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Abstract 

The traditional long-established networks and networking techniques are no longer 

suitable for future ever-expanding networking requirements, specifically, the automation 

and programmability of network communications. Software-Defined Networking (SDN) 

is the most agreeable solution for that. SDN intelligence is a logically centralized 

controller that applies a standard open Application Programming Interface (API) to 

directly control the packet handling functions of network devices. OpenFlow is currently 

the main and widely known communication protocol in SDN architecture. As a result of 

such centralization, the SDN architecture subjected the controller as a single point with 

more attack surfaces for each layer. This entails the search for more security and 

protection procedures for the SDN architecture without sacrificing its swift response to 

changing business requirements. This thesis aims to enhance the protection of the 

division's concept in SDN architecture, which reduces the creation of more attack 

surfaces that can be targeted by malicious activities. Thus, the research focuses on the 

design of a dependable SDN controller model via Defense In-Depth (DID) techniques, 

including the requirements for a secure, resilient, and robust controller. The Dynamic 

Defense In-Depth (DDiD) model deployment is proposed for the SDN control layer to 

enhance overall OpenFlow protocol security. Detailed measurable threats and protection 

mechanisms, according to the DDiD model, were investigated and implemented using a 

simulation environment (mininet). Also, the thesis presents a proof of concept evaluation 

mechanism using entropy for Denial of Service DoS attacks to confirm the applicability 

of secure structure requirements to the SDN controller layer. The DDiD resulted in a 

higher standard deviation value between normal traffic and attack traffic than the current 

SDN architecture, with a diverging value of ±0.02 and utmost ~59.51% difference in a 

better level of protection .The obtained results confirm the promising potential of 

achieving the required security goals.
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Chapter 1  

Introduction  

 

1.1  Introduction  

Modern computer networks are structured from a countless number of network 

devices such as switches, routers, and various types of appliance equipment, which have 

many complex protocols implemented, for controlling data traffic. The network 

operators, e.g., network engineers and administrators, are responsible for designing the 

scheme to deal with a broad range of network events and applications. Though adapting 

to changing network conditions, they manually convert these high-level schemes into 

low-level configuration commands. In addition, the network operators have to deal with 

these complex and tedious tasks with access to very limited tools to achieve accurate 

adaptation. Networks have become enormously challenging to evolve regarding physical 

infrastructure, protocols, and performance. The concept of “programmable networks” has 

been proposed to simplify and address these challenges for better network evolution. In 

addition, network programmability is part of the broader architecture known as SDN.   

SDN is a novel networking architecture that manages and controls packet 

forwarding, the relaying of packets from one network segment to another by nodes in a 

computer network called a data plane, within the network to change the limitations of 

current network infrastructures. In general, the SDN architecture can be broken down 

into three main layers, application plane, control plane, and data plane. For more 

clarification, these layers are from bottom to top. The Data plane is the bottom-most layer 

of SDN architecture. It deals with  implementing a data path, which comprises devices, 

and gets the flow rules and instructions from the upper layer, which will be persisted in 

the flow table. In some cases, if the received packet does not match any entry in the flow 

table, the device is responsible for forwarding that packet to the controller for decision-

making. 

The middle layer, the control plane, is responsible for implementing the control 

paths on a legacy network. This is the most critical layer of an SDN architecture. It 

accepts the traffic tasks, traffic engineering, traffic shaping, and network management 

from application plane servers; and handles it to data plane devices. The highest layer the 

application layer with the help of a controller, is responsible for the customization of 
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packet forwarding, policy management, user management, and Quality of Service (QoS). 

In SDN architecture, all of the network functions and monitoring tools are usually part of 

the application layer. 

There are two interfaces, which are used to help in the communication among the 

layers, North Bound Interface (NBI) and South Bound Interface (SBI). as shown in Figure 

1.1 . 

 

Figure 1.1 SDN Architecture (Generic View) 

The concept of SDN is based on the separation of network intelligence, 

specifically, the control plane is separated from the packet switching process for the data 

plane into a logically centralized controller. The forwarding decisions are made by the 

controller, which is responsible for sending the instruction to the packet switches in the 

form of rules, via standard protocols, such as; OpenFlow protocol. 

OpenFlow is a standard communication protocol that enables the control plane to 

interact with the data plane. Its main purpose is to standardize the communication 

between switches and the software-based controller SDN. Besides, OpenFlow is still 

widely used in the implementation of SDN architecture [1], the communication 

mechanism of OpenFlow protocol is confined to three tables; rule, action, and stats. 

Figure 1.2 illustrates the communication mechanism of the OpenFlow protocol. 

 

Figure 1.2 OpenFlow protocol communication 
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Consequently, the purpose of SDN is to enable network operators to answer 

promptly to the changing business requirements through centralized control support that 

separates the network’s control policies from forwarding tables. Therefore, the separation 

of the data plane from the control plane in SDN architecture pointed the controller as the 

most important part of the SDN architecture. As a result, the SDN architecture subjected 

the controller to a single point of failure [2]. 

Furthermore, the communication among the three-layer structure and the links in 

between created more attack surfaces specifically for each layer separately that are not 

present in traditional network structures, which can be targeted for more malicious 

activity types. As an example of problem surfaces, the Data plane layer uses the 

OpenFlow protocol to communicate with low-forcing Transport Layer Security (TLS) 

v1.0 and most of the communication is using Transmission Control Protocol (TCP) and 

having TLS as an optional connection. Most of the data plane devices and SDN 

controllers do not fully support TLS [2],[3],[4],[5]. 

That being said, this research focuses on finding a better solution by using an 

approach capable of reducing and mitigating these risks in a divide-and-conquer manner. 

Inform of multiple layers of protection that are connected altogether for robust and secure 

SDN design. 

 One of the most efficient methods, according to Best Practice from National 

Cybersecurity and Communications Integration Center (NCCIC)[6], is DiD. It is an 

architecture that uses multiple connected layers for better protection design using TLS 

v1.3 [3], distribution connection, Access Controls, etc., to the data plane devices. 

Hypertext Transfer Protocol Secure (HTTPS), Authentication, Authorization, and 

Accounting (AAA), Deep Packet Inspection (DPI) with fixed-trusted devices ID, etc. to 

control the plane. 

The main aim is to concern the demonstration of DiD mechanism for SDN 

controllers to build a secure model by clarifying and protecting OpenFlow protocol 

structure communication functions and preventing the threat vectors which can lead to 

the exploitation of vulnerabilities of SDN controllers. First, designing a dependable 

Controller model focuses on the necessity of a secure, flexible, and robust SDN 

Controller. Secondly, reducing the existing gap between the actual security level of the 

current SDN Controller design and the potential security solutions for future 

improvements in the SDN Controller using DDiD. Thirdly, Validating and testing by 
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simulating the implementation of a secure SDN controller on several systems and devices 

virtually to ensure its ability to deliver a robust, secure structure.  

 

1.2  Motivation 

Several factors have motivated the investigation conducted in this thesis to  

migrate to the SDN structure successfully. A primary advantage of SDN networking is 

greater visibility throughout the enterprise networks. The most important obstacle to 

implementing SDN structure is the operational challenges involved in managing a 

computer network. There are two essential operational challenges. Time to implement 

changes: The distributed nature of a network makes it difficult and time-consuming to 

effect changes in the settings of all network elements. Risk of malfunctioning: These are 

the security challenges that need addressing to build a secure model that prevents and 

protects OpenFlow protocol communication functions from threat vectors which can lead 

to SDN failure. 

1.3  Problem Statement 

The separation of the data plane from the control plane in SDN architecture 

pointed to the controller as the most important part of the SDN architecture. As a result, 

the SDN architecture subjected the controller to a single point of failure [2]. Furthermore, 

the communication among the three layers of structure and the links in between has 

created more attack surfaces specifically for each layer separately that were not present 

in traditional network structures before, which can be targeted for more malicious activity 

types,especially the bottom layers use the OpenFlow protocol to communicate, which 

uses low-forcing TLS v1.0 and most of the communication  uses TCP and has TLS as an 

optional connection. Most of the data plane devices and SDN controllers do not fully 

support TLS. [3],[4],[2],[5]. 

Therefore, the communication among the three layers is not fully secured and can 

be easily compromised, by multiple types of attacks and risks that are inclusive for SDN, 

e.g., falsification of controller rules, data eavesdropping, execute harmful commands, 

unauthorized access, denial-of-service, exploiting logically centralized controller and 

deployment of malicious applications. 

These attacks and risks are assembled in several threat vectors that have been 

targeted for mitigation in this research, detailed in Section 2.3.  
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That being said, the SDN security problem is not a single-tier problem; the SDN 

security threat involves each layer of the entire system architecture. Therefore, this 

proposal focuses on finding a better solution by using an approach capable of reducing 

and mitigating these risks in a divide-and-conquer manner. A model that has multiple 

layer’s protection and is connected for robust secure SDN design.  

