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Abstract

In this paper, we define a new general integral operator in the open unit disk U . The
main object of this paper is to obtain new sufficient conditions for the univalence of
this general integral operator. Several corollaries of the main results are also
considered.
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Introduction:
Let A denote the class of functions of the form:

f(z)=z +iakz", (1)

which are analytic in the open unit disk U={z €C:|z |<1}. Further, by S we shall
denote the class of all functions in A which are univalent in U. For two functions,
f(z)eA and g(z) given by

g(z)=z +ibkzk,
k=2
their convolution (or Hadamard product) is defined by
(f xg)z)=z +iakbkz k.
k =2

The theory of derivative and integral plays an important role in the theory of
univalent functions. It is believed that Ruscheweyh (1975) was the first to give a
generalised derivative operator in the theory of univalent function. Later, S<al<agean
(1983) gave another generalised derivative operator. In the same paper, he introduced
an integral operator. Many properties have been discussed and studied by many
researchers for these two operators. For example, Al-Oboudi (2004) introduced a
generalised Salagean operator, Al-Shagsi and Darus (2009) generalised the operator
given by Ruscheweyh (1975), while Darus and Al-Shagsi (2008) studied both
derivatives of Ruscheweyh and Salagean. These operators motivate us to create
another type of derivative operator.

The author in [1] have recently introduced a new generalised derivative
operator D*"(m,q, A)f (z) as the following:

For the function f € A given by (1) we define a new generalised derivative
operator D*"(m,q,A)f (z): A — A as follows:

D*"(m,q,A)(f )(z) =1z +ik°’(1+—k _1/1)”‘c(n,k)akz (1.2
k=2 1+q
where n,a e N, ={0,1,2..}ymeZ, 4,>0 and c(n,k) :%_
k-1

Here D*"(m,q,A)f (z) can also be written in terms of convolution as

_(1+g-1) z A z
¢(Z)'_[ 1+q Jl—z +[1+qj(l—z)z’ (2 eU).

If m=0,1,2,..., then

D% (10, ()= 431120 s | 3K2 1 @)

(m)-times
=R"*D*(m,q,A)f (2),
where R" =z +> " c(n,k)z*, the Ruscheweyh derivative operator.
If m=-1,-2,..., then
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D*"(m,q, A)f (2)=¢(z) %, xPZ)* {W} Zk 2 «f (2)

(—m)-times

=R"%D“(m,q, A)f (2).

Note that:

D%(0,q,A)f (z)=D%°(1,0,0)f (z)=f (z), and
D°°(1,q,A)f (z)=1zf (z).
By specialising the parameters of D“"(m,q,A)f (z), we get the following

derivative and integral operators.
e The derivative operator introduced by Ruscheweyh [2];

D°"(0,q,4) =D°"(1,0,0):(n €Ny) =R" =2 + S(n k)a,z .
k=2
e The derivative operator introduced by S& 14 gean [3];
D“°(0,q,4)=D"(n,0,1);(n €N,) =D" =7 + Sk "a,z*.

k=2
e The generalised Salagean derivative operator introduced by Oboudi [4];

D°°(n,0,4);(n €Ng) =D =7 + 3 (1+ A(k —1))"a,z".
e The generalised Ruscheweyh derivative operator ki;s[roduced by Darus and Al-
Shagsi [5];
D°"(1,0,2);(n eNg) =R! =7 + > (1+ A(k ~1))c(n,k)a, 2"
e The derivative operator introduced by Catas [6]; -

D% (m,1,4);(meN,)=D"(4,4,1)=z +i(%)m0(ﬂ,k)akz ‘

e The integral operator introduced by Cho and T. H. Kim [7];
= 1+ A
D(=n,A,D=1"=z +YKk(—)"a z"
( )=1, ;:2 (k +/1) ’

The study of integral operators has been rapidly investigated by many authors, the
Alexander transformation (Alexander in 1915), Libera integral operator ( Libera
1965)

and later the Bernardi integral operator (Bernardi 1969). By using the generalised
derivative operator given by Definition 1.2, we introduce the following integral
operator.

