

An Approach to Improve Multi-agent System

Architecture Design by Minimizing

Complexity Aspects

 By

HOWAYDA ABDALLAH ALI ELMARZAKI

Supervision

Dr. Twfig Eltwel

This Thesis was Submitted in Partial Fulfillment of the

Requirements for Master's Degree of Computer Science

University of Benghazi

Faculty of Information Technology

Fall 2017-2018

Copyright © 2018. All rights reserved, no part of this thesis may be reproduced in

any form, electronic or mechanical, including photocopy , recording scanning , or

any information , without the permission in writhing from the author or the

directorate of graduate studies and training of Benghazi university.

محفوظة. لا يسمح اخذ اي معمومة من اي جزء من هذه الرسالة عمى 8102الطبع حقوق

هيئة نسخة الكترونية او ميكانيكية بطريقة التصوير او التسجيل او المسح من دون الحصول
 ت العميا والتدريب جامعة بنغازي.عمى اذن كتابي من المؤلف او ادارة الدراسا

Dedication

I would like to dedicate this thesis to my

beloved parents

and my husband Fathi, who offered me

unconditional love and support throughout

the course of this thesis.

Acknowledgments

First and foremost, I would like to thank ALLAH, without ALLAH this

work would never have been finished.

I would like to express my sincere thanks to my supervisor Dr. Twfig

Eltwel for his invaluable guidance and advice, his continuous support

and all the useful discussions I had with him from my initial study on this

research to the final thesis revisions.

I would like to thank my beloved husband Fathi El faitouri for his

unlimited and faithful support as well as his patience and unconditional

love. This thesis could not have been completed without his assistance.

Thank you!

Also, I would like to take this opportunity to thank my family who

provided me over the years with love and affection.

The last but not least, I am profoundly grateful to my kind friend Asya

Sohaim for her fruitful collaboration and advice. Also, I am deeply

indebted to Ms. Ebtisam Elberkawi and Heba Elnajar who gave me

useful advices. Finally, I thank everyone who encouraged me.

Howayda
 Jan 2018

i

Contents

Abstract i
Dedication ii

Acknowledgments iii

Chapter1. Introduction 1

1.1. Motivations …………..…...………………….……………………………………3

1.2. The Problem Statement …...………………….……………………………………4

1.3. Aims and Objectives…………………………………………………..……..…….5

 1.4. The Proposed Salutation Approach…………………………………......................5

1.5. Contribution of the Thesis………………………………….…………...................6

1.6. The Methodology……………………………………………………….………….7

1.7. Scope and Limitations………………………………………………………….…..8

Chapter 2 Background 9

2.1. Multi Agent System (MAS) ……………………….…………..……………...…...9

2.2. The Definition of Agent …………………………………...………………...…...10

2.3. The Agent Architecture ………………………………….……………..………...10

2.4. The Communication of Agents …………………………………………..………10

2.5. The Application Based on MAS………………………………………...………..11

2.6. The Software Architecture Design………………...………………….………......12

2.6.1. The Architectural Issues Include Strategic Decisions ………….………12

2.7. The Quality of Software Design………………………………………..…….…...13

2.8. The Complexity in Software Design…………………….......................................13

2.8.1. The Types of Complexity………………..…………….…………….....14

2.9. The Abstraction…………………………………………………….…………......14

2.9.1. Aims of Abstraction…………………………………………….............14

2.9.2. Levels of Abstraction…………………………………...………………14

2.9.3. Types of Abstraction…………………………………………………....15

2.10. The Modularity…………………………………………………………….….....16

2.11. The Modeling…………………………………...………………………….........17

ii

2.12. A black Board System (BBS)…………………………….…….…………....…17

2.13. Gold Plating ………………………………………………..……......................18

2.14. Function Point (FP)……… …………………..…………...…….........................18

2.15. Overview of Use Case Point (USP)…..……….……..……………....…..…..….19

2.15.1. Use Case Point Counting Processes…….……………..........................19

2.16. Recommendation Systems (RS) …………………………………………...…....24

2.17. Use Case Maps (UCM)…….…………………..………………………………..24

2.18. Knowledge Base Systems (KBS)……….……………..…..………....................24

2.19. The Measurement………………………………………………………….…..25

2.20. Task………………………………………...……………………….……….…..25

Chapter 3. Related Work 26

3.1. Overview of Related Work……………………………………………………….26

3.2. Summary………………………………………………………………………….29

Chapter 4. FG4 Complexity Approach 30

4.1. The Architecture Design in Software Developments Life cycle (SDLC)…….......30

4.2. The Concepts of Analyses and Design……………………………………………31

4.3. Reducing the Complexity of AD Using Abstraction, Modularity and Modeling……….32

4.3.1. The Role of the Abstraction……………………………………………32

4.3.2. The Role of the Modeling...…………………………………………….34

4.3.3. The Role of the Modularity…………………………………………......35

4.4. Factors and Guidelines (FG) …………………………………………………......36

4.4.1. Factors and Guidelines for Abstraction (FGA)………………………....37

4.4.2. Factors and Guidelines for Modularity (FGM)………………..……….40

4.4.3. Factors and Guidelines for Modeling (FGMOD)……………………….42

 4.5. The Clarifications of FG4Complexity Approach………………………………....45

 4.6. Summary……………………………………………………………………...…..46

iii

Chapter 5. Case Study Application and Measurement 47

5.1. The Case Study………….…………………………………..................................48

 5.2. The Agents Participant in System……………………….......................................53

 5.3. The Internal Structures of Agents……………………...……….…………….......53

5.4. Agents and Their Tasks………………………………………..............................56

5.5. The Relational Model of Agents………………………………………………….56

5.6. The Conversational Model……………………………………………………......57

5.7. Conceptual Overview of Architecture Design………………………………………..59

5.8. The Application and Measurment………………………….…………………......60

5.8.1. The Application ………………………………………...........................60

5.8.2. The Measurment……………………...75

5.9. Summary………………………………………………………………………….93

Chapter 6. Conclusion and Future Work 94

6.1. Conclusion ……………………………………………………………………......94

6.2. Future Works …………………………………………………………………......94

References 95

iv

List of Figures

1.1. Quality characteristics which are affected by complexity………………..4

1.2. Overview of solution approach mechanism ……………………………..6

1.3. Overview of methodology steps …………………………………………7

2.1. The interactions among agents' environment via ACL………………….11

2.2. The MAS applications in real world…………………………………….11

2.3. The specification level of abstraction …………………………………..15

2.4. The realization level of abstraction ………………………………….….15

2.5. The transiting between specification level and realization level of abstraction.15

2.6. Illustrating the different types of abstractions………………………...…16

2.7. The components blackboard system …………………………………….18

2.8. The describing of the UCM method……………………………………..19

2.9. Showing the knowledge phase…………………………………………..25

4.1. The position of architecture design in SDLC……………………………30

4.2. The architecture concepts addressed in FG4Complexity approach……..31

4.3. Using the maps to describe the architecture design……………………..34

4.4. The concepts of analyses and design which were addressed in FG4Complexity approach…..….35

4.5. The altering to simplifying abstraction……………………...…………..37

4.6. The high and detail levels of abstraction………………………………...39

4.7. The relation between complexity and abstraction……………………….39

4.8. Illustrating the Hierarchical Decomposition Approach (HDA)………....40

4.9. The agent targeted to further decomposition………………….……...….41

4.10. The use case maps construction………………………………………..43

5.1. High level and intermediate models (HLIM)……………………………47

5.2. The message from the NDA to the FA…………………………………..49

5.3. The message from the FA to the RA…………………………………….50

5.4. The message from the RA to the FA…………………………………….50

5.5. Illustrating the GUI of scenario case1…………………………………...50

v

5.6. Illustrating the GUI of scenario case2…………………………………...51

5.7. The message from the PA to the FA…………………………………….52

5.8. The agent relational model………………………………………….…...57

5.9. Conceptual overview of books recommendations system architecture design...59

5.10. Illustrating of the applied steps of AD…………...………………..…...62

5.11. Using the use case maps for the systems…………………………….…62

5.12. Using the use case maps for the profiling agent………………………..62

5.13. Gathering the preferences the case of new user ………………...……..62

5.14. Gathering the preferences the case of existing user ………………...…63

5.15. Using the use case maps for the NDA……………………………….....63

5.16. Using the use case maps for the filtering agent……………………...…63

5.17. Receiving message from NDA……………………………………...….63

5.18. Receiving message from profiling agent…………………………...…..64

5.19. Receiving message from profiling agent case of new user…………….64

5.20. The case of receiving message from profiling agent for registered user.64

5.21. The case of availability of new book…………………………………...65

5.22. No new book is available case………………………………………....65

5.23. The failure of CF approach to introduce the recommendation case..….65

5.24. The success of CF approach to introduce the recommendation case….66

5.25. Comparing the active user profile with recommendations…………….66

5.26. Comparing the recommendations list with the available books list…...66

5.27. Comparing the active user profile with recommendations list………...67

5.28. Comparing the recommendations list with available books…………...67

5.29. UCM for retrieval agent………………………………………………..67

5.30. UCM for translating books mechanism………………………………..88

5.31. Omitting the part represented the gold plating ………………………..69

5.32. Conceptual System After applying HDA ……………………………..69

5.33. Architecture Places Affected by Applying Step4 ……………………..73

5.34. First Level of Abstraction Graph 1… ……………………………...….74

5.35. Second Level of Abstraction Graph 2………….. …………………….75

5.36. Describing The Complexity Task Measurement (CT……………...….77

vi

5.37. An overview of RA Tasks……………..…….. ……………………….77

5.38. An overview of NDA Tasks ………..……………………………...….82

5.39. An overview of PA Tasks …….........…………………………...…….84

5.40. An overview of FA Tasks …….... ………………………………...….86

5.41. An overview of TA Tasks ……………….... ……………………...….88

5.42. The Results of CTM Measurement………….... …………………..….91

5.43. Displaying The AD Before and After Applying The FG4Complexity Approach……92

vii

List of Tables

2.1. The use case classification ………………………………..…………….20

2.2. Calculate the unadjusted use case weight ……………………………….20

2.3. Showing the actor classification ………………………………………...21

2.4. Calculating the actors weights …………………………………………..21

2.5. The technical complexity factors weights ……………………..………..22

2.6. Showing the Environmental Factors weights…………………………....23

4.1. The symbols interpretation of architecture concepts …………………. ..36

4.2. The abbreviation of CCM metrics…………..………………..……….…41

4.3. The proposed notations……………………..……………………….......44

4.4. Some clarifications about FG4Complexity approach……………….......45

5.1. A profiling agent internal structure ……………………………………..43

5.2. A need determination agent internal structure…………………………..54

5.3. A filtering agent internal structure …………………....…………..…….55

5.4. A retrieval agent internal structure ……………………………………...55

5.5. A translation agent internal structure …………………………………...55

5.6. The gents and their tasks ………………………………..………………56

5.7. The profiling agent conversational model ……………………………...57

5.8. The need determination agent conversational model…………………...57

5.9. The filtering agent conversational model ………………………….…...58

5.10. The retrieval agent conversational model ……………………………..58

5.11. The translation agent conversational model ……………………….….58

5.12. Illustrating the abbreviations of the books recommendations systems..60

5.13. The main component and their connected in books recommendations systems……..69

5.14. The calculating by using the CCM technique………………..………...71

5.15. Clarifying the impact marks on AD………..……………………….....72

5.16. Illustrating the abbreviations of CTM …………………………….......76

viii

5.17. The adapting between UCP and CTM techniques………………..…...76

5.18. Illustrating the unadjusted task weight method (UTW)………….……78

5.19. Calculating the UTW of retrieval agent……………………………….78

5.20. Illustrating the unadjusted actors' weights method (UAW)…………...78

5.21. Calculating the UAW of retrieval agent…………………………....….79

5.22. The weights of technical complexity factor (TCF)……………….........79

5.23. The weights of environment complexity factor (ECF)………………...80

5.24. The UTW of need determination agent………………………………..82

5.25. The UAW of need determination agent………………………………..83

5.26. The UTW of profiling agent…………………………………………...84

5.27. The UAW of profiling agent…………………………………………..85

5.28. The UTW of filtering agent……………………………………………86

5.29. The UAW of filtering agent……………………………………………87

5.30. The UTW of translation agent…………………………………………88

5.31. The UAW of translation agent…………………………………………89

5.32. The assessment of CTM before and after applying FG4Complexity approach……..90

ix

List of Abbreviations

MAS Multi-Agent System

GUI Graphical User Interface

AD Architecture Design

RS Recommendation System

ACL Agent Communication Language

KQML Knowledge Query and Manipulation Language

PA Profiling Agent

TA Translation Agent

RA Retrieval Agent

FIPA Foundation for Intelligent Physical Agent

UCMs Use Case Maps

BBS Black Board System

UCP Use Case Point

FP Function Point

CFA Collaborative Filtering Approach

CBF Content-Based Filtering

KB Knowledge Base

KBS Knowledge Base System

OOE Object Oriented Environment

RB Rule Base

BR Books Resource

BDB Books Data Base

Req Request

Info-M Information (message)

IDR Item Data Base

FG Factors and guidelines

FGA Factors and Guideline of Abstraction

FGM Factors and Guideline of Modularity

x

FGMOD Factors and Guideline of Modeling

CCM Cohesion Communication Measurement

SDLC Software Development Life Cycle

TCM Task Complexity Measurement

UTW Unadjusted Task Weight

UAW Unadjusted Actor Weight

NST Number of Simple Tasks

NAT Number of Average Tasks

NCT Number of Complex Tasks

NSA Number of Simple Actor

NAA Number of Average Actor

NCA Number of Complex Actor

Abstract

The efficiency of multi-agent system (MAS) design mainly relies on the quality of a

conceptual architecture. Thereby, the quality substantially influences the software

system architecture, and plays a key role in the description of the initial architecture.

