Int. J. Open Problems Complex Analysis, Vol. X, No. X, July. 2010 ISSN 2074-2827; Copyright © ICSRS Publication, 2010 www.i-csrs.org

ON GENERAL INTEGRAL OPERATOR DEFINED BY LINEAR DERIVATIVE OPERATOR

Nagat.M.Mustafa and M. Darus

School of Mathematical Sciences, Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600 Selangor D. Ehsan, Malaysia nmma_1975@yahoo.com maslina@ukm.my(corresponding author)

Abstract

The purpose of the present paper we consider some sufficient conditions for new general integral operators of p-valent functions on the new classes $US_p^{\alpha,\delta}(\mu,q,\lambda,k,\beta)$ and $UC_p^{\alpha,\delta}(\mu,q,\lambda,k,\beta)$ to be convex functions defined in the open unit disk.

Keywords: Analytic functions, p-valently starlike and p-valently convex functions, Uniformly starlike and convex functions, Integral operator.

AMS Mathematics Subject Classification (2000): 30C45.

1 Introduction

let A_p denote the class of functions of the form :

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \qquad (p \in \mathbb{N}).$$

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$. A function f belonging to A_p is said to be p-valently starlike of order β if it satisfies

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \beta \quad (z \in \mathbb{U}),$$

for some β ($0 \leq \beta < p$). We denote by $S_p^*(\beta)$ the subclass of A_P consisting of functions which are p-valently starlike of order β in \mathbb{U} .

Further, a function f belonging to A_p is said to be p-valently convex of order β if it satisfies

$$Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \beta \quad (z \in \mathbb{U}),$$

for some β ($0 \leq \beta < p$). We denote by $C_p(\beta)$ the class of functions in A_p which are p-valently convex of order β in U. A function $f \in A_p$ is said to be in

the class $US_p(k,\beta)$ of k-uniformly p-valent starlike of order β $(-1 \le \beta < p)$. in U and satisfies

$$Re\left\{\frac{zf'(z)}{f(z)} - \beta\right\} \ge k \left|\frac{zf'(z)}{f(z)} - p\right| \quad (k \ge 0, \quad z \in \mathbb{U}),$$

Furthermore, a function $f \in A_p$ is said to be in the class $UC_p(k,\beta)$ of kuniformly p-valent convex of order β $(-1 \leq \beta < p)$. in \mathbb{U} and satisfies

$$Re\left\{1 + \frac{zf''(z)}{f'(z)} - \beta\right\} \ge k \left|1 + \frac{zf''(z)}{f'(z)} - p\right| \quad (k \ge 0, \quad z \in \mathbb{U}).$$

Note that $US_1(k,\beta) = US(k,\beta)$ and $UC_1(k,\beta) = UC(k,\beta)$ where the classes $US(k,\beta)$ and $UC(k,\beta)$ are, respectively, the classes k-uniformly starlike of order β ($0 \leq \beta < p$) and k-uniformly convex of order studied in (A.W. Goodman,1991).

Now, $(x)_k$ denotes the Pochhammer symbol (or the shifted factorial) defined by $(x)_k = \begin{cases} 1 & \text{for } k = 0, x \in \mathbb{C} - \{0\}, \\ x(x+1)(x+2)...(x+k-1) & \text{for } k \in \mathbb{N} = 1, 2, 3, ... and & x \in \mathbb{C}. \end{cases}$

(x(x+1)(x+2)...(x+k-1)) for $k \in \mathbb{N} = 1, 2, 3, ... and x \in \mathbb{C}$. We state a generalization linear derivative operator $D_p^{\alpha,\delta}(\mu, c, \lambda)$ given as the following (2010):

Definition 1.1 For $f \in A_p$ and $\lambda, q, \mu \geq 0$ the linear operator $D_p^{\alpha,\delta}(\mu, q, \lambda)$ is defined by $D_P^{\alpha,\delta}(\mu, q, \lambda) : A_p \to A_p$ as

$$D_P^{\alpha,\delta}(\mu,q,\lambda) = z^p + \sum_{k=p+1}^{\infty} k^{\alpha} \left(1 + \frac{k-p}{p+q}\lambda\right)^{\mu} c(\delta,k) a_k z^k,$$

where $c(\delta, k) = \frac{(\delta+1)_{k-1}}{(1)_{k-1}}$.

Definition 1.2 For $f \in A_p$, $(-1 \leq \beta < p)$ and $\lambda, q, \mu \geq 0$ let $US_p^{\alpha,\delta}(\mu, q, \lambda, k, \beta)$ and $UC_p^{\alpha,\delta}(\mu, q, \lambda, k, \beta)$ be the subclasses satisfying

$$Re\left\{\frac{z(D_p^{\alpha,\delta}(\mu,q,\lambda)f(z))'}{D_p^{\alpha,\delta}(\mu,q,\lambda)f(z)} - \beta\right\} \ge k\left|\frac{z(D_p^{\alpha,\delta}(\mu,q,\lambda)f(z))'}{D_p^{\alpha,\delta}(\mu,q,\lambda)f(z)} - p\right| \quad (k \ge 0, z \in \mathbb{U}).$$

and

$$Re\left\{1+\frac{z(D_p^{\alpha,\delta}(\mu,q,\lambda)f(z))''}{(D_p^{\alpha,\delta}(\mu,q,\lambda)f(z))'}-\beta\right\} \ge k\left|1+\frac{z(D_p^{\alpha,\delta}(\mu,q,\lambda)f(z))''}{(D_p^{\alpha,\delta}(\mu,q,\lambda)f(z))'}-p\right| \quad (k\ge 0, z\in\mathbb{U})$$

respectively.

