

Dynamic Defense In-Depth Model to

Enhance SDN Security

By

Mahmoud F. Elhejazi

Supervisor

Dr. Mohamed Musbah

This Thesis was submitted in Partial Fulfillment of the

Requirements for Master's Degree of Science in

Computer Science

Discussed on 22.10.2022

University of Benghazi

Faculty of Information Technology

2022

ii

Copyright © 2022. All rights reserved, no part of this thesis may be

reproduced in any form, electronic or mechanical, including photocopy,

recording scanning, or any information, without permission in writing

from the author or the Directorate of Graduate Studies and Training

University of Benghazi.

محفوظة. لا يسمح اخذ أي معلومة من أي جزء من هذه الرسالة على 2022حقوق الطبع
هيئة نسخة الكترونية او ميكانيكية بطريقة التصوير او التسجيل او المسح من دون الحصول

 أو إدارة الدراسات العليا والتدريب جامعة بنغازي على إذن كتابي من المؤلف

iii

University of Benghazi Faculty of Information Technology

Department of Computer Networks

Dynamic Defense In-Depth Model to Enhance SDN Security

By

Mahmoud F. Elhejazi

This Thesis was Successfully Defended and Approved on 22 .10.2022

Supervisor
Dr. Mohamed Musbah

Signature: ……………………….…………………………….

Dr. Mohamed Younis (Internal examiner)

Signature: ……………………….…………………………….

Dr. Faraj Sallabi (External examiner)

Signature: …………………………………...………………….

Dean of Faculty Director of Graduate studies and training

 Dr. Abdelsalam Maatuk Dr. Othman M.ALbadri

Signature:…………………… Signature: …..……………………

iv

DEDICATION

I would like to express my gratitude to Allah for giving me the ability and strength to

reach this experience of my life.

I would also like to thank all who support me, especially my mother, father, and

siblings for their support and guidance to complete this work.

Special thanks to deep and my closest a

, caring and kind words. Thank you, Sara, and I hope you reach this level in your life.

Mahmoud F. Elhejazi

v

ACKNOWLEDGMENT

I would like to take this opportunity to thank all those who contributed to the

completion of this work.

I would like to express my heartfelt gratitude to my supervisor

Dr. Mohamed Musbah for giving me all the crucial academic and research experience

to complete this work professionally. In addition, helping to identify the critical

elements of the academic reach and methods to apply to this work.

Mahmoud F. Elhejazi

vi

Table of Contents

COPYRIGHT ………………………………………………………...………………II

APPROVAL SHEET ………………………………………………..………………III

DEDICATION …………………………………………………….………………...IV

ACKNOWLEDGEMENT …………………………………………..………………..V

CONTENTS…………………………………………………………..………….......VI

CONTENT OF TABLES ………………………………..…………………………...X

CONTENT OF FIGURES ……………………………………………..……………..X

Chapter 1 .. 1

Introduction .. 1

1.1 INTRODUCTION... 1

1.2 MOTIVATION .. 4

1.3 PROBLEM STATEMENT ... 4

1.4 RESEARCH AIM AND OBJECTIVES .. 5

1.5 RESEARCH QUESTIONS ... 5

1.6 RESEARCH METHOD ... 5

1.7 SCOPE & LIMITATION ... 7

1.8 ORGANIZATION OF THE THESIS .. 7

1.9 CONTRIBUTION .. 8

Chapter 2 .. 9

Background & Literature Review .. 9

2.1 INTRODUCTION... 9

2.2 SDN ARCHITECTURE TERMS AND CONCEPTS ... 9

2.3 SDN CURRENT SECURITY STATE ... 13

2.4 DEFENSE IN-DEPTH PRINCIPLES ... 15

2.5 LITERATURE REVIEW ... 16

2.6 ADDRESSING VULNERABILITIES ... 18

2.7 SUMMARY .. 19

Chapter 3 .. 20

The Proposed Dynamic Defense-in-Depth (DDiD) ... 20

3.1 GENERAL DYNAMIC DEFENSE-IN-DEPTH (DDID) MECHANISM 20

3.2 DDID MODEL FOR SDN CONTROLLER LAYER .. 21

3.3 THREAT VECTORS... 21

3.4 COUNTERMEASURES FOR OPENFLOW-BASED SDNS 23

3.5 DETAILED DDID MODEL FOR SDN ... 24

3.6 EVALUATION MECHANISM ... 28

3.7 SUMMARY .. 30

Chapter 4 .. 32

Experimental Work .. 32

vii

4.1 INTRODUCTION... 32

4.2 EXPERIMENTAL PARAMETERS & PREDEFINED CONDITIONS........................... 36

4.3 EXPERIMENTAL IMPLEMENTATION AND RESULTS .. 37

4.4 DISCUSSION ... 39

4.5 SUMMARY .. 41

Chapter 5 .. 42

Conclusion & Future work .. 42

5.1 CONCLUSION .. 42

5.2 LIMITATIONS .. 42

5.3 FUTURE WORK ... 43

Bibliography .. 44

Appendix .. 47

viii

List of figures

Figure 1.1 SDN Architecture (Generic View) ... 2

Figure 1.2 OpenFlow protocol communication ... 2

Figure 1.3 DID layers .. 6

Figure 3.1 Identified threat vectors of SDN architecture ... 22

Figure 3.2 Proposed DDiD Model Suitable for SDN Architecture in process perspective

form. ... 28

Figure 3.3 Proposed DDiD Model Suitable for SDN Architecture in communication

perspective form. ... 30

Figure 4.1 Experiment Network topology ... 36

Appx Figure 4.1 Mininet instillation & configuration commands 47

Appx Figure 4.2 Mininet implementation commands ... 48

Appx Figure 4.3 Mininet start simulation for hosts & switches commands................ 48

Appx Figure 4.4 OpenDaylight & HPE controllers configuration part 1 49

Appx Figure 4.5 OpenDaylight & HPE controllers configuration part 2 49

Appx Figure 4.6 OpenDaylight & HPE controllers configuration part 3 50

Appx Figure 4.7 OpenDaylight & HPE controllers configuration part 4 50

Appx Figure 4.8 OpenDaylight & HPE controllers connection status 51

Appx Figure 4.9 POX controller setup with Scapy traffic generates commands part 151

Appx Figure 4.10 POX controller setup with Scapy traffic generates commands part 2

 ... 52

Appx Figure 4.11 Python DoS Attack Script (partial) part 1 52

Appx Figure 4.12 Python DoS Attack Script (partial) part 2 53

Appx Figure 4.13 Entropy tool startup, listening and calculating entropy value for

current SDN ... 54

Appx Figure 4.14 Entropy tool startup, listening, calculating entropy value for DDiD

model, and detecting the attacker host. .. 54

List of tables

No table of figures entries found.

Table 3.1 SDN specific and non-specific threats ... 22

Table 3. 2 Countermeasures for security threats in OpenFlow networks 23

Table 3. 3 Mechanism to threat vectors ... 29

Table 4. 1 Entropy results for current SDN architecture ... 38

Table 4. 2 Entropy results from DDiD model ... 38

Table 4. 3 Standard Deviation from current SDN architecture and DDiD model 39

ix

List of Abbreviations

AAA Authentication, Authorization, and Accounting

API Application Programming Interface

API Application Programming Interface

CPU Central Processing Unit

DDiD Dynamic Defense in-Depth

DiD Defense in-Depth

DOS Denial of Service

DPI Deep Packet Inspection

HPE Hewlett Packard Enterprise

HTTPS Hypertext Transfer Protocol Secure

ID Identification

IP Internet Protocol

MAC Media Access Control

ML Machine Learning

NCCIC National Cybersecurity and Communications Integration Center

ODL OpenDayLight

POX Python-based Openflow Controller

REST Representational State Transfer

SDN Software-Defined Networking

SSL Secure Socket Layer

TACACS+ Terminal Access Controller Access Control System Plus

TCP Transmission Control Protocol

TLS Transport Layer Security

TPM Trusted Platform Model

VAN Virtual Application Networks

VLAN Virtual Local Area Network

x

Dynamic Defense In-Depth Model to Enhance SDN Security

By

Mahmoud F. Elhejazi

Supervisor

Dr. Mohamed Musbah

Abstract

The traditional long-established networks and networking techniques are no longer

suitable for future ever-expanding networking requirements, specifically, the automation

and programmability of network communications. Software-Defined Networking (SDN)

is the most agreeable solution for that. SDN intelligence is a logically centralized

controller that applies a standard open Application Programming Interface (API) to

directly control the packet handling functions of network devices. OpenFlow is currently

the main and widely known communication protocol in SDN architecture. As a result of

such centralization, the SDN architecture subjected the controller as a single point with

more attack surfaces for each layer. This entails the search for more security and

protection procedures for the SDN architecture without sacrificing its swift response to

changing business requirements. This thesis aims to enhance the protection of the

division's concept in SDN architecture, which reduces the creation of more attack

surfaces that can be targeted by malicious activities. Thus, the research focuses on the

design of a dependable SDN controller model via Defense In-Depth (DID) techniques,

including the requirements for a secure, resilient, and robust controller. The Dynamic

Defense In-Depth (DDiD) model deployment is proposed for the SDN control layer to

enhance overall OpenFlow protocol security. Detailed measurable threats and protection

mechanisms, according to the DDiD model, were investigated and implemented using a

simulation environment (mininet). Also, the thesis presents a proof of concept evaluation

mechanism using entropy for Denial of Service DoS attacks to confirm the applicability

of secure structure requirements to the SDN controller layer. The DDiD resulted in a

higher standard deviation value between normal traffic and attack traffic than the current

SDN architecture, with a diverging value of ±0.02 and utmost ~59.51% difference in a

better level of protection .The obtained results confirm the promising potential of

achieving the required security goals.

1

Chapter 1

Introduction

1.1 Introduction

Modern computer networks are structured from a countless number of network

devices such as switches, routers, and various types of appliance equipment, which have

many complex protocols implemented, for controlling data traffic. The network

operators, e.g., network engineers and administrators, are responsible for designing the

scheme to deal with a broad range of network events and applications. Though adapting

to changing network conditions, they manually convert these high-level schemes into

low-level configuration commands. In addition, the network operators have to deal with

these complex and tedious tasks with access to very limited tools to achieve accurate

adaptation. Networks have become enormously challenging to evolve regarding physical

infrastructure, protocols, and performance. The concept of “programmable networks” has

been proposed to simplify and address these challenges for better network evolution. In

addition, network programmability is part of the broader architecture known as SDN.

