

On Subclasses Of Uniformly Bazilevic Type Functions Using New Generalized Derivative Operator

Amer A. A. ${ }^{1}$, Alabbar N. M ${ }^{2}$, Hasek A . M. ${ }^{3}$ and Alshbear R. A. ${ }^{4}$
${ }^{1,3,4}$ Mathmatics Department, Faculty of Science -Al-Khomus, Al-Margib University
${ }^{2}$ Mathmatics Department, Faculty of Education of Benghazi, University of Benghazi

Abstract- In this work, the authors defined a certain classes of Bazilevic functions using generalized derivative operator. Having the analytic function, we discuss here some conditions for f to be starlike of order β in U . Several other results.

Keywords: unit disk, analytic functions, derivative operator.

INTRODUCTION

Let A denote the class of functions f of the form

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad(z \in \mathbb{U})
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in C:|z|<1\}$.

Let be given two functions $f, g \in A, f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}, \quad(z \in \mathbb{U})$, then their Hadamard product $f(z) * g(z)$ is defined by

$$
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}, \quad(z \in \mathbb{U})
$$

For several functions $f_{1}(z), \ldots, f_{m}(z) \in A$, we can write in the form

$$
f_{1}(z) * \ldots * f_{m}(z)=z+\sum_{k=2}^{\infty}\left(a_{1 k} \ldots a_{m k}\right) z^{k}, \quad(z \in \mathbb{U})
$$

Let, $(x)_{k}$ denotes the Pochhammer symbol defined by $(x)_{k}=\left\{\begin{array}{c}1 \quad \text { for } k=0, \\ x(x+1)(x+2) \ldots(x+k-1) \quad \text { for } \quad k \in \mathbb{N}=\{1,2,3, \ldots\} .\end{array}\right.$

The authors in [14] have recently introduced a new generalized derivative operator $I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)$ as the following:

Definition 1.1

For $f \in A$ the operator $I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$ is defined by $\quad I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right): A \rightarrow A$ and let

$$
\phi(z):=\frac{1+l-\lambda_{1}}{1+l} \frac{z}{1-z}+\frac{\lambda_{1}}{1+l} \frac{z}{(1-z)^{2}},
$$

and

$$
F_{1}(z)=\underbrace{\phi(z) * \ldots * \phi(z)}_{(m-1) \text {-times }} *\left[\frac{z}{(1-z)^{n+1}}\right] .
$$

Let also

$$
\psi(z):=\left(1-\lambda_{2}\right) \frac{z}{1-z}+\lambda_{2} \frac{z}{(1-z)^{2}}
$$

and

$$
\psi(z) * \psi^{-1}(z)=\frac{z}{1-z}=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

let

$$
F_{2}(z)=\underbrace{\psi^{-1}(z) * \ldots * \psi^{-1}(z)}_{(m)-\text { times }} * f(z) .
$$

Thus we have

$$
\begin{gather*}
I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)=F_{1}(z) * F_{2}(z) \\
I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)=z+\sum_{k=2}^{\infty} \frac{\left(1+\lambda_{1}(k-1)+l\right)^{m-1}}{(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}} c(n, k) a_{k} z^{k} \tag{2}
\end{gather*}
$$

where

$$
n, m \in \mathbb{N}_{0}=\{0,1,2, \ldots\}
$$

and
$\lambda_{2} \geq \lambda_{1} \geq 0, l \geq 0, c(n, k)=\frac{(n+1)_{k-1}}{(1)_{k-1}}$.
Special cases of this operator includes:

- the Ruscheweyh derivative operator [1] in the cases:

$$
\begin{aligned}
& I^{1}\left(\lambda_{1}, 0, l, n\right) \equiv I^{1}\left(\lambda_{1}, 0,0, n\right) \equiv I^{1}(0,0, l, n) \equiv I^{0}\left(0, \lambda_{2}, 0, n\right) \\
& \quad \equiv I^{0}(0,0,0, n) \equiv I^{m+1}(0,0, l, n) \equiv I^{m+1}(0,0,0, n) \equiv R^{n},
\end{aligned}
$$

