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Abstract

The purpose of the present paper we consider some suffi-
cient conditions for new general integral operators of p- valent
functions on the new classes USα,δ

p (µ, q, λ, k, β) and UCα,δ
p (µ, q, λ, k, β)

to be convex functions defined in the open unit disk.
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1 Introduction

let Ap denote the class of functions of the form :

f(z) = zp +
∞∑

k=p+1

akz
k, (p ∈ N).

which are analytic in the open unit disk U = {z : |z| < 1}. A function f
belonging to Ap is said to be p-valently starlike of order β if it satisfies

Re

{
zf ′(z)

f(z)

}
> β (z ∈ U),
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for some β (0 ≤ β < p). We denote by S∗
p(β) the subclass of AP consisting

of functions which are p-valently starlike of order β in U.
Further, a function f belonging to Ap is said to be p-valently convex of order
β if it satisfies

Re

{
1 +

zf ′′(z)

f ′(z)

}
> β (z ∈ U),

for some β (0 ≤ β < p). We denote by Cp(β) the class of functions in Ap

which are p-valently convex of order β in U. A function f ∈ Ap is said to be in

the class USp(k, β) of k-uniformly p-valent starlike of order β (−1 ≤ β < p).
in U and satisfies

Re

{
zf ′(z)

f(z)
− β

}
≥ k

∣∣∣∣zf ′(z)

f(z)
− p

∣∣∣∣ (k ≥ 0, z ∈ U),

Furthermore, a function f ∈ Ap is said to be in the class UCp(k, β) of k-
uniformly p-valent convex of order β (−1 ≤ β < p). in U and satisfies

Re

{
1 +

zf ′′(z)

f ′(z)
− β

}
≥ k

∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p

∣∣∣∣ (k ≥ 0, z ∈ U).

Note that US1(k, β) = US(k, β) and UC1(k, β) = UC(k, β) where the classes

US(k, β) and UC(k, β) are, respectively, the classes k-uniformly starlike of
order β (0 ≤ β < p) and k-uniformly convex of order studied in (A.W.
Goodman,1991).
Now, (x)k denotes the Pochhammer symbol (or the shifted factorial) defined by

(x)k =

{
1 for k = 0, x ∈ C− {0},
x(x + 1)(x + 2)...(x + k − 1) for k ∈ N = 1, 2, 3, ...and x ∈ C.

We state a generalization linear derivative operator Dα,δ
p (µ, c, λ) given as the

following (2010):

Definition 1.1 For f ∈ Ap and λ, q, µ ≥ 0 the linear operator Dα,δ
p (µ, q, λ) is

defined by Dα,δ
P (µ, q, λ) : Ap → Ap as

Dα,δ
P (µ, q, λ) = zp +

∞∑
k=p+1

kα(1 +
k − p

p + q
λ)

µ

c(δ, k)akz
k,

where c(δ, k) = (δ+1)k−1

(1)k−1
.
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Definition 1.2 For f ∈ Ap, (−1 ≤ β < p) and λ, q, µ ≥ 0 let USα,δ
p (µ, q, λ, k, β)

and UCα,δ
p (µ, q, λ, k, β) be the subclasses satisfying

Re

{
z(Dα,δ

p (µ, q, λ)f(z))′

Dα,δ
p (µ, q, λ)f(z)

− β

}
≥ k

∣∣∣∣∣z(Dα,δ
p (µ, q, λ)f(z))′

Dα,δ
p (µ, q, λ)f(z)

− p

∣∣∣∣∣ (k ≥ 0, z ∈ U),

and

Re

{
1 +

z(Dα,δ
p (µ, q, λ)f(z))′′

(Dα,δ
p (µ, q, λ)f(z))′

− β

}
≥ k

∣∣∣∣∣1 +
z(Dα,δ

p (µ, q, λ)f(z))′′

(Dα,δ
p (µ, q, λ)f(z))′

− p

∣∣∣∣∣ (k ≥ 0, z ∈ U),

respectively.