 

1.4  Research Aim and Objectives  

The aim is to propose a systematic model based on Defence in-depth mechanisms 

to build a secure model to facilitate the exploitation of vulnerabilities of current SDN 

architecture. To achieve this aim, this research is focused on the following objectives : 

 To conduct an extensive study on the current SDN state in enterprise networks . 

 To investigate the mechanisms of the Defense-in-depth concept . 

 To propose a dynamic DiD model suitable for the SDN control layer security 

challenges by utilizing a quantitative method within case study implementation. 

 To implement and test the proposed model. 

 To compare the results from the proposed model with traditional SDN 

architecture. 

 

1.5  Research Questions  

To achieve these objectives, the research intends to answer the following 

questions: 

 What is the importance of SDN in modern enterprise networks? 

 What are the challenges of SDN controller security? 

 How to mitigate the challenges of SDN controllers for better security ? 

 Why is Defense In-Depth mechanism used as a solution? 

 What is the improvement gained from the proposed DDiD for SDN security? 

 

1.6  Research Method  

The prime methodology that has been used is the quantitative method. Within the 

case study implementation of the Defense-in-depth mechanism upon SDN architecture, 

DID is a security principle from NCCIC [6], best practice. Also known as an information 

assurance strategy that provides multiple, redundant defensive measures in case a security 
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control fails or a vulnerability is exploited. Based on a structure that is designed to protect 

the Physical controls: this includes security measures that prevent physical access to IT 

systems, such as security guards or locked doors, technical controls: security measures 

that protect network systems or resources using specialized hardware or software, e.g., a 

firewall appliance.  

Finally, Administrative controls: security measures consist of policies or procedures 

directed at an organization’s employees, as shown in Figure 1.3. 

 

 

 Figure 1.3 DID layers 

 

In the current Controller structure, we are Heading toward methodologies to 

resolve various threat vectors. In this regard, some of the most efficient mechanisms from 

several researchers have been presented in this proposal. As a result, different mitigation 

techniques need to prepare for a suitable design structure. Attempting to lay out a design 

of a suitable Dynamic defense-in-depth (DDiD) model to address several of these threats. 

Finally, before applying any design, threat vectors must be identified to evaluate and 

compare the results obtained from the study.  

To summarize the threat vectors [7],[3],[8],[9], that can be mitigated with the use 

of the Dynamic Defense In-Depth model: 

Forged or fabricated traffic flows, targets an exposure in switches, threats on 

control plane communications, target exposure in controllers, absence of mechanisms to 

ensure trustworthy between the controller and management applications, targets an 

exposure in administrative stations, and absence of reliable resources for forensics and 

restoration. Each of the thread vectors must be mitigated with the proposed DDiD model. 
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For each validation test case, when comparing the collected data from penetration attack 

tools with thread vector identifiers to get the positive and the negative results, this 

presents a strong indication for the research aim and success of reaching a secure SDN 

controller. 

The proposed Dynamic Defense In-Depth model for SND is summarized as 

follows: states detection connection uses a synchronous distribution for the controllers. 

Vulnerability avoidance uses independent variety for the controller system. Safety 

protection uses self-healing for a full system. Relation analysis uses dynamic switch 

coupling with controllers. Threat avoidance uses reliable relations between controllers & 

devices. Behavior avoidance uses reliable relations between controllers & apps. Finally, 

isolation uses virtualized security clusters. Chapter 3 discusses the DDiD mechanism in 

detail 

1.7  Scope & Limitation 

This research is mainly focusing on: 

 Clarifying the SDN controller concept, the OpenFlow protocol, defense-in-

depth architecture, and the implantation of the proposed security 

enhancement. 

 Utilizing DID principles to meet the security requirements of SDN Controller 

which are; Authentication, Authorization, Facilitation, Isolation, and policies. 

 Validating and testing by simulating the implementation of secure SDN on 

several systems and devices to ensure its ability to deliver robust structure. 

However, the requirement of building such a secure structure from selective high-

end hardware and software is through a virtual environment to reduce the dependency 

on specific vendor devices, therefore, the limitations are simulated hardware 

performance and cost of a virtualization technology license. 

1.8  Organization of the Thesis 

The remainder of the thesis is organized as follows: Chapter 2 background & 

related work for related security research papers on SDN security challenges, also the 

introduction of the Defense-in-depth terminologies. Chapter 3 is the proposed model that 

is suited for SDN controllers. The findings and focus of the thesis will be in Chapters 3 

and 4 to discuss in detail Dynamic Defense-in-depth implementation and results 
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considering approaches and techniques, and finally Chapter 5 conclusions and future 

work that concludes this thesis.  

1.9  Contribution 

Focusing on designing a dependable Controller model including the requirements 

for a secure, resilient, and robust SDN Controller capable of delivering the expectation 

of such demands for enterprise's network needs, through deploying DDiD model to deal 

with the increasing security challenges associated with SDN Controller architecture. As 

a result of this thesis, the following research paper was published:  

1. Mahmoud Elhejazi and Mohamed Musbah. 2021. Dynamic Defense In-Depth 

Model for SDN Control Layer to Enhance OpenFlow Protocol Security. In The 

7th International Conference on Engineering &amp; MIS 2021 (ICEMIS'21). 

Association for Computing Machinery, New York, NY, USA, Article 46, 1–6. 

DOI:https://doi.org/10.1145/3492547.3492625 
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Chapter 2 

Background & Literature Review 

2.1  Introduction   

In the past years, a new architecture paradigm has emerged in the computer 

network industry called Software Define Network (SDN). In the beginning, it appeared 

as a potential programming approach that enables dynamic, programmatically efficient 

network configuration to improve network performance and monitoring. Now SDN is 

more diverse and abstract for easy to use even for those who are not network engineering. 

SDN is based on software-based controllers or application programming interfaces 

(APIs) to communicate with underlying hardware infrastructure and direct traffic on a 

network. SDN principles in simple terms, is an approach for the provisioning and 

management of networks. 

  This chapter will shed some light on multi aspects and terms of SDN architecture 

and security challenges with more description.  

 

2.2  SDN architecture Terms and Concepts  

The terminologies of the research field, such as SDN architecture pillars, layers or 

planes, connection interfaces, flow protocols, etc., are crucial to the understanding of the 

topic. This subsection describes the basic terms of SDN. 

The term SDN was originally used to describe the ideas and representations that 

surround the OpenFlow protocol at Stanford University [2]. As originally defined, SDN 

refers to a network architecture where the forwarding state in the data plane is managed 

by a remote-control plane decoupled from it. The networking industry has, on many 

occasions, shifted from this original view of SDN, by referring to anything that involves 

software as being SDN. Therefore, the attempt in this section is to provide a much less 

ambiguous definition of SDN. It can be defined as a network architecture with four pillars 

[2] :  

1) The control and data planes are decoupled. Control functionality is removed from 

network devices that will become simple (packet) forwarding elements.  

2) Forwarding decisions are flow-based, instead of destination-based. A flow is 

broadly defined by a set of packet field values acting as a match (filter) criterion 

and a set of actions (instructions). In the SDN/OpenFlow context, a flow is a 
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sequence of packets between a source and a destination. All packets of a flow 

receive identical service policies at the forwarding devices. The flow abstraction 

allows the unifying of the behavior of different types of network devices, 

including routers, switches, firewalls, and middleboxes. Flow programming 

enables unprecedented flexibility, limited only to the capabilities of the 

implemented flow tables.  

3) Control logic is moved to an external entity, the so-called SDN controller or 

Network Operating System (NOS). The NOS is a software platform that runs on 

commodity server technology and provides the essential resources and 

abstractions to facilitate the programming of forwarding devices based on a 

logically centralized, abstract network view. Its purpose is therefore similar to 

that of a traditional operating system.  

4) The network is programmable through software applications running on top of 

the NOS that interact with the underlying data plane devices. This is a 

fundamental characteristic of SDN, considered its main value proposition.  

 

Note that the logical centralization of the control logic, in particular, offers several 

additional benefits. [2], First, it is simpler and less error-prone to modify network policies 

through high-level languages and software components, compared with low-level device-

specific configurations. Second, a control program can automatically react to spurious 

changes in the network state and thus maintain the high-level policies intact. Third, the 

centralization of the control logic in a controller with a global knowledge of the network 

state simplifies the development of networking functions, services, and applications. 

  Following the SDN concept introduced, an SDN can be defined by three 

fundamental abstractions: (i) forwarding, (ii) distribution, and (iii) specification. 

Abstractions are essential tools of research in computer science and information 

technology, being already a ubiquitous feature of many computer architectures and 

systems. Ideally, the forwarding abstraction should allow any forwarding behavior 

desired by the network application (the control program) while hiding details of the 

underlying hardware. 