Hence, quality properties, such as understandability, complexity, readability,

testability, maintainability, reusability, etc should be considered at an early stage in

the software development process. It is worth noticing that, large systems such as

multi agents systems require many communications and interactions to fulfill their

tasks, which may leads to complexity of architecture design (AD).

This thesis attempts to clarify the complexity situations that might happen during the

description of architecture design through many aspects represented in the abstraction,

modularity, and modeling by introducing an approach that aims to put a set of

guidelines to minimize the effects of complexity, provides clarification for each

guideline and guides agent systems developers in order to design architectures with

high quality, low complexity and understandable.

The approach is applied on a case study to books recommendations system which

based on multi agent systems where the complexity is measured by complexity task

measurement (CTM) which based on use case point method. The solution has also

displayed the complexity results before and after applying the approach.

Keywords: Multi agent system (MAS), a general architectures, Quality attributes,

Recommendations systems (RS

1

CHAPTER 1

Introduction

In the last decade, expert systems and more recently, multi-agent systems emerged as new

software technologies which brought together many discipline as (reasoning, knowledge

representation, machine learning, planning, coordination, communication , etc.) in an effort to

build distributed, intelligent, large scale systems and applications (Oprea, 2004). Multi-agents

systems belongs to the field of AI (Artificial Intelligence), the field addressing the approaches

of construction of complex systems using a large number of entities (agents) which are altering

their behavior in order to accommodate with a particular problem (Markic, 2014). These

agents, work together to solve problems which cannot be solved by their individual skills via

Agent Communication languages (ACL) (Wood & DeLoach, 2001).

An agent is computer software that contains many features. One of the most important features

of an agent is "autonomy" which enable the agent to take decisions without the direct

intervention of humans or others (Markic, 2014), (Ahmed Taki, 2014). An intelligent agent can

also be reactive, proactive, and social ability, because it responses to the actions and alteration

which appears in the working environment, can tack the initiative to establish the goals, and

interacts with other agents. Other features that an agent might have include mobility,

adaptability, trustworthiness, rationality, and learning capability (Chin, Gan, Alfred, Anthony,

& Lukose, 2014).

In software industry, design decision is the most difficult task; particularly, when system is

constructed from many components. These components require an organization of an overall

system. This organization is called Architecture Design, (AD) which represents the

fundamental frame of a system embodied in its elements and relationships. It actually

represents the design decision of a software system due it found directly before design phase

and after analyses phase in software development life cycle (SDLC). Unfortunately, the

complexity becomes the major problem of architecture design (Far, 2002). which affects the

software system's quality characteristics such as understandability, reusability, maintainability,

testability, due to of the size of software systems, components and interactions increase (Sinha,

2013), (Ghazal Keshavarz, 2011).

Most literatures state that the complexity emerges clearly in architecture design of multi agent

systems that assigned many and different tasks.

2

This research work is an attempt to assist developers to design high quality architectures, not

complex, easy to understand and easy to validate for systems based on agents by introducing

an approach including a set of factors and guidelines considered during architecture design

development.

1.1.Motivations

From available literatures, many researchers have tried to set factors for quality in architecture

design that discuss general issues of design quality, without targeting in particular the issue of

"complexity" or developing guidelines to reduce it. Other researchers have measured the

complexity in multi-agents systems's architectures design using different methods such as:

- Using mathematical logic (Anirban Sarkar, 2012).

- Using matrices (Kl¨ugl, 2008).

- Using certain conventional equations, roads and working in the Object Oriented

environment (Iván García-Magariño, 2010).

There is a large number of researchers who have used proposed methodologies and approaches

to design architectures based on multi-agents systems (Sara Maalal, 2011).

On one hand, all researchers have attempted to produce high quality architectures, but on the

other hand there are no specific guidelines to assist developers avoid the difficulties and

complexities in the early stages of architecture design.

Correspondingly, the challenge of complexity is not only large, but also growing (Luiz, 2009).

For this reason, developers of these systems strive to design architectures which have highly

cohesive, low coupling and low complexity to meet the quality requirements (STARON,

2016), (Saxena & Kumar, 2012).

Moreover, complexity can affect other quality characteristics, e.g. understandability,

maintainability, reusability, and testability as it is illustrated in figure (1.1) (Ghazal Keshavarz,

2011).

3

From available literatures, the complexity of the design hides potential defects, and makes it

impossible to be certain if the systems will function correctly. This is by a survey introduced

by Financial Times and The Economist in the period (2001 – 2009) concerning with

complexity in software design (Luiz, 2009).

This means that software engineers need to produce designs that are easy to understand, easy to

implement, and easy to reason about (Keating, 2000).

In the same context, quality evaluations of multi-agents systems architecture is a crucial issue

for complex systems "design which is comprised of multiple agents" (Anirban Sarkar, 2012).

1.2.The Problem Statement

Complexity will be discussed as a research problem occurring in software architecture design

based on multi-agents systems, which requires more interactions among agents to support and

achieve its goals (services). These interactions are the main reason for complexities

occurrence. Whereas, complexity in design is the most important factor that affects the quality

of the design directly, especially in large systems (Ghazal Keshavarz, 2011).

Figure 1.1: Quality characteristics which are affected by complexity

 ٍ Quality Characteristic of system يَ

Indicates to less

High

Indicates to increase
Low

Low

High

Indicates to increase

- Understandability.
- Maintanability.
- Testability.
- Reuseability.

 Complexityيَ
 Quality Characteristic

Indicates to

4

1.3.Aims and Objectives

- Aim:

The aim of this research is to introduce an approach to decreas the complexity of

architecture design in multi-agent systems.

- Objectives:

To achieve the aim, the following steps must to be taken.

- To review literature works.

- To introduce an approach including the affected factors of complexity and

guidelines (consider during develomping the architecture design).

- To evaluate the validity and the effectiveness of this approach by a real case study.

1.4. The Solution

 The proposed solution is to achieve the desired goals of this research work. It mainly

presents a set of guidelines including the influential factors on the complexity of

architecture design. These factors are extracted from several sides of architecture

design which should be taken into consideration at the early stage of developing the

architecture.

 Introducing a clarification section including illustrative examples to each factor

influencing the complexity of architectures design of systems.

 In this research work we suggested that "FG4Complexity" to label the solution.

Thereby, "F" letter means Factors, "G" letter means Guidelines, and the "number 4"

means for.

5

1.5. Contribution of the Thesis

The main contribution of the present study is as follows:

 Introducing approach can help the developers of multi-agent system to build their

architectures avoiding the complexity influences from initially analysis to architectural

design decision.

 Adding clarification part after each complexity factor or guideline in the approach to

clarify its affection of complexity on architecture design.

 Introducing new measurement method and applying it on system based on multi-gent.

This by adding some modifications to the use case point method and adapt it to the

agent environment. The modification aims at estimating the complexity of the tasks in

each agent, the complexity of every actor connected with agents, the technical

complexity factors, the complexity of environment and the complexity of the tasks

assigned to all agents.

 Improving quality of multi-agents systems architectures design by decreasing the

complexity sides.

 The research work published in the following:

 7th International Conference on Software Engineering and Applications (JSE-2018), the

title of research paper is ―Increasing the architecture design quality for MAS: an approach

to minimize the effects of complexity‖. In 2018.

 International Journal of Software Engineering & Applications (IJSEA), the title of research

paper is ―Minimizing the Complexity effects to MAS Architectures Design based on

FG4Complexity Approach".in 2018.

 BAMMS Conference, and SPRENGER, the research paper title is ― New Approach to

Measure the Architecture Design Complexity of Multi Agent Systems: Recommendations

System Case Study‖, 2018. In proceeding.

1.6.The Methodology

In this research, an empirical approach is mainly concerned with the selected research

methodology. In this thesis, there are three essential aspects of architecture design represented

in abstraction, modularity, and modeling. In chapter four, the researcher provides further

elaboration on the importance of these concepts to the architecture design complexity.

6

1.7.Scope and Limitation

The research will focus on architecture design which is between analysis phase and design

phase in software engineering lifecycle. Other phases such as (Requirements, Implementation,

Maintains, Testing, design,…etc.) will not have more attention. This research actually utilizes

the experimental method (case study) to apply the proposed approach of multi-agents systems

and the architecture design complexity will be measured by using certain methods of software

engineering; however, the fuzzy logic or the mathematical theories will not be used in research.

1.8. Structure of Thesis

This thesis consists of six chapters which are organized as follows:

1. presents the motivation, the research problem, the objectives, outlines of the methodology.

This chapter also covers the key contributions, the solution approach, finally scope and

limitation of this thesis.

2. Summarizes the background knowledge of multi agent systems and its applications,

software architecture design, quality and complexity of software design. It also includes

the abstraction, the modularity, the modeling and the Black Board System. This thesis

sheds light on Gold Plating, Function Point, Use Case Point, recommendation systems,

use case maps and the knowledge based system and the measurement.

3. Provides an overview of the related work such standard and guidelines which support the

multi-agents systems quality, analyses the complexity of MAS, and research works on

complexity measurement.

4. Describes the proposed approach to solve the problem of architecture design complexity

based on specific concepts. It also illustrates the architecture design in software

development life cycle, thus; recognizes the concepts and properties which have a crucial

impact. Then, it explains the motivate behind selecting those concepts by introducing their

roles to reduce the level of complexity and improve quality. Eventually, it ends up with a

summary of the whole chapter.

7

5. Covers the case study based on multi agent system on which the proposed approach, the

application steps and the measurement will be applied. The application is through some

models used in methodologies related to agents systems.

6. presents conclusion and the scope of future works.

This chapter clarifies motivations, the problem statement, the objectives, the proposed

solution approach followed by the contributions, the methodology and the ends scope and

limitation of this research.

8

CHAPTER 2

Background

The purpose of this chapter is to briefly present the background on the research fields

impacting the work of this thesis. First, it explains briefly the multi agent systems, and presents

the definition, architecture and communication of agent. Then, it outlines the applications that

are based on the multi agent systems. After this the software architecture design is described

and the quality of software design is defined. Then it provides different definitions of the

complexity of software engineering and its types. In addition, it discusses the aims, the levels

and the types of abstraction. This chapter also gives an overview about modularity, modeling,

black board system, gold plating and function point. It clarifies the use case point and the steps

that need to be followed to count processes. Finally, it summarizes the recommendation

system, the benefits of use case maps, the knowledge base system, measurement, and task.

2.1. The Multi Agent Systems

Multi-agents systems can be defined as software systems which are comprised of groups of

entities called (agents). These agents, work together to solve problems which can be not solved

by their individual skills via Agent Communication languages.

(Bhardwaj, 2015), (Muli, 2015). The agents are usually designed to be:

- Autonomous: Making decisions without the direct intervention of humans or others.

- Reactive: Agents react to events and changes that arise in working environment such as

Physical world, Graphic User Interface (GUI), Agents, Internet or combined.

- Proactive: Agents can exhibit goal directed behavior by taking the initiative.

- Social ability: Agents interact with other agents via some kind of Agent

Communication language (Markic, 2014).

Business decisions are based on extraction of useful knowledge from various data sources.

Those data sources, are usually called the big data, might be huge digital data sets like an

internal data warehouse or external sources like the web. Intelligent agents can implement

certain tasks such as big data processing, information retrieval, etc. (Markic, 2014). Chapter 5

explains system based on multi-agents systems to use it in apply the proposed approach.

9

2.2. The Definition of Agent

 An agent is a computer system within an environment and with an autonomous behavior made

for realizing the objectives that were set during its design (Malika Addou, 2011).

2.3. The Agent Architecture

The agent has several architectures design such as BDI (Believe, Desire, and Intention)

architecture, cognitive architecture, reactive architectures, layered and hybrid architectures, etc.

These architectures are only related to the internal agent, but they are not a part of the multi

agent system or organization (O. Shehory, 1998), (Chin et al., 2014), (Broersen, Dastani, &

van der Torre, 2005). This work will focus on the tasks that assigned to each agent in system.

2.4. The Communication of Agents

It is the regular way that agents may interact with each other in order to achieve their delegated

goals. The agents can effectively communicate and exchange knowledge with each other by

using shared language called agent communication language .Typically, agent communication

languages are based on the speech act theory, which is a human knowledge level

communication protocol, Knowledge Query and Manipulation Language (KQML) and

Foundation for Intelligent Physical Agent (FIPA) which are the best known language used by

software agents for their communicative exchanges (Markic, 2014). In this research work, the

interaction among agents considered as the fundamental factor to stem the complexity in

architecture design.

Figure 2.1 illustrates an overview of interactions among agents via protocols on sharing

environment (Zambonelli et al., 2001).

11

2.5. The Applications Based on Multi-agents Systems

There are different application areas of multi-agents systems such as Ecommerce, Economic

systems, Distributed information systems, Research engines, Social media, Recommendation

systems, Scheduling, planning and other systems as shown in Figure2.2 (Sara Maalal, 2011).

Chapter 5 illustrates the complexity which occurs in architecture design by using the

recommendations system.

