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Abstract— In this work, the authors defined a certain classes  of  Bazilevic functions using  

generalized derivative operator. Having the analytic function, we discuss here some 

conditions for f  to be starlike of order    in U. Several other results. 
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INTRODUCTION 

 

Let A  denote the class of functions f  of the form  
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 which are analytic in the open unit disk ={ :| |<1}.z C z  

 Let be given two functions 
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   then their Hadamard product ( ) ( )f z g z  is 

defined by  
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 For several functions 1( ),..., ( ) ,mf z f z A  we can write in the form 
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Let, ( )kx  denotes the Pochhammer symbol defined by 
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( 1)( 2)...( 1) = {1,2,3,...}.
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      The authors in [14] have recently introduced a new generalized derivative operator 

1 2( , , , ) ( )mI l n f z   as the following: 

 

Definition 1.1 

 

 For f A  the operator 
1 2( , , , )mI l n   is defined by 

1 2( , , , ) :mI l n A A    

and let  
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 Let also  
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 Thus we have  
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0, ={0,1,2,...},n m  and 
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 Special cases of this operator includes: 

   the Ruscheweyh derivative operator [1] in the cases:  

 
1 1 1 0

1 1 2( ,0, , ) ( ,0,0, ) (0,0, , ) (0, ,0, )I l n I n I l n I n      

 

 
0 1 1(0,0,0, ) (0,0, , ) (0,0,0, ) ,m m nI n I l n I n R      

  the S â l â gean derivative operator [2]:  

 
1(1,0,0,0) ,m nI S   

   the generalized Ruscheweyh derivative operator [3]:  

 
2

1( ,0,0, ) ,nI n R   

  the generalized S â l â gean derivative operator introduced by Al-Oboudi [4]:  

 
1

1( ,0,0,0) ,m nI S    

  the generalized Al-Shaqsi and Darus derivative operator[5]:  

 
1

1 ,( ,0,0, ) ,m nI n D    

   the Al-Abbadi and Darus generalized derivative operator [6]:  

 
,
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 and finally 

 

   the Catas derivative operator [7]:  

 
1( ,0, , ) ( , , ).m mI l n I l    

 Using simple computation one obtains the next result. 
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 where ( )z   and 
1

1 2( , , )( )l z    analytic function given by 

 

 
1

1 2

=2 2

1
( , , )( ) = .

(1 ( 1))

k

k

l z z z
k

  





 


 

 

    Many other work on analytic functions related to derivative operator and integral 

operator can be read in [15,16,17,18]. There are times, functions are associated with linear 
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operators and create new classes (see for example [9]). Many results are considered with 

numerous properties are solved and obtained. 

 

Definition 1.2  

 A function f  belonging to A  is said to be in the class ( )S   in  if it satisfies  
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z
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 for some 0 <1.   

 

  

Definition 1.3   

A function f  belonging to A  is said to be in the class ( )C   in  if it satisfies  
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zf z
z
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 for some 0 <1.   

 

We note that ( )f C   if and only if ( ) ( ).zf z S    

 

Definition 1.4   

In [8], for functions f A  such that > 0,v  
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 a class of Bazilevic type functions 
vB  was considered and certain properties were studied.  

 

 

Definition 1.5 

  In [9], for functions f A  such that > 0,v   
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 a class M-uniformly Bazilevic type functions ( )v

MUB   was considered and studied.  

 

Note that = 0v  gives the subclass M-uniformly starlike ( )US    
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 Now we define a subclass 
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1 2( , , , , )v m

MUB l n    involving our new generalized 

derivative operator (2) as follows:  
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 We see that  
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0,1
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 see [10, 11]. 

 

 Also, we have  

 
0,1

1( ,0, , ,0) (0, ),M nUB l n R M   

 see [12, 13]. 

 

1 Coefficient Bounds 

 

  

Theorem 2.1  A sufficient condition for a function f  of the form (1) to be in the class 
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 Let 1,z   we get 
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 This last expression is bounded above by 1   if  
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 This ends the proof. 

 Next, we find the coefficient bounds for the class  
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 This ends the proof. 

 

 

 

CONCLUSION 

The main impact of this research work is to motivate to construct new classes Bazilevic  

functions belonging the disk U  and  study their various properties. 
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