Note that $US_1^{0,0}(0,q,\lambda,k,\beta) = US(k,\beta)$ and $UC_1^{0,0}(0,q,\lambda,k,\beta) = UC(k,\beta)$

Definition 1.3 For $f_i \in A_p$ and $\gamma_i > 0$ we define the following general integral operators

$$D_{p}^{\alpha,\delta}(\mu,q,\lambda)F_{p}(z) = \int_{0}^{z} pt^{p-1} (\frac{D_{p}^{\alpha,\delta}(\mu,q,\lambda)f_{1}(z)}{t^{p}})^{\gamma_{1}} \dots (\frac{D_{p}^{\alpha,\delta}(\mu,q,\lambda)f_{n}(z)}{t^{p}})^{\gamma_{n}} dt$$

and

$$D_{p}^{\alpha,\delta}(\mu,q,\lambda)G_{p}(z) = \int_{0}^{z} pt^{p-1} (\frac{D_{p}^{\alpha,\delta}(\mu,q,\lambda)f_{1}(z)}{pt^{p-1}})^{\gamma_{1}} \dots (\frac{D_{p}^{\alpha,\delta}(\mu,q,\lambda)f_{n}(z)}{pt^{p-1}})^{\gamma_{n}} dt$$

Corollary 1.4 It is interesting to note that the integral operators generalizes many operators $D_p^{\alpha,\delta}(\mu,q,\lambda)F_p(z)$ and $D_p^{\alpha,\delta}(\mu,q,\lambda)G_p(z)$ which were introduced and studied recently.

• When p = 1, $\delta = \alpha = \mu = 0$ the operator $D_p^{\alpha,\delta}(\mu,q,\lambda)F_p(z)$ reduces to an integral operator

$$F_n(z) = \int_0^z \left(\frac{f_1(z)}{t}\right)^{\gamma_1} \cdots \left(\frac{f_n(z)}{t}\right)^{\gamma_n} dt$$

introduced and studied by (Breaz, N. Breaz, 2002) and (D. Breaz, S. Owa, N. Breaz, 2008).

• When p = n = 1, $\delta = \alpha = \mu = 0$ and $\gamma_1 = \gamma \in [0, 1]$ the operator $D_p^{\alpha,\delta}(\mu, q, \lambda)F_p(z)$ reduces to an integral operator $\int_0^z (\frac{f(z)}{t})^{\gamma} dt$ studied in (S.S. Miller, P.T. Mocanu, ,1978).

• When p = 1, $\delta = \alpha = \mu = 0$ the operator $D_p^{\alpha,\delta}(\mu,q,\lambda)G_p(z)$ reduces to an integral operator

$$F_{\gamma_1,\gamma_2,\ldots,\gamma_n}(z) = \int_0^z (f_1'(z))^{\gamma_1} \cdots (f_n'(z))^{\gamma_n} dt$$

introduced and studied by (D.Breaz, N. Breaz, 2002) and (D. Breaz, S. Owa, N. Breaz, 2008).

• When p = n = 1, $\delta = \alpha = \mu = 0$ and $\gamma_1 = \zeta \in \mathbb{N}$, $(|\zeta| < \frac{1}{4})$ the operator $D_p^{\alpha,\delta}(\mu,q,\lambda)G_p(z)$ reduces to an integral operator $\int_0^z f'(z)^{\gamma} dt$ studied in studied (*N.Pascu, V. Pescar, 1990*).

2 Main result

Theorem 2.1 For $\gamma_i > 0, -1 \leq \beta_i < p$ and $k_i > 0$ for all i = 1, 2, 3, ..., n $US_p^{\alpha,\delta}(\mu, q, \lambda, k_i, \beta_i)$ for all i = 1, 2, 3, ..., n. If $0 \leq p + \sum_{i=1}^n \gamma_i(\beta_i - p) < 0$. Then the integral operator $D_p^{\alpha,\delta}(\mu, q, \lambda)F_p(z)$ is p-valently convex of order $p + \sum_{i=1}^n \gamma_i(\beta_i - p)$.

Remark 2.2 Letting p = 1, $\mu = \alpha = \delta = 0$, $\beta_i = 0$ for all i = 1, 2, 3, ..., nin 2.1 we get Theorem 2.5 (D. Breaz, N. Breaz, 2006.) Letting p = n = 1, $\mu = \alpha = \delta = 0$, $\beta_i = \beta$, $\gamma_i = \gamma$, $k_i = k$ and $f_i = f$ in 2.1, then we have

Corollary 2.3 Let $\gamma > 0, -1 \leq \beta < p$ and $US_p^{\alpha,\delta}(\mu, q, \lambda, k, \beta)$. If $0 \leq 1 + \gamma(\beta - p) < 0$. Then the integral operator $D_p^{\alpha,\delta}(\mu, q, \lambda)F_p(z)$ is p-valently convex of order $1 + \gamma(\beta - p)$.

Theorem 2.4 For $\gamma_i > 0, -1 \leq \beta_i < p$ and $k_i > 0$ for all i = 1, 2, 3, ..., n $UC_p^{\alpha,\delta}(\mu, q, \lambda, k_i, \beta_i)$ for all i = 1, 2, 3, ..., n. If $0 \leq p + \sum_{i=1}^n \gamma_i(\beta_i - p) < 0$. Then the integral operator $D_p^{\alpha,\delta}(\mu, q, \lambda)G_p(z)$ is p-valently convex of order $p + \sum_{i=1}^n \gamma_i(\beta_i - p)$.

References

- [1] Far East J. Math. Sci. 15, (2004), no.1, 87-94.
- [2] S. S. Miller and P. T. Mocanu, "Subordinants of differential superordinations, *Indag. Math. (N. S.)*, **13**, (2003),no.10, 815-826.