Figure 2.1: The interactions among agents' environment via ACL

(Zambonelli, Jennings, & Wooldridge, 2001)

Figure2.2: The multi-agents systems applications in real world

E-Commerce

Economic Systems

Distributed

Information Systems

Research Engine

Recommendation Systems

Scheduling Planning

Applications

Based MAS

Social Media

Agent Agent Agent

Interaction

Medium

Interaction Protocols

Agent Organizations

Sensors/ Effects

Environment

Org1 Org2

11

2.6. The Software Architecture Design

The software architecture has become an essential element in designing and discipline of large

and complex systems. In fact, software architecture is a description of the system as the

blueprint that aids in the understanding of how the system will act and it captures early design

decisions. The software architecture introduces many benefits like system understanding,

documentation, architectural drifts and reusability (O. Shehory, 1998), (Weyns, 2010).

There are different definitions of the concept of software architecture.

- It is composed of elements, form, components, connectors, and configurations

(Serebrenik, 2014).

- It describes solutions for addressing specific quality concerns as scalability,

modifiability, availability, security, performance, etc. (Mirakhorli, 2015).

- It is considered as the fundamental organization of a system embodied in its elements,

relationships (Serebrenik, 2014).

Consequently, software engineers often describe the architectures of their systems as high level

sides of the systems like the overall organization, modularity into components, and the tasks

that assignment to components, and the way the components interact. These descriptions often

use box and line diagrams and phrases (Mary Shaw, 1995), (Kruchten, 1995).

In multi-agents systems context, the architecture is 95% software engineering and just 5%

multi agent systems theories (Sara Maalal, 2011).

2.6.1. The Architectural Issues Including Strategic Decisions:

The decisions of design represented in architecture design including many issues such as the

following:

 Structural issues that include all organization and control structure.

 Choosing among design alternatives.

 Assignment of tasks to constituent agents.

 Structure of constituent agents.

 Determining protocols for communication, synchronization, etc.

 Hardware distribution (Far, 2002).

This work, will discuss the complexity, quality, application, and measurment issues through

the architecture design of multi-agent system.

12

2.7. The Quality of Software Design

 The quality of a software design can be expressed in terms of several characteristics such as

reusability, flexibility, understandability, functionality, extendibility, and

effectiveness(Sharma, 2012). Theoretically, the first place in which quality requirements can

be addressed is architectural models of software (Evesti, 2007), (ISO, 2016).

Quality requirements are considered as non-functional requirements in the initial steps of

software development and influence, importantly the architecture of software. In addition,

building a high quality software for real world applications is a hard mission for some

problems such as, the large number and flexibility of components, the complexity of

interconnections required (O. a. S. Shehory, Arnon, 2001).

Design quality indicates to decrease the rework, costs, and schedules, which lead to decrease

prices and increase market share; as a result, it leads to increase profits and business continuity

(Chris F. Kemerer, 2009). If so, it is useful realizing the quality in multi agent system which

including large number and flexibility of components, and interactions.

2.8. The Complexity in Software Design

The term "Complexity" refers to the effort that is required to understand with the system

(Wagner, 2011). There are various definitions of complexity in software design and which can

be listed as follows:

- "The term complexity refers to a large number of interacting components in a software

design" (Mohamed, 2013).

- "The degree of connectivity between entities in a software design" (STARON, 2016),

(Sinha, 2013).

- "Software design complexity is used to indicate the testability, maintainability,

readability and understandability of a software" (Sinha, 2013).

- "Complexity in software design refers to the difficulty in understanding and

manipulating the set of concepts" (Karageorgos, 2003), (Tran-Cao, Abran, & Lévesque,

2001).

13

2.8.1. The Types of Complexity

The categorization of complexity is termed as Detail Complexity and Dynamic Complexity.

- Detail Complexity: is a type of complex situation that has a great number of possible

interconnections between parts.

- Dynamic Complexity: is a type of complex situation where cause and effect are subtle

and where the effects over time of interventions are not clear (Hanseth, 2010),

(Wagner, 2011), (Bouwers, 2010). Chapter 4 discusses these types of complexity.

2.9. The Abstraction

The activity of simplification is composed of reduction of details and the generalization of

crucial and common attributes.

2.9.1. Aims of Abstraction

The main aim of abstraction is reducing complexity, and there are two fundamental issues for

abstraction. Firstly, abstraction is essential to be able to understand the necessary components

for software design. Moreover, interaction between components is too complex to be

understood as a whole. Hence, it divides the software into smaller chunks and deletes explicit

information in order to understand certain sides. Secondly, reuse is unavoidably connected to

abstraction (Tsui et al., 2011), (Tsui et al., 2011).

2.9.2. Levels of Abstraction

There are two levels of abstraction. The first level is called abstraction specification and the

other is abstraction realization.

For example, if we have variables and fixed numbers at the same time, they are required to be

represented by levels of abstraction. In this case, levels will be divided into abstraction

specification and abstraction realization. The first comprises of variables and a fixed parts. The

fixed part is what is set by the abstraction. For example, the information that has been

abstracted but is still visible as shown in Figure 2.3(Tsui et al., 2011).

Variable Fixed Number

Figure 2.3: The specification level of abstraction (Tsui et al., 2011)

14

The second includes further details as illustrated in Figure 2.4.

There is still abstraction presented in the variable part. Figure 2.5 shows the two levels of

abstraction clearly.

2.9.3. Types of Abstraction

The abstraction consists of two different types; the first type is called simplifying abstraction,

and the second one is generalizing abstraction. The simplifying abstraction is the type of

abstraction that is used when we want to reduce dynamic complexity, for example, removing

windows titles if developers do not have to care about it anymore. In Figure 2.6 segment 2

shows how this abstraction is used and how it contributes to reducing complexity. The

generalizing abstraction is used if we have several components that have many similarities and

only differ in some aspects. In Figure 2.6 segment 3, the differing information between

component C1 and C2 is only t1 and t2. Thus, we generalize C1 and C2 to C that has a

parameter P. The information of parameter p is removed, and Cg is abstracted to C. This

procedure makes the usage of C simpler and less complex in design. The major design goal for

generalizing abstraction is reusing (Leopold, Mendling, Reijers, & La Rosa, 2014), (Wagner,

2011).

Figure 2.5: The transiting between specification

level to realization level of abstraction (Tsui et

X 4

Z 5

Y 8

Fixed Part Variable Part

Figure 2.4: The realization level of abstraction (Tsui, Gharaat, Duggins, & Jung, 2011)

15

2.10. The Modularity

The modularity refers to a crucial concept that developers exercise to reduce the complexity of

software systems. The IEEE Standard Glossary Terminology defines the modularity as "The

degree to which a software is composed of discrete components where, the changing to one

component has minimal impact on other components". This definition is closely related to

Booch’s (1994).

A modularization generally has three purposes:

- To make complexity manageable.

- To enable parallel work.

- To accommodate future uncertainty (Alessandro Garcia, 2008).

2.11. The Modeling

Modeling a system means identifying its main characteristics, states and behaviour using

notations. Whereas, models are the most important engineering tool which allows us to

Figure 2.6: Illustrating the different types of abstraction(Wagner, 2011)

C

C1 C2

Generalizing

Abstraction

C

Chose

Item

Simplifying

Abstraction

1

2 3

Software Design

Components

Relationship

Level

16

understand and analyze large and complex complications. In architecture design, substantial

architectural concepts that need to be modeled are components, connectors, interfaces, and

configurations. The goals of modeling include communication, bug finding, quality, analysis,

etc. Thus, architectural modeling is the reification and documentation of design decisions

(Taylor, Medvidovic, & Dashofy, 2009).

2.12. A Blackboard System (BBS)

A blackboard system is an artificial intelligence methodology based on diverse group of

specialist knowledge sources to iterative updates. It is a global accessible database which is

used for intermediate, partial results of problem solving. The blackboard system starting with a

problem specification and ending with a solution. Each knowledge source updates the

blackboard with a partial solution when its internal constraints match the blackboard state. In

this method, the specialists work together until the problem is solved. The blackboard system

consists of three components: Blackboard (BB), Control Unit, and Knowledge Sources (KS).

The blackboard model was originally designed as a technique to handle complex, difficult

problems, where the solution is the sum of its parts. The blackboard system will be used in

chapter 5 to support one of the agents in system as shown in Figure 2.7 (Rudenko & Borisov,

2007), (Straub, 2014), (Pang, 2000).

2.13. Gold Plating

Gold plating means when extra feature in software is added to delight the customer (a kind of

surprise). Gold plating is not a bargain. It can increase operation, complexity, maintenance,

costs and decrease quality. In software engineering a gold plating requires hard work to be

accomplished. Also, it needs extra effort and time, and it is possible that complexity appears

Blackboard

Knowledge Sources

KC1 KC2 KC3 KC4

Control

Unit

Figure 2.7: The components of blackboard system

17

during work (Kirandeep Kaur, 2013). The gold plating concept will be one of the addressed

problems in this study.

2.14. Function Point (FP)

Currently, the function point is the most used method to determine the size of a user function

and its complexity. FP is used by several organizations all over the world. For many years, FP

has become a world standard, and measures the functionality that software should provide, as

well as the technical and environmental complexity. Moreover, it measures the size of the user

functions of application software or part of it. User functions are the components requested and

recognized by the user. The function point takes the user function complexity into

consideration (Meli & Santillo, 1999). The point 2.15 will be explained method to estimate the

function complexity which is built on function point method.

2.15. Overview of Use Case Point (UCP)
Use Case Points (UCP) is a software estimation technique used to measure the software size

with use cases. The concept of UCP is the development of FP that was developed by Gustav

Karner to cope with object oriented environment. The work was later licensed by Rational

Software that merged in IBM. It estimates the number, the size and the complexity of use case

quantitatively by an actor and use cases in use case diagram for estimation of software size (So

Young Moon, 2013b), (Ghazal Keshavarz, 2011). It is of general agreement that quality issues

should be considered very early in the software development process, to avoid risks and to

facilitate the achievement of the overall software system (Francisca Losavio and Ledis

Chirinos, 2003b), [21], (Far, 2002).

From UC1 to UCn

UUCP UCP

ECF

Weights
 of

 Use Cases

Figure 2.8: The describing of the UCM method

TCF

Calculation Operation

Use Case Point Method

../../../AppData/AppData/Roaming/Thesis2016/parts/chapter5-%20Measurment.docx#_ENREF_21

18

2.15.1. Use Case Point Counting Processes
The Use Case Points counting process has the following steps

 Step1. Calculate unadjusted UCPs

 Step2. Calculate technical complexity

 Step3. Calculate environmental complexity

 Step4. Calculate adjusted UCPs

 Step1 Consists of three steps are:

- Step1.1. Determine Unadjusted Use-Case Weight.

- Step1.2. Determine Unadjusted Actor Weight.

- Step1.3. Calculate Unadjusted Use-Case Points.

In step 1.1, the number of transactions is counted in each use case to determine the Unadjusted

Use-Case classification and weight. The classification of use case is simple, average or

complex. With regard to the weight, it varies according to the classifications. Table 2.1 shows

the classifications and weights of each use case.

Weight No. of Transactions
Use Case

Classification

5 1 to 3 transactions Simple

10 4 to 7 transactions Average

15 8 or more transactions Complex

Tab le2.1: The Use Case Classification (So Young Moon, 2013a)

All use cases which are between (1-3) and classified as simple are determined and multiplied

by the weight 5; all use cases which are between (4-7) and classified as average and multiplied

by the weight 10; and all use cases which are classified as complex and multiplied by the

weight 15. After that, the total of the use cases after multiplying by their weights to get the

Unadjusted Use-Case Weight (UUCW) as illustrated in Table (2.2).

Use-Case Complexity
Use-Case

Weight

Number of Use-

Cases
System

Simple 5 NSUC 5 × NSUC

19

Average 10 NAUC 10 × NAUC

Complex 15 NCUC 15 × NCUC

Unadjusted Use-Case Weight (UUCW) 5 × NSUC + 10 × NAUC + 15 × NCUC

Table 2.2: Calculate the Unadjusted Use Case Weight (So Young Moon, 2013a)

Where:

- NSUC is the no. of Simple Use-Cases.

- NAUC is the no. of Average Use-Cases.

- NCUC is the no. of Complex Use-Cases.

Step1.2. An actor in a use case might be a person, another program,…etc. Classify actors as

simple, average, complex. The actor weight depends on the type of actor as Table 2.3 shows.

Weight Type of Actor Actor Classification

1
External system that must interact with the system using a

well-defined API(Application Programming Interface)
Simple

2

External system that must interact with the system using

standard communication protocols (e.g. TCP/IP, FTP,

HTTP, database)

Average

3 Human actor using a GUI application interface Complex

Table 2.3: Showing the actor classification (So Young Moon, 2013a)

Each actor, which is classified as simple, is determined and multiplied by the weight 1; each

actor, which is classified as average, is determined and multiplied by the weight 2; and each

actor, which is classified as complex, is determined and multiplied by the weight 3. After that,

the total is multiplied by the weights to get Unadjusted Actor Weight (UAW) as illustrated in

Table (2.4)

Actor Complexity Actor Weight Number of Actors System

Simple 1 NSA 1 × NSA

Average 2 NAA 2 × NAA

21

Table 2.4 Calculate the Actor Weight (So Young Moon, 2013a)

Where:

- NSA is the number of simple actors.

- NAA is the number of average actors.

- NCA is the number of complex actors.

Step1.3. The unadjusted use case weight (UUCW) and the unadjusted actor weight (UAW)

together give the unadjusted size of the system, referred to as Unadjusted Use Case Points.

(UUCP) = UUCW + UAW

Step2. Calculate the technical complexity:

To calculate the technical complexity we should pay attention to the 13 factors that contribute

to the influence of the technical complexity of a software on use case points and their

corresponding weights as given in Table 2.5.