- the $\mathrm{S} \hat{a} 1 \hat{a}$ gean derivative operator [2]:

$$
I^{m+1}(1,0,0,0) \equiv S^{n}
$$

- the generalized Ruscheweyh derivative operator [3]:

$$
I^{2}\left(\lambda_{1}, 0,0, n\right) \equiv R_{\lambda}^{n}
$$

- the generalized $\mathrm{S} \hat{a} 1 \hat{a}$ gean derivative operator introduced by Al-Oboudi [4]:

$$
I^{m+1}\left(\lambda_{1}, 0,0,0\right) \equiv S_{\beta}^{n}
$$

- the generalized Al -Shaqsi and Darus derivative operator[5]:

$$
I^{m+1}\left(\lambda_{1}, 0,0, n\right) \equiv D_{\lambda, \beta}^{n}
$$

- the Al-Abbadi and Darus generalized derivative operator [6]:

$$
I^{m}\left(\lambda_{1}, \lambda_{2}, 0, n\right) \equiv \mu_{\lambda_{1}, \lambda_{2}}^{n, m}
$$

and finally

- the Catas derivative operator [7]:

$$
I^{m}\left(\lambda_{1}, 0, l, n\right) \equiv I^{m}(\lambda, \beta, l)
$$

Using simple computation one obtains the next result.

$$
\begin{gathered}
(l+1) I^{m+1}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)=\left(1+l-\lambda_{1}\right)\left[I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) * \varphi^{1}\left(\lambda_{1}, \lambda_{2}, l\right)(z)\right] f(z)+ \\
\\
\lambda_{1} z\left[\left(I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) * \varphi^{1}\left(\lambda_{1}, \lambda_{2}, l\right)(z)\right]^{\prime}\right.
\end{gathered}
$$

where $(z \in \mathbb{U})$ and $\varphi^{1}\left(\lambda_{1}, \lambda_{2}, l\right)(z)$ analytic function given by

$$
\varphi^{1}\left(\lambda_{1}, \lambda_{2}, l\right)(z)=z+\sum_{k=2}^{\infty} \frac{1}{\left(1+\lambda_{2}(k-1)\right)} z^{k}
$$

Many other work on analytic functions related to derivative operator and integral operator can be read in $[15,16,17,18]$. There are times, functions are associated with linear
operators and create new classes (see for example [9]). Many results are considered with numerous properties are solved and obtained.

Definition 1.2

A function f belonging to A is said to be in the class $S(\alpha)$ in \mathbb{U} if it satisfies

$$
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \mathbb{U})
$$

for some $0 \leq \alpha<1$.

Definition 1.3

A function f belonging to A is said to be in the class $C(\alpha)$ in \mathbb{U} if it satisfies

$$
\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in \mathbb{U})
$$

for some $0 \leq \alpha<1$.
We note that $f \in C(\alpha)$ if and only if $z f^{\prime}(z) \in S(\alpha)$.

Definition 1.4

In [8], for functions $f \in A$ such that $v>0$,

$$
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{v}\right\}>0 \quad(z \in \mathbb{U}, v>0)
$$

a class of Bazilevic type functions B^{v} was considered and certain properties were studied.

Definition 1.5

In [9], for functions $f \in A$ such that $v>0$,
$\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{v}-\alpha\right\} \geq M\left|\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{v}-1\right|, \forall \quad(z \in \mathbb{U}, M \geq 0,0 \leq \alpha<1)$,
a class M-uniformly Bazilevic type functions $U B_{M}^{v}(\alpha)$ was considered and studied.

Note that $v=0$ gives the subclass M-uniformly starlike $U S(\alpha)$

$$
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\} \geq M\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, \quad(z \in \mathbb{U})
$$

Now we define a subclass $U B_{M}^{v, m}\left(\lambda_{1}, \lambda_{2}, l, n, \alpha\right)$ involving our new generalized derivative operator (2) as follows:

$$
\begin{array}{r}
\mathfrak{R}\left\{\frac{z\left[I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right]^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}\left(\frac{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}{z}\right)^{v}-\alpha\right\} \\
\geq M\left|\frac{z\left[I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right]^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}\left(\frac{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}{z}\right)^{v}-1\right|, \quad(z \in \mathbb{U}) .
\end{array}
$$

We see that

$$
\begin{gathered}
U B_{M}^{v, 1}\left(\lambda_{1}, 0, l, 0, \alpha\right) \equiv U B_{M}^{v}(\alpha) \\
U B_{M}^{0,1}\left(\lambda_{1}, 0, l, n, \alpha\right) \equiv R_{n}(\alpha, M)
\end{gathered}
$$

see [10, 11].
Also, we have

$$
U B_{M}^{0,1}\left(\lambda_{1}, 0, l, n, 0\right) \equiv R_{n}(0, M)
$$

see [12, 13].