  OpenFlow is one realization of such abstraction, which can be seen as the 

equivalent of a “device driver” in an operating system. The distribution abstraction should 

shield SDN applications from the vagaries of distributed states by using a common 

distribution layer, which resides in the NOS. This layer has two essential functions. First, 



 

11 
 

it is responsible for installing the control commands on the forwarding devices. Second, 

it collects status information about the forwarding layer (network devices and links), to 

offer a global network view to network applications. The last abstraction is the 

specification, which should allow a network application to express the desired network 

behavior without being responsible for implementing that behavior itself. This can be 

achieved through virtualization solutions, as well as network programming languages. 

These approaches map the abstract configurations that the applications express based on 

a simplified, abstract model of the network, into a physical configuration for the global 

network view exposed by the SDN controller. This approach has several advantages:   

 It becomes easier to program these applications since the abstractions provided 

by the control platform and/or the network programming languages can be shared.   

 All applications can take advantage of the same network information (the global 

network view) to more consistent and effective policy, decisions while reusing 

control plane software modules.   

 These applications can take actions (reconfigure forwarding devices) from any 

part of the network. There is therefore no need to devise a precise strategy about 

the location of the new functionality.   

 The integration of different applications becomes more straightforward. For 

instance, load-balancing and routing applications can be combined sequentially, 

with load-balancing decisions having precedence over routing policies. 

 

To identify the different elements of an SDN as unequivocally as possible, now 

present the essential terminology used throughout the SDN.[2]. 

 Forwarding Devices (FD): Hardware- or software-based data plane devices that 

perform a set of elementary operations. The forwarding devices have well-defined 

instruction sets (e.g., flow rules) used to take actions on the incoming packets 

(e.g., forward to specific ports, drop, forward to the controller, rewrite some 

header). These instructions are defined by southbound interfaces (e.g., OpenFlow, 

ForCES (Forwarding Control Elements Separation), Protocol- Oblivious 

Forwarding (POF)) and are installed in the forwarding devices by the SDN 

controllers implementing the southbound protocols.  
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 Data Plane (DP): Forwarding devices are interconnected through wireless radio 

channels or wired cables. The network infrastructure comprises interconnected 

forwarding devices, which represent the data plane.  

 Southbound Interface (SI): The instruction set of the forwarding devices is 

defined by the southbound API, which is part of the southbound interface. 

Furthermore, the SI also defines the communication protocol between forwarding 

devices and control plane elements. This protocol formalizes the way the control 

and data plane elements interact.  

 Control Plane (CP): Forwarding devices are programmed by control plane 

elements through well-defined SI instructions. The control plane can therefore be 

seen as the “network brain”. All control logic rests in the applications and 

controllers, which form the control plane.  

 Northbound Interface (NI): The network operating system can offer an API to 

application developers. This API represents a northbound interface, a common 

interface for developing applications. Typically, a northbound interface abstracts 

the low-level instruction sets used by southbound interfaces to program 

forwarding devices.  

 Management Plane (MP): The management plane is the set of applications that 

leverage the functions offered by the NI to implement network control and 

operation logic. This includes applications such as routing, firewalls, load 

balancers, monitoring, and so forth. Essentially, a management application 

defines the policies, which are ultimately translated to southbound-specific 

instructions that program the behavior of the forwarding devices. All that 

elements are shown in Figure 2.1. 
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Figure 2.1 SDN architecture elements 

 

2.3  SDN Current Security State 

Cyber-attacks against financial institutions, energy facilities, government units, and 

research institutions that use SDN architecture are becoming one of the top concerns of 

governments and agencies around the globe. Due to the danger of cyber-attacks and the 

current landscape of digital threats, security and dependability are top priorities in 

implementing SDN. While research and experimentation on software-defined networks 

are being conducted by some commercial players (e.g., Google, Yahoo!, Rackspace, 

Microsoft), commercial adoption is still in the development stage. Industry experts 

believe that security and dependability are issues that need addressing with a deep 

investigation to fully migrate to SDN.[2]. 

The current state so far is that they are Different threat vectors that have been already 

identified in SDN architecture, as well as several security issues and weaknesses in 
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OpenFlow-based networks. The following are at least seven identified threats vector in 

SDN architecture: 

 The first threat vector consists of forged or faked traffic flows in the data plane, 

which can be used to attack forwarding devices and controllers.  

 The second allows an attacker to exploit vulnerabilities of forwarding devices and 

consequently wreak havoc with the network.  

 Threat vectors three, four, and five are the most dangerous ones, which are 

Exploiting logically centralized controllers, compromised controller and 

Development, and deployment of malicious applications on controllers since this 

three can compromise the network operation.  

 The sixth threat vector is linked to attacks on and vulnerabilities in administrative 

stations.  

 Last, threat vector number seven represents the lack of trusted resources for 

forensics and remediation, which can compromise investigations (e.g., forensics 

analysis).as shown in Figure 2.2 

 

Figure 2.2 Main threat vectors of SDN architecture 

 

Also, there are already several identified security issues in OpenFlow-enabled 

networks, especially with low-forcing of TLS v1.1. It is possible to identify different 

attacks on OpenFlow-enabled networks. For instance, information disclosure can be 

achieved through side-channel attacks like Cache attacks or Power-monitoring attacks 

targeting the flow rule setup process. When a reactive flow setup is in place, obtaining 

information about network operation is relatively easy. An attacker that measures the 

delay experienced by the first packet of a flow and the subsequent can easily infer that 
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the target network is a reactive SDN; and proceed with a specialized attack [2], This 

attack known as fingerprinting, may be the first step to launch a DoS attack intended to 

exhaust the resources of the SDN network. This is only a glimpse of SDN security 

challenges. 

 

2.4  Defense in-Depth Principles 

DID is a technique for information assurance developed by the National Security 

Agency (NSA) involving several layers of networked electronic and system security 

defenses. Used as an approach capable of reducing and mitigating security risks in a 

divide-and-conquer manner, especially for any system, security was not have been taken 

into account from the planning stage. Also identified as the most efficient mechanism 

according to the Best Practice form [6], by implementing Different types of network 

protection software (barriers) are implemented to combine various network security 

techniques on a single network, including firewalls and Intrusion Prevention Systems 

(IPS) / Intrusion Detection Systems (IDS) systems. To ensure device and network 

stability against many threats variables, that affect device protection, including physical 

security, policy, and procedure. The functions of the barriers in the DiD strategy are 

detection, deterrence, delay, and response. These functions provide a range of types of 

barriers to maximize the probability of prevention of unauthorized access and detection 

potential. These functions can be mapped onto the desired system structure [10]. 

Constructing a multilayer security DID mechanism must be carefully designed for each 

specific system separately, from three main layers as shown in Figure 2.3 [11]:  

 

Figure 2.3 Defense-in-depth layers 
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 Active Protection: Network security products usually impossible to find all the 

network vulnerabilities and external attacks. Even if the product is designed with 

comprehensive security defense functions, with the passage of time and the 

development of protection technology, there is always a chance of reducing this 

vulnerability with a protective active layer. Examples of such technologies 

include replication, synchronization, distribution, and backup. 

 Real-time detection: Even if the layer of Active Protection defense does not 

exclude the possibility of being successfully overcome the attacks, a variety of 

technical means of real-time intrusion detection and prevention is utilized to deal 

with those attacks, which have not been successfully repulsed. Examples of such 

technologies include IDS monitoring, and attempts threshold. 

 Intrusion tolerance attacks: Intrusion tolerance technology can integrate the 

immune theory, threshold cryptography, data recovery, and self-healing; It can 

adopt trusted computing, trusted network, fault-tolerant protocol, data 

redundancy, and recovery strategy, providing continuous network service and 

achieve final safety operation of the system. 

 

2.5  Literature Review 

The ability of the network operation and security policies to continually adapt to 

changes in business network services will determine, by how well SDN is implemented 

and managed. Through a customizable central control, SDN enables network operators 

to quickly respond to shifting business requirements. 

  Therefore, research efforts have been devoted to determining the proposed 

solutions by researchers for such an issue and then developing approaches and models to 

enhance SDN security early implementation to increase efficiency. 

The authors in [3], stated that most modern SDN-controller, support TLS across 

D-CPI (Data-Controller Interface). Secure communication with Secure Socket Layer 

SSL/TLS v1.0 defines the authentication of the communicating parties by using PKI 

(X.509 certificate) with subsequent data encryption between the parties across the 

interface of communication to prevent any mitigate tampering with message exchanges. 

Several controllers such as; SE-Floodlight (Security Enhanced extension, OpenDaylight, 

and Ryu controller support SSL/TLS v1.1 optionally, although other controllers such as 

ROSEMARY [12], and ONOS do not support  SSL/TLS at all. The author proposed the 



 

17 
 

following design as secure recommendations features for SDN, Design with Software 

Security Principles, Secure Default Controller Settings, and Application Future-Proofing. 