Complex 3 NCA 3 × NCA

Unadjusted Actor Weight (UAW) 1 × NSA + 2 × NAA + 3 × NCA

Weight Description Factor

2.0 Distributed system F1

1.0 Response time/performance objectives F2

1.0 End-user efficiency F3

1.0 Internal processing complexity F4

1.0 Code reusability F5

0.5 Easy to install F6

0.5 Easy to use F7

2.0 Portability to other platforms F8

1.0 System maintenance F9

21

Table 2.5:

the

Technical

Complexity

Factors

weights (So

Young Moon, 2013a)

- For each of the 13 factors, measure the software and rate from 0 (irrelevant) to 5 (very

important).

- Calculate the impact of the factor from impact weight of the factor and the rated Value

for the project as:

Impact of the Factor = Impact Weight × Rated Value

- Calculate the sum of impact of all the factors. This gives the Total Technical Factor

(TFactor).

- Calculate the TCF as following:

TCF = 0.6 + (0.01 × TFactor)

Step3. Adjust For Environmental Complexity

Consider the 8 environmental factors that could affect the software execution and their

corresponding weights as given in Table 2.6.

Weight Description Factor

1.5 Familiarity with development process used E1

0.5 Application experience E2

1.0 Object-oriented experience of team E3

0.5 Lead analyst capability E4

1.0 Motivation of the team E5

2.0 Stability of requirements E6

-1.0 Part-time staff E7

1.0 Concurrent/parallel processing F10

1.0 Security features F11

1.0 Access for third parties F12

1.0 End user training F13

22

-1.0 Difficult programming languages E8

Table2.6: Showing the environmental factors weight (So Young Moon, 2013a)

 - Calculate the Environmental Factor (EF) where, 1.4 + (-0.03 × EFactor)

Step 4: Calculate Adjusted Use-Case Points (UCP)

- Calculate Adjusted Use-Case Points (UCP) where UCP = UUCP × TCF × EF (So

Young Moon, 2013b).

In chapter 5 use case point method is used to measure the complexity of tasks assigned to

agents in system after adding some modification to adapt the agent environment. Figure 2.8

describes the mechanism of use case point.

2.16. Recommendation Systems (RS)

The recommendation is a very common phenomenon in our daily life. Nowadays,

recommender systems appear as a developing application and a research field in several

domains of computing research from artificial intelligence to information systems.

Recommender systems, also known as personalization systems, are a popular technique for

reducing information overload and finding items that are of interest to the user (Chaptini,

2005).

They mainly rely on many approaches such as Collaborative Filtering Approach(CFA),

Content-Based Filtering (CBF) and other more complex approaches (Lenhart & Herzog, 2016),

(Yan, 2014). These systems are effective means of selling more products because they work to

filtering vital information fragment out of large amount of dynamically generated information

according to user’s preferences, interest, or observed behavior about item. In e-commerce

setting, recommender systems enhance revenues. In scientific libraries, recommender systems

support users by allowing them to move beyond catalog searches. Therefore, the need to use

efficient and accurate recommendation techniques within a system that will provide relevant

and dependable recommendations for users (Isinkaye, Folajimi, & Ojokoh, 2015).

2.17. Use Case Maps (UCM)

Use case maps fill the gap between verbal descriptions and detailed descriptions in terms of

interaction diagrams. These maps are useful between analysis stage and design stage. UCM

23

notations permit the description of complex software driven systems in terms of high level

scenarios and allow us to know the responsibilities of the components without going into the

details about the messaging between them. UCMs provide an integrated view of behavior and

structure at the system level where puts scenario paths on a structure of abstract components

(Khan & Mahmood, 2012). Chapter 5 in application part, the UCM notations will be used with

focus on some notations such as: Task, component, interaction, and (begins and ends of

scenarios).

2.18. Knowledge Base Systems (KBS)

These systems are at the applied edge of research in Artificial Intelligence (AI) to solve the

type of problems that normally require human experts. These systems such as medical

diagnosis, financial analysis, factory production scheduling, and multi agents systems…etc.

The knowledge base consists of the following: a domain knowledge, usually provided by

human experts, very specialized for a particular problem domain, it is often known as IF-

THEN rules, and it incorporates heuristics or probabilities (Akerkar & Sajja, 2010). Figure 2.9

shows the knowledge phase.

2.19. The Measurement

A set of processes having the object of determining a value of a measure. It can include

assigning a qualitative class (ISO, 2016). This concept is applied in chapter 5 to measure the

agent's tasks.

Figure 2.9: Showing the knowledge phase

Data

Information

Knowledge

Wisdom

Understanding

Experience

Novelty

24

2.20. Task
A set or sequence of activities is required to accomplish a given goal. This work focuses

primarily on the tasks of each agent.

25

CHAPTER 3

Related Work

This chapter describes an overview of existing available literature of complexity and quality

issues.

 Complexity

Complexity is one of the most interesting criteria for researchers, some of them as zambonelli

in 2001, discussed a number of issues related to the analysis, design, abstraction and

complexity of multi-agent systems by introduce some general guidelines for multi-agent

system analysis and design that are centered around organizational abstractions. The research

showed some complexity situations that occur during the agent's interactions without

addressing the means to avoid such situations. Actually, the architecture design in these

systems was not the main concern; although, it exists between the analysis and design phases,

and the guidelines were only centered around abstractions concept without approaching the

complexity (Zambonelli et al., 2001). The quality and complexity issues of multi-agent system

were addressed by Behrouz Homyoue Far in 2002, which proposed some metrics to measure

the complexity and introduced some metrics used for knowing a candidate set of agents for

multi-agent system design. The research is dedicated to the complexity measurement, and does

not provide solutions for avoiding or decreasing the intensity of the problem of complexity and

ignores the complexity of architectures (Far, 2002). Jose Luiz, explained the nature of

complexity as it arises in software design and discussed some of the challenges that still remain

in design complexity. The research illuminated some concepts which influence complexity

such as abstraction and documentation. It also discussed the role of architectures in large

systems, but did not address the multi agent systems or the complexity of architecture design

(Luiz, 2009). Eric Bouwers, attempted to provide a Software Architecture Complexity Model

(SACM) which can be used to reason the complexity of a software architecture. It is based on

theories from reasoning science and system attributes. The SACM can be used as a formal

model to explain existing quality models and as a starting point within architecture evaluation

methods. The complexity in multi-agents systems architectures, the affected factors on

complexity and how to decrease it from these systems were not addressed in this research

(Bouwers, 2010). Iván García in 2010, attempted to introduce a suite metric to measure certain

26

quality characteristics of multi-agents systems's architectures considering agents and their

organization. Most of these metrics were based on object-oriented environment (OOE), the

research adapted agent oriented environment. In other words, the research work, is only

concerned with measurement of complexity, and does not address any means to avoid or

reduce it (Iván García-Magariño, 2010). Ghazal Keshavarz in 2011, analyzed the software

complexity issue, especially in the first phase of software development, and proposed a

requirement based on a metric. Actually, this metric enables software engineers to assess the

complexity before starting the actual design and implementation. The research does not focus

on complexities which occur during interactions in large systems such like multi agent systems

(Ghazal Keshavarz, 2011). Anirban Sarkar and Narayan Debnath in 2012, suggested some

standards to complexity measurements of system based on multi-agents systems. They also,

presented a case study, including conceptual architecture of MAS, and described a set of

quality metrics based on multi-agents systems architecture design. These metrics addressed

many architecture sides such as dynamic, structure, and agent side. The research work

concentrates basically on the measurement of the complexity of architecture design to multi

agent system, but did not decrease it in systems architectures (Anirban Sarkar, 2012).

Sinha in 2013, described the measurement method for software complexity including the

factors affecting the complexity. But they did not address the large system such as systems

based multi-agents systems and did not propose any methods to decrease the complexity in

architecture design (Sinha, 2013). Alenezi and Almustafa in 2015, studied the complexity

evolution of five open source projects from various domains; then, they conducted an

analytical procedure for the growth of ten releases of these systems in design phase. Then, they

displayed how complexity evolves over time. The research work focused on complexity

analyses and proved its growth with the work progress of the large systems, but paid no

attention to some specific sides of the complexity. In addition, the research did not provide any

guidelines or approaches on how to avoid those complexities (Alenezi & Almustafa, 2015).

 Quality

Umapathy Eaganathana in 2016, introduced a survey of literature reviews which proposed

various object oriented design metrics by different researchers to guarantee production of high

quality software design that is free from defects and programming errors. The main goal of this

systematic literature reviews was to investigate the role of metrics in software development

27

lifecycle. It actually aims to help developers to produce qualitative software design and also to

improve its productivity. This research depends on object oriented environment in proposing

these metrics. It also focused on the overall quality of production without stating the issue of

reducing the complexity (Umapathy Eaganathana, 2016). Punam Bedi, Vibha Gaur in 2007,

proposed a methodology to obtain prioritization of quality specifications that assists quality

engineer in achieving the desired level of quality for multi-agent systems (Jomi Fred Hubner,

2007). The research also, addressed general quality factors of systems based on multi-agents

without solve the issue of complexity. Francisca Losavio and Ledis Chirinos in 2003,

introduced an approach facilitates the choice of the right decisions during the architecture

analysis process. It could be easily integrated into a general software development process or

into specific architectural design methods. The research ignored big systems which have

complex interactions and the design decisions does not considered the complexity factore

(Francisca Losavio and Ledis Chirinos, 2003a).

Mike Keating in 2000, measured design quality based on measured design complexity by

proposing a method quantifying design complexity which enabls design developers to produce

architectures cabable of manging complexity, and enhance the quality (Keating, 2000). The

research primerly focused on complexity, architecture and quality of design, but did not

provide any guidelines or approaches on how to avoid those complexities. Furthermore, large

systems such as multi-agents systems were not addressed in this research.

 Discussion

The complexity measurement was the major subject of interest among researchers which

explained it from different point of views, e.g. measuring a dynamic complexity, structure

complexity, function complexity, coupling degree and cohesion degree views. The researchers

also, attempted to introduce suitable metrics to measure general quality of architecture. It is

worth noticing that all previous works did not address the complexity in architecture design

resulted from agents interactions which appear explicitly in multi-agents systems and found out

solutions to decrease these complexities. That’s why this research work covers the complexity

gap in the architecture design of multi-agents system by presenting many factors affecting the

complexity and guide the developers to decease it in an early stage of architecture design

development.

28

CHAPTER 4

The FG4Complexity Approach

This chapter describes the proposed approach to solve the problem of architecture design

complexity called FG4Complexity (Factors and Guidelines for Complexity) which produced to

facilitate understanding and to avoid the complexity aspects of architectures design based on

specific concepts. It illustrates the architecture design in software development life cycle

(SDLC). Thus, recognizes the concepts and properties which have a real impact on complexity.

Then, it provides the motivate behind selecting those concepts by introducing their rule in

decreasing the complexity and how to boost the quality. This chapter also introduces the

factors and guidelines (FG) of each concept and explains their arrangement with some

clarifications of FG4Complexity approach. Finally, introduces the summary of the chapter.

4.1. The Architecture Design in Software Developments Life Cycle (SDLC)

It is worth noticing that the term "an architecture" is used as a general description of how the

subsystems join together to form the system (Pohl, 2010).

The architecture design represents the final approved decision which is made by system

developers, and it is also an output of requirements analysis (van der Ven, Jansen, Nijhuis, &

Bosch, 2008), (Ahmed Taki, 2014) which means that the architecture design always comes

between requirements analysis phase (which also known as "what phase") and design phase

(which also known as "how phase") in SDLC (Tekinerdogan & Demirli, 2013) as shows in

Figure 4.1.

29

It is useful to consider some of the characteristics and the concepts of both phases including the

essential effects on analysis and design quality of architecture leading to approaching the

problem of complexity. Figure 4.3 illustrates the methodology steps.

Figure 4.1: The position of architecture design in SDLC

Proposed Solution

Approach (FG4Complexity)

In
tro

d
u
cin

g

Guidelines about

Affected Factors

of Complexity

Clarifications

based on

examples

 Requirements Gathering

Analyses

Architecture

Design (AD)

Maintains َيComplexity

Design

Implementation

Testing

Software Engineering Phases

Considered

in

To

31

4.2. The Concepts of Analyses and Design

There are many characteristic concepts of analysis and design phases during the development

process. For example, analyses phase is expressed by using the diagrams, maps, models,

prototypes … etc. which work as a link between developers and users of software system to

understand the requirements (Chakraborty, Baowaly, Arefin, & Bahar, 2012), (S.Mary Helan

Felista1, 2014), (Moertini, Heriyanto, & Nugroho, 2014).

Correspondingly, the design phase (especially in object oriented environment in which agents

systems are able to adapt) is expressed by abstraction, patterns, modularity, information

hiding, function independency…etc. (Sękala, Foit, Banaś, & Kost, 2015), (Ghasemi, Sharafi, &

Arman, 2015).

In this research work, we introduce some guidelines and factors that have a great impact on

complexity of architectures design based on three concepts. These concepts are modeling,

abstraction and modularity as shown in Figure 4.2. Each concept plays an important role to

Figure 4.3: An overview Methodology Steps

Step1

Step2

Case Study Step3
Displaying the case study based on multi-

agents systems.

Application Applying all guidelines that introduced in

step1 on the case study displayed in step3. Step4

The Measurement and

Assessment Step5 Measuring and assessing the complexity of case

study before and after applying the proposed

approach.