1 Coefficient Bounds

Theorem 2.1 A sufficient condition for a function f of the form (1) to be in the class $U B_{M}^{v, m}\left(\lambda_{1}, \lambda_{2}, l, n, \alpha\right)$ is

$$
\left[\frac{1+M}{1-\alpha}\right]\left[\left(1+\sum_{k=2}^{\infty} k B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)\left|a_{k}\right|\right)^{v}+1\right] \leq 1,
$$

where

$$
B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right):=\frac{\left(1+\lambda_{1}(k-1)+l\right)^{m-1}}{(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}} c(n, k),
$$

for $n, m \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$, and $\lambda_{2} \geq \lambda_{1} \geq 0, l \geq 0$.

Proof:

It suffices to show that

$$
M\left|\frac{z\left[I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right]^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}\left(\frac{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}{z}\right)^{v}-1\right|
$$

$$
-\mathfrak{R}\left\{\frac{z\left[I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right]^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}\left(\frac{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}{z}\right)^{v}-\alpha\right\} \leq 1-\alpha .
$$

Let $z \rightarrow 1$, we get

$$
\begin{aligned}
& M\left|\frac{z\left[I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right]^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}\left(\frac{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}{z}\right)^{v}-1\right| \\
& -\mathfrak{R}\left\{\frac{z\left[I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right]^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}\left(\frac{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}{z}\right)^{v}-\alpha\right\} \\
& \leq(1+M)\left|\frac{z\left(I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right)^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}\left(\frac{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}{z}\right)^{v}-1\right| \\
& \leq(1+M)\left|\left(I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right)^{\prime}\left(I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right)^{v-1}-1\right|
\end{aligned}
$$

$$
\leq(1+M)\left|\left(1+\sum_{k=2}^{\infty} k B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) a_{k}\right)\left(1+\sum_{k=2}^{\infty} B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) a_{k}\right)^{v-1}-1\right|
$$

$$
\begin{aligned}
& \leq(1+M)\left|\left(1+\sum_{k=2}^{\infty} k B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) a_{k}\right)^{v}-1\right| \\
& \leq(1+M)\left|\left(1+\sum_{k=2}^{\infty} k B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)\left|a_{k}\right|\right)^{v}+1\right| .
\end{aligned}
$$

This last expression is bounded above by $1-\alpha$ if

$$
\left[\frac{1+M}{1-\alpha}\right]\left[\left(1+\sum_{k=2}^{\infty} k B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)\left|a_{k}\right|\right)^{v}+1\right] \leq 1
$$

where

$$
B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right):=\frac{\left(1+\lambda_{1}(k-1)+l\right)^{m-1}}{(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}} c(n, k) .
$$

This ends the proof.
Next, we find the coefficient bounds for the class

$$
N U B_{M}^{v, m}\left(\lambda_{1}, \lambda_{2}, l, n, \alpha\right):=U B_{M}^{v, m}\left(\lambda_{1}, \lambda_{2}, l, n, \alpha\right) \cap N,
$$

where N is the class of analytic functions takes the form

$$
\begin{aligned}
f(z) & =z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}, \quad(z \in \mathbb{U}) \\
& =z-\sum_{k=2}^{\infty} b_{k} z^{k}, \quad(z \in \mathbb{U})
\end{aligned}
$$

Theorem 2.2 A sufficient condition for a function

$$
f(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}, \quad(z \in \mathbb{U})
$$

to be in the class $N U B_{M}^{v, m}\left(\lambda_{1}, \lambda_{2}, l, n, \alpha\right)$ is

$$
\left[\frac{1+M}{1-\alpha}\right]\left[\left(1-\sum_{k=2}^{\infty} B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) b_{k}\right)^{v}+1\right] \leq 1,
$$

where

$$
B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right):=\frac{\left(1+\lambda_{1}(k-1)+l\right)^{m-1}}{(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}} c(n, k),
$$

for $n, m \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$, and $\lambda_{2} \geq \lambda_{1} \geq 0, l \geq 0$.