Currently, not a single SDN controller includes each of the identified features for a 

secure, robust, and resilient SDN controller. However, that design lacks on secure 

controller design mechanism or framework such as; multiple controllers to application 

instances (Resilience), representational state transfer (REST) API token-based 

authentication provided by the user authentication. API key token-based authentication, 

and Resource Monitoring. 

   In [4], the author stated that the controller should be provided with additional 

protection against TCP congestion, IP spoofing, and DoS especially when the SSL/TLS-

based communication is unable to protect the SDN Controller from IP-based attacks on 

the control panel. In such cases, an equivalent protocol such as TLS should be used for 

protecting the communication between the control layer and the application layer to 

prevent defects, failure, and threats [4]. However, there must be a key or certificate 

materials that an appropriately managed with Host Identity Protocol (HIP) and (AAA) to 

ensure that the security of Public Key Infrastructure (PKI) is underpinned . 

According to [13], the main SDN security issue is OpenFlow protocol does not 

enforce the implementation of the TLS, but defines it only as optional, therefore the 

author proposed that there is a need for a solution between the control plane layer and 

data plane layer that include, disabling older versions of TLS protocol, totally uninstalling 

such version from the controller and use the proposed security extension for TLS v1.2 in 

form of timestamp between each request to response, which drops connection in case of 

exceeding the defined time frame per request. Unfortunately, these countermeasures  

target specific attacks, like Man-in-the-Middle attacks, in which there are more attack 

points in SDN architecture. Therefore, the recommended data encryption protocol 

currently is v1.3. It is also the most used protocol not only within OpenFlow but also 

throughout the Internet. 

Nonetheless, according to [5], centralized control and insufficient mechanism of 

security protection make SDN controllers an external target of malicious attacks. In 

addition, there are not enough security and encryption measures in the communication 

process between the control layer and the data layer. Flow rules are easy to suffer 

malicious tampering during the process of publishing. In general, SDN lacks sufficient 

multi-level protection mechanisms. Hence, the authors focused their research on the 

following aspects, Controller attack detection and precaution, Controller scalability and 
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cross-domain communication, and Application authentication issues. Their conclusion is 

the SDN security problem is not a single-tier problem; the SDN security threat involves 

each layer of the entire system architecture. However, an idealized global security 

solution needs to cover hardware, operating systems, software, and other aspects not just 

the previously mentioned aspects. 

Nonetheless, according to [14], the author conducts a comprehensive survey on 

the core functionality of SDN from the perspective of secure communication 

infrastructure at different scales. A specific focus is given to addressing the challenges of 

securing SDN infrastructure and categorizing the appropriate solutions for specific 

threats at each layer of the SDN communication. Lastly, security implications and future 

open research challenges are presented to help gain further insights into the domain of 

SDN security. However, In this paper, it lacks an appropriate and suitable framework 

model for a clear implementation of a secure SDN structure for each plan.  

Finally, it is important to mention studies in [1],[7],[8],[9],[2], that are essential 

to this thesis as a major part of building the necessary foundation for implementing the 

SDN component. that triggers the motivation to mitigate the SDN security challenges 

building resilient control plane. However, these studies succeeded in describing the 

vulnerabilities, threats, and risks in the SDN architecture. Also, they lack a systematic 

framework in form of mechanisms for each plane layer to implement a suitable solution. 

 

2.6  Addressing Vulnerabilities 

It is clear from previous papers, that there is a necessity to provide a model for more 

security improvement on existing SDN controllers and future ones, to become robust, 

secure, and intelligent. From the DID principles The targeted risks and challenges 

mitigation are assembled into a seven-threat vector previously mentioned in section 2.3. 

In this regard, the following are three countermeasures that require improvement for a 

secure SDN controller: 

• Design based on robust security standards: SDN controller needs rework, designed 

from the initiation as a secure software design entity including privilege limitation, 

sensitive data encryption, and secure defaults in a DDiD mechanism manner. In 

addition, a controller’s security should be tested using static and dynamic analytic 

tools. 
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• Secure default configuration settings: All SDN Controller default implementations 

must apply appropriate safe measurement for operations, configuration backups, and 

communication processes from the setup stage to ensure that controllers are secure 

during the entire lifecycle of the system. 

• Application independence: The application layer must be designed outside the 

controller’s aspects to enhance transferability across the controller interfaces in both 

high-level and low-level protection.  

  

2.7 Summary  

This chapter has given a brief overview of the important concepts of SDN 

architecture, planes and interconnection interfaces. The concerns and current state of 

SDN security challenges. In addition, basic fundamental terms and terminologies of DiD. 

The chapter also introduced the principle of DiD mechanisms, which is a technique for 

information assurance involving several layers of networked electronic and system 

security defenses. An insight into DiD's three main layers of barriers, Active Protection: 

a set of the mechanism that includes replication, synchronization, distribution, backup, 

and Real-time detection: which includes IDS monitoring and attempts threshold. And 

Intrusion tolerance attacks include adaptive trusted connection, data recovery, and self-

healing . 

 

Also, provided in this chapter is a survey of multi-research papers about the current 

state of SDN security and how many approaches were taken to address these security 

challenges.  

This chapter also covers the various concern-addressing techniques in terms of 

communication with SSL/TLS by use of PKI (X.509 certificate), SDN Controller IP-

based attacks protection, multi-level protection mechanism, and different timestamp 

between each request to response per connection. Furthermore, the main threat vectors 

and challenges will be addressed in the next chapters, and the proposed solution in a 

systematic framework.  

The next chapter provides a deep study of SDN security challenges according to 

multiple research papers, addressing vulnerabilities, and a brief review will be discussed 

on each research aspect to mitigate the vectors of SDN security. 
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Chapter 3  

The Proposed Dynamic Defense-in-Depth (DDiD) 

 

3.1  General Dynamic Defense-in-Depth (DDiD) Mechanism  

Since the DiD definition is based on protection layering to ensure security, 

solutions such as firewalls, IDSs and IPSs are also being implemented as part of DiD 

barries, especally this  solutions are combined with modern devices to include the 

network defense system with various solutions as a new capabilities.  

These capabilities must also be implemented to avoid continuous monitoring and 

probing of such static defenses and to identify internal threats, without causing 

unnecessary complexity inside the SDN controller system [15]. 

Therefore, the dynamic defense allows the current-based defenses, such as 

firewalls, IDSs, IPSs, and malware analysis systems, to become harder to identify, check 

and bypass. Currently, these based security defenses are easy to penetrate, because they 

are static and easy to target. When an attacker discovers network protection that defends 

the intended network or device, the attacker is granted unrestricted time and attempts to 

check the system's security, eventually finding a vulnerability, by placing a dynamic 

defense in front of these static, feature-based defenses, the existing defenses become 

more difficult to find and test and, therefore, provide greater coverage. As the attack 

surface continuously changes, an attacker is required to spend vast quantities of time and 

energy to recover the target. Even if the target can be identified by an attacker, they have 

a finite period of time to check the feature-based defenses behind the dynamic protection 

before being forced to reacquire the target again. 

To advance the current DiD model, a Dynamic DiD model should be focused on 

the capabilities of symmetry and Proactive defenses. Current network defenses are 

designed around the features of specific network defense tools, such as identifying 

malware, blocking packets, or analyzing network events. These defenses are effective 

against specific attacks, but cannot holistically defend networks. Implementing 

symmetric defenses, allows for protection against insider threats, both through data 

exfiltration and network attacks originating within the host network. By deploying 

proactive defenses, functional network defenses are further enabled by limiting the scope 
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of possible attacks and the amount of time for attackers to penetrate before reacquiring 

the target,[15], can summarize the dynamic design to contain two main layers : 

• Symmetric Defenses: By deploying the same defenses on the internal network as 

on the external edge, the network can secure itself and other networks. By analyzing 

internal traffic with symmetric defenses, a Dynamic DiD model can detect and stop 

data exfiltration. Also, by detecting and stopping attacks at the originating network, 

symmetric defenses contribute to global network security. 

• Proactive Defenses: Proactive defenses are enabled through sensing, detecting, 

orienting, and engaging adversaries in order to assure security, all by dynamic 

computing performance and dynamic network adaptation, dynamic defenses secure 

the network by forcing attackers to continually reacquire targets. 

 

3.2  DDiD Model for SDN Controller Layer  

Before applying the proposed design of a suitable DDiD model to enhance SDN's 

current state security, first must identify the threat vectors of SDN architecture. 