Definition 1.1 For f, e A, i ={1,2,3,L ,s}, neNuU{0} and y,,7,,7,L ,¥,€C,
we define a family of integral operator by
Fer(m,a,472) =, H(

where ¢ €N, ={0,1,2..}y meZ, 4,>0 and D“’”(m,q,i) defined by (1.2), which

generalises many integral operators. In fact, if we choose suitable values of
parameters, we get the following interesting operators.

Dan(m q /I)f (Z))}’| dt (13)
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1. m=0, =0, n=0, v :Ll, we obtain F, (z) of by Breaz, Breaz and
a_

Srivastava [10].

2. m=0, =0, n=0, y :i, we obtain F, (z) of by Breaz and Breaz [9].
Recently many authors (see for example [2, 9, 10] and [11] have studied and

obtained univalence conditions for the analytic function.

In the present paper, we also obtain univalence conditions for integral operator
which is defined by (1.3).
To prove our main results we need followings Lemmas.

Lemma 1.2 [12] If the function f is regular in the unit disk U,
and satisfies the inequality

2f " (z2)
(1-|z |)|f()|<1 forall z eU,

then the function f is univalent in U.

Lemma 1.3 /13](Schwarz’s Lemma)
If the analytic function f (z) is regular inU, with f (0)=0 and |f (z)|<1,
forall z € U, then

[f (z2)|<|z | vz eU, and |f '(0) |<1.
The equality holds if and only if f (z)=cz,|c|=1, z eU.

Main results
Our main result is a application of Lemma 1.2 and contains sufficient

conditions for an general integral operator F “"(m,q,4,7,;2)

Theorem 2.1 For f, e A, i ={1,2,3,L ,s}, neNU{0} and y,,7,,7.L ,y,,€CIf

z(D*"(m,q, D), (2))

| —— -1K1,
D ' (maqai)f|(z))
and
|l|+|i|+__+|i|31, z eU. (2)
N V2 Vs

Then F “"(m,q, 4, y,;z) is univalent.

Proof: Since i €1,2,...,s,f, € A, we have

D" (m.q, ), ) _ +Zk (1+—/1) c(n,k)a,z*

yA z

: (3)

82017 _mdsi/30 - Qe Ny GGl sl



(5 oy daala
G)A.“ - a,,ul-u.\‘i\ Sl yall g ?JM‘ J\J.AA
daSaa @3)353\ 7«.).41:. ZJM
ISSN : 2312 — 4962 2014 /284 Akl sl Jly gl o8

=1+Zk“(1+uﬂ,)mc(n,k)akz “a,z"¥1#0, z eU.
k= 1+q

By differentiating 1.3, we obtain

D*"(m,q, A)f (t)]
z

752

D*"(m,q, A)f, (Z)]yl

[F*"(m,q,4,7:2)] =1 [

(4)
and we have
[F“"(m,q,4,7:;0]=F“"(m,q,4,7,;0)=1

Also, a simple computation yields Using 4, we obtain

IN[F “"(,, 4, 74:2)] =—[ND** (Mg, A)(2)=Inz ] ..+ [N D* (mq, ), () ~Inz], ~ (5)
N Vs
By differentiating 5, we have

F(na el L0 (@ @) 1, [(D‘;“n<m L)
[F*'(ma,4y;2)] n D" (maA)f,(z) z D*'(m,q.A)f(z) z
Simple computation, we get

|2[F “"(m.q, A 71;2)]"|

O ma, 2
ez RO MAL@) 1z (0" (g, A »'_1]‘,
7o DUN(m.a, A (2) 7. D'(m.a,Af,(2)
PN (- B T 973)(c2) S IO i 4 C Rl Gl 29 L)
} o manne T T ormaane )

1 1 1 1 1 1
<@~z P =1+]=]+.+l=Nd=|+|=|+.+| =<1
7 72 Vs N V2 Vs

Thus by Lemma 1.2, we have F “"(m,q, 4, y,;z) is univalent.

Setting m=0, =0, n=0, y . in Theorem 2.1, we obtain the following
Q;

consequence of Theorem

Corollary 2.1 For f, e A i ={1,2,3,L ,s}, If
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’ 0,0 . '
Z((f|)(z)) _1|:|Z(F00 (O,q,la%az)) —1|S1, and
(@) F™(0,9,4,7;2)
oy |+, | +.+ ]| <1, € U.
Then (f,)(z) is univalent, where (f.)(z) is given by Breaz and Breaz [9].