The clarifications
 Introducing the affected factors in

complexity as guidelines with illustrative

examples.

Extracting factors

Addressing many concepts of architecture

design such as abstraction, modularity, and

modeling to capture the affected factors on

complexity.

Extracting Complexity Factors Phase

Case study Application and Measurement Phase

31

manipulate the complexity, especially in large and complex systems as illustrated in following

sections.

4.3. Reducing the Complexity of architecture design using Abstraction,

Modularity and Modeling

The following sections provide a description of some concepts that can affect complexity of

architecture design and how they reduce the complexity.

4.3.1. The Role of the Modeling

The modeling in software engineering is considered as a fundamental to understand and clarify

many complex systems. By complex system, we mean a system that requires many

components and interactions like systems based on multi-agents system (Goel, Rugaber, &

Vattam, 2011). It depicts the software system by using multiple graphical and textual notations.

Furthermore, the software modeling is taken as the documentation process for software

systems in analysis and designs phases. In analyses phase, the modeling is used to help the

analysts to understand and document the requirements from the users for example using

prototypes method. However, in the design phase, modeling facilitates the understanding and

the documentation of the design, especially in complex systems.

Modeling is an integral part of modern software development, in particular these models can be

reused in different systems (Haber, 2011).

Figure 4.2: The architecture concepts addressed in FG4 Complexity

approach.

Abstraction Modularity Modeling

Architecture

Concepts

Analysis and Design Concepts

Including

32

The modeling also reduces the ambiguities that occur in natural language descriptions, helps to

understand the software system, help the developers to envision the system, discuss alternative

designs; and make an architecture design decision.

There are many models used in analysis and design phases. For example:

- Entity Relationships Diagrams (ERD) which were originally proposed by Peter Chen

in 1976. They are graphical representation of entities and their relationships to each

other. Typically, they are used for modeling the organization of data within databases

or information systems (Al-Masree, 2015).

- Data Flow Diagrams (DFD)

Which demonstrate the data store, external entities, data flow in system and connecting

data flow in other systems. There are only four notations for a data flow diagram:

squares, circles (or Rounded Rectangles), arrows, and open-ended rectangles. Squares

or Ovals represent external entities which are person or a group of people outside the

control of the system being modeled. The circle or rounded rectangles represent

processes within the system to show a part of the system that transforms inputs into

outputs. The name of the process in the notations regularly clarifies what the process

does. The arrows represent the data flows which can be either electronic or physical or

both. The name of the arrows represents the meaning of the packet (data or items) that

flow along. Moreover, arrows in data flow diagrams show direction to indicate whether

data or items are moving out or into a process. The open-ended rectangles represent

data stores, including both electronic stores and physical stores (Aleryani, 2016).

- Unified Modeling Language (UML) which was developed by Grady Booch, Ivar

Jacobson and James Rumbaugh at Rational Software in 1994–1995. It is originally

based on the notations of the Booch method, the object-modeling technique (OMT)

and object-oriented software engineering (OOSE), which has integrated into a single

language. UML has been developed into several versions as (UML, UML1.x and

UML2.x). It includes diagrams, the static, the behavior and the interactions in software

systems. These diagrams can be used in analysis and design phases (Alhumaidan,

2012), (Bartz, 2013).

At any rate, as we attempted to point out that the architecture design between the analysis

phase and the design phase in SDLC. In this sense, there is a conceptual gap between analysis

33

diagrams (such as Use Case diagram) and design diagrams (such as sequence, activity, and

state diagrams) in architecture design's level (Alhumaidan, 2012).

For this reason, in this chapter, we promote establishing the architecture design by using a kind

of notations to bridge the gap between these diagrams, in particular, to illustrate the details of

agent system scenarios. Figure 4.3 clarifies using the notations of use case maps.

4.3.2. The Role of the Abstraction
The essence of abstraction is to extract necessary properties while omitting unnecessary details

(Ross, Goodenough, & Irvine, 1975). One of the most fundamental objectives to engage in the

task of abstraction in software analysis and design is to reduce the complexity. It is an essential

concept of software design which controls the system description to a certain level based on

components, relationships, interactions among the components, and simplify the composition

of components into systems (Tsui et al., 2011). Modeling and abstraction are sometimes used

together. For example, when architecture is modeled, the concentration is at a high level, while

modules and their relationships ignore their internal structure.

From available literatures, there are various levels of abstraction based on main components

that should be taken in consideration. Most developments are based on two levels. The first

level is including basic components and its relationships while the second level is including

more details than the first level. Also, these levels have different names such as (reduction,

generalization), (specification, realization) and etc (Tsui et al., 2011).

In this research work, we also have two levels for using the specification to characterize the

first level of abstraction and realization to characterize the second one.

Figure 4.3: Using the maps to describe the architecture design

 Design

diagrams

Analyses

diagrams
Notations

Requirement Analysis Phase

 Design Phase

AD

Software

Engineering Phases

Notations

34

4.3.3: The Role of the Modularity
In software engineering, modularity (Decomposition) refers to the extent to which a software is

divided into smaller modules and how to keep the complexity of large systems under control

and manageability (Ghasemi et al., 2015).

Modularity is the key property of software quality. Therefore, a high modularity improves the

flexibility and understandability of the agent systems.

Moreover, complexity is revealed by both cohesion and coupling (were illustrated in chapter2).

Higher cohesion indicates lower complexity, when coupling multiplies, the complexity also

multiplies. Coupling, cohesion, and complexity relate strongly to the software maintenance

work (Alenezi & Zarour, 2015), (Darcy, Daniel, & Stewart, 2010), (Alenezi & Almustafa,

2015).

A module having high cohesion and low coupling is functionally independent of other modules

(Saxena & Kumar, 2012) .

In addition, the agent system has the same concepts and phases in software developments life

cycle. Figure 4.4 illustrates the main concepts which are addressed in FG4 Complexity

approach.

Architecture

Design

Analysis Phase

Figure 4.4: The concepts of analyzing and design which were addressed in FG4

Complexity approach.

Design Phase

Modularity, Abstraction, Modeling Maps, Modeling

Software Engineering phases

Software Engineering Concepts

Belongs to

Common stage

35

4.4. Factors and Guidelines (FG)

In this section several factors and guidelines are presented to decrease the complexity in

architectures of multi agent systems. Each FG is established based on developer's previous

practice or experimental methods. Each FG has a clarification part which is provided to

illustrate the FG role in reducing the complexity and how to use certain rules if those rules

were found. The FG is extracted from concepts which are related to software architecture ,then

presented as symbols to beused in application phase. For example, the FG is related to

modeling concept and represented by FGMOL symbol. The FG is related to abstraction

concept and represented by factors and guidelines of abstraction (FGABS) symbol and the FG

is also related to modularity concept and represented by factors and guidelines of modularity

(FGMOR) symbol. Each FG should be numbered for example, FGABS 4 means the factor and

guideline number 4 in abstraction concept section, FGMOL 2 means the factor and guideline

number2 in modeling concept section as illustrated in Table 4.1.

Table 4.1: The symbols interpretation of architecture concepts

4.4.1. Factors and Guidelines for Modeling (FGMOL)

FGMOL1. Using Use Case Maps (UCM) to clarify the most relevant, interesting, and critical

tasks of multi-agents systems (Lawgali, 2017).

The Clarification:

UCM act as a bridge between requirements analysis and design phases. It provides a behavior

structure for evaluating architecture decisions at a high level of design. In this context, these

Instances Symbols Interpretation symbols Architecture

Concept

FGA1….i where I is

Integer number

Factors and Guideline of

Abstraction
FGABS Abstraction

FGM1….i where I is

Integer number

Factors and Guideline of

Modularity
FGMOR Modularity

FGMOD1….i where I is

Integer number

Factors and Guideline of

Modeling
FGMOL Modeling

36

maps can become applicable on architecture design at the same stage (After requirements

analyses and before design).

It can also be used to emphasize the tasks (Responsibilities) of multi-agents systems along

paths among components and clarify the interaction. There are many notations using in UCM.

The following example illustrates the usage of UCM method through focus on some notations

such as: Task, component, path of scenario, (start and end points of scenario), and the

interactions among components.

Example

The example describes a simple UCM where a user (Nancy) attempts to make a phone call

with another user (Jack) through a network of agents. Each user has an agent responsible for

managing subscribed telephony features. Nancy first sends a connection request (req) to the

network through her agent. This request causes the called agent to verify (vrfy) whether the

called outcome is idle or busy (conditions are italicized). If he is, then there will be some status

update (upd) and a ring signal will be activated on Jack’s side (ring). Else, a message stating

that Jack is not available will be prepared (mj) and sent back to Nancy (msg). A scenario

starts with a pre-condition (filled circle labeled req) and ends with one or more resulting events

and/or post-conditions (bars), in our situation ring or msg.

The responsibilities (vrfy, upd, mj) have been activated along the way. In this example, the

responsibilities are allocated to abstract components (boxes Nancy, Agent A, Jack and Agent

B), which could be realized as objects, processes, agents, databases, even roles, actors, or

persons.

The structure of a UCM can be formed in different ways (views). For example, one may start

by identifying the responsibilities (Figure 4.10 (a)). They can then be allocated to scenarios

(Figure 4.10 (b)) or to components (Figure 4.10 (c)). Eventually, the views are merged to form

a finishing map (Figure 4.10 (d)).

37

 FGMOR 2. Using simple notations is very important to enhance understandability and

decrease complexities in architecture design such as arrows, components, domain and etc.

(Zalewski, 2013).

The Clarification:

According to available literatures, there are a lot of various notations used to describe the

architecture design of software systems. Some of these notations are simple and intuitive while

others need to be understood. To model the software architecture, we need to capture some

aspects such as components, interactions, and context then model them. In the context of

avoiding the complexities that arise from misunderstanding we suggest some simple notations

are proposed and used to describe the architecture as shown in Table 4.3.

Description Notations

Bold arrows to represent the messages among agents through

the interactions.

Normal arrow to represent the dataflow

Dotty arrows to represent the messages which are exchanged

from extra system such as the black board system.

Doubly directions arrows represent the dataflow if it is the

same exchanged between two components.

Blackboard Message

Data Flow

(d) Finishing Map

(b) Path Allocation
(a) scenario Responsibilities (Tasks)

(c) Component Allocation

Responsibilities Allocation

Nancy Agent A Agent B Jack

Figure 4.5: The Use Case Map construction

mj

mj

 mj

mj

Components

Starts of Scenario

Ends of Scenario

Tasks

Path of Scenario

38

Dotty rectangles to represent the domains.

Distinguish component to represent Agent.

Distinguish component to represent list.

Distinguish component to represent many lists.

Distinguish component to represent data base storage.

Distinguish component to represent data base resources.

4.4.2. Factors and Guidelines for Abstraction (FGABS)

FGABS1. Developers should use Simplifying Abstraction type if they want to decrease the

dynamic complexity type (Wagner, 2011).

The Clarification:

As we pointed out in chapter 2, there are two types of abstraction. The first type is called

Simplifying Abstraction (the transition from the middle level to the top level of abstraction),

and the second one is generalizing abstraction (the transition from the lowest level to middle

level of abstraction). Simplifying Abstraction is the type of abstraction that is used when we

want to reduce dynamic complexity and generalizing abstraction is used if we have several

components that have many similarities and only differ in some aspects. In fact, this type is

very useful if we need to reuse the design. The first type of abstraction is more abstract than the

second one. Although, the developers always make a generalizing abstraction before they use

Simplifying Abstraction. By this, the parameters and their types are identified before bringing

them together to a more abstract design.

There is simple example of Class (Ahmed.A, 2013) or software module of library system to

clarify the alteration to Simplifying Abstraction as follows.

Domain

Many Lists

Data base resources

List

Data base Storage

Table 4.2: The proposed notations

39

Suppose we have GUI modules of agent system that describes many dialogs, for example:

- A is the root dialog which includes a chosen item from the library.

- A1, A2 are both GUI dialogs windows.

- Ag is the window title (String) and linked to the root dialog.

- P is the (parameter) which consists of variable T (Title Name).

- t1, t2 are different titles, for example t1 is "Choose the Book" and t2 is "Choose the

Magazine".

By using simplifying abstraction we should abstract the modules of agent system from detailed

concept in Figure 4.5 part (A) to make it more comprehensible. This means we should apply

the following steps.

- Transition from the middle level to the top level of abstraction.

- Low level will be ignored.

- Removing each parameter in middle level (in fig. 4.5 B we should remove the

parameter (P) completely by abstracting from Ag to A. This makes the usage of A

simpler and less complex than the usage of Ag).

- Adding appropriate name of abstraction to describe what have been removed in fig

(4.5 B) we using (Choose item) as appropriate name.

Part B

Lower level

Middle level

Top level

 Choose Item

Part A

Figure 4.6: The altering to simplifying abstraction

A Simplifying

Abstraction

Simplifying Abstraction Graph

A

Ag

A1 A2

t1 t2

Simplifying

Abstraction

Abstraction

Generalising

Main Graph

P:T

Component

Parameter

Level

Altering

Lower level

Middle level

Top level

 Choose Item

41

FGABS2. Choosing the appropriate level of abstraction (Tsui et al., 2011).

The Clarification:

Taking the appropriate level of abstraction is a very important task for developers to increase

understanding; thus, decreasing the complexity by using the abstraction levels. In this work,

the architecture design will be described based on two levels of abstraction high level

(specification) and detailed level (realization).

Figure 4.6 explains the high level and the detailed level. The first level specifies the main

components and its relationships; while, the second level realizes more details than the first

one.