SDN is a novel networking architecture that manages and controls packet

forwarding, the relaying of packets from one network segment to another by nodes in a

computer network called a data plane, within the network to change the limitations of

current network infrastructures. In general, the SDN architecture can be broken down

into three main layers, application plane, control plane, and data plane. For more

clarification, these layers are from bottom to top. The Data plane is the bottom-most layer

of SDN architecture. It deals with implementing a data path, which comprises devices,

and gets the flow rules and instructions from the upper layer, which will be persisted in

the flow table. In some cases, if the received packet does not match any entry in the flow

table, the device is responsible for forwarding that packet to the controller for decision-

making.

The middle layer, the control plane, is responsible for implementing the control

paths on a legacy network. This is the most critical layer of an SDN architecture. It

accepts the traffic tasks, traffic engineering, traffic shaping, and network management

from application plane servers; and handles it to data plane devices. The highest layer the

application layer with the help of a controller, is responsible for the customization of

2

packet forwarding, policy management, user management, and Quality of Service (QoS).

In SDN architecture, all of the network functions and monitoring tools are usually part of

the application layer.

There are two interfaces, which are used to help in the communication among the

layers, North Bound Interface (NBI) and South Bound Interface (SBI). as shown in Figure

1.1 .

Figure 1.1 SDN Architecture (Generic View)

The concept of SDN is based on the separation of network intelligence,

specifically, the control plane is separated from the packet switching process for the data

plane into a logically centralized controller. The forwarding decisions are made by the

controller, which is responsible for sending the instruction to the packet switches in the

form of rules, via standard protocols, such as; OpenFlow protocol.

OpenFlow is a standard communication protocol that enables the control plane to

interact with the data plane. Its main purpose is to standardize the communication

between switches and the software-based controller SDN. Besides, OpenFlow is still

widely used in the implementation of SDN architecture [1], the communication

mechanism of OpenFlow protocol is confined to three tables; rule, action, and stats.

Figure 1.2 illustrates the communication mechanism of the OpenFlow protocol.

Figure 1.2 OpenFlow protocol communication

SDN Architecture (Simplified View)

Application Plane Control Plane Data Plane

SDN Applications (Third party apps) SDN Controller services/applications Data Elements

Management
Apps

Operator
Services

Monitoring
Apps

Security
Apps

Vendor
Apps

Administration
management

interface
Controller

APP-Specific
API

Virtual devices
OpenFlow
Switches

Edge Devices

B
o

u
n

d
 A

P
I (O

F
 P

ro
to

c
o

l)

N
o

rth
-B

o
u

n
d

 A
P

I

OpenFlow Switch

OpenFlow Protocol

Datapath

Controller Controller

Group
Table

Meter
Table

OpenFlow
Channel

Port Flow Table
Rule

Flow Table
Action

Flow Table
Stats

Port

Port

Port

Pipeline

OpenFlow
Channel

Control Channel

3

Consequently, the purpose of SDN is to enable network operators to answer

promptly to the changing business requirements through centralized control support that

separates the network’s control policies from forwarding tables. Therefore, the separation

of the data plane from the control plane in SDN architecture pointed the controller as the

most important part of the SDN architecture. As a result, the SDN architecture subjected

the controller to a single point of failure [2].

Furthermore, the communication among the three-layer structure and the links in

between created more attack surfaces specifically for each layer separately that are not

present in traditional network structures, which can be targeted for more malicious

activity types. As an example of problem surfaces, the Data plane layer uses the

OpenFlow protocol to communicate with low-forcing Transport Layer Security (TLS)

v1.0 and most of the communication is using Transmission Control Protocol (TCP) and

having TLS as an optional connection. Most of the data plane devices and SDN

controllers do not fully support TLS [2],[3],[4],[5].

That being said, this research focuses on finding a better solution by using an

approach capable of reducing and mitigating these risks in a divide-and-conquer manner.

Inform of multiple layers of protection that are connected altogether for robust and secure

SDN design.

 One of the most efficient methods, according to Best Practice from National

Cybersecurity and Communications Integration Center (NCCIC)[6], is DiD. It is an

architecture that uses multiple connected layers for better protection design using TLS

v1.3 [3], distribution connection, Access Controls, etc., to the data plane devices.

Hypertext Transfer Protocol Secure (HTTPS), Authentication, Authorization, and

Accounting (AAA), Deep Packet Inspection (DPI) with fixed-trusted devices ID, etc. to

control the plane.

The main aim is to concern the demonstration of DiD mechanism for SDN

controllers to build a secure model by clarifying and protecting OpenFlow protocol

structure communication functions and preventing the threat vectors which can lead to

the exploitation of vulnerabilities of SDN controllers. First, designing a dependable

Controller model focuses on the necessity of a secure, flexible, and robust SDN

Controller. Secondly, reducing the existing gap between the actual security level of the

current SDN Controller design and the potential security solutions for future

improvements in the SDN Controller using DDiD. Thirdly, Validating and testing by

4

simulating the implementation of a secure SDN controller on several systems and devices

virtually to ensure its ability to deliver a robust, secure structure.

1.2 Motivation

Several factors have motivated the investigation conducted in this thesis to

migrate to the SDN structure successfully. A primary advantage of SDN networking is

greater visibility throughout the enterprise networks. The most important obstacle to

implementing SDN structure is the operational challenges involved in managing a

computer network. There are two essential operational challenges. Time to implement

changes: The distributed nature of a network makes it difficult and time-consuming to

effect changes in the settings of all network elements. Risk of malfunctioning: These are

the security challenges that need addressing to build a secure model that prevents and

protects OpenFlow protocol communication functions from threat vectors which can lead

to SDN failure.

1.3 Problem Statement

The separation of the data plane from the control plane in SDN architecture

pointed to the controller as the most important part of the SDN architecture. As a result,

the SDN architecture subjected the controller to a single point of failure [2]. Furthermore,

the communication among the three layers of structure and the links in between has

created more attack surfaces specifically for each layer separately that were not present

in traditional network structures before, which can be targeted for more malicious activity

types,especially the bottom layers use the OpenFlow protocol to communicate, which

uses low-forcing TLS v1.0 and most of the communication uses TCP and has TLS as an

optional connection. Most of the data plane devices and SDN controllers do not fully

support TLS. [3],[4],[2],[5].

Therefore, the communication among the three layers is not fully secured and can

be easily compromised, by multiple types of attacks and risks that are inclusive for SDN,

e.g., falsification of controller rules, data eavesdropping, execute harmful commands,

unauthorized access, denial-of-service, exploiting logically centralized controller and

deployment of malicious applications.

These attacks and risks are assembled in several threat vectors that have been

targeted for mitigation in this research, detailed in Section 2.3.

5

That being said, the SDN security problem is not a single-tier problem; the SDN

security threat involves each layer of the entire system architecture. Therefore, this

proposal focuses on finding a better solution by using an approach capable of reducing

and mitigating these risks in a divide-and-conquer manner. A model that has multiple

layer’s protection and is connected for robust secure SDN design.

1.4 Research Aim and Objectives

The aim is to propose a systematic model based on Defence in-depth mechanisms

to build a secure model to facilitate the exploitation of vulnerabilities of current SDN

architecture. To achieve this aim, this research is focused on the following objectives :

 To conduct an extensive study on the current SDN state in enterprise networks .

 To investigate the mechanisms of the Defense-in-depth concept .

 To propose a dynamic DiD model suitable for the SDN control layer security

challenges by utilizing a quantitative method within case study implementation.

 To implement and test the proposed model.

 To compare the results from the proposed model with traditional SDN

architecture.

1.5 Research Questions

To achieve these objectives, the research intends to answer the following

questions:

 What is the importance of SDN in modern enterprise networks?

 What are the challenges of SDN controller security?

 How to mitigate the challenges of SDN controllers for better security ?

 Why is Defense In-Depth mechanism used as a solution?

 What is the improvement gained from the proposed DDiD for SDN security?

1.6 Research Method

The prime methodology that has been used is the quantitative method. Within the

case study implementation of the Defense-in-depth mechanism upon SDN architecture,

DID is a security principle from NCCIC [6], best practice. Also known as an information

assurance strategy that provides multiple, redundant defensive measures in case a security

6

control fails or a vulnerability is exploited. Based on a structure that is designed to protect

the Physical controls: this includes security measures that prevent physical access to IT

systems, such as security guards or locked doors, technical controls: security measures

that protect network systems or resources using specialized hardware or software, e.g., a

firewall appliance.

Finally, Administrative controls: security measures consist of policies or procedures

directed at an organization’s employees, as shown in Figure 1.3.

 Figure 1.3 DID layers

In the current Controller structure, we are Heading toward methodologies to

resolve various threat vectors. In this regard, some of the most efficient mechanisms from

several researchers have been presented in this proposal. As a result, different mitigation

techniques need to prepare for a suitable design structure. Attempting to lay out a design

of a suitable Dynamic defense-in-depth (DDiD) model to address several of these threats.

Finally, before applying any design, threat vectors must be identified to evaluate and

compare the results obtained from the study.

To summarize the threat vectors [7],[3],[8],[9], that can be mitigated with the use

of the Dynamic Defense In-Depth model:

Forged or fabricated traffic flows, targets an exposure in switches, threats on

control plane communications, target exposure in controllers, absence of mechanisms to

ensure trustworthy between the controller and management applications, targets an

exposure in administrative stations, and absence of reliable resources for forensics and

restoration. Each of the thread vectors must be mitigated with the proposed DDiD model.

7

For each validation test case, when comparing the collected data from penetration attack

tools with thread vector identifiers to get the positive and the negative results, this

presents a strong indication for the research aim and success of reaching a secure SDN

controller.

The proposed Dynamic Defense In-Depth model for SND is summarized as

follows: states detection connection uses a synchronous distribution for the controllers.

Vulnerability avoidance uses independent variety for the controller system. Safety

protection uses self-healing for a full system. Relation analysis uses dynamic switch

coupling with controllers. Threat avoidance uses reliable relations between controllers &

devices. Behavior avoidance uses reliable relations between controllers & apps. Finally,

isolation uses virtualized security clusters. Chapter 3 discusses the DDiD mechanism in

detail

1.7 Scope & Limitation

This research is mainly focusing on:

 Clarifying the SDN controller concept, the OpenFlow protocol, defense-in-

depth architecture, and the implantation of the proposed security

enhancement.

 Utilizing DID principles to meet the security requirements of SDN Controller

which are; Authentication, Authorization, Facilitation, Isolation, and policies.

 Validating and testing by simulating the implementation of secure SDN on

several systems and devices to ensure its ability to deliver robust structure.