Theorem 2.2 For i ={1,2,3,L ,s}, neNuU{0} and y,,7,,75,L ,7,,€C If f, €A
satisfy

1 1 1 1
O =+=[+.+]=<Z,
7 72 7. 3

(i) IF“"(m,q,4,7;2) <1,

2 a,n . '

(iii)|z [':n (m,q,/”t,yi,zz)] —J.‘<l.
| F"(m,g,47:;2)]

For all z € U, then the integral operator given by (1.3) is univalent.

Proof: Using 6, we obtain

z(D*"(m,q,A)f (2))"
D“"(m,q, )f(z)

2[F " (m.9.27:201| 1,

[F“"(ma,47:2)] | n o

D*"(m,q, A)f,(z) s

Multiply 7 by (1-|z ), using Schwarz's Lemma and obtain

2(D“" (Mg, )f,(2))’
D" (Mg, A)f(2)

|Z[F “"(m,q,4,7,;2)]"| 1
(1- |z|)‘ [F T (m.q. 47 2)] ‘<(1 |z I)Iyll
[Z (Davn(m’q!j’)fs(z))'_l]
D*“"(m,q, A)f(z)
[Z (D“"(m,q, )f,(2))
D“"(m,q,A)f,(2)

[

—1]‘+

1|z )|~

S

<@z I

71

]‘+(1—|z I
a

-1z )= ]

S

[

1
+(1-]z P)|—
Dan(m,q,ﬂ,)fs( ) ( |Z|)|7S|

z(D""(m,q,)f (z))
D“"(m,q,A)f,(z)

z(D*"(m,q, )f,(2))
D" (m,q,)f,(z)

1
+.4+|—
s

[

I

|

<(-z| ){I

71

H- 12 LS b =] ]

N 7s
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@), |

| [D*"(m,q, )f @) | z
|22[D“" (m,q, A)f , (2)]]|(D*" (m

N

1
+—]

=11z )

1

S

+(1-|z |2)[|l|+...+|

"

a4, Af @)

| D (g, AF, )T |

1|2%[D*"(m,q, A)f,(z)

]

z

'_'\ [D“"(m,q, )f,(2)F

71
<@~z |
<1z 1) ||22[D“'”(m,q,/1)fs(

Pz PS4t 2] ]
)] 71 7s

+|i
[D*"(m,q, D)f (z

S

|

Tl 1

'1||z2[Da'“<m,q,z)f1<z)
| DA (m,g, DF, (2)F
|22[D“" (m,q, A)f , (z)

==z )

1
—|—|+|—|}+...
" e

1
o1, 1

12 |2)[|i|
Vs

[D“"(m,q, A)f ()T

(@12 P2+t | 2]
71 Vs

= =1+

Al

S

S

I'_

<(1-|z |2){li||22[D“'” (m.q, A)f,(2)
) 7| [D“"(m,q, A)f 2 )P

|22[D“" (m,q, A)f , (2)]

1
—|

(1-|z IZ){I
Vs

[D“"(m,q, Df@))

a1z =
71

S

1H

ERREN, P EN Y]

71

S

< (1|2 P [+t | S 1+ 20 (2 P2t 2]

" s

1 1
<30z Pl =|+.+]—1.
7 s
From 8 and condition(i) ,we have

|Z[F “"(m,q, 4.7:2)]"
| [F“"(Mm,q,4,%;:2)]

(1-1z )

N s

(8)

<1, forall z eU.
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By Lemma 1.2, it follows that the integral operator F “"(m,q, 4,;;z) is univalent .

Setting m=0, =0, n=0, y =1 in Theorem 2.2, we obtain the
Q;

following consequence of Theorem

Corollary 2.2 For f, e A, i ={1,2,3,L ,s}, If f, € A satisfy

. 1
()] |+, | +.4] |£§,

i) If; @)1,
and
zz[fi(z)]'_
(i) W 4<1.

For all z €U, then the integral operator given by by Breaz and Breaz [9]. is
univalent.
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