Moreover, the highest level of abstraction should be avoided as possible because it leads to

difficulty in understanding the architecture design; therefore, more complex design is

produced. It is a common saying in software designing "we cannot understand something if it

is too abstract" (Wagner, 2011). By the same mechanism for architecture design, we should

represent the components, the abbreviations, notations, names of components and dataflow and

messages by using clear terms. Whereat, the purpose of abstract is to simplify complex systems

but not to abstract them at the miss information degree, which also leads to the difficulty of

understandability. This means it rises the level of the complexity again. Figure 4.7 illustrates

the relationship between abstraction and complexity.

Figure 4.7: The high and detail levels of abstraction.

A B

C

Agent

High Level Detailed Level

Sub system

B A

C a2

a1

a3

b1

b2

c1

Dataflow

Message

Agent

Data

Base

React

React

Data

Base

Dataflow

Database

 Components

Data flow/messages

Agent

41

FGABS 3. Avoid to adopt the concept of gold plating (Kirandeep Kaur, 2013).

The Clarification:

Gold plating is the act of giving the customer more than what he originally asked for. This

addition of system functions is reflected on the abstraction task of software system that is

undesirable. It is usually performed to make the client happy and pleased; although, it makes

the architecture design more have complex components.

4.4.3. Factors and Guidelines for Modularity (FGMOR)

FGMOR 1. Using Hierarchical Decomposition Approach (HDA) which considers a major

method of handling complexity in conventional software analysis and design (Far, 2002),

(Medeiro, Pérez-Verdú, & Rodríguez-Vázquez, 2013), (De Bruin, 2003).

The Clarification:

HDA involves the top-down design which starts by defining the top level components. This

design contains the main components. After this, sub components are defined in the lower-

level. This decomposition in each level is effective for controlling complexity (if it enforces

information hiding) by demanding lower level components as explained in the next example

(Far, 2002).

Figure 4.8. The relation between complexity and abstraction

Complexity

Abstraction
Low High Highest

Low

High

Highest

42

Example: The example illustrates how using HDA to design particular software of digital

clock as Figure 4.8 shows.

FGMOR 2. It is useful to establish the software modularity based on roles or measurements

such as Cohesion Communication Measurement (CCM) (Misra, 2011).

The Clarification:

It is crucial to realize that the complexity of any system stems from a large number of system

components and interaction required between these components. This is brought out clearly in

large and complex system as multi-agents systems. If this is the case, then, the modularity rules

needs to be taken as the important issue to manage a complex system designs. This complex

design is comprised of multiple agents and interactions. In this sense, the modularity concept

could be decomposed in components and again the components into sub-components till some

basic entities are obtained. The measurement of communication cohesion introduces

approximate ratio to internal interactions on external interactions for each agent. After applying

CCM, the observed results if CCM ≥ 0.91 of the Agent, then it will be targeted for further

decomposition. Hence, FGMOR2 is based on measurement principle during architecture

design phase. According to this measurement decomposition produces independent results.

Figure 4.9 illustrates CCM mechanism, and Table 4.2, demonstrates more decomposition.

Figure 4.9: Illustrating the Hierarchical Decomposition Approach (HDA)

Digital Clock

Clock Date Counter/Stop

Hour Minute Secon Yea Mont Day Second ms

Components

Relationship

43

CCM Mechanisem

Abbreviation Illustration

CCM

 Communicative Cohesion Measurement defined in

terms of the ratio of internal relationships

(interactions) to the total number of relationships.

 (Ai) (A)Agent, where i=1 to N. Example: Agent1, Agent2

and etc.

R internal Internal interaction

R external External interaction

4.5. The Clarifications of FG4Complexity Approach.

 Some clarifications of FG4Complexity approach are summarized in Table 4.4.

FG4Comlexity

Approach
Based on RULE

Supports the

understandability

and analysis of

AD

Supports the

understandability

and design of AD
Notes

FGABS 1
Experimental

Method -

-

An

example

was

Explained

FGABS2
Previous

Experiences -

-

Clarify it

by

illustrative

figure

FGABS 3
Previous

Experiences -

-

Clarify it

by

illustrative

figure

FGABS 4
Experimental

Method -

- -

Figure 4.10: The agent targeted to further

decomposition

Table 4.4: The abbreviations of CCM metric

R internal

R internal+ R External
CCM (Ai) =

CCM ≥ 0.91

Test

Agents

Further decomposition

Agent

Relations

44

FGMOR 1
Experimental

Method -

An

example

was

Explained

FGMOR 2

Measurement

rule

-

how to use

the rule

was

explained

In

FGMOR2

FGMOL 1 Maps
- -

An

example

was

Explained

FGMOl 2 Notations

-

Suggested

some

simple

notations

Table 4.4: Some clarifications about FG4Complexity approach

4.6. Summary

 The chapter addressed the problem of architectures design de complexity and proposes

an approach called FG4Complexity.

 FG4Complexity comprises of a set of factors and guidelines extracted from many

concepts related to analysis and design.

 Abstraction, Modularity and Modeling are three substantial concepts of architecture

design and were addressed to support the approach.

 Each FG of FG4Complexity approach has a direct impact on the analysis or the design

processes for the architecture.

 More details about FG4Complexity approach were given in Table 4.4.

R internal

R internal+ R External

CCM (Ai) =

45

CHAPTER 5

Case Study Application and Measurement

This chapter is mainly concerned with the case study which is based on multi agent system,

for applying the proposed approach. The application steps will be applied via some models

used in methodologies related to agents systems such as HLIM (Elammari & Lalonde, 1999),

MASD (Abdelaziz, Elammari, Unland, & Branki, 2010). Figure 5.1 gives a simple overview of

models of HLIM methodology.

This case study addresses briefly the nature of the system, the possible scenarios of the system,

the internal structure of the agents, their tasks, the agent's relational model the agent

conversational model, and finally demonstrates the conceptual architecture of the system. The

application includes the application steps. Each step consists of proposed FG which to apply

later on the system in this case study. Then, it introduces the tools for measuring the

complexity of certain aspects of the system by using appropriate software engineering

techniques. Eventually it leads to the results of measurement. Based on the results, the system

is assessed by using the FG4Complexity approach followed by the summary of this chapter.

Figure 5.1: High-Level and Intermediate Models (HLIM)

(Elammari & Lalonde, 1999)

High Level Model
Internal Agent

Model

Agent Relationship

Model

Conversational

Model

Connect Model

Agent

Logic

46

5.1. The Case Study

The case study is a "books recommendations system" based on multi –agents system to help

users to select books by providing three scenarios. The system can switch to three

recommendation approaches Content-based filtering approach (CBF) (M. Montaner, 2003),

(Castillo, 2007) Collaborative Filtering approach (CF) (Itmazi, 2005), (Obando, 2008) and

knowledge based approach (KBA) (Burke, 2002), (Cohen, 2000). The first scenario is that the

user wants recommendations based on his/ her current needs entered into the system. The

second scenario, the new user requests books recommendations based on his/her preferences

entered into the system, and the third scenario registered user requests the books

recommendations based on his/her preferences entered into the system. The agents within the

system can exchange the messages among each other via one of agent communication

languages. In this case study, the messages exchanged will be via Knowledge Query and

Manipulation Language (KQML).

 A brief illustration of recommendations system (RS).

As we pointed out in Chapter 2, the recommendations system filters information fragment out

of large amount of dynamically generated information according to each user’s preferences,

interests, or observed behavior about item by many approaches such as CBF, CF, KBA and

other.

 The essential characteristics of the book recommender system in this case study

are summarized below.

- User Profile: Each user registered in the system has a profile that contains his/her

preferences and all the information related to the books.

- Books Resources: We assume that the books resources exist in external database

contain also the additional information about these books, for example, their

description and availability.

- The Knowledge Base: Contains the essential knowledge about how a specific book

meets the user's needs and it should be represented by knowledge base rules used

with expert systems. (Engin et al., 2014)

47

 The scenarios.

The scenarios of this case study are the following:

 The First Scenario

A user wants recommendations based on his current needs entered into the system.

In this scenario, the Need Determination Agent (NDA) will interact with the user and gives

him/her a range of questions to answer, thereby the agent can interact with the users via

dialogues as the following:

- System: Please select the book category from the list.

- User: Selects a book of Artificial Intelligent

- System: Please select a book you like from the list.

- User: Selects a book he/she is interested in.

After the user has answers all the given questions, the NDA sends user's requirements to the

Filtering Agent (FA). Figure 5.2 illustrates the messages from the need determination agent to

the filtering agent via KQML.

 Figure 5.2: The message from the NDA to the FA

After this, FA sends a message to RA to request available books as shown in Figure 5.3.

(Inform

:Sender Need determination agent

:receiver filtering agent

:language Agent Speaks

:ontology Books recommendations

:content User requirements

(Request

:Sender Filtering agent

:receiver Retrieval agent

:language Agent Speaks

:ontology Books recommendations

:content Give me available books

 Figure 5.3: The message from the FA to the RA

48

The RA receives the message and searches in the books database and then retrieves available

books to send the content to the filtering agent as illustrated in Figure 5.4.

When the filtering agent receives the message, it applies the Knowledge based

recommendation approach, then the recommendations are transferred to Graphical User

Interface (GUI). Figure 5.5 shows the recommendations of books on GUI.

 The Second Scenario:

A new user requests books recommendations based on his/her preferences entered into the

system.

(Inform

:Sender Retrieval agent

:receiver Filtering agent

:language Agent Speaks

:ontology Books recommendations

:content List of available books

THESE BOOKS RECOMMENDED FOR YOU

Introduction to Artificial Intelligent

Programming Collective Intelligence

Heart of the Machine

:

Submit Reset

LIKE DISLIKE

Please tell us if you like or dislike each book

The Books Names

Multi-Agent Systems for Intelligent

Design

:

Figure 5.5: Illustrating the GUI of scenario case1

Figure 5.4: The message from the RA to the FA

49

In this scenario, primarily the system has no knowledge about the user; as a result, the PA will

create a new user profile and inform the filtering agent to give the recommendations to the user

as illustrated in the next steps and Figure 5.6.

- User: Enter as a new user.

- System: Gather user information through his/ her behaviour via GUI to build his/her

profile.

- User: Enters books names and browses the list of available books.

After the new user enters the preferred book names, and browses the available details on the

book, the following steps will be done:

1. The PA will build a profile for the user which contains the user's preferences.

2. It will then send a message to the filtering agent. " There is a new

recommendation request ".

3. After FA receives the message, it will apply the KB recommendation

approach.

4. To compute the recommendations, the filtering agent will filter the content,

and display the results to the user via GUI.

5. When the user submits his/her feedback about the recommendations to the

system; the profiling agent will update the user profile.

Figure 5.7 showing the message from PA to FA.

SELECTING THE BOOKS NAME THAT

USER PREFER

Book1:

……..

Book4:

Book3:

Submit Reset

LIKE DISLIKE

Book2:

Figure 5.6: Illustrating the GUI of scenario case2

51

 The Third Scenario:

A registered user requests the book recommendations based on his/her preferences entered into

the system which can be summarized as:

- User: Enters the username and the password.

- System: Asks the user to enter additional books he/she prefers then monitors the user

behavior within the page. After this, the system observes which books he/she is

browsing to gather user's preferences and feedback for updating his/her profile. The

system realizes all these via GUI.

- User: Enters books names and provides his/her feedback. Then, the PA will update the

user's profile, and inform the filtering agent that there is a recommendation request.

When the filtering agent receives the message in this scenario, there are two possible

cases:

Case1: There are new books available, in this case the filtering agent will apply the

CBF approach to produce the recommendations to the user.

Case2: There are no new books available, and in this case the filtering agent will apply

the CF approach to produce the recommendations to the user.

5.2. The Agents Participant in System

The books recommender system consists of four basic agents as following:

1. Profiling Agent (PA).

2. Need Determination Agent (NDA).

(Inform

:Sender Profiling agent

:receiver Filtering agent

:language Agent Speaks

:ontology Books recommendations

:content There is recommendation request

Figure 5.7: The message from the PA to the FA

51

3. Filtering Agent (FA).

4. Retrieval Agent (RA).

5. Translation Agent (TA).

5.3. The Internal Structure of Agents

This section illustrating the agents' characteristics such as goals, tasks, precondition, and

postcondition to clarify the structure and behavior of each agent in the system as shows in

Tables (5.1, 5.2, 5.3, 5.4. 5.5).

Filtering Agent

N Goal Precondition Postcondition Task

1

Delivering

recommendations to the

GUI.

Receiving a message

from

profiling agent

or need

determination

The

recommendations

transferred to

GUI.

• Requesting books from

Retrieval agent.

• Goal (Check the message resource)

• Goal (Filter the recommendations list).

Profiling Agent

N Goal Precondition Postcondition Task

1
Making the

user profile

User wants

recommendations

based on his/her

preferences

The user

profile made

• Checking if a new user

• Goal (gather the preferences)

2
Gathering the

Preferences

New user log-in Profile built

• Observing user behavior

• Gathering explicit preferences

• Building active user profile

3
Gathering the

Preferences

Existing user

log-in

Existing

profile

updated

• Observing user behavior

• Gathering explicit preferences

• Gathering relevance feedback

• Updating the existing profile

Table 5.1: A profiling agent internal structure

52

Agent.

2

Checking the

Message resource.

Receiving a message

came

from need

determination

Agent.

The

recommendations

Generated.

• Applying KB approach.

3
Checking the

Message resource.

Receiving

a message came

from profiling

Agent.

The

recommendations

Generated.

Checking if a new user, apply KB approach

• Checking if there is a new book, apply CBF

approach else applying CF approach

• Checking if CF approach

Failed, apply CBF.

4 Filtering the

recommendations list.

Receiving

recommendation

list

The

recommendations

transferred to

GUI.

• Comparing the active

user profile with the

recommendation list

• Removing the book that

user has known before

from the recommendation list

• Transferring the recommendations to GUI

5 Filtering the

recommendations list.

Receiving

recommendation

List.

The

recommendations

transferred to

GUI.

• Comparing the recommendation list with

the available books list.

• Removing the unavailable book from the

recommendation list.

• Transferring the recommendations to GUI.

Table 5.2: A filtering agent internal structure

53

Translation Agent

N Goal Precondition
Post-

condition
Task

1

Translating

books which

user

required.

Receiving the

request from

NDA.

Books

are translated.

• Sending the translation request

to BBS.

• Receiving the translation books

from BBS.

• Resending the translation books

to FA which sends it to GUI.

Need Determination Agent

N Goal Precondition Postcondition Task

1
Gathering user

requirements.

User wants

recommendation

based on his/her

current needs.

User

requirements

are gathered.

• Showing queries to the user.

• Gathering user requirements.

Retrieval Agent

N Goal Precondition
Post-

condition
Task

1

Delivering

the available

books to the

filtering

agent.

Receiving the

message from

Filtering agent.

Available

books

List is sent.

• Extracting the books

from the books database.

• Preparing the available

books list.

• Sending the books list to

filtering agent.

Table 5.3: Need Determination Agent (internal structure)

 Table 5.5: Translation Agent (internal structure)

Table 5.4: A retrieval agent internal structure.

54

 5.4. Agents and Their Tasks.

A brief summary of agents and their tasks in Table 5.6.

Agents Roles (Tasks)

Profiling agent

• Gathering the user's preferences.

• Gathering the relevance feedback.

• Building and updating the active user profile.

Need determination agent • Gathering the user current needs.

Filtering agent

• Producing the recommendations.

• Removing the books that are not currently offered from the

recommendation list.

• Transferring the recommendation to the GUI.

Retrieval agent

• Retrieving the books that are currently offered from the

books database.

• Storing the available books in the recommender system

database.

Translation agent • Producing books translation service for users.

Table 5.6: The agents and their tasks

5.5. The Relational Model of Agents

The relational model of agents is represented in the interactions among the agents. Figure 5.8

shows these interactions.

55

5.6. Conversational Model

Conversational model is used to explain the exchanged messages among the agents in books

recommender system as shows in Tables (5.7, 5.8, 5.9, 5.10, and 5.11).

 Receive Send Comment

1 inform(from :PA to: :FA msg: there is recommendation

request)

 Receive Send Comment

1
inform(from :NDA to: :FA msg: list of user requirements)

2 inform(from :NDA to: :TA msg: Translate books

requirements)

Retrieval

agent

Profiling

agent

Need

determination

Agent

Filtering

agent

Books

Available books list Recommendatio

n request

User

Requirement

s

Figure 5.8: The agent relational model

Translation

Agent

Translation

request

Translated

books

Agents

Messages

Interactions

Table 5.7: The profiling agent conversational model

Table 5.8: The need determination agent conversational model

56

 Receive Send Comment

1

inform(from :PA to: :FA msg: there

is recommendation request)

Requesting (from :FA to : :RA msg:

give me the list of available books)

2

inform(from :NDA to: :FA msg: list

of user requirements)

Requesting (from :FA to : :RA msg:

give me the list of available books)

3

inform(from :RA to : :FA msg: list

of available books)

4
infrom (from :TA to : :FA msg:

translated books)

 Receive Send Comment

1
Requesting (from :FA to : :RA msg:

give me the list of available books)

inform(from :RA to : :FA msg: list of

available books)

 Receive Send Comment

1 inform(from :NDA to: :TA

msg: requests list of translation

books)

Requesting (from :TA to:

:BBS msg request

translation of a book)

Table 5.9: The filtering agent conversational model

Table 5.10: The retrieval agent conversational model

Table 5.11: Translation agent conversational model

57

5.7. Conceptual Overview of Architecture Design.

Figure5.9 showing an original architecture design of books recommendations system which

consist of agents, graphical user interface, parameters, messages, dataflow, and components.

Table 5.12

shows abbreviations and meaning which used in Figure 5.9.

Figure 5.9: Conceptual overview of books recommendations system architecture design

Tran
slated

 B
o

o
ks

 R
eco

m
m

en
d

atio
n

s

R
eq

u
irem

en
ts

Other Agents

R
esp

o
n

ses
 Request translation of books

 Applying

 KB Approach

CBF Approach CF Approach

BBS

RA FA

Other user profile information

NDA PA

GUI

 User Login

User-Req

-Relevance feedback
 (Implicit, explicit)
- Explicit preferences
- Implicit preferences

TA
 T-Req-M

 User's

Profile Lists

KB

Rule Base Info

BDB

BR

P:m

Give me a list of available books

Available books

Translated book

P:m

P:m

P:m

Sending Books
Receiving Books

Receiving Books

P:m

There is recommendation

request

 Active user

profile List

 Info-M

Req-M Info-M

Req-M

Info-M

 Info-M

58

5.8. The Application and Measurement

5.8.1. The Application

In this section, we first, introduce the application strategy of Factors and Guidelines for

Complexity (FG4Complexity) in the proposed approach. The strategy includes four steps,

and each step consists of Factors or Guidelines for complexity (FG) addressed in chapter

which were be applied on the previous case study. These steps are intended to decrease

the complexity in architecture design. Some steps are useful to apply in system analysis

such as Step1 and step2. Correspondingly; Step3 and step4 attempt directly to decrease

complexity in architecture design. Having applied all the steps, the same architecture will

be reviewed using the guidelines. Figure 5.35 and Figure 5.36 illustrate how the

architecture has become less complex than original architecture design as shown in Figure

5.9.

In general, the guidelines provided by the proposed approach allow us to use them

according the situation. This means it is not necessary to apply them in arrangement.

Abbreviations Meaning

TR Translation Request

T Translation

P:m Parameter (Message)

BDB Books Data Base

BR Book Resource

KB Knowledge Base

Req Request

Info-M Message of information

Req-M Message of Request

T- Req-M Message of Translation Request

GUI Graphic User Interface

Table 5.12: Illustrating the abbreviations of architecture design of the books

recommendations system

59

 The FG4 Complexity Approach Application Strategy

As we have earlier pointed out that all the previous FG will be within 4 steps to correspond to

the current case study as Figure 5.10 shows.

Step1. Initially, this step is based on applying use case maps represented in FGMOL1 of

FG4Complexity approach which used in between analysis and design phases. These maps give

high view of system specifically the responsibilities (Tasks) and interactions in a simple way,

reinforce system understanding and overcome some situations of complexity such as

intercommunication among agents. Figure 5.11 to Figure 5.30 illustrate how to use UCM's in

descript the system through its tasks, some scenarios and the most significant interactions

among agents system such as describe the mechanisms of a profiling, a filtering, a translation,

a retrieval, a need determination agents, the messages among them, and etc through focused on

some notations such as tasks components, and scenario's path. (frerjani, 2010), (Saleh, 2014).

Conceptual overview

of books

recommendations

system architecture

design

Steps

Factors and

Guidelines

Consists of

Applies on

Orginal AD

STEP1

FGMOl 2

Figure 5.10: Illustrating of the applied steps on architecture Design

 STEP3

 STEP4

 STEP2

FGMOR 1

FGMOR

FGABS

2

FGABS FGABS

3

FGABS 3

 FGMOL 1 STEP1

61

Figure 5.11: Using the UCM to describe the interactions between filtering

agent and (NDA or Profileing agents)

Profiling Agent
User wants

recommendation

based on his

preferences
Check if

new user

Gather user's

preferences

Inform

filtering

Filtering Agent

The

recommendations

transferred to GUI

Request books

from retrieval

agent

Gather user's

Recommendations

Figure 5.12: Using the use

case maps for profiling agent.

The user modeled

Profiling Agent
User wants

recommendation

based on his

preferences
Check if

new user

Gather user's

preferences

Inform

filtering agent

Need Determination Agent

User wants

recommendation

based on his

current needs

Show

queries to

the user

Gather user's

requirements

Inform

flirting

agent

Profiling Agent

New user login

Observe user

behavior Build active

user profile

Gather explicit

user preference

Active user

profile built

Figure 5.13: Gathering the preferences in

case of new user.

Apporates

Parallely

61

Need Determination Agent
User wants

recommendation

based on his

current needs

Show queries

to the user
Gather user's

preferences

User requirement are

gathered

Figure 5.15: Using the use case

maps for NDA.

Figure 5.16: Using the use case maps for

Filtering agent.

The recommendation

transferred to GUI

Figure 5.17: Receiving a message

from NDA

Filtering Agent

Message Came

from NDA Apply KB approach

The recommendation

are generated

Figure 5.14: Gathering the preferences

in case of existing user.

Profiling Agent

Registred user Login

loginlogin

Observe user

behavior
Update old

user profile

Gather explicit

user preference

Existing user

profile updated

Gather relevance

feedback

Filtering Agent

Receive message from

profiling agent or NDA
Check if

new user

Checking the

message

Filter the

recommendations list

62

Filtering Agent

Message came from profiling

agent /user is new Apply KB approach

The

recommendation are

generated

Figure 5.19: Receiving a message

from profiling agent case of new

user.

Filtering Agent

Message came from

profiling agent Check user state

The recommendation

are generated

Figure 5.18: Receiving a message from

profiling agent.

Filtering Agent

Message came from

profiling

agent/registered user

Check if there are

new books

The recommendation

are generated

Figure 5.20: The case of receiving a

message from profiling agent for registered

user.

63

Filtering Agent

There are no new

books available Apply CF

approach

Chick if CF

approach

The

recommendations

are generated

Figure 5.22: No new books are

available case.

Filtering Agent

There are new

books available Apply CBF approach

The

recommendations

are generated

Figure 5.21: The case of availability of

new books.

Filtering Agent

CF approach fail to

introduce

recommendations Apply CBF approach

The

recommendations

are generated

Figure 5.23: The failure of CF approach

to introduce recommendations case.

64

Filtering Agent

CF approach succeeds

in introducing

recommendations

Continuing to apply

CF approach

The

recommendations

are generated

Figure 5.24: The success of CF approach

to introducing recommendations case.

Filtering Agent

Comparing active user profile

with recommendations list

Receive the

recommendation list
The recommendations

are transferred to GUI

Figure 5.25: Comparing the active user

profile with recommendations list

Filtering Agent

Compare recommendation list

with the available books list

Receive the

recommendation list
The recommendations

are transferred to GUI

Figure 5.26: Comparing the recommendations

list with the available books list.

65

Filtering Agent

Remove the book from

recommendation list

The book found in the

active user profile and

recommendation list

Transfer the

recommendations to

GUI

The recommendations

are transferred to GUI

Figure 5.27: Comparing the active user

profile with recommendations list.

Retrieval Agent

Extract the

books from the

books data base

Receive message from

filtering agent

Prepare

available

books list

Send books list

to filtering

agent

Available books list

are sent

Figure 5.29: UCM of retrieval agent.

.

Translation Agent

Sending

request to

BBS

Receiving book translation

requirement from Need

determination agent

Receiving the

translated

book from BBS

Sending the

translated

book to FA

Filtering Agent

Receiving the

translated book

from TA

Translated book

transfers to GUI

Figure 5.30: The UCM of translating book mechanism.

.

Filtering Agent

Remove the book from

the recommendation

list

The book found in the

recommendation list but not in

the available books list

Transfer the

recommendations to

GUI

The recommendations

are transferred to GUI

Figure 5.28: Comparing the recommendations list

with available books list.

66

Step2. If the system requirement specifications (SRS) (Thitisathienkul & Prompoon, 2015)

of a previous system do not have a translation function; then, this function is considered as

Gold Plating concept; therefore, we should apply the FGA3 which avoid the part of gold

plating represented in translation agent (TA) and all components connected from architecture

design as illustrated in Figure 5.31.

: The removed part +

Figure 5.31: Omitting the part representing the gold plating

.

Tran
slated

 B
o

o
ks

 R
eco

m
m

en
d

atio
n

s

R
eq

u
irem

en
ts

Other Agents

R
esp

o
n

ses
 Request translation of books

 Applying

Info-M

 KB Approach

CBF Approach CF Approach

BBS

RA FA

Other user profile information

NDA PA

GUI

 User Login

User-Req

-Relevance feedback
 (Implicit, explicit)
- Explicit preferences
- Implicit preferences

TA
 T-Req-M

 User's

Profile Lists

KB

Rule Base Info

BDB

BR

P:m

Give me a list of available books

Available books

Translated book

P:m

P:m

P:m

Sending Books
Receiving Books

Receiving Books

P:m

There is recommendation

request

 Active user

profile List

 Info-M

Req-M Info-M

Req-M

Info-M

67

Depending on FGMOR1 the hierarchical decomposition approach (HDA) could be applied on

books recommendation system to demonstrate the main components in visual manner to

increase the understandability. Table 5.13 shows the main components and their connected

components in books recommendations system.

Main Components
Connected

component(1)

Connected

component(2)

Connected

component(3)

Retrieval Agent Book Data Base Filtering Agent Book Resource

Filtering Agent Knowledge Base GUI Retrieval Agent

Profiling Agent GUI - -

Need determination Agent GUI - -

Book Data Base Retrieval Agent - -

Book Resource Retrieval Agent - -

Knowledge Base Filtering Agent - -

GUI Profiling Agent NDA Filtering Agent

 Figure 5.32, demonstrates the majeure components in case study by applying HDA.

 Figure 5.32: Conceptual system after applying HDA

Table 5.13: The main components and their connected components in books recommendations

system

Book

Database

Profiling

Agent

NDA

Knowledge

Base

Retrieval

Agent

Book

Resource
Filtering

Agent

GUI

Components

Relationships

68

Step3. As we have pointed out, the modularity has a major role in decreasing the complexity

in software design since the interaction among agents to accomplish their tasks can lead to

system complexity. This step totally relies on cohesion measurement principle which uses the

Communication Cohesion Measurement (CCM). This measurement works as a testing tool.

This enables us to discover which agent needs more decompositions. In this research work, we

have four agents described in the case study: Filtering agent, profiling agent, need

determination agent, and retrieval agent in respect that the translation agent has been omitted in

the last step. Next formulation illustrates the communication cohesive measurement.

Based on the architecture design of book recommendation system, the filtering agent has 4

internal relationships and 2 external relationships, profiling agent has just one internal

relationship and 4 external relationships, need determination agent has one internal relationship

and 2 external relationships and retrieval agent has 4 internal relationships and 3 external

relationships as shown in Table 5.14.

Filtering agent

R internal 7

R external 4

CCM(FA) 7/11

 Assessment

CCM(FA) = 0.6

Profiling agent

R internal 1

R external 2

CCM(PA) 1/3

Assessment

CCM(PA) = 0.3

Retrieval agent

R internal 3

R external 2

CCM(RA) 3/5

Assessment

CCM(RA) = 0.6

NDA

R internal 1

R external 3

CCM(NDA) 1/4

Assessment

CCM(NDA) = 0.3

- The results are:

o CCM(FA)<0.91

o CCM(NDA) <0.91

o CCM(RA) <0.91

o CCM(PA)<0.91

R internal

R internal+ R External
CCM (Ai) =

Table 5.14: The calculating by using CCM technique

69

All results less than 0.91 by this, they do not need more decomposition.

Step4. Applying a group of FG on the architecture design. This group consists of FGABS 1,

FGABS 2, FGABS 3 and FGMOL2 which influence the architecture directly and the changes

can clearly be observed . Table 5.15 illustrates the symbol of each FG to and also shows which

parts of architecture design are influenced after the application in architecture design. Figure

5.33 demonstrates the architectural places affected by applying step4.

N
FG Description

Place

Impact

Symbol

Impacts Notes

1
FGABS 1

Applying simplifying

abstraction to

decrease the dynamic

complexity

- Complexity in

filtering agent will be

reduced.

abstracting some

details as parameters

to support

understandability

Transferring from

middle level of

abstraction to

high level.

2
FGABS 2

Dividing the

architecture design

into two levels and

avoids adopting the

highest level of

abstraction to avoid

the complexity in

architecture design.

These two levels

allow us to understand

the architecture

design gradually (basic

components then detailed

components)

-

3
FGABS 3 The Gold plating

Translation agent,

blackboard system

and all related

components will be

removed from

architecture design.

With supposing it

was not from SRS

document,

5
FGMOL2

Using the simple

notations on

architecture design.

Simple notations will

support the

understandability and

reduce the

complexity.

In this work was

proposed and

used simple

arrows and

components

.

Table 5.15: Clarifying the impact marks on architecture design

71

 Figure 5.33: Architectural places affected by applying step4

 : Applying on architecture design generally

Tran
slated

 B
o

o
ks

 R
eco

m
m

en
d

atio
n

s

R
eq

u
irem

en
ts

Other Agents

R
esp

o
n

ses
 Request translation of books

 Applying

Info-M

 KB Approach

CBF Approach CF Approach

BBS

RA FA

Other user profile information

NDA PA

GUI

 User Login

User-Req

-Relevance feedback
 (Implicit, explicit)
- Explicit preferences
- Implicit preferences

TA
 T-Req-M

 User's

Profile Lists

KB

Rule Base Info

BDB

BR

P:m

Give me a list of available books

Available books

Translated book

P:m

P:m

P:m

Sending Books
Receiving Books

Receiving Books

P:m

There is recommendation

request

 Active user

profile List

 Info-M

Req-M Info-M

Req-M

Info-M

71

 Displaying the Architecture Design

In this section, the architecture design of books recommendations system is viewed after

applying the FG4Complexity approach which consists of two graphs. The first graph focuses

on FG that addresses the abstraction, notations and avoid the highest level of abstraction. It

also represents the first level of abstraction which is indicated in chapter4. The second graph is

more detailed than the first one since it comprises more information about the system like

showing important data flow, messages, and domains. Figure 5.34 and Figure 5.35 illustrate

both graphs.

In
fo

rm
at

io
n

fl
o

w

Agent Filtering

Agent Retrieval

Need Determination Agent Profiling Agent

Graphical User Interface

Knowledge

Base

Books Data

Base

Books Resource

Recommendations

Dataflow

Message

Figure 5.34: First level of Abstraction-Graph1.

U
se

r
L

o
g

in

Q
u

er
ie

s

M
es

sa
g

es

M
es

sa
g

es

Data Flow

M
es

sa
g

es

Data Flow

Data Flow

72

5.8.2. The Measurement

In this section ,we will measure the architecture design from substantial perspective of

complexity represented in the tasks assigned to agents and the measurement we labeled as the

Complexity Task Measurement (CTM). This is based on Use Case Point technique (UCP) (So

Young Moon, 2013a) with adding some modifications to adapt to the agent environment to

estimate the following:

- The complexity of the tasks in each agent.

- The complexity of an actors connected with agents.

- The technical complexity factors

- The complexity of environment.

- The complexity of the tasks assigned to all agents.

 The Complexity Task Measurement (CTM)

First of all, the abbreviations and their means used in this chapter will be illustrated. Table

5.16 shows them in full forms and also the added modifications to make the adaption between

UCP technique which is based on object oriented environment (OOE) and CTM technique is

Profiling Agent Need Determination Agent

Retrieval Agent

Graphical User Interface

Knowledge Base

Relevance feedback (implicit, explicit)

 -Explicit preferences

 -Implicit preferences

Generate Recommendations Domain

Dataflow

Message

Books Data Base

Books Resources

NDA Domain

Filtering Agent

Available

Books

 Saving

Informatio

n

Rule Base

U
se

r
L

o
g

in

Q
u

er
ie

s

R
e
co

m
m

en
d

a
ti

o
n

s

Profile Generation Domain

Active User

Profile

Apply CBF,

CF and KB

Approaches

S
en

d

Figure 5.35: Second level of Abstraction-Graph2.

Receive Books Information

Receive Books

Websites or internal Database

There is

Recommendation

Request

User

Requirements

Give me
available

Books

List of
Available

Books

73

based on multi-agents systems environment (Kendall, 1997). Besides, Table 5.17 illustrating

the adapting between UCP and CTM techniques.

Abbreviations in

UCP Measurement

Formulations in UCP

Measurement

Abbreviations

MAS

Environment

Formulations in MAS

Environment
Interpretation

UCP

UCP = (UUCP) x TCF x

ECF

CTM

CTM = (UT) x TCF x

ECF

Each use case is changed to

a task which assigned to a

certain agent.

UUCP
UUCP =UUCW + UAW

UT

UT = UTW + UAW

Calculating unadjusted

tasks to an agent

TCF

TCF =0.6+(0.01

*total(TF))

TCF

TCF =0.6+(0.01

*total(TF))

Calculating the technical

complexity factor to system

ECF

ECF =1.4+(-0.03

*total(EF))

ECF

ECF =1.4+(-0.03

*total(EF))

Calculating the

environment complexity

factor to system

UUCW

Estimating the use case

as that (Simple, Average,

Complex)

UTW

Estimating the tasks as

that (Simple, Average,

Complex)

Calculating the unadjusted

tasks weight of agents

UAW

Estimating the actors as

that (Simple, Average,

Complex)

UAW

Estimating the agents as

that (Simple, Average,

Complex)

Calculating the unadjusted

agents weight

Abbreviations in

UCP
Meaning

Abbreviations

in CTM
Meaning

UCP Use Case Point CTM Complexity Task Measurement

UUCP Unadjusted Use Case Point UT Unadjusted Task

TCF Technical Complexity Factor TCF Technical Complexity Factor

ECF
Environment Complexity

Factor
ECF Environment Complexity Factor

UUCW Unadjusted Use Case Weight UTW Unadjusted Task Weight

UAW Unadjusted Actor Weight UAW Unadjusted Actor Weight

Table 5.16: Illustrating the abbreviations of CTM

Table 5.17: The adapting between UCP and CTM

techniques

Table 5.16: The abbreviations and their meaning to techniques

74

Figure 5.36 shows a brief illustration of the Complexity Task Measurement method.

 Complexity Calculation of the Retrieval Agent Tasks.

Retrieval agent consists of three main tasks, two actors and three transactions as illustrate

in Figure 5.37.

Retrieval agent

Tasks actors Transections

3 2 3

 Extract the books

from the books

database

Retrieval Agent Tasks

Retrieval Agent
Prepare the

available

books list

Send the books

list to filtering

agent Filtering Agent

DB

Extract Books

Sending Books list

From T1 to Tn

Figure 5.37: An overview of retrieval agent tasks

Calculating

the weights of

Actors

 Calculating

the weights
 of

Tasks

Figure 5.36: Describing the complexity task measurement

(CTM)

UT

TCF

CTM

ECFCalculation Operation

CTM Method

Input to

75

Step1. Calculating unadjusted tasks.

Step1.1. Determine the unadjusted task weight as illustrated in Table 5.18 where NST is

Number of Simple Tasks, NAT Number of Average Tasks and NCT Number of Complex Tasks.

Task Complexity Task Weight Number of Tasks UTW of (RA)

Simple 5 NST 5 × NST

Average 10 NAT 10 × NAT

Complex 15 NCT 15 × NCT

Unadjusted Task Weight (UTW) 5 × NST + 10 × NAT + 15 × NCT

Table 5.19 demonstrates the calculating of UTW for retrieval agent.

Task Complexity Tasks Weight Number of Tasks UTW of (RA)

Simple 5 3 5 × 3

Average 10 0 0

Complex 15 0 0

Unadjusted Task Weight (UTW) 5 × 3 + 10 × 0 + 15 × 0=15

Table 5.19: Calculating the UTW of retrieval agent

Step1.2. Determining unadjusted actors weight (UAW) as illustrated in Table 5.20 where NSA

is Number of Simple Actor, NAA Number of Average Actor and NCA Number of Complex Actors.

Actor Complexity Actor Weight Number of Actors UAW

Simple 1 NSA 1 × NSA

Average 2 NAA 2 × NAA

Table 5.18: Illustrating the Unadjusted Task Weight method (UTW)

76

Table 5.21 is an exemplify of calculating the UAW for retrieval agent.

Actor Complexity Actor Weight Number of Actors UAW of (RA)

Simple 1 1 1 × 1

Average 2 0 2 × 0

Complex 3 1 3 × 1

Unadjusted Actor Weight (UAW) 1 × 1 + 2 × 0 + 3 × 1=4

- UT= UTW+UAW.

- UT=15+4.

- UT of Retrieval Agent is (19).

 Step2. Calculating Technical Complexity Factors (TCF).

To calculate the TCF we should select the factors which affect the system we want to measure.

In this case study, some of these factors are determined in Table 5.22.

Weight Description Factor

2.0 Distributed system F1

1.0 Response time/performance objectives F2

1.0 End-user efficiency F3

1.0 Internal processing complexity F4

1.0 Code reusability F5

Complex 3 NCA 3 × NCA

Unadjusted Actor Weight (UAW) 1 × NSA + 2 × NAA + 3 × NCA

Table 5.20: Illustrating the unadjusted actor weight (UAW) method.

Table 5.21: Calculating the UAW of retrieval agent.

77

0.5 Easy to install F6

0.5 Easy to use F7

2.0 Portability to other platforms F8

1.0 System maintenance F9

1.0 Concurrent/parallel processing F10

1.0 Security features F11

1.0 Access for third parties F12

1.0 End user training F13

In this research work, we assume that eight factors are affected by the entire system as

following: F1, F2, F3, F5, F7, F8, F10, and F11. After selecting the affected factors, their

weights must be calculated by the following way.

- Total Factors (TFactor) = weights * Rated Values (RV), where RV is from 0 to

5 to each factor.

= (F1*RV+F2*RV +F3*RV +F5*RV +F7*RV +F8*RV +F10*RV +F11*RV).

= (5*2.0+3*1.0+2*1.0+4*1.0+5*0.5+3*2.0+4*1.0+3*1.0).

- TFactor= (34.5).

- TCF = 0.6 + (0.01 × TFactor).

 = 0.6 + (0.01 × 34.5).

- TCF to all system= (0.945).

 Step3. Calculating the Environmental Complexity Factor (ECF).

To calculate the environmental complexity factor to the entire system we should select the

environmental factors that affect the system execution and calculate their weights as shown in

Table 5.23.

Weight Description Factor

1.5 Familiarity with development process used E1

0.5 Application experience E2

1.0 Agent-oriented experience of team E3

Table 5.22: The weights of technical complexity factors (TCF)

78

0.5 Lead analyst capability E4

1.0 Motivation of the team E5

2.0 Stability of requirements E6

-1.0 Part-time staff E7

-1.0 Difficult programming language E8

- In books recommender system, we