 

3.3  Threat vectors 

Different threat vectors in SDN architecture as well as several security issues and 

vulnerabilities in OpenFlow-based networks have already been identified. Although 

certain threat vectors are similar to current networks, some are more SDN-specific, such 

as; attacks on the connectivity of the control plane and data plane Table 3.1 [2]. It is 

necessary to mention that certain threat vectors are independent of technology or protocol 

specification (e.g., OpenFlow, POF, ForCES), since they present challenges to SDN's 

functional and architectural layers respectively. [7],[8],[9],[16]. 
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Figure 3.1 Identified threat vectors of SDN architecture 

 

The following table summarizes the threat vectors related to SDN architecture 

Table 3.1 SDN specific and non-specific threats 

Threat 

vectors 

Specific 

to SDN 

Consequences in SDN 

Vector 1 no Open door for Distributed Denial-of-Service (DDoS) 

attacks. 

Vector 2 no Potential attack inflation. 

Vector 3 yes Exploiting logically centralized controller. 

Vector 4 yes Compromised controller may compromise the entire 

network. 

Vector 5 yes Development and deployment of malicious applications on 

the controller. 

Vector 6 no Potential attack inflation. 

Vector 7 no Negative impact on fast recovery and fault diagnosis. 
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Moreover, Figure 3.1 and Table 3.1 summarize the identified threats vector in 

terms of whether independent or specific to the  SDN architecture as mentioned in section 

2.3. The lack of isolation, protection, access control, and stronger security 

recommendations are some of the reasons for these vulnerabilities [2],[8],[9],[16]. 

Other technical and operational protection issues, in Open-Flow networks, 

include the absence of clear security guidelines for developers, and the absence of TLS 

and access control support for most switch and controller implementations. The 

assumption is that TCP is enough as links are "physically secure," in fact several switches 

that have listener mode allowed by default (allowing the establishment of malicious TCP 

connections is highly possible) [2],[7].  

 

3.4  Countermeasures for Openflow-based SDNs 

Several countermeasures can be put in place to mitigate the security threats in 

SDNs. Table 3.2 [2], summarizes several countermeasures that can be applied to different 

elements of an SDN/OpenFlow-enabled network. 

Table 3. 2 Countermeasures for security threats in OpenFlow networks 

Measure description 

Access control Provide strong authentication and authorization 

mechanisms on devices. 

Attack detection Implement techniques for detecting different types of 

attacks. 

Event filtering Allow (or block) certain types of events to become 

handled by special devices. 

Firewall and IPS Tools for filtering traffic can help to prevent different 

types of attacks. 

Flow aggregation Rules to match multiple flows to prevent information 

disclosure and DoS attacks. 

Forensics support Allow reliable storage of network activity traces to find 

the root causes of different problems. 
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Intrusion tolerance Enable control platforms to maintain correct operation 

despite intrusions. 

Packet dropping Allow devices to drop packets based on security policy 

rules or current system load. 

Rate limiting Support rate limit control to avoid DoS attacks on the 

control plane. 

Shorter timeouts Useful to reduce the impact of an attack that diverts 

traffic. 

  

Common methods such as access control, mechanisms for attack prevention, 

event filtering, firewalls, and devices for intrusion detection can be used to minimize the 

effect of threats or to prevent them. It may be applied in different applications, such as 

controllers, forwarding systems, middleboxes, etc. Middleboxes, separate intermediary 

security devices, can be a good option for enforcing security policies in an enterprise. 

They are more robust and special-purpose devices. Such a strategy also reduces the 

potential overhead caused by implementing these countermeasures directly on controller 

or forwarding devices. However, middleboxes can add extra complexity to network 

management [2],[7]. 

 

3.5  Detailed DDiD Model for SDN 

The seven vectors show that the potential threat for SDNs is diverse when 

compared to traditional networks. Therefore, different mitigation techniques must be 

decided in a suitable design structure. This section lays out the design of a suitable DDiD 

model to address these threats. The following are the proposed DDiD model mechanisms: 

M1. Synchronous distribution (States Detection): is the most significant innovation 

technique for improving the dependability of SDN systems and enhancing network 

security. Explicitly, a synchronous distribution controller with load balancing is useful 

for achieving a secure and dependable structure, via a clone duplicate of the controller 

with at least three instances and a mixed replica approach by replicating the application 

with multiple controllers to ensure that fault tolerance of both software and hardware, 
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which happened from accidents or malicious behavior. This mechanism is conducted by 

connecting three controllers with a revision number to check configurations and rules 

changes among controllers. In case of failure or a new connection of devices (switch or 

host). This will mitigate the effect of attack types like DDoS, way to identify the 

characteristics of such an attack is by using the method of entropy tests[9] . 

M2. Independent variety (vulnerability identification): is another important 

mechanism for increasing the robustness and security of SDN, it is necessary to replicate 

with varied controllers for the avoidance of common mode faults of the same 

management application, to limit the intersecting vulnerabilities and software bugs. Thus 

diversifying constraints the combined impact of attacks on common vulnerabilities. In 

SDN environment, the same management application can run on a different controller. 

This can be approached by defining common abstracted APIs between applications and 

multi-controller. This mechanism is conducted by operating the three controllers with 

their different vendor systems cohesively, within the same administration station. This 

will mitigate the effect of exploits for each system. So, it will not affect the other two 

systems, since they are not sharing the same vendor structure.  

M3. Self-healing (safety protection): reactive and proactive recoveries can restore the 

system to a healthy state and keep the network virtually functional by replacing the 

compromised components in the event of persistent threats circumstances. However, for 

effective self-healing, it is necessary to replace the compromised components with new 

and diverse versions [3]. Most importantly, diversity must be applied too in the recovery 

process to strengthen the defense of the system against risks, which target specific 

vulnerabilities in the SDN structure. This mechanism is conducted by a pre-stored 

backup, which triggers the threshold when an unauthorized change occurs. This will also 

mitigate multi-attack types of exposure and exploitation on the whole system, especially 

after the attack damaged the system, way to identify the characteristics of such an attack 

is by using the method of safe backup with an Inspection and detection entity.  

M4. Dynamic switch coupling (Relation analysis): there are situations in which a 

switch is correlated with only one SDN Controller. In this case, the controller of the 

switch will not be fault tolerant. Therefore, to avoid such failures, it is necessary that each 

switch dynamically and securely associates with multiple controllers and that can be 
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achieved by using a threshold pre-shared cryptography approach for detecting malicious 

controllers that could prevent attacks such as man-in-the-middle for instance. 

M5. Reliable relation for controller & devices (Threat identification): setting up a 

reliable relationship between controller and devices is a critical requirement for 

increasing the trustworthiness of the overall control plane. Network devices should 

associate with the controller dynamically without causing unreliable relationships. A 

typical approach is to trust all controllers and network devices until the trustworthiness 

of the controller is strongly questionable [3]. Additionally, the controller should be set to 

report malicious or misbehaving devices, according to failure or deviating detection 

algorithm. Also, the malicious controller should be automatically isolated when its 

trustworthiness falls below an unacceptable threshold. This also will mitigate attack types 

like Packet Sniffing. This mechanism is conducted by upgrading the cryptographic 

protocol to SSL/TLS v1.3 [9]. and applying the trusted platform module TPM Hardware 

Protection [17]. 

M6. Reliable relation for controller & apps (Behavior identification): in this situation, 

a dynamic reliable model should be utilized for a Controller and application software 

components, which are presenting a changing behavior as a result of attacks or bugs. That 

is Measured by the “trustor” factor that observes the behavior of the specific quality 

attributes such as reliability, availability, confidentially, maintainability, safety, and 

integrity. That “ trustor” factor is used by REST API token-based authentication provided 

by the user authentication type. Therefore, the model can be applied to detect the 

relationship between the controller and software application and identify malicious 

behaviors [18]. This will also mitigate attack types like spoofing or brutal force, way to 

identify the characteristic of such an attack is by using the method of authentication, 

system patching, and permissions inspection [9]. 

M7. Security clusters (isolation): many kinds of applications use isolated this technique 

to secure the network from attackers. In SDN GUI, user-level applications must deny 

access to kernel-level systems using well-defined policies [19]. In this way, the impact of 

most attacks will not penetrate past the GUI. Therefore, the isolation protects the security 

of the SDN hardware and drivers. Also, in SDN Controller, a security domain is achieved 

using mechanisms such as virtualization of sandboxing [3]. With this structure, an active 
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isolation mode established using a well-defined interface and accessibility allows 

minimal communication and operation between the isolated virtual domains. 

The proposed model just discussed form the core mechanisms of what has been 

considered in the implementation of a DDiD for SDN. Nevertheless, such designs may 

benefit from the use of traditional techniques, such as firewalls or IDS/IPS systems, and 

additional protection tools to specify and compose packet-forwarding policies and to 

check the connection between plans in real-time. As depicted in Figure 3.2. 
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Figure 3.2 Proposed DDiD Model Suitable for SDN Architecture in process perspective form. 