Proof: We have

$$
\begin{gathered}
(1+M)\left|\left(1-\sum_{k=2}^{\infty} k B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) b_{k}\right)\left(1-\sum_{k=2}^{\infty} B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) b_{k}\right)^{v-1}-1\right| \\
\leq(1+M)\left|\left(1-\sum_{k=2}^{\infty} B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) b_{k}\right)^{v}-1\right| \\
\leq(1+M)\left[\left|\left(1-\sum_{k=2}^{\infty} B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) b_{k}\right)^{v}\right|+1\right] .
\end{gathered}
$$

The last expression is bounded above by $1-\alpha$ if

$$
\left[\frac{1+M}{1-\alpha}\right]\left[\left|\left(1-\sum_{k=2}^{\infty} B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) b_{k}\right)^{v}\right|+1\right] \leq 1
$$

where

$$
B_{k}^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right):=\frac{\left(1+\lambda_{1}(k-1)+l\right)^{m-1}}{(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}} c(n, k)
$$

This ends the proof.

CONCLUSION

The main impact of this research work is to motivate to construct new classes Bazilevic functions belonging the disk U and study their various properties.

REFERENCES

[1] Ruscheweyh. St, New criteria for univalent functions, Proc. Amer. Math. Soc, 49(1975),109-115.
[2] $\mathrm{S} \hat{a} 1 \hat{a}$ gean. G. S, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag), 1013 (1983), 362-372.
[3] Al-Shaqsi. K and Darus.M, An operator defined by convolution involving polylogarithms functions, J. Math. Stat, 4(1), (2008), 46-50.
[4] AL-Oboudi. F.M, On univalent functions defined by a generalised $\mathrm{S} \hat{a} 1 \hat{a}$ gean Operator, Int. J. Math. Math. Sci. 27(2004), 1429-1436.
[5] Al-Shaqsi. K and Darus.M, Differential Subordination with generalised derivative operator, Int. J. Comp. Math. Sci, 2(2),(2008), 75--78.
[6] Al-Abbadi. M. H and Darus.M, Differential Subordination for new generalised derivative operator, Acta Universitatis Apulensis, 20(2009),265--280 .
[7] Catas. A , On a Certain Differential Sandwich Theorem Associated with a New Generalized Derivative Operator, General Mathematics, 4 (2009), 83-95.
[8] Bazilevic. I. E, On a case of integrability in quadratures of the LoewnerKufarev equation, Mat. Sb , 37(1955), 471-476.
[9] Ibrahim .R and Darus. M , On subclasses of uniformly bazilevic type functions using new generalized derivative operator, Far East Journal of Mathematical Sciences ,33(2009).
[10] Ahuja .O .P, Integral operators of certain univalent functions, Internat, J. Math. Math. Sci, 8(1985), 653-662.
[11] Ahuja. O .P, On the generalised Ruscheweyh class of analytic functions of complex order, Bull. Ausral. Math. Soc, 47(1993), 247-257.
[12] Shams.S and. Kulkarni . S. R, On a class of univalent functions defined by Ruscheweyh derivatives, Kyungpook Math. J, 43(2003), 579-585.
[13] Rosy. T, Subramanian. K..G and Murugusundaramoorthy.G, Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivatives, J. Inequal. Pure Appl. Math. Artical 64, 4(4) (2003),1-8.
[14] Amer. A.A and Darus. M , On some properties for new generalized derivative operator, Jordan Journal of Mathematics and Statistics (JJMS), 4(2) (2011), 91-101.
[15] Amer. A.A , Second Hankel Determinant for New Subclass Defined by a Linear Operator, Springer International Publishing Switzerland 2016, Chapter 6.
[16] Amer. A.A , Properties of Generalized Derivative Operator to A Certain Subclass of Analytic Functions with Negative Coefficients, ، جامعة بنغازي،كلية التربية، المجلة الليبية العالمية . 2017
[17] Amer. A.A , Alshbear .R.A \& Alabbar .N . M ,Some Applications Of A Linear Operator To A Certain Subclasses Of Analytic Functions With Negative Coefficients. Journal of Education University Al-Khomus, Al-Margib University 10(2017).441-454.
[18 Amer. A.A and Darus .M, Some properties for a linear operator, AIP Conference Proceedings 1522, 908 (2013).