Note that US0,0
1 (0, q, λ, k, β)=US(k, β) and UC0,0

1 (0, q, λ, k, β)=UC(k, β)

Definition 1.3 For fi ∈ Ap and γi > 0 we define the following general integral
operators

Dα,δ
p (µ, q, λ)Fp(z) =

∫ z

0

ptp−1(
Dα,δ

p (µ, q, λ)f1(z)

tp
)γ1 .....(

Dα,δ
p (µ, q, λ)fn(z)

tp
)γndt

and

Dα,δ
p (µ, q, λ)Gp(z) =

∫ z

0

ptp−1(
Dα,δ

p (µ, q, λ)f1(z)

ptp−1
)γ1 ....(

Dα,δ
p (µ, q, λ)fn(z)

ptp−1
)γndt

Corollary 1.4 It is interesting to note that the integral operators generalizes
many operators Dα,δ

p (µ, q, λ)Fp(z) and Dα,δ
p (µ, q, λ)Gp(z) which were introduced

and studied recently.
• When p = 1, δ = α = µ = 0 the operator Dα,δ

p (µ, q, λ)Fp(z) reduces to an
integral operator

Fn(z) =

∫ z

0

(
f1(z)

t
)γ1 · · · · · · (fn(z)

t
)γndt

introduced and studied by (Breaz, N. Breaz, 2002)and (D. Breaz, S. Owa, N.
Breaz,2008).
• When p = n = 1, δ = α = µ = 0 and γ1 = γ ∈ [0, 1] the operator

Dα,δ
p (µ, q, λ)Fp(z) reduces to an integral operator

∫ z

0
(f(z)

t
)γdt studied in (S.S.

Miller, P.T. Mocanu, ,1978).
• When p = 1, δ = α = µ = 0 the operator Dα,δ

p (µ, q, λ)Gp(z) reduces to an
integral operator

Fγ1,γ2....γn(z) =

∫ z

0

(f ′1(z))γ1 · · · · · · (f ′n(z))γndt
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introduced and studied by (D.Breaz, N. Breaz, 2002)and (D. Breaz, S. Owa,
N. Breaz,2008).
• When p = n = 1, δ = α = µ = 0 and γ1 = ζ ∈ N, (|ζ| < 1

4
) the operator

Dα,δ
p (µ, q, λ)Gp(z) reduces to an integral operator

∫ z

0
f ′(z)γdt studied in studied

( N.Pascu, V. Pescar,1990).

2 Main result

Theorem 2.1 For γi > 0,−1 ≤ βi < p and ki > 0 for all i = 1, 2, 3.....n
USα,δ

p (µ, q, λ, ki, βi) for all i = 1, 2, 3.....n .If 0 ≤ p +
∑n

i=1 γi(βi − p) < 0.
Then the integral operator Dα,δ

p (µ, q, λ)Fp(z) is p- valently convex of order p +∑n
i=1 γi(βi − p) .

Remark 2.2 Letting p = 1, µ = α = δ = 0 , βi = 0 for all i = 1, 2, 3.....n
in 2.1 we get Theorem 2.5 (D. Breaz, N. Breaz,2006.)
Letting p = n = 1, µ = α = δ = 0, βi = β ,γi = γ, ki = k and fi = f in
2.1, then we have

Corollary 2.3 Let γ > 0,−1 ≤ β < p and USα,δ
p (µ, q, λ, k, β) .If 0 ≤ 1+γ(β−

p) < 0. Then the integral operator Dα,δ
p (µ, q, λ)Fp(z) is p- valently convex of

order 1 + γ(β − p) .

Theorem 2.4 For γi > 0,−1 ≤ βi < p and ki > 0 for all i = 1, 2, 3.....n
UCα,δ

p (µ, q, λ, ki, βi) for all i = 1, 2, 3.....n .If 0 ≤ p +
∑n

i=1 γi(βi − p) < 0.
Then the integral operator Dα,δ

p (µ, q, λ)Gp(z) is p- valently convex of order
p +

∑n
i=1 γi(βi − p) .
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