 

3.6  Evaluation Mechanism 

A description of the evaluation mechanism is shown in this section for each of the 

seven vectors. Table 3.3 summarizes the threat vectors and the proposed mechanism 

accordingly.  
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Table 3. 3 Mechanism to threat vectors 

Threat vectors mechanism 

vector 1: fabrication  M1, M5 

vector 2: exposure in switches  M3, M5 

vector 3: communications threats  M2, M4, M5 

vector 4: exposure in the controller  M1, M2, M3, M4, M6, M7 

vector 5: trustworthy  M1, M6, M7 

vector 6: exposure in admin stations  M2, M3 

vector 7: lack of restoration  M1, M3 

 

For each validation test case, when comparing the collected data from penetration 

attack tools with Table 3.3 of threat vector identifier via a mechanism to obtain accurate 

results, this presents a strong indication for the research aim and success of reaching a 

secure model for SDN controller. As depicted in Figure 3.3 
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Figure 3.3 Proposed DDiD Model Suitable for SDN Architecture in communication perspective form. 
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Vectors (4,5)
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Synchronous 
distribution (States 
Detection) Solution for 
Vectors (1,4,5,7)
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for controllers (vulnerability identification), M3. Self-healing for a full system (safety 

protection), M4. Dynamic switch coupling with controllers (Relation analysis), M5. 

Reliable relation between controllers & devices (Threat identification), M6. Reliable 

relation between controllers & apps (Behavior identification), M7. Security clusters 

(isolation). This proposed model maps up every threat with mechanisms of solution. Also, 

clarify the way how to evaluate and verify the DDiD model. 

In the next chapter, the proposed framework is implemented in two aspects one 

fore current SDN architecture and the other is the proposed DDiD model to evaluate the 

effectiveness of the security enhancements. 
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Chapter 4 

Experimental Work  

 

4.1  Introduction  

In this section, the objectives are to clarify and validate the implementation of the 

DDiD model to deal with all the SDN security challenges discussed in chapter 3. 

Therefore, the focus is to apply the designed model, and the penetration test is only as 

proof of concept, not testing for all types of cyber attacks, in an emulated environment 

using mininet, which is a network emulator that creates a network of virtual hosts, 

switches, controllers, and links. Running through standard Linux and its switches support 

OpenFlow protocol for highly flexible custom SDN. Also, Mininet allows working with 

various topologies structures, also supporting different controllers like OpenDaylight 

(ODL) Hewlett Packard Enterprise and Virtual Application Networks (HPE-VAN),etc. 

[20].  

Using also ODL controller, which is a Java, based open-source developed and 

managed by the Linux Foundation, gives flexibility to a developer to plug-in new 

applications using northbound APIs, it also supports OpenFlow and other standard 

protocols from IETF for southbound communication. 

In this implementation, the ODL controller has been considered for many reasons: 

 ODL tends to standardize the APIs to achieve industry recognition, which turns 

to prioritize security requirements . 

 ODL has a dedicated DoS attack detection and prevention module packaged with 

recent builds. 

 The OpenDaylight community has emphasized more on the security aspects in 

their recent release. Spoofing of identity is not viable in ODL because the 

Authentication, Authorization, and Accounting (AAA) service is embedded in the 

controller and ensures that only authenticated users get access to the resources of 

the network . 

 Also Spoofing or impersonating an identity of a switch could not be achieved in 

ODL because the Secure Network Bootstrapping Infrastructure (SNBI) module 

handles the switch authentication process by checking the certificate of an 

individual switch, which is handled in ODL by using a combination of Media 

Access Control (MAC), Virtual Local Area Network (VLAN) Identificaion (ID), 
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Internet Protocol (IP) and Location address as an index in the Device Manager 

service. 

 Both DoS and elevation of privileges threats are addressed in ODL by the 

Defense4All and AAA modules. The Defense4All module can detect and mitigate 

different types of network attacks including DoS to its NBI, SBI, processes, and 

data storage . 

 ODL processes can only be accessed by highly privileged (root) users . 

 The data flow in the southbound interface for the communication between 

switches and the controller is secured with TLS protocol, similar protection is 

achieved in the northbound interfaces for the communication between 

applications and REST APIs with HTTPS protocol (which uses TLS 1.2 

protocol). This secures the channel against threats like tampering and information 

disclosure.[12]. 

In addition, using HPE–VAN (Hewlett Packard Enterprise Virtual Application 

Networks) controller provides a unified control point in an SDN/OpenFlow-enabled 

network, simplifying management, provisioning, and orchestration. This enables the 

delivery of a new generation of application-based network services. The HPE VAN SDN 

Controller has been considered for many reasons: 

 Uses OpenStack Keystone to provide token-based authentication to provide user 

authentication. 

 Completely isolates the security mechanism from the underlying REST API . 

 Exposes a REST API to allow any authentication server that implements this 

REST API to host elsewhere (outside the SDN controller).[20]. 

For penetration test tools that have been used are python scripts via Scapy, which has 

been used in this experiment to generate packets. Two types of traffic were generated: 

normal and DOS (Protocol attacks type) attack traffic which has a higher rate than normal 

traffic. applied by Kali Linux OS which is a Debian-derived Linux distribution designed 

for digital forensics and penetration testing, maintained and funded by Offensive Security 

Services [21]. 

In this implementation, the network topology was built with 3 hosts, 4 switches, 

and 3 controllers (ODL/HPE-VAN/POX) as depicted in Figure 4.1.a. ODL GUI, is used 

for the graphical representation of this topology, POX controller is used for running some 

python attacks and test scripts. 
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All tools and software used in the experiment for implementing emulated SDN 

architecture with the Dynamic Defense In-Depth model are described in detail as follows: 

• Mininet-2.2.2-170321-ubuntu-14.04.4-server-amd64  [Open vSwitch emulator 

with POX 1.4 “dart” controller] . 

• Hpe-van-sdn-ctlr-2.7.18.0503-ova  [SDN controller #1] . 

• Ubuntu-18.04.2-live-server-amd64 with OpenDayLight karaf-

0.8.4_Fluorine_August_2018 [SDN controller #2]. 

• DOS python 3.7. 4 script (Scapy 2.4.5 tool library) on Kali Linux OS. 

• Middleboxes and mechanisms (AAA RADIUS, IDS, IPS, firewall, PSK, API key 

Auth, SSL/TLS 1.3, HTTPS cert, L2 filter access and dot1x (802.1x)). 

• Hardware[ASUS TUF FX705GE laptop specs: Intel Core i7-8750H Processor 

(9M Cache, up to 4.10 GHz) / 16GB of RAM type DDR4 with 2666MHz / 1TB 

HDD + 128GB SSD / NVIDIA GeForce GTX 1050Ti , with 4GB GDDR5 

VRAM / 17.3-in (16:9) FHD (1920x1080) 144Hz / Windows 10 pro/ VM 

WorkStation v12], 

For the time and limitation of the Virtual Machine (VM) resources lab and the 

scope of this research the only type of cyber-attack that needs to be used for testing will 

be DOS attacks. Cause it is the most common and less skill needed from the attacker. 

Also, it is the first step to any cyber-attack, to get info about the targeted system before 

the real attack. 

Moreover, see appendix Figures 4.1 to 4.14, which demonstrate how the 

experiment assembled for the configuration, installation, and setup of network layouts for 

each component: 

 

1. mininet: in this stage of the experiment as shown in (appx Figure from 4.1 to 4.3) is 

to prepare and install setup commands for the simulated virtual switches and hosts 

(end-user devices, also the connection parameters of IPs and ports for each controller, 

and finally the network topology. The Purpose here is to create the data plane 

infrastructure nods, for the next step; the connection with the control plane.  

 

2. hpe-van SDN & OpenDayLight SDN: next as shown in (appx Figures from 4.4 to 

4.8) the installation and the startup services commands for the two controllers (HPE-

VAN and OpenDayLight) that are both connected to mininet switches in the same 

network topology emulation, the Purpose here is first to connect the control plane 
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controllers to the data plane infrastructure nods. Finally, to manage and administrate 

the controller's setting, rules, and configuration through the GUI control panel.  

 

3. POX SDN and Scapy traffic generator: flow up the steps as shown in (appx Figure 

from 4.9 to 4.10) the installation and startup services commands for the POX 

controller. Is also connected to mininet switches in the same network topology 

emulation with other controllers. the purpose here of POX controller is also used for 

running Scapy python script that generates normal traffic, abnormal attack traffic, and 

test entropy script.  

 

4. Python DoS Attack Script: next as shown in (appx Figure 4.11 and 4.12) the python 

DOS attack script execution; that has been used inside one of the hosts to begin the 

attack on the topology controllers and also script will gather the effect result of the 

attack on the network reachability.  

 

5. Entropy tool startup and calculating: Entropy is a detection method used to detect 

the DDoS attack. It is mainly used to calculate the distribution randomness of some 

attributes in the network packets' headers. the value is between 0 to 1 or 0 to 2 

depending on the number of classes in the dataset used in the experiment, but it means 

the same thing, a very high level of disorder the closer to 0 it became, which also 

means in case of DDoS is an attack traffic not normal traffic. flow up as shown in 

(appx Figure 4.13 and 4.14) the entropy startup service commands and the calculation 

before and after the DOS attack on the network in both designs the current SDN 

architecture and the proposed DDiD model. The Normal Traffic is 1.46 for the current 

SDN architecture, and for the DDiD model, the result was for Normal Traffic 1.54. 

and for the attack entropy results are explained and shown in detail in the next section 

the implementation and results section. 

