
and
= k{1 + 2y - D) (M%) | ()
ago < 1.

2py(1 = 9)

By the Cauchy-Schwarz inequality, we have;

" (F(k+1)1"(2—a)) ‘( b )S
T(hti—a) E—1+b

Z 27(1 =)

k=2

k=2

ag1ak2 < 1.

\/ (1+B(2y — 1)) (1 + p(2y — 1))
B %

Thus, it is suffices to show that

A 10k,2.

L+ -1) <\/(1+ﬁ(271))(1+u(271))
¢ k102 S 3 "

Note that

27(1 — 6) B
vk 18k2 < k(r(m)rg—a)) ‘( b ) \/(1+ﬁ(27—1)) (1+u(gv—1))'

T(htl—a) k—1+b

Consequently, we need only to prove that

2y(1-9) B 0 -
k (F(I@mgﬁ)a)) ‘(k_’hb)s (1+62y—1) (1+pu2y-1)) ~

¢ \/ (1+ 82y~ 1) (1+p(2y — 1))
(1+&(2y-1)) 5 [ ’
or, equivalently that
2v(1—9)Bu
5 <1- B = ¢(k)7
18u72(1 = 8) — b (MRS | () | @+ w2y = 1)1+ B2y - 1)
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is an increasing function of k, letting k = 2, we obtain
B 2v(1 - 6)Bp
4921 - 8) =2 (") | () | (@ 2y = 1)1+ B2y — 1)

which completes the proof.

$(2) =1

Theorem 3.2. For functions f;(2)(j = 1;2) defined by (3.1), be in the class
500, 8,7) Then the function h(z) = z — 3772, (aﬁ,1 +az72> 2% belongs to the
class @56, Q:%(9, B,7), where

P8, QE%(5,8,7) =1 — 4 (%) ’(1%)\ (26~(1 - 5))?
+(6,Q55(0, 8, 1

29(1 - 8)[201+ B(2y - 1)) (“ZE2) |(25) |1

Proof: By virtue of Theorem 1.2, we obtain

2

= [k[1+ 82y - 1] (M%) | ()
(3.2) kZ:Z S 5) agq <1,
and
s 2
o [k+ 8@y - 0] ("5 | (=)
(3.3) 1;2 205 af, <1

It follows from (3.2) and(3.3).

2

. _ L(k+D(2—a) ’
1 | B+ B2y —1)] ( F(k+1*a)a ) ’(k*l{“’) (a2, +d2,) <1
=2 26v(1 —6) Qg1 T Ag2) = 4

Therefore,we need to find the largest p = ¢3%(0, Q3% (6, 3,7)

2

[+ ey — 1) () | ()
26~v(1 - 9)

D(k+1)I(2—a s
k[1+¢(2y = 1)] ( (F(kll(—a) )) ‘(kfi+b> ‘
2¢07v(1 - 9)

<

N

that is,

2k (HgRe=e)) | (20| 2691 - ))?

P o+ 5@ — 1) (Mres) | ()

= x(k),

]
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is an increasing function of k, letting k = 2, we obtain

(5955 () om0
2y(1 = §)[2(1 + 82y — 1)) (“EEE2) | (25)”

which completes the proof.

x(2) =1~

)

]

4. Partial sums

By following the earlier works by Silverman|[10] on partial sums of analytic functions,
we study the ratio of a function of the form (1.2) to its sequence of partial sums of
the form f1(2) = 2, fu(z) =2+ Y p_oarz®, (2 € ).

We will determine sharp lower bounds for

el e ) o {50

Theorem 4.1. Let f € Q:%(9,5,7) and satisfying (1.3), then

POV, L
(4.1) Re { fn(Z)} >1 vy (n €N, e U),
and

fn(2) Cn+1
(4.2) Re{ ) } > ey (neN, zel),

where ¢, be defined as

nll+8(2y - 1)) (FEEEES) | ()
267(1 - 0) '

Cp =

The results are sharp for every k with the function given by

(4.3) fz) =2 — o (z€U,neN).
Cn+41

Proof: In order to prove (4.1), it is sufficies to show that

c { 1(z) (1 1 ) } L+ 370, apzF1 + ZZ’LnH CngrapzF 1+ w(z)
n+1 (1= = =

fn(2) Cna1 - L+ >0y apzh! 1—w(z)


khaled
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khaled
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khaled
Highlight

khaled
Highlight
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) k—1
Crt1 D pepg1 @kZ

= n — 50 -
2423 pap2P T+ 30T cnprag2h Tl

Notice that w(0) = 0 and

o0
_ Cntl D pentr [0k
2-2 ZZ:2 lag|2F—1 — Zzozn+1 Cnt1lal

w(2)]

Now |w(z)| <1 if and only if

(4.4) 1 Y lakl+ D lax] < 1.
k=n-+1 k=2

It suffices to show that the LHS of (4.4) is bounded above by the condition (1.3)

which is equivalent to

> n
Z (Ck—Cn+1)\ak\+Z(ck—1) lax| > 0.
k=n-+1 k=2

To see that the function given by (4.3) gives the sharp result, we observe that for

z=ren,
" 1
/(z) 1+ 1 , when (z—17).
fn(z) Cn+1 Cn+1
To prove the second part of this theorem, we write
(4.5)
(1 te ) fn(Z) _ Cn+1 _ 1 + ZZ:Q akzk_l + Zz.;n-i-l Cn+1akzk_1 _ 1 + 'LU(Z)
A W R S S I~ w(z)’
we find that

- Sore it (L4 cnyr) apzh ™t
2423 papzF T 4300 (L eaga) Jag2h Tt

Now |w(z)| < 1 if and only if

L+ cngr) > larl+ ) lax| < 1.

k=n+1 k=2

The equality holds in (4.2) for the extremal function f given by (4.3).

This completes the proof.
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Theorem 4.2. Let f € Q:9(9,5,7) and satisfying (1.3), then

PVt
(4.6) Re{f{l(z)} >1 P~ (z €U,
and
fn(z) Cn+1
(47) Re {f’(z)}zn—l-l—i-cnﬂ'

The results are sharp with the function given by (4.3).

Proof: To prove the result (4.6), define the function w(z) by

fh(2) Cn+1

Cn“{f’(z) 1 n+1)} B izgz;

Then

n (o)
w(z) = wit 2ok=n 1 k0
n — 9 Cn .
2+2> ka2t + 3007 Tk

Now |w(z)| <1 if and only if

Cn+41
<n+1> Z k|ak\+Zk|ak|<1

k=n-+1

From the condition (1.3), it is sufficies to show that

Cn+1
<n+1) Z k|ak|+Zk\ak|<0k|ak\

k=n+1

This is equivalent to showing that

(n+ ek — kepta
Sl bl + 3o Ok K g
k=2 k=n-+1

To prove the second part of this theorem, we write

/ (Z) _ ( Cn+1 )} —1_ (1 + C,',:l_:f ) Z;‘;n+1 kakzk—l

— 1 " n -
wlz) = (ntltent) { ['(z)  ‘n+l+ecan 14> kg ka2t

yields
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‘w(z)—l’ (14 259) 2o Kla <1, (zeU)
w(z) +1 2 - 2% s klak] — (L4 T57) 30,1 Klaw] — ’

if and only if

cn o0 n
2(1+n+“1) > kgl <22 klag|.
k=n+1 k=2

The bound in (4.7) is sharp for all n € N with the extremal function (4.3).

This completes the proof of theorem.

10.
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