However, the requirement of building such a secure structure from selective high-

end hardware and software is through a virtual environment to reduce the dependency

on specific vendor devices, therefore, the limitations are simulated hardware

performance and cost of a virtualization technology license.

1.8 Organization of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 background &

related work for related security research papers on SDN security challenges, also the

introduction of the Defense-in-depth terminologies. Chapter 3 is the proposed model that

is suited for SDN controllers. The findings and focus of the thesis will be in Chapters 3

and 4 to discuss in detail Dynamic Defense-in-depth implementation and results

8

considering approaches and techniques, and finally Chapter 5 conclusions and future

work that concludes this thesis.

1.9 Contribution

Focusing on designing a dependable Controller model including the requirements

for a secure, resilient, and robust SDN Controller capable of delivering the expectation

of such demands for enterprise's network needs, through deploying DDiD model to deal

with the increasing security challenges associated with SDN Controller architecture. As

a result of this thesis, the following research paper was published:

1. Mahmoud Elhejazi and Mohamed Musbah. 2021. Dynamic Defense In-Depth

Model for SDN Control Layer to Enhance OpenFlow Protocol Security. In The

7th International Conference on Engineering & MIS 2021 (ICEMIS'21).

Association for Computing Machinery, New York, NY, USA, Article 46, 1–6.

DOI:https://doi.org/10.1145/3492547.3492625

9

Chapter 2

Background & Literature Review

2.1 Introduction

In the past years, a new architecture paradigm has emerged in the computer

network industry called Software Define Network (SDN). In the beginning, it appeared

as a potential programming approach that enables dynamic, programmatically efficient

network configuration to improve network performance and monitoring. Now SDN is

more diverse and abstract for easy to use even for those who are not network engineering.

SDN is based on software-based controllers or application programming interfaces

(APIs) to communicate with underlying hardware infrastructure and direct traffic on a

network. SDN principles in simple terms, is an approach for the provisioning and

management of networks.

 This chapter will shed some light on multi aspects and terms of SDN architecture

and security challenges with more description.

2.2 SDN architecture Terms and Concepts

The terminologies of the research field, such as SDN architecture pillars, layers or

planes, connection interfaces, flow protocols, etc., are crucial to the understanding of the

topic. This subsection describes the basic terms of SDN.

The term SDN was originally used to describe the ideas and representations that

surround the OpenFlow protocol at Stanford University [2]. As originally defined, SDN

refers to a network architecture where the forwarding state in the data plane is managed

by a remote-control plane decoupled from it. The networking industry has, on many

occasions, shifted from this original view of SDN, by referring to anything that involves

software as being SDN. Therefore, the attempt in this section is to provide a much less

ambiguous definition of SDN. It can be defined as a network architecture with four pillars

[2] :

1) The control and data planes are decoupled. Control functionality is removed from

network devices that will become simple (packet) forwarding elements.

2) Forwarding decisions are flow-based, instead of destination-based. A flow is

broadly defined by a set of packet field values acting as a match (filter) criterion

and a set of actions (instructions). In the SDN/OpenFlow context, a flow is a

10

sequence of packets between a source and a destination. All packets of a flow

receive identical service policies at the forwarding devices. The flow abstraction

allows the unifying of the behavior of different types of network devices,

including routers, switches, firewalls, and middleboxes. Flow programming

enables unprecedented flexibility, limited only to the capabilities of the

implemented flow tables.

3) Control logic is moved to an external entity, the so-called SDN controller or

Network Operating System (NOS). The NOS is a software platform that runs on

commodity server technology and provides the essential resources and

abstractions to facilitate the programming of forwarding devices based on a

logically centralized, abstract network view. Its purpose is therefore similar to

that of a traditional operating system.

4) The network is programmable through software applications running on top of

the NOS that interact with the underlying data plane devices. This is a

fundamental characteristic of SDN, considered its main value proposition.

Note that the logical centralization of the control logic, in particular, offers several

additional benefits. [2], First, it is simpler and less error-prone to modify network policies

through high-level languages and software components, compared with low-level device-

specific configurations. Second, a control program can automatically react to spurious

changes in the network state and thus maintain the high-level policies intact. Third, the

centralization of the control logic in a controller with a global knowledge of the network

state simplifies the development of networking functions, services, and applications.

 Following the SDN concept introduced, an SDN can be defined by three

fundamental abstractions: (i) forwarding, (ii) distribution, and (iii) specification.

Abstractions are essential tools of research in computer science and information

technology, being already a ubiquitous feature of many computer architectures and

systems. Ideally, the forwarding abstraction should allow any forwarding behavior

desired by the network application (the control program) while hiding details of the

underlying hardware.

 OpenFlow is one realization of such abstraction, which can be seen as the

equivalent of a “device driver” in an operating system. The distribution abstraction should

shield SDN applications from the vagaries of distributed states by using a common

distribution layer, which resides in the NOS. This layer has two essential functions. First,

11

it is responsible for installing the control commands on the forwarding devices. Second,

it collects status information about the forwarding layer (network devices and links), to

offer a global network view to network applications. The last abstraction is the

specification, which should allow a network application to express the desired network

behavior without being responsible for implementing that behavior itself. This can be

achieved through virtualization solutions, as well as network programming languages.

These approaches map the abstract configurations that the applications express based on

a simplified, abstract model of the network, into a physical configuration for the global

network view exposed by the SDN controller. This approach has several advantages:

 It becomes easier to program these applications since the abstractions provided

by the control platform and/or the network programming languages can be shared.

 All applications can take advantage of the same network information (the global

network view) to more consistent and effective policy, decisions while reusing

control plane software modules.

 These applications can take actions (reconfigure forwarding devices) from any

part of the network. There is therefore no need to devise a precise strategy about

the location of the new functionality.

 The integration of different applications becomes more straightforward. For

instance, load-balancing and routing applications can be combined sequentially,

with load-balancing decisions having precedence over routing policies.

To identify the different elements of an SDN as unequivocally as possible, now

present the essential terminology used throughout the SDN.[2].

 Forwarding Devices (FD): Hardware- or software-based data plane devices that

perform a set of elementary operations. The forwarding devices have well-defined

instruction sets (e.g., flow rules) used to take actions on the incoming packets

(e.g., forward to specific ports, drop, forward to the controller, rewrite some

header). These instructions are defined by southbound interfaces (e.g., OpenFlow,

ForCES (Forwarding Control Elements Separation), Protocol- Oblivious

Forwarding (POF)) and are installed in the forwarding devices by the SDN

controllers implementing the southbound protocols.

12

 Data Plane (DP): Forwarding devices are interconnected through wireless radio

channels or wired cables. The network infrastructure comprises interconnected

forwarding devices, which represent the data plane.

 Southbound Interface (SI): The instruction set of the forwarding devices is

defined by the southbound API, which is part of the southbound interface.

Furthermore, the SI also defines the communication protocol between forwarding

devices and control plane elements. This protocol formalizes the way the control

and data plane elements interact.

 Control Plane (CP): Forwarding devices are programmed by control plane

elements through well-defined SI instructions. The control plane can therefore be

seen as the “network brain”. All control logic rests in the applications and

controllers, which form the control plane.

 Northbound Interface (NI): The network operating system can offer an API to

application developers. This API represents a northbound interface, a common

interface for developing applications. Typically, a northbound interface abstracts

the low-level instruction sets used by southbound interfaces to program

forwarding devices.

 Management Plane (MP): The management plane is the set of applications that

leverage the functions offered by the NI to implement network control and

operation logic. This includes applications such as routing, firewalls, load

balancers, monitoring, and so forth. Essentially, a management application

defines the policies, which are ultimately translated to southbound-specific

instructions that program the behavior of the forwarding devices. All that

elements are shown in Figure 2.1.

13

Figure 2.1 SDN architecture elements

2.3 SDN Current Security State

Cyber-attacks against financial institutions, energy facilities, government units, and

research institutions that use SDN architecture are becoming one of the top concerns of

governments and agencies around the globe. Due to the danger of cyber-attacks and the

current landscape of digital threats, security and dependability are top priorities in

implementing SDN. While research and experimentation on software-defined networks

are being conducted by some commercial players (e.g., Google, Yahoo!, Rackspace,

Microsoft), commercial adoption is still in the development stage. Industry experts

believe that security and dependability are issues that need addressing with a deep

investigation to fully migrate to SDN.[2].

The current state so far is that they are Different threat vectors that have been already

identified in SDN architecture, as well as several security issues and weaknesses in

SDN Architecture (Simplified View)

Application Plane

Control Plane

Data Plane

North-Bound API

SDN Applications (Third party apps)

SDN Controller services/applications

Data Elements

Management
Apps

Operator
Services

Monitoring
Apps

Security
Apps

Vendor
Apps

South-Bound API
(OpenFlow Protocol)

Administration
management

interface
Controller

APP-Specific
API

Virtual devices
OpenFlow
Switches

Edge Devices

14

OpenFlow-based networks. The following are at least seven identified threats vector in

SDN architecture:

 The first threat vector consists of forged or faked traffic flows in the data plane,

which can be used to attack forwarding devices and controllers.

 The second allows an attacker to exploit vulnerabilities of forwarding devices and

consequently wreak havoc with the network.

 Threat vectors three, four, and five are the most dangerous ones, which are

Exploiting logically centralized controllers, compromised controller and

Development, and deployment of malicious applications on controllers since this

three can compromise the network operation.

 The sixth threat vector is linked to attacks on and vulnerabilities in administrative

stations.

 Last, threat vector number seven represents the lack of trusted resources for

forensics and remediation, which can compromise investigations (e.g., forensics

analysis).as shown in Figure 2.2

Figure 2.2 Main threat vectors of SDN architecture

Also, there are already several identified security issues in OpenFlow-enabled

networks, especially with low-forcing of TLS v1.1. It is possible to identify different

attacks on OpenFlow-enabled networks. For instance, information disclosure can be

achieved through side-channel attacks like Cache attacks or Power-monitoring attacks

targeting the flow rule setup process. When a reactive flow setup is in place, obtaining

information about network operation is relatively easy. An attacker that measures the

delay experienced by the first packet of a flow and the subsequent can easily infer that

15

the target network is a reactive SDN; and proceed with a specialized attack [2], This

attack known as fingerprinting, may be the first step to launch a DoS attack intended to

exhaust the resources of the SDN network. This is only a glimpse of SDN security

challenges.

2.4 Defense in-Depth Principles

DID is a technique for information assurance developed by the National Security

Agency (NSA) involving several layers of networked electronic and system security

defenses. Used as an approach capable of reducing and mitigating security risks in a

divide-and-conquer manner, especially for any system, security was not have been taken

into account from the planning stage. Also identified as the most efficient mechanism

according to the Best Practice form [6], by implementing Different types of network

protection software (barriers) are implemented to combine various network security

techniques on a single network, including firewalls and Intrusion Prevention Systems

(IPS) / Intrusion Detection Systems (IDS) systems. To ensure device and network

stability against many threats variables, that affect device protection, including physical

security, policy, and procedure. The functions of the barriers in the DiD strategy are

detection, deterrence, delay, and response. These functions provide a range of types of

barriers to maximize the probability of prevention of unauthorized access and detection

potential. These functions can be mapped onto the desired system structure [10].

Constructing a multilayer security DID mechanism must be carefully designed for each

specific system separately, from three main layers as shown in Figure 2.3 [11]:

Figure 2.3 Defense-in-depth layers

Multiple

attack

sources

Active

protection

Real time

detection

Intrusion

tolerance

attacks

Layer n Layer m Layer 1

Targeted

system

16

 Active Protection: Network security products usually impossible to find all the

network vulnerabilities and external attacks. Even if the product is designed with

comprehensive security defense functions, with the passage of time and the

development of protection technology, there is always a chance of reducing this

vulnerability with a protective active layer. Examples of such technologies

include replication, synchronization, distribution, and backup.

 Real-time detection: Even if the layer of Active Protection defense does not

exclude the possibility of being successfully overcome the attacks, a variety of

technical means of real-time intrusion detection and prevention is utilized to deal

with those attacks, which have not been successfully repulsed. Examples of such

technologies include IDS monitoring, and attempts threshold.

 Intrusion tolerance attacks: Intrusion tolerance technology can integrate the

immune theory, threshold cryptography, data recovery, and self-healing; It can

adopt trusted computing, trusted network, fault-tolerant protocol, data

redundancy, and recovery strategy, providing continuous network service and

achieve final safety operation of the system.

2.5 Literature Review

The ability of the network operation and security policies to continually adapt to

changes in business network services will determine, by how well SDN is implemented

and managed. Through a customizable central control, SDN enables network operators

to quickly respond to shifting business requirements.

 Therefore, research efforts have been devoted to determining the proposed

solutions by researchers for such an issue and then developing approaches and models to

enhance SDN security early implementation to increase efficiency.

The authors in [3], stated that most modern SDN-controller, support TLS across

D-CPI (Data-Controller Interface). Secure communication with Secure Socket Layer

SSL/TLS v1.0 defines the authentication of the communicating parties by using PKI

(X.509 certificate) with subsequent data encryption between the parties across the

interface of communication to prevent any mitigate tampering with message exchanges.

Several controllers such as; SE-Floodlight (Security Enhanced extension, OpenDaylight,

and Ryu controller support SSL/TLS v1.1 optionally, although other controllers such as

ROSEMARY [12], and ONOS do not support SSL/TLS at all. The author proposed the

17

following design as secure recommendations features for SDN, Design with Software

Security Principles, Secure Default Controller Settings, and Application Future-Proofing.

Currently, not a single SDN controller includes each of the identified features for a

secure, robust, and resilient SDN controller. However, that design lacks on secure

controller design mechanism or framework such as; multiple controllers to application

instances (Resilience), representational state transfer (REST) API token-based

authentication provided by the user authentication. API key token-based authentication,

and Resource Monitoring.

 In [4], the author stated that the controller should be provided with additional

protection against TCP congestion, IP spoofing, and DoS especially when the SSL/TLS-

based communication is unable to protect the SDN Controller from IP-based attacks on

the control panel. In such cases, an equivalent protocol such as TLS should be used for

protecting the communication between the control layer and the application layer to

prevent defects, failure, and threats [4]. However, there must be a key or certificate

materials that an appropriately managed with Host Identity Protocol (HIP) and (AAA) to

ensure that the security of Public Key Infrastructure (PKI) is underpinned .

According to [13], the main SDN security issue is OpenFlow protocol does not

enforce the implementation of the TLS, but defines it only as optional, therefore the

author proposed that there is a need for a solution between the control plane layer and

data plane layer that include, disabling older versions of TLS protocol, totally uninstalling

such version from the controller and use the proposed security extension for TLS v1.2 in

form of timestamp between each request to response, which drops connection in case of

exceeding the defined time frame per request. Unfortunately, these countermeasures

target specific attacks, like Man-in-the-Middle attacks, in which there are more attack

points in SDN architecture. Therefore, the recommended data encryption protocol

currently is v1.3. It is also the most used protocol not only within OpenFlow but also

throughout the Internet.

Nonetheless, according to [5], centralized control and insufficient mechanism of

security protection make SDN controllers an external target of malicious attacks. In

addition, there are not enough security and encryption measures in the communication

process between the control layer and the data layer. Flow rules are easy to suffer

malicious tampering during the process of publishing. In general, SDN lacks sufficient

multi-level protection mechanisms. Hence, the authors focused their research on the

following aspects, Controller attack detection and precaution, Controller scalability and

18

cross-domain communication, and Application authentication issues. Their conclusion is

the SDN security problem is not a single-tier problem; the SDN security threat involves

each layer of the entire system architecture. However, an idealized global security

solution needs to cover hardware, operating systems, software, and other aspects not just

the previously mentioned aspects.

Nonetheless, according to [14], the author conducts a comprehensive survey on

the core functionality of SDN from the perspective of secure communication

infrastructure at different scales. A specific focus is given to addressing the challenges of

securing SDN infrastructure and categorizing the appropriate solutions for specific

threats at each layer of the SDN communication. Lastly, security implications and future

open research challenges are presented to help gain further insights into the domain of

SDN security. However, In this paper, it lacks an appropriate and suitable framework

model for a clear implementation of a secure SDN structure for each plan.

Finally, it is important to mention studies in [1],[7],[8],[9],[2], that are essential

to this thesis as a major part of building the necessary foundation for implementing the

SDN component. that triggers the motivation to mitigate the SDN security challenges

building resilient control plane. However, these studies succeeded in describing the

vulnerabilities, threats, and risks in the SDN architecture. Also, they lack a systematic

framework in form of mechanisms for each plane layer to implement a suitable solution.

2.6 Addressing Vulnerabilities

It is clear from previous papers, that there is a necessity to provide a model for more

security improvement on existing SDN controllers and future ones, to become robust,

secure, and intelligent. From the DID principles The targeted risks and challenges

mitigation are assembled into a seven-threat vector previously mentioned in section 2.3.

In this regard, the following are three countermeasures that require improvement for a

secure SDN controller:

• Design based on robust security standards: SDN controller needs rework, designed

from the initiation as a secure software design entity including privilege limitation,

sensitive data encryption, and secure defaults in a DDiD mechanism manner. In

addition, a controller’s security should be tested using static and dynamic analytic

tools.

19

• Secure default configuration settings: All SDN Controller default implementations

must apply appropriate safe measurement for operations, configuration backups, and

communication processes from the setup stage to ensure that controllers are secure

during the entire lifecycle of the system.

• Application independence: The application layer must be designed outside the

controller’s aspects to enhance transferability across the controller interfaces in both

high-level and low-level protection.

2.7 Summary

This chapter has given a brief overview of the important concepts of SDN

architecture, planes and interconnection interfaces. The concerns and current state of

SDN security challenges. In addition, basic fundamental terms and terminologies of DiD.

The chapter also introduced the principle of DiD mechanisms, which is a technique for

information assurance involving several layers of networked electronic and system

security defenses. An insight into DiD's three main layers of barriers, Active Protection:

a set of the mechanism that includes replication, synchronization, distribution, backup,

and Real-time detection: which includes IDS monitoring and attempts threshold. And

Intrusion tolerance attacks include adaptive trusted connection, data recovery, and self-

healing .

Also, provided in this chapter is a survey of multi-research papers about the current

state of SDN security and how many approaches were taken to address these security

challenges.

This chapter also covers the various concern-addressing techniques in terms of

communication with SSL/TLS by use of PKI (X.509 certificate), SDN Controller IP-

based attacks protection, multi-level protection mechanism, and different timestamp

between each request to response per connection. Furthermore, the main threat vectors

and challenges will be addressed in the next chapters, and the proposed solution in a

systematic framework.

The next chapter provides a deep study of SDN security challenges according to

multiple research papers, addressing vulnerabilities, and a brief review will be discussed

on each research aspect to mitigate the vectors of SDN security.

20

Chapter 3

The Proposed Dynamic Defense-in-Depth (DDiD)

3.1 General Dynamic Defense-in-Depth (DDiD) Mechanism

Since the DiD definition is based on protection layering to ensure security,

solutions such as firewalls, IDSs and IPSs are also being implemented as part of DiD

barries, especally this solutions are combined with modern devices to include the

network defense system with various solutions as a new capabilities.

These capabilities must also be implemented to avoid continuous monitoring and

probing of such static defenses and to identify internal threats, without causing

unnecessary complexity inside the SDN controller system [15].

Therefore, the dynamic defense allows the current-based defenses, such as

firewalls, IDSs, IPSs, and malware analysis systems, to become harder to identify, check

and bypass. Currently, these based security defenses are easy to penetrate, because they

are static and easy to target. When an attacker discovers network protection that defends

the intended network or device, the attacker is granted unrestricted time and attempts to

check the system's security, eventually finding a vulnerability, by placing a dynamic

defense in front of these static, feature-based defenses, the existing defenses become

more difficult to find and test and, therefore, provide greater coverage. As the attack

surface continuously changes, an attacker is required to spend vast quantities of time and

energy to recover the target. Even if the target can be identified by an attacker, they have

a finite period of time to check the feature-based defenses behind the dynamic protection

before being forced to reacquire the target again.

To advance the current DiD model, a Dynamic DiD model should be focused on

the capabilities of symmetry and Proactive defenses. Current network defenses are

designed around the features of specific network defense tools, such as identifying

malware, blocking packets, or analyzing network events. These defenses are effective

against specific attacks, but cannot holistically defend networks. Implementing

symmetric defenses, allows for protection against insider threats, both through data

exfiltration and network attacks originating within the host network. By deploying

proactive defenses, functional network defenses are further enabled by limiting the scope

21

of possible attacks and the amount of time for attackers to penetrate before reacquiring

the target,[15], can summarize the dynamic design to contain two main layers :

• Symmetric Defenses: By deploying the same defenses on the internal network as

on the external edge, the network can secure itself and other networks. By analyzing

internal traffic with symmetric defenses, a Dynamic DiD model can detect and stop

data exfiltration. Also, by detecting and stopping attacks at the originating network,

symmetric defenses contribute to global network security.

• Proactive Defenses: Proactive defenses are enabled through sensing, detecting,

orienting, and engaging adversaries in order to assure security, all by dynamic

computing performance and dynamic network adaptation, dynamic defenses secure

the network by forcing attackers to continually reacquire targets.

3.2 DDiD Model for SDN Controller Layer

Before applying the proposed design of a suitable DDiD model to enhance SDN's

current state security, first must identify the threat vectors of SDN architecture.

3.3 Threat vectors

Different threat vectors in SDN architecture as well as several security issues and

vulnerabilities in OpenFlow-based networks have already been identified. Although

certain threat vectors are similar to current networks, some are more SDN-specific, such

as; attacks on the connectivity of the control plane and data plane Table 3.1 [2]. It is

necessary to mention that certain threat vectors are independent of technology or protocol

specification (e.g., OpenFlow, POF, ForCES), since they present challenges to SDN's

functional and architectural layers respectively. [7],[8],[9],[16].

22

Figure 3.1 Identified threat vectors of SDN architecture

The following table summarizes the threat vectors related to SDN architecture

Table 3.1 SDN specific and non-specific threats

Threat

vectors

Specific

to SDN

Consequences in SDN

Vector 1 no Open door for Distributed Denial-of-Service (DDoS)

attacks.

Vector 2 no Potential attack inflation.

Vector 3 yes Exploiting logically centralized controller.

Vector 4 yes Compromised controller may compromise the entire

network.

Vector 5 yes Development and deployment of malicious applications on

the controller.

Vector 6 no Potential attack inflation.

Vector 7 no Negative impact on fast recovery and fault diagnosis.

23

Moreover, Figure 3.1 and Table 3.1 summarize the identified threats vector in

terms of whether independent or specific to the SDN architecture as mentioned in section

2.3. The lack of isolation, protection, access control, and stronger security

recommendations are some of the reasons for these vulnerabilities [2],[8],[9],[16].

Other technical and operational protection issues, in Open-Flow networks,

include the absence of clear security guidelines for developers, and the absence of TLS

and access control support for most switch and controller implementations. The

assumption is that TCP is enough as links are "physically secure," in fact several switches

that have listener mode allowed by default (allowing the establishment of malicious TCP

connections is highly possible) [2],[7].

3.4 Countermeasures for Openflow-based SDNs

Several countermeasures can be put in place to mitigate the security threats in

SDNs. Table 3.2 [2], summarizes several countermeasures that can be applied to different

elements of an SDN/OpenFlow-enabled network.

Table 3. 2 Countermeasures for security threats in OpenFlow networks

Measure description

Access control Provide strong authentication and authorization

mechanisms on devices.

Attack detection Implement techniques for detecting different types of

attacks.

Event filtering Allow (or block) certain types of events to become

handled by special devices.

Firewall and IPS Tools for filtering traffic can help to prevent different

types of attacks.

Flow aggregation Rules to match multiple flows to prevent information

disclosure and DoS attacks.

Forensics support Allow reliable storage of network activity traces to find

the root causes of different problems.

24

Intrusion tolerance Enable control platforms to maintain correct operation

despite intrusions.

Packet dropping Allow devices to drop packets based on security policy

rules or current system load.

Rate limiting Support rate limit control to avoid DoS attacks on the

control plane.

Shorter timeouts Useful to reduce the impact of an attack that diverts

traffic.

Common methods such as access control, mechanisms for attack prevention,

event filtering, firewalls, and devices for intrusion detection can be used to minimize the

effect of threats or to prevent them. It may be applied in different applications, such as

controllers, forwarding systems, middleboxes, etc. Middleboxes, separate intermediary

security devices, can be a good option for enforcing security policies in an enterprise.

They are more robust and special-purpose devices. Such a strategy also reduces the

potential overhead caused by implementing these countermeasures directly on controller

or forwarding devices. However, middleboxes can add extra complexity to network

management [2],[7].

3.5 Detailed DDiD Model for SDN

The seven vectors show that the potential threat for SDNs is diverse when

compared to traditional networks. Therefore, different mitigation techniques must be

decided in a suitable design structure. This section lays out the design of a suitable DDiD

model to address these threats. The following are the proposed DDiD model mechanisms:

M1. Synchronous distribution (States Detection): is the most significant innovation

technique for improving the dependability of SDN systems and enhancing network

security. Explicitly, a synchronous distribution controller with load balancing is useful

for achieving a secure and dependable structure, via a clone duplicate of the controller

with at least three instances and a mixed replica approach by replicating the application

with multiple controllers to ensure that fault tolerance of both software and hardware,

25

which happened from accidents or malicious behavior. This mechanism is conducted by

connecting three controllers with a revision number to check configurations and rules

changes among controllers. In case of failure or a new connection of devices (switch or

host). This will mitigate the effect of attack types like DDoS, way to identify the

characteristics of such an attack is by using the method of entropy tests[9] .

M2. Independent variety (vulnerability identification): is another important

mechanism for increasing the robustness and security of SDN, it is necessary to replicate

with varied controllers for the avoidance of common mode faults of the same

management application, to limit the intersecting vulnerabilities and software bugs. Thus

diversifying constraints the combined impact of attacks on common vulnerabilities. In

SDN environment, the same management application can run on a different controller.

This can be approached by defining common abstracted APIs between applications and

multi-controller. This mechanism is conducted by operating the three controllers with

their different vendor systems cohesively, within the same administration station. This

will mitigate the effect of exploits for each system. So, it will not affect the other two

systems, since they are not sharing the same vendor structure.

M3. Self-healing (safety protection): reactive and proactive recoveries can restore the

system to a healthy state and keep the network virtually functional by replacing the

compromised components in the event of persistent threats circumstances. However, for

effective self-healing, it is necessary to replace the compromised components with new

and diverse versions [3]. Most importantly, diversity must be applied too in the recovery

process to strengthen the defense of the system against risks, which target specific

vulnerabilities in the SDN structure. This mechanism is conducted by a pre-stored

backup, which triggers the threshold when an unauthorized change occurs. This will also

mitigate multi-attack types of exposure and exploitation on the whole system, especially

after the attack damaged the system, way to identify the characteristics of such an attack

is by using the method of safe backup with an Inspection and detection entity.

M4. Dynamic switch coupling (Relation analysis): there are situations in which a

switch is correlated with only one SDN Controller. In this case, the controller of the

switch will not be fault tolerant. Therefore, to avoid such failures, it is necessary that each

switch dynamically and securely associates with multiple controllers and that can be

26

achieved by using a threshold pre-shared cryptography approach for detecting malicious

controllers that could prevent attacks such as man-in-the-middle for instance.

M5. Reliable relation for controller & devices (Threat identification): setting up a

reliable relationship between controller and devices is a critical requirement for

increasing the trustworthiness of the overall control plane. Network devices should

associate with the controller dynamically without causing unreliable relationships. A

typical approach is to trust all controllers and network devices until the trustworthiness

of the controller is strongly questionable [3]. Additionally, the controller should be set to

report malicious or misbehaving devices, according to failure or deviating detection

algorithm. Also, the malicious controller should be automatically isolated when its

trustworthiness falls below an unacceptable threshold. This also will mitigate attack types

like Packet Sniffing. This mechanism is conducted by upgrading the cryptographic

protocol to SSL/TLS v1.3 [9]. and applying the trusted platform module TPM Hardware

Protection [17].

M6. Reliable relation for controller & apps (Behavior identification): in this situation,

a dynamic reliable model should be utilized for a Controller and application software

components, which are presenting a changing behavior as a result of attacks or bugs. That

is Measured by the “trustor” factor that observes the behavior of the specific quality

attributes such as reliability, availability, confidentially, maintainability, safety, and

integrity. That “ trustor” factor is used by REST API token-based authentication provided

by the user authentication type. Therefore, the model can be applied to detect the

relationship between the controller and software application and identify malicious

behaviors [18]. This will also mitigate attack types like spoofing or brutal force, way to

identify the characteristic of such an attack is by using the method of authentication,

system patching, and permissions inspection [9].

M7. Security clusters (isolation): many kinds of applications use isolated this technique

to secure the network from attackers. In SDN GUI, user-level applications must deny

access to kernel-level systems using well-defined policies [19]. In this way, the impact of

most attacks will not penetrate past the GUI. Therefore, the isolation protects the security

of the SDN hardware and drivers. Also, in SDN Controller, a security domain is achieved

using mechanisms such as virtualization of sandboxing [3]. With this structure, an active

27

isolation mode established using a well-defined interface and accessibility allows

minimal communication and operation between the isolated virtual domains.

The proposed model just discussed form the core mechanisms of what has been

considered in the implementation of a DDiD for SDN. Nevertheless, such designs may

benefit from the use of traditional techniques, such as firewalls or IDS/IPS systems, and

additional protection tools to specify and compose packet-forwarding policies and to

check the connection between plans in real-time. As depicted in Figure 3.2.

28

Figure 3.2 Proposed DDiD Model Suitable for SDN Architecture in process perspective form.

3.6 Evaluation Mechanism

A description of the evaluation mechanism is shown in this section for each of the

seven vectors. Table 3.3 summarizes the threat vectors and the proposed mechanism

accordingly.

Process Perspective

Application Plane

Control Plane

Data Plane

North-Bound API

SDN(OpenFlow) Applications

SDN(OpenFlow) Controllers

Data Path Elements

Management
Apps

Operator
Services

Apps

Monitoring
Apps

Security
Apps

Vendor
Apps

South-Bound API (OpenFlow Protocol)

Controller 2 Controller 1 Controller 3

Security Policies

APP-Specific API

Domain
Authentication

Server

OF
Switches

Edge
Devices

West-Bound East-Bound

 App Replication with multi-controller.(API Key Auth).

 Login with
identification

Integrated Behavior ID
Server

 (Https certif ,AAA,
IPS,IDS..etc)

 Synchronous distribution of controllers (Depended duplication).

 Security cluster per app(isolation).

 Trust & reliable dynamic association with controller(domains).

 Security cluster per controller to app (isolation).

 Independent variety of management interface(multi-vendor).

 Self-healing (safety protected backup).

M2

M3

 Dynamic switch coupling with multi-controller (OF TLS 1.3).

 Trust & reliable dynamic association with controller(domains).

 Security cluster per controller to device (isolation).

M1

M7

M6

M1

M7

M6

M4

M5

M7

29

Table 3. 3 Mechanism to threat vectors

Threat vectors mechanism

vector 1: fabrication M1, M5

vector 2: exposure in switches M3, M5

vector 3: communications threats M2, M4, M5

vector 4: exposure in the controller M1, M2, M3, M4, M6, M7

vector 5: trustworthy M1, M6, M7

vector 6: exposure in admin stations M2, M3

vector 7: lack of restoration M1, M3

For each validation test case, when comparing the collected data from penetration

attack tools with Table 3.3 of threat vector identifier via a mechanism to obtain accurate

results, this presents a strong indication for the research aim and success of reaching a

secure model for SDN controller. As depicted in Figure 3.3

30

Figure 3.3 Proposed DDiD Model Suitable for SDN Architecture in communication perspective form.

3.7 Summary

In this chapter, we have described a framework to enhance SDN security, by first

identifying threat vectors, and the countermeasures for each one of the vectors and then

proposed the DDiD model in two perspective processes and processes which are:

M1.Synchronous distribution for controllers (States Detection), M2. Independent variety

Communication Perspective

Application Plan

Control Plan

Data Plan

Mechanism 1
Synchronous
distribution (States
Detection) Solution for
Vectors (1,4,5,7)

Mechanism 5
Reliable relation for
controllers & devices (Threat
identification)Solution for
Vectors (1,2,3)

Mechanism 4
Dynamic switch
coupling (Relation
analysis)Solution for
Vectors (3,4)

Mechanism 7
Security clusters
(isolation)Solution for
Vectors (4,5)

Mechanism 2
 Independent variety
(vulnerability
identification)Solution
for Vectors (3,4,6)

Mechanism 3
Self-healing (safety
protection)Solution for
Vectors (2,4,6,7)

Mechanism 7
Security clusters
(isolation)Solution for
Vectors (4,5)

Mechanism 1
Synchronous
distribution (States
Detection) Solution for
Vectors (1,4,5,7)

Mechanism 6
Reliable relation for
controllers & apps
(Behavior
identification)Solution
for Vectors (4,5)

Mechanism 7
Security clusters
(isolation)Solution for
Vectors (4,5)

Mechanism 1
Synchronous
distribution (States
Detection) Solution for
Vectors (1,4,5,7)

31

for controllers (vulnerability identification), M3. Self-healing for a full system (safety

protection), M4. Dynamic switch coupling with controllers (Relation analysis), M5.

Reliable relation between controllers & devices (Threat identification), M6. Reliable

relation between controllers & apps (Behavior identification), M7. Security clusters

(isolation). This proposed model maps up every threat with mechanisms of solution. Also,

clarify the way how to evaluate and verify the DDiD model.

In the next chapter, the proposed framework is implemented in two aspects one

fore current SDN architecture and the other is the proposed DDiD model to evaluate the

effectiveness of the security enhancements.

32

Chapter 4

Experimental Work

4.1 Introduction

In this section, the objectives are to clarify and validate the implementation of the

DDiD model to deal with all the SDN security challenges discussed in chapter 3.

Therefore, the focus is to apply the designed model, and the penetration test is only as

proof of concept, not testing for all types of cyber attacks, in an emulated environment

using mininet, which is a network emulator that creates a network of virtual hosts,

switches, controllers, and links. Running through standard Linux and its switches support

OpenFlow protocol for highly flexible custom SDN. Also, Mininet allows working with

various topologies structures, also supporting different controllers like OpenDaylight

(ODL) Hewlett Packard Enterprise and Virtual Application Networks (HPE-VAN),etc.

[20].

Using also ODL controller, which is a Java, based open-source developed and

managed by the Linux Foundation, gives flexibility to a developer to plug-in new

applications using northbound APIs, it also supports OpenFlow and other standard

protocols from IETF for southbound communication.

In this implementation, the ODL controller has been considered for many reasons:

 ODL tends to standardize the APIs to achieve industry recognition, which turns

to prioritize security requirements .

 ODL has a dedicated DoS attack detection and prevention module packaged with

recent builds.

 The OpenDaylight community has emphasized more on the security aspects in

their recent release. Spoofing of identity is not viable in ODL because the

Authentication, Authorization, and Accounting (AAA) service is embedded in the

controller and ensures that only authenticated users get access to the resources of

the network .

 Also Spoofing or impersonating an identity of a switch could not be achieved in

ODL because the Secure Network Bootstrapping Infrastructure (SNBI) module

handles the switch authentication process by checking the certificate of an

individual switch, which is handled in ODL by using a combination of Media

Access Control (MAC), Virtual Local Area Network (VLAN) Identificaion (ID),

33

Internet Protocol (IP) and Location address as an index in the Device Manager

service.

 Both DoS and elevation of privileges threats are addressed in ODL by the

Defense4All and AAA modules. The Defense4All module can detect and mitigate

different types of network attacks including DoS to its NBI, SBI, processes, and

data storage .

 ODL processes can only be accessed by highly privileged (root) users .

 The data flow in the southbound interface for the communication between

switches and the controller is secured with TLS protocol, similar protection is

achieved in the northbound interfaces for the communication between

applications and REST APIs with HTTPS protocol (which uses TLS 1.2

protocol). This secures the channel against threats like tampering and information

disclosure.[12].

In addition, using HPE–VAN (Hewlett Packard Enterprise Virtual Application

Networks) controller provides a unified control point in an SDN/OpenFlow-enabled

network, simplifying management, provisioning, and orchestration. This enables the

delivery of a new generation of application-based network services. The HPE VAN SDN

Controller has been considered for many reasons:

 Uses OpenStack Keystone to provide token-based authentication to provide user

authentication.

 Completely isolates the security mechanism from the underlying REST API .

 Exposes a REST API to allow any authentication server that implements this

REST API to host elsewhere (outside the SDN controller).[20].

For penetration test tools that have been used are python scripts via Scapy, which has

been used in this experiment to generate packets. Two types of traffic were generated:

normal and DOS (Protocol attacks type) attack traffic which has a higher rate than normal

traffic. applied by Kali Linux OS which is a Debian-derived Linux distribution designed

for digital forensics and penetration testing, maintained and funded by Offensive Security

Services [21].

In this implementation, the network topology was built with 3 hosts, 4 switches,

and 3 controllers (ODL/HPE-VAN/POX) as depicted in Figure 4.1.a. ODL GUI, is used

for the graphical representation of this topology, POX controller is used for running some

python attacks and test scripts.

34

All tools and software used in the experiment for implementing emulated SDN

architecture with the Dynamic Defense In-Depth model are described in detail as follows:

• Mininet-2.2.2-170321-ubuntu-14.04.4-server-amd64 [Open vSwitch emulator

with POX 1.4 “dart” controller] .

• Hpe-van-sdn-ctlr-2.7.18.0503-ova [SDN controller #1] .

• Ubuntu-18.04.2-live-server-amd64 with OpenDayLight karaf-

0.8.4_Fluorine_August_2018 [SDN controller #2].

• DOS python 3.7. 4 script (Scapy 2.4.5 tool library) on Kali Linux OS.

• Middleboxes and mechanisms (AAA RADIUS, IDS, IPS, firewall, PSK, API key

Auth, SSL/TLS 1.3, HTTPS cert, L2 filter access and dot1x (802.1x)).

• Hardware[ASUS TUF FX705GE laptop specs: Intel Core i7-8750H Processor

(9M Cache, up to 4.10 GHz) / 16GB of RAM type DDR4 with 2666MHz / 1TB

HDD + 128GB SSD / NVIDIA GeForce GTX 1050Ti , with 4GB GDDR5

VRAM / 17.3-in (16:9) FHD (1920x1080) 144Hz / Windows 10 pro/ VM

WorkStation v12],

For the time and limitation of the Virtual Machine (VM) resources lab and the

scope of this research the only type of cyber-attack that needs to be used for testing will

be DOS attacks. Cause it is the most common and less skill needed from the attacker.

Also, it is the first step to any cyber-attack, to get info about the targeted system before

the real attack.

Moreover, see appendix Figures 4.1 to 4.14, which demonstrate how the

experiment assembled for the configuration, installation, and setup of network layouts for

each component:

1. mininet: in this stage of the experiment as shown in (appx Figure from 4.1 to 4.3) is

to prepare and install setup commands for the simulated virtual switches and hosts

(end-user devices, also the connection parameters of IPs and ports for each controller,

and finally the network topology. The Purpose here is to create the data plane

infrastructure nods, for the next step; the connection with the control plane.

2. hpe-van SDN & OpenDayLight SDN: next as shown in (appx Figures from 4.4 to

4.8) the installation and the startup services commands for the two controllers (HPE-

VAN and OpenDayLight) that are both connected to mininet switches in the same

network topology emulation, the Purpose here is first to connect the control plane

35

controllers to the data plane infrastructure nods. Finally, to manage and administrate

the controller's setting, rules, and configuration through the GUI control panel.

3. POX SDN and Scapy traffic generator: flow up the steps as shown in (appx Figure

from 4.9 to 4.10) the installation and startup services commands for the POX

controller. Is also connected to mininet switches in the same network topology

emulation with other controllers. the purpose here of POX controller is also used for

running Scapy python script that generates normal traffic, abnormal attack traffic, and

test entropy script.

4. Python DoS Attack Script: next as shown in (appx Figure 4.11 and 4.12) the python

DOS attack script execution; that has been used inside one of the hosts to begin the

attack on the topology controllers and also script will gather the effect result of the

attack on the network reachability.

5. Entropy tool startup and calculating: Entropy is a detection method used to detect

the DDoS attack. It is mainly used to calculate the distribution randomness of some

attributes in the network packets' headers. the value is between 0 to 1 or 0 to 2

depending on the number of classes in the dataset used in the experiment, but it means

the same thing, a very high level of disorder the closer to 0 it became, which also

means in case of DDoS is an attack traffic not normal traffic. flow up as shown in

(appx Figure 4.13 and 4.14) the entropy startup service commands and the calculation

before and after the DOS attack on the network in both designs the current SDN

architecture and the proposed DDiD model. The Normal Traffic is 1.46 for the current

SDN architecture, and for the DDiD model, the result was for Normal Traffic 1.54.

and for the attack entropy results are explained and shown in detail in the next section

the implementation and results section.

6. Network topology: was built with 64 hosts, 9 switches, and 3 controllers (ODL/HPE-

VAN/POX) as shown in (Figure 4.1).

36

Figure 4.4 Experiment Network topology

4.2 Predefined Conditions & Parameters

Regarding the experiment's predefined conditions All the simulated virtual

switches, controllers, and hosts (end-user devices, also the connection parameters of IPs

and ports for each controller), must be implemented using the OpenFlow 1.3 protocol

stander connection, and hybrid connection type on Linux OS to work properly with fewer

glitches.

Regarding, the experiment Parameters utilized to implement the previous mention

seven mitigation mechanisms are as follows:

 Applying a Synchronous distribution mechanism (States Detection); by

connecting three controllers with a revision number to check configurations and

rules changes among controllers. In case of failure or a new connection of devices

(switch or host).

 Applying an Independent variety mechanism (vulnerability identification); by

operating the three controllers with their different vendor systems cohesively,

within the same administration station.

 Applying a Self-healing mechanism (safety protection); by creating a pre-stored

backup, which triggers the threshold when an unauthorized change occurs. To

start the process of stopping the system and starting a safe mode of recovery, and

at the same time, the new requests will be forwarded to other controllers.

 Applying Dynamic switch coupling mechanism (Relation analysis); by using a

pre-shared cryptography approach with an access list, to block any unauthorized

request for coupling, from switches or controllers.

37

 Applying Reliable relations for controller & devices mechanism (Threat

identification); by upgrading the cryptographic protocol to SSL/TLS v1.3 and

applying the trusted platform module TPM Hardware Protection.

 Applying Reliable relations for controller & apps mechanism (Behavior

identification); by creating REST API token-based authentication provided by the

user authentication type, with TACACS+ (Terminal Access Controller Access

Control System Plus) as a AAA server.

 Applying Security clusters mechanism (isolation); by using virtualization as a

sandbox isolation approach between controllers with their application plane and

data plane, for a cluster of hosts, as separate domains.

4.3 Experimental Implementation and Results

In consequence, for experiment needs, it must first identify the Wight values and

Features for DOS attack before and after Appling DDiD model, and the right label to use

it as measurement .

 Features (x) with Weight: Packet size, Packet arrival interval, Packet number,

Packet protocol ID & port, Packet priority, Number of requests, Response time,

CPU usage .

 Labels (y): consist of Sensitive traffic (QOS prioritized traffic), and Best-effort

traffic (Normal /abnormal behavior traffic), which is categorized as Undesired

traffic, and hence can be further categorized as Direct attack (DDOS attack).

Indirect attack (Man-in-the-Middle attack). Exploit attack (vulnerability attack).

In the proposed model of DDiD, the randomness of the incoming packets must be

measured for the right indication of the success of the model. One of the communally

used measures of the randomness of DOS attacks is entropy-based or Machine Learning

(ML) identification (takes time to learn the features before start identifying them).

Entropy measures the probability of an event happening concerning the total number of

events using the previous mentions Features in the realm of cybersecurity. [22].

To compute the entropy, it uses the below equations and where xi is the pool of

Features used in proportion to the probability Pi of each connection request total n .

𝑙𝑜𝑔2{(x1),(x2),(x3),...}

38

𝑝𝑖 = (
𝑥𝑖
𝑛
)

Entropy =∑ 𝑝𝑖(𝑥)
𝑛
1 𝑙𝑜𝑔2(

1

𝑝𝑖(𝑥)
)

When each feature appears only once per request, the entropy will be at it is the

maximum value, which means normal traffic. If an attack is occurred by sending a large

number of packets directed towards an SDN controller the entropy will be at it is less

value (unequal distributed entropy will show) which means attack traffic. Table 4.1

demonstrates the entropy result for the current SDN architecture

Table 4. 1 Entropy results for current SDN architecture

Traffic type Average entropy

Normal Traffic 1.46

Attack Traffic of 10 attempts 1.33

From the two entropy values of normal traffic 1.46 and attack traffic 1.33, the

Standard Deviation becomes possible to calculate, for final comparison. Therefore, the

Standard Deviation value is σ= 0.03. the following table 4.2 demonstrates the Entropy

result for the proposed model

Table 4. 2 Entropy results from DDiD model

Traffic type Average entropy

Normal Traffic 1.50

Attack Traffic of 10 attempts 1.26

Notice the average entropy value is 1.50 that a higher value than normal traffic of

current SDN architecture, cause of multi-entity added and structure change, which adds

more resource usage, with more demand on performance, which acceptable tradeoff

compering to more risk mitigation. and for the attack traffic, the value is 1.26 that a lesser

value of entropy than the current SDN architecture, which gives an easier indication for

attack detection. Consequently, from the two values of normal and attack traffic, the

Standard Deviation value is σ= 0.06.

39

Table 4.3 demonstrates the comparison between the Standard Deviation from the

current SDN architecture and DDiD model, more calculation details in appx 4.15 and

appx 4.16

Table 4. 3 Standard Deviation from current SDN architecture and DDiD model

 Standard Deviation

Current SDN architecture σ: 0.03

DDiD model σ: 0.06

Diverge ± 0.02

Percentage Difference ~59.51% difference

Hence, from the result value of Standard Deviation in both cases, the DDiD got a

higher Deviation between normal traffic and attack traffic than the current SDN

architecture. With the diverging value of ±0.02 and utmost ~59.51% difference in the

level of protection. To put it in perspective, a high standard deviation value in each

separated case means that the traffic is outspread far from the average value of normal

traffic and that indicates abnormal traffic was detected. In our case that was the event of

a DDOS attack (to explain the DDOS attack impact).

In general, the attack produced massive and continuous data packets, so the

standard deviation of flow packets will be higher than the normal traffic flow. Which why

as previously mentioned, the standard deviation is commonly used in conjunction with

entropy to detect DDOS attacks. The DDiD model with the help of entropy and higher

standard deviation value managed to detect and drop the packets from the device that was

the source of DDOS attack by noticing the massive number of continuous requests per

period and mitigating the attack as shown Appx Figure 4.14. Furthermore, the values of

the results may vary. This is because the experiment has been conducted in an emulated

environment from top to bottom perspective for the software and the hardware.

4.4 Discussion

This paper aimed to enhance the protection of the divided concept in SDN

architecture, which reduces the creation of more attack surfaces that can be targeted by

40

malicious activities. Also, describing the evaluation mechanism, which confirms if the

SDN controller layer met the requirement of a Secure structure. Consequently, this

research was carried out on the design of a dependable controller model with the

requirements for a secure, resilient, and robust SDN controller, by reducing the existing

gap between the actual security level of the current SDN Controller design and the

potential security solutions, through deploying a DDiD mechanism in Openflow protocol

for SDN Controller .

In general, DDiD has proven a significant aspect in enhancing the security of SDN

architecture. The key factor lies in the fact that DID mechanism is more flexible, agile,

reliable, and robust to mitigate SDN security challenges. In addition, a secured SDN is

an essential requirement to get implemented in an operational network for control and

administration purposes. Furthermore, that kind of architecture will play a further role in

the ongoing growth of internet services demands.

DDiD mechanism suitable for SDN is still in the enhancement phase and can go

forward with more future work, like more efficient distributed layers of protection for

each instance of the SDN component without affecting much in the performance and

hardware resources. This paper has highlighted and outlined the Great potential of SDN

from one side and proposes a solution to the dark side of SDN which is the security

challenges of using DDiD. Therefore, from This Experiment the mainly learned points

are:

1. Clarifies the SDN controller’s concept, the OpenFlow protocol, and network

infrastructure emulation to implant the SDN architecture.

2. Meeting the main requirements of SDN architecture which is; the application

layer, control layer (control plane), and infrastructure layer (data plane).

3. Validating and testing by simulating the implementation of SDN on several

controllers and device emulators to ensure its ability to deliver robust results.

4. Applying DDiD Model for SDN Control Layer to Enhance OpenFlow Protocol

Security and then testing it by Launching a DOS attack led to noticeable results

that ensure the enhancement of SDN security.

41

4.5 Summary

This chapter, meeting up the objectives of clarifying and validating the

implementation of DDiD model to deal with the SDN security vectors challenges in an

emulated environment. As well in this chapter, the effectiveness of the proposed

framework has been evaluated in two experimental studies, each one has ten different

variables of DoS attack attempts; each attempt has its weight values and Features for both

structures, the current SDN architecture and after Appling the DDiD model to validate

the correctness of the framework mechanisms, which are used to form the DDiD model.

 Furthermore, the results followed during the experiments were carefully

measured. By maintaining the integrity of each entropy phase value that has been

calculated with as many samples as possible, and keep checked by stander deviation.

The next chapter discusses the conclusion in detail and concludes the thesis.

42

Chapter 5

Conclusion & Future work

5.1 Conclusion

SDN allows network operators to quickly respond to changing business

requirements by determining traffic from the centralized controller without interacting

with the physical endpoint devices. Therefore, more security and network infrastructure

protections are needed.

An extensive investigation of the mechanism of DDiD model was conducted as a

proposed security framework for the OpenFlow protocol for SDN Controller. In general,

DDiD has proven a significant aspect in enhancing the security of SDN architecture. The

key factors lie in the fact that DID mechanism is more flexible, agile, reliable, and robust

to mitigate SDN security challenges.

DiD employ different types of network protection software (barriers) that

combine various network security techniques on a single network. The DDiD

mechanisms are synchronous distribution, independent variety, self-healing, dynamic

switch coupling, trust relation for controller and devices, trust relation for controller &

apps, and security clusters against the vectors: fabrication, exposure in switches,

communications threats, exposure in the controller, trustworthy, exposure in admin

stations and lack of restoration.

The testing method used in this research is entropy-based detection, to measure the

randomness of DOS attacks. From the result value of standard deviation in both entropy-

based cases, the DDiD resulted in a higher standard deviation value between normal

traffic and attack traffic than the current SDN architecture. With a diverging value of

±0.02 and utmost ~59.51% difference in the level of protection .

5.2 Limitations

The requirement of building such a secure structure from selective high-end

hardware and software is through a virtual environment to reduce the dependency on a

specific vendor device, therefore, the scalability of such an experiment that has a large

data between traffic and rules is limited to simulated hardware performance, controller

43

open-source software glitches patching, resource utilization, application packaging

deployment compatibility, and cost of a virtualization technology license.

5.3 Future Work

Even though the proposed model showed better security mitigation, more work

on enhancing such a model is accomplished. For instance, more efficient distributed

layers of protection for each component of the SDN. a zero-trust model should be applied

to verify explicitly for each connection with data plane devices or application plane, least

privileged access for each administrator user, and finally assume breach before real

compromise happened, all that without affecting much in the performance and hardware

resources.

44

Bibliography

[1] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation using OpenFlow:

A Survey,” IEEE, pp. 1–20, 2013.

[2] D. Kreutz et al., “Software-Defined Networking : A Comprehensive Survey,”

Manuscr. Accept. Publ. Proc. IEEE. Novemb. 10, 2014., vol. 103, no. 1, pp. 1–63,

2014.

[3] S. Scott-Hayward, “Design and deployment of secure, robust, and resilient SDN

controllers,” 2015 IEEE, pp. 1–5, 2015.

[4] M. Liyanage, M. Ylianttila, and A. Gurtov, “Securing the control channel of

software-defined mobile networks,” Proceeding IEEE Int. Symp. a World

Wireless, Mob. Multimed. Networks 2014, WoWMoM 2014, 2014.

[5] Y. Liu, B. Zhao, P. Zhao, P. Fan, and H. Liu, “A survey: Typical security issues

of software-defined networking,” China Commun., vol. 16, no. 7, pp. 13–31, 2019.

[6] Homeland Security, “Recommended Practice: Improving Industrial Control

Systems Cybersecurity with Defense-In-Depth Strategies,” Ics-Cert, no.

September, pp. 1–48, 2016.

[7] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and dependable

software-defined networks,” HotSDN 2013 - Proc. 2013 ACM SIGCOMM Work.

Hot Top. Softw. Defin. Netw., pp. 55–60, 2013.

[8] P. Krishnan and J. S. Najeem, “A review of security threats and mitigation

solutions for SDN stack,” Int. J. Pure Appl. Math., vol. 115, no. 8 Special, pp. 93–

99, 2017.

[9] A. Pradhan and R. Mathew, “Solutions to Vulnerabilities and Threats in Software

Defined Networking (SDN),” Procedia Comput. Sci., vol. 171, no. 2019, pp.

2581–2589, 2020.

[10] C. L. Smith, “Understanding concepts in the defence in depth strategy,” IEEE

Annu. Int. Carnahan Conf. Secur. Technol. Proc., pp. 8–16, 2003.

[11] S. Liu, P. Zhang, and H. Sun, “Research on defense in-depth model of information

network confrontation,” Proc. - 4th Int. Conf. Comput. Inf. Sci. ICCIS 2012, pp.

267–270, 2012.

45

[12] R. K. Arbettu, R. Khondoker, K. Bayarou, and F. Weber, “Security analysis of

OpenDaylight, ONOS, Rosemary and Ryu SDN controllers,” 2016 17th Int.

Telecommun. Netw. Strateg. Plan. Symp. Networks 2016 - Conf. Proc., pp. 37–44,

2016.

[13] B. Agborubere and E. Sanchez-Velazquez, “OpenFlow communications and TLS

security in software-defined networks,” Proc. - 2017 IEEE Int. Conf. Internet

Things, IEEE Green Comput. Commun. IEEE Cyber, Phys. Soc. Comput. IEEE

Smart Data, iThings-GreenCom-CPSCom-SmartData 2017, vol. 2018-Janua, no.

February 2018, pp. 560–566, 2018.

[14] M. Rahouti, K. Xiong, Y. Xin, S. K. Jagatheesaperumal, M. Ayyash, and M.

Shaheed, “SDN Security Review: Threat Taxonomy, Implications, and Open

Challenges,” IEEE Access, vol. 10, pp. 45820–45854, 2022.

[15] S. Groat, J. Tront, and R. Marchany, “Advancing the defense in depth model,”

Proc. - 2012 7th Int. Conf. Syst. Syst. Eng. SoSE 2012, pp. 285–290, 2012.

[16] R. Pradeepa and M. Pushpalatha, “Exploring attack vectors and security

challenges in SDN,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 11, pp. 2945–

2949, 2019.

[17] TCG, “Trusted Platform Module Library Part 3: Commands,” 2014.

[18] Z. Yan and C. Prehofer, “Autonomic trust management for a component-based

software system,” IEEE Trans. Dependable Secur. Comput., vol. 8, no. 6, pp. 810–

823, 2011.

[19] K. K. Karmakar, V. Varadharajan, U. Tupakula, and M. Hitchens, “Towards a

Dynamic Policy Enhanced Integrated Security Architecture for SDN

Infrastructure,” Proc. IEEE/IFIP Netw. Oper. Manag. Symp. 2020 Manag. Age

Softwarization Artif. Intell. NOMS 2020, 2020.

[20] H. Packard Enterprise, “HPE VAN SDN Controller 2.7 Administrator Guide,” no.

March 2016, 2016, [Online]. Available:

http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c05028095.

[21] M. A. Raphaël Hertzog, Jim O’Gorman, Kali Linux Revealed Mastering the

Penetration Testing Distribution. 2017.

46

[22] R. M. A. Ujjan, Z. Pervez, K. Dahal, W. A. Khan, A. M. Khattak, and B. Hayat,

“Entropy based features distribution for anti-ddos model in SDN,” Sustain., vol.

13, no. 3, pp. 1–27, 2021.

47

Appendix

This section contains the experiment figures of configuration, calculation formulas, and

setups for installing the labs.

Appx Figure 4.1 Mininet instillation & configuration commands

48

Appx Figure 4.2 Mininet implementation commands

Appx Figure 4.3 Mininet start simulation for hosts & switches commands

49

Appx Figure 4.4 OpenDaylight & HPE controllers configuration part 1

Appx Figure 4.5 OpenDaylight & HPE controllers configuration part 2

50

Appx Figure 4.6 OpenDaylight & HPE controllers configuration part 3

Appx Figure 4.7 OpenDaylight & HPE controllers configuration part 4

51

Appx Figure 4.8 OpenDaylight & HPE controllers connection status

Appx Figure 4.9 POX controller setup with Scapy traffic generates commands part 1

52

Appx Figure 4.10 POX controller setup with Scapy traffic generates commands part 2

Appx Figure 4.11 Python DoS Attack Script (partial) part 1

53

Appx Figure 4.12 Python DoS Attack Script (partial) part 2

54

Appx Figure 4.13 Entropy tool startup, listening and calculating entropy value for current SDN

Appx Figure 4.14 Entropy tool startup, listening, calculating entropy value for DDiD model, and

detecting the attacker host.

55

Appx 4.15 Standard Deviation value calculation from entropy in case of current

SDN architecture:

σ: 0.03506211066094

Count, N: 10 number of attemted

Sum, Σx: 13.95054

Mean, μ: 1.395054

Variance, σ2: 0.001229351604

Steps

σ2 =
Σ(xi - μ)2
N

=
(1.36330 - 1.395054)2 + ... + (1.42532 - 1.395054)2
10

=
0.01229351604
10

= 0.001229351604

= √0.001229351604

σ = 0.03506211066094

Margin of Error (Confidence Interval)

The sampling means most likely follow a normal distribution. In this case, the standard

error of the mean (SEM) can be calculated using the following equation:

σx̄ =
σ
√N

= 0.011087612926144

Based on the SEM, The lesser the margin of error, the larger confidence one should have

that a poll result would reflect the result of the experiment.

Appx 4.16 Standard Deviation value calculation from entropy in case of SDN with

DDiD model:

σ: 0.064767968665074

Count, N: 10 number of attemted

Sum, Σx: 13.40615

Mean, μ: 1.340615

Variance, σ2: 0.004194889765

Steps

σ2 =
Σ(xi - μ)2
N

=
(1.36870 - 1.340615)2 + ... + (1.28719 - 1.340615)2
10

56

=
0.04194889765
10

= 0.004194889765

= √0.004194889765

σ = 0.064767968665074

Margin of Error (Confidence Interval)

The sampling means most likely follow a normal distribution. In this case, the standard

error of the mean (SEM) can be calculated using the following equation:

σx̄ =
σ
√N

= 0.020481430040405

Based on the SEM, The lesser the margin of error, the larger confidence one should have

that a poll result would reflect the result of the experiment.

 SDNاستخدام نموذج الدفاع العميق الديناميكي لتحسين أمن شبكات
 إعداد

 محمود فرج الحجازي
 المشرف

 محمد مصباحد.
 الخلاصة

 لمستقبل،امنذ فترة طويلة مناسبة لمتطلبات الشبكات الآخذة في التوسع في تقنياتها القائمةو لم تعد الشبكات التقليدية

(هي الحل الأكثر قبولًا لذلك. SDNاتصالات الشبكة وإمكانية برمجتها. الشبكات المعرفة بالبرمجيات) أتمتهوتحديداً

(للتحكم المباشر APIبشكل منطقي وحدة تحكم مركزية تطبق واجهة برمجة تطبيقات مفتوحة قياسية) SDNيستخدم

حاليًا بروتوكول الاتصال الرئيسي والمعروف على نطاق OpenFlowفي وظائف معالجة الحزم لأجهزة الشبكة. يعد

واحدة مع فشل التحكم كنقطة وحدةل SDN هيكلية أصبحت المركزية،. نتيجة لمثل هذه SDN هيكليةواسع في

 SDNلكل طبقة. يستلزم ذلك البحث عن مزيد من إجراءات الأمان والحماية لمعمارية القابلة للهجومالمزيد من أسطح

استجابتها السريعة لمتطلبات العمل المتغيرة. تهدف هذه الورقة إلى تعزيز حماية مفهوم الأقسام في ب التضحيةدون

يركز ،وبالتاليمن إنشاء المزيد من أسطح الهجوم التي يمكن أن تستهدفها الأنشطة الضارة. مما يقلل ،SDNبنية

 ،Defense In-Depth (DID)يمكن الاعتماد عليه عبر تقنيات SDNالبحث على تصميم نموذج منصة تحكم

 Dynamic Defense In-Depth (DDiD)بما في ذلك متطلبات وحدة تحكم آمنة ومرنة وقوية. يُقترح نشر نموذج

 لحماية،االتهديدات القابلة للقياس وآليات التفصيل في العام. OpenFlowلتعزيز أمان بروتوكول SDNلطبقة تحكم

(. تقترح الورقة أيضًا آلية mininetحيث يتم التحقيق فيها وتنفيذها باستخدام بيئة المحاكاة) ،DDiDوفقًا لنموذج

 0.02± بقيمة متباينة تبلغ .SDNتقييم)واختبارات(لتأكيد قابلية تطبيق متطلبات الهيكل الآمن على طبقة تحكم

ات يكانمإ انه هناك تؤكد النتائج التي تم الحصول عليها على .في مستوى حماية أفضل ٪59.51وأقصى فرق ~

 . يق الأهداف الأمنية المطلوبةلتحق في النموذج المقترح واعدة

استخدام نموذج الدفاع العميق الديناميكي لتحسين
 SDNأمن شبكات

 قدمت من قبل:

 محمود فرج الحجازي

 تحت إشراف:

 محمد مصباحد.

 رسالة استكمالا لمتطلبات الحصول على درجة الماجستير فيهذه ال قدمت

 علوم الحاسوب

 2022.10.22بتاريخ

 بنغازي جامعة

 تقنية المعلوماتكلية

2022