 

6. Network topology: was built with 64 hosts, 9 switches, and 3 controllers (ODL/HPE-

VAN/POX) as shown in (Figure 4.1). 

 



 

36 
 

 

Figure 4.4 Experiment Network topology 

4.2  Predefined Conditions & Parameters  

Regarding the experiment's predefined conditions All the simulated virtual 

switches, controllers, and hosts (end-user devices, also the connection parameters of IPs 

and ports for each controller), must be implemented using the OpenFlow 1.3 protocol 

stander connection, and hybrid connection type on Linux OS to work properly with fewer 

glitches. 

Regarding, the experiment Parameters utilized to implement the previous mention 

seven mitigation mechanisms are as follows: 

 Applying a Synchronous distribution mechanism (States Detection); by 

connecting three controllers with a revision number to check configurations and 

rules changes among controllers. In case of failure or a new connection of devices 

(switch or host).  

 Applying an Independent variety mechanism (vulnerability identification); by 

operating the three controllers with their different vendor systems cohesively, 

within the same administration station.  

 Applying a Self-healing mechanism (safety protection); by creating a pre-stored 

backup, which triggers the threshold when an unauthorized change occurs. To 

start the process of stopping the system and starting a safe mode of recovery, and 

at the same time, the new requests will be forwarded to other controllers.  

 Applying Dynamic switch coupling mechanism (Relation analysis); by using a 

pre-shared cryptography approach with an access list, to block any unauthorized 

request for coupling, from switches or controllers. 
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 Applying Reliable relations for controller & devices mechanism (Threat 

identification); by upgrading the cryptographic protocol to SSL/TLS v1.3 and 

applying the trusted platform module TPM Hardware Protection. 

 Applying Reliable relations for controller & apps mechanism (Behavior 

identification); by creating REST API token-based authentication provided by the 

user authentication type, with TACACS+ (Terminal Access Controller Access 

Control System Plus) as a AAA server.  

 Applying Security clusters mechanism (isolation); by using virtualization as a 

sandbox isolation approach between controllers with their application plane and 

data plane,  for a cluster of hosts, as separate domains. 

 

4.3  Experimental Implementation and Results  

In consequence, for experiment needs, it must first identify the Wight values and 

Features for DOS attack before and after Appling DDiD model, and the right label to use 

it as measurement . 

 Features (x) with Weight: Packet size, Packet arrival interval, Packet number, 

Packet protocol ID & port, Packet priority, Number of requests, Response time, 

CPU usage . 

 Labels (y): consist of Sensitive traffic (QOS prioritized traffic), and Best-effort 

traffic (Normal /abnormal behavior traffic), which is categorized as Undesired 

traffic, and hence can be further categorized as Direct attack (DDOS attack). 

Indirect attack (Man-in-the-Middle attack). Exploit attack (vulnerability attack). 

In the proposed model of DDiD, the randomness of the incoming packets must be 

measured for the right indication of the success of the model. One of the communally 

used measures of the randomness of DOS attacks is entropy-based or Machine Learning 

(ML) identification (takes time to learn the features before start identifying them). 

Entropy measures the probability of an event happening concerning the total number of 

events using the previous mentions Features in the realm of cybersecurity. [22]. 

To compute the entropy, it uses the below equations and where xi is the pool of 

Features used in proportion to the probability Pi of each connection request total n . 

𝑙𝑜𝑔2{(x1),(x2),(x3),...} 
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𝑝𝑖 = (
𝑥𝑖
𝑛
) 

Entropy =∑ 𝑝𝑖(𝑥)
𝑛
1 𝑙𝑜𝑔2(

1

𝑝𝑖(𝑥)
) 

When each feature appears only once per request, the entropy will be at it is the 

maximum value, which means normal traffic. If an attack is occurred by sending a large 

number of packets directed towards an SDN controller the entropy will be at it is less 

value (unequal distributed entropy will show) which means attack traffic. Table 4.1 

demonstrates the entropy result for the current SDN architecture  

Table 4. 1 Entropy results for current SDN architecture 

Traffic type Average entropy 

Normal Traffic 1.46 

Attack Traffic of 10 attempts 1.33 

 

From the two entropy values of normal traffic 1.46 and attack traffic 1.33, the 

Standard Deviation becomes possible to calculate, for final comparison. Therefore, the 

Standard Deviation value is σ= 0.03. the following table 4.2 demonstrates the Entropy 

result for the proposed model 

Table 4. 2 Entropy results from DDiD model 

Traffic type Average entropy 

Normal Traffic 1.50 

Attack Traffic of 10 attempts 1.26 

 

Notice the average entropy value is 1.50 that a higher value than normal traffic of 

current SDN architecture, cause of multi-entity added and structure change, which adds 

more resource usage, with more demand on performance, which acceptable tradeoff 

compering to more risk mitigation. and for the attack traffic, the value is 1.26 that a lesser 

value of entropy than the current SDN architecture, which gives an easier indication for 

attack detection. Consequently, from the two values of normal and attack traffic, the 

Standard Deviation value is σ= 0.06. 
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Table 4.3 demonstrates the comparison between the Standard Deviation from the 

current SDN architecture and DDiD model, more calculation details in appx 4.15 and 

appx 4.16 

Table 4. 3 Standard Deviation from current SDN architecture and DDiD model 

 Standard Deviation 

Current SDN architecture σ: 0.03 

DDiD model σ: 0.06 

Diverge ± 0.02 

Percentage Difference ~59.51% difference 

Hence, from the result value of Standard Deviation in both cases, the DDiD got a 

higher Deviation between normal traffic and attack traffic than the current SDN 

architecture. With the diverging value of ±0.02 and utmost ~59.51% difference in the 

level of protection. To put it in perspective, a high standard deviation value in each 

separated case means that the traffic is outspread far from the average value of normal 

traffic and that indicates abnormal traffic was detected. In our case that was the event of 

a DDOS attack (to explain the DDOS attack impact).  

In general, the attack produced massive and continuous data packets, so the 

standard deviation of flow packets will be higher than the normal traffic flow. Which why 

as previously mentioned, the standard deviation is commonly used in conjunction with 

entropy to detect DDOS attacks. The DDiD model with the help of entropy and higher 

standard deviation value managed to detect and drop the packets from the device that was 

the source of DDOS attack by noticing the massive number of continuous requests per 

period and mitigating the attack as shown Appx Figure 4.14. Furthermore, the values of 

the results may vary. This is because the experiment has been conducted in an emulated 

environment from top to bottom perspective for the software and the hardware. 

 

4.4  Discussion  

This paper aimed to enhance the protection of the divided concept in SDN 

architecture, which reduces the creation of more attack surfaces that can be targeted by 
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malicious activities. Also, describing the evaluation mechanism, which confirms if the 

SDN controller layer met the requirement of a Secure structure. Consequently, this 

research was carried out on the design of a dependable controller model with the 

requirements for a secure, resilient, and robust SDN controller, by reducing the existing 

gap between the actual security level of the current SDN Controller design and the 

potential security solutions, through deploying a DDiD mechanism in Openflow protocol 

for SDN Controller  . 

In general, DDiD has proven a significant aspect in enhancing the security of SDN 

architecture. The key factor lies in the fact that DID mechanism is more flexible, agile, 

reliable, and robust to mitigate SDN security challenges. In addition, a secured SDN is 

an essential requirement to get implemented in an operational network for control and 

administration purposes. Furthermore, that kind of architecture will play a further role in 

the ongoing growth of internet services demands. 

DDiD mechanism suitable for SDN is still in the enhancement phase and can go 

forward with more future work, like more efficient distributed layers of protection for 

each instance of the SDN component without affecting much in the performance and 

hardware resources. This paper has highlighted and outlined the Great potential of SDN 

from one side and proposes a solution to the dark side of SDN which is the security 

challenges of using DDiD. Therefore, from This Experiment the mainly learned points 

are: 

1. Clarifies the SDN controller’s concept, the OpenFlow protocol, and network 

infrastructure emulation to implant the SDN architecture. 

2. Meeting the main requirements of SDN architecture which is; the application 

layer, control layer (control plane), and infrastructure layer (data plane). 

3. Validating and testing by simulating the implementation of SDN on several 

controllers and device emulators to ensure its ability to deliver robust results. 

4. Applying DDiD Model for SDN Control Layer to Enhance OpenFlow Protocol 

Security and then testing it by Launching a DOS attack led to noticeable results 

that ensure the enhancement of SDN security. 
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4.5  Summary 

This chapter, meeting up the objectives of clarifying and validating the 

implementation of DDiD model to deal with the SDN security vectors challenges in an 

emulated environment. As well in this chapter, the effectiveness of the proposed 

framework has been evaluated in two experimental studies, each one has ten different 

variables of DoS attack attempts; each attempt has its weight values and Features for both 

structures, the current SDN architecture and after Appling the DDiD model to validate 

the correctness of the framework mechanisms, which are used to form the DDiD model. 

 Furthermore, the results followed during the experiments were carefully 

measured. By maintaining the integrity of each entropy phase value that has been 

calculated with as many samples as possible, and keep checked by stander deviation.  

 

The next chapter discusses the conclusion in detail and concludes the thesis. 
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Chapter 5 

Conclusion & Future work 

 

5.1 Conclusion  

SDN allows network operators to quickly respond to changing business 

requirements by determining traffic from the centralized controller without interacting 

with the physical endpoint devices. Therefore, more security and network infrastructure 

protections are needed. 

An extensive investigation of the mechanism of DDiD model was conducted as a 

proposed security framework for the OpenFlow protocol for SDN Controller. In general, 

DDiD has proven a significant aspect in enhancing the security of SDN architecture. The 

key factors lie in the fact that DID mechanism is more flexible, agile, reliable, and robust 

to mitigate SDN security challenges. 

DiD employ different types of network protection software (barriers) that 

combine various network security techniques on a single network. The DDiD 

mechanisms are synchronous distribution, independent variety, self-healing, dynamic 

switch coupling, trust relation for controller and devices, trust relation for controller & 

apps, and security clusters against the vectors: fabrication, exposure in switches, 

communications threats, exposure in the controller, trustworthy, exposure in admin 

stations and lack of restoration. 

The testing method used in this research is entropy-based detection, to measure the 

randomness of DOS attacks. From the result value of standard deviation in both entropy-

based cases, the DDiD resulted in a higher standard deviation value between normal 

traffic and attack traffic than the current SDN architecture. With a diverging value of 

±0.02 and utmost ~59.51% difference in the level of protection . 

 

5.2  Limitations 

The requirement of building such a secure structure from selective high-end 

hardware and software is through a virtual environment to reduce the dependency on a 

specific vendor device, therefore, the scalability of such an experiment that has a large 

data between traffic and rules is limited to simulated hardware performance, controller 
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open-source software glitches patching, resource utilization, application packaging 

deployment compatibility, and cost of a virtualization technology license. 

 

5.3  Future Work  

Even though the proposed model showed better security mitigation, more work 

on enhancing such a model is accomplished. For instance, more efficient distributed 

layers of protection for each component of the SDN. a zero-trust model should be applied 

to verify explicitly for each connection with data plane devices or application plane, least 

privileged access for each administrator user, and finally assume breach before real 

compromise happened, all that without affecting much in the performance and hardware 

resources. 
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Appendix 

This section contains the experiment figures of configuration, calculation formulas, and 

setups for installing the labs.

 

Appx Figure 4.1 Mininet instillation & configuration commands 
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Appx Figure 4.2 Mininet implementation commands 

 

Appx Figure 4.3 Mininet start simulation for hosts & switches commands 
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Appx Figure 4.4 OpenDaylight & HPE controllers configuration part 1 

 

Appx Figure 4.5 OpenDaylight & HPE controllers configuration part 2 
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Appx Figure 4.6 OpenDaylight & HPE controllers configuration part 3 

 

Appx Figure 4.7 OpenDaylight & HPE controllers configuration part 4 
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Appx Figure 4.8 OpenDaylight & HPE controllers connection status 

 
Appx Figure 4.9 POX controller setup with Scapy traffic generates commands part 1 
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Appx Figure 4.10 POX controller setup with Scapy traffic generates commands part 2 

 

Appx Figure 4.11 Python DoS Attack Script (partial) part 1 
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Appx Figure 4.12 Python DoS Attack Script (partial) part 2 
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Appx Figure 4.13 Entropy tool startup, listening and calculating entropy value for current SDN  

 

Appx Figure 4.14 Entropy tool startup, listening, calculating entropy value for DDiD model, and 

detecting the attacker host. 
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Appx 4.15  Standard Deviation value calculation from entropy in case of current 

SDN architecture:  

σ: 0.03506211066094 

Count, N:  10 number of attemted 

Sum, Σx:  13.95054 

Mean, μ:  1.395054 

Variance, σ2:   0.001229351604 

Steps 

σ2 =  
Σ(xi - μ)2  
N 
 

=  
(1.36330 - 1.395054)2 + ... + (1.42532 - 1.395054)2  
10 
 

=  
0.01229351604  
10 
 

=  0.001229351604 

=  √0.001229351604 

σ =  0.03506211066094 

  

Margin of Error (Confidence Interval) 

The sampling means most likely follow a normal distribution. In this case, the standard 

error of the mean (SEM) can be calculated using the following equation: 

σx̄ =  
σ  
√N 
 

= 0.011087612926144 

Based on the SEM, The lesser the margin of error, the larger confidence one should have 

that a poll result would reflect the result of the experiment. 

 

Appx 4.16  Standard Deviation value calculation from entropy in case of SDN with  

DDiD model: 

σ: 0.064767968665074 

Count, N: 10 number of attemted 

Sum, Σx: 13.40615 

Mean, μ: 1.340615 

Variance, σ2:  0.004194889765 

Steps 

σ2 =  
Σ(xi - μ)2  
N 
 

=  
(1.36870 - 1.340615)2 + ... + (1.28719 - 1.340615)2  
10 
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=  
0.04194889765  
10 
 

=  0.004194889765 

=  √0.004194889765 

σ =  0.064767968665074 

Margin of Error (Confidence Interval) 

The sampling means most likely follow a normal distribution. In this case, the standard 

error of the mean (SEM) can be calculated using the following equation: 

σx̄ =  
σ  
√N 
 

= 0.020481430040405 

Based on the SEM, The lesser the margin of error, the larger confidence one should have 

that a poll result would reflect the result of the experiment.  

  



 

 
 

 SDNاستخدام نموذج الدفاع العميق الديناميكي لتحسين أمن شبكات 
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 محمود فرج الحجازي 
 المشرف

 محمد مصباحد. 
 الخلاصة

 لمستقبل،امنذ فترة طويلة مناسبة لمتطلبات الشبكات الآخذة في التوسع في  تقنياتها القائمةو  لم تعد الشبكات التقليدية

( هي الحل الأكثر قبولًا لذلك. SDNاتصالات الشبكة وإمكانية برمجتها. الشبكات المعرفة بالبرمجيات ) أتمتهوتحديداً 

( للتحكم المباشر APIبشكل منطقي وحدة تحكم مركزية تطبق واجهة برمجة تطبيقات مفتوحة قياسية ) SDNيستخدم 

حاليًا بروتوكول الاتصال الرئيسي والمعروف على نطاق  OpenFlowفي وظائف معالجة الحزم لأجهزة الشبكة. يعد 

واحدة مع  فشل التحكم كنقطة وحدةل SDN هيكلية أصبحت المركزية،. نتيجة لمثل هذه SDN هيكليةواسع في 

 SDNلكل طبقة. يستلزم ذلك البحث عن مزيد من إجراءات الأمان والحماية لمعمارية  القابلة للهجومالمزيد من أسطح 

استجابتها السريعة لمتطلبات العمل المتغيرة. تهدف هذه الورقة إلى تعزيز حماية مفهوم الأقسام في ب التضحيةدون 

يركز  ،وبالتاليمن إنشاء المزيد من أسطح الهجوم التي يمكن أن تستهدفها الأنشطة الضارة. مما يقلل  ،SDNبنية 

 ،Defense In-Depth (DID)يمكن الاعتماد عليه عبر تقنيات  SDNالبحث على تصميم نموذج منصة تحكم 

 Dynamic Defense In-Depth (DDiD)بما في ذلك متطلبات وحدة تحكم آمنة ومرنة وقوية. يُقترح نشر نموذج 

 لحماية،االتهديدات القابلة للقياس وآليات التفصيل في العام.  OpenFlowلتعزيز أمان بروتوكول  SDNلطبقة تحكم 

(. تقترح الورقة أيضًا آلية mininetحيث يتم التحقيق فيها وتنفيذها باستخدام بيئة المحاكاة ) ،DDiDوفقًا لنموذج 

 0.02± بقيمة متباينة تبلغ  .SDNتقييم )واختبارات( لتأكيد قابلية تطبيق متطلبات الهيكل الآمن على طبقة تحكم 

ات يكانمإ انه هناك تؤكد النتائج التي تم الحصول عليها على .في مستوى حماية أفضل ٪59.51وأقصى فرق ~ 

 . يق الأهداف الأمنية المطلوبةلتحق في النموذج المقترح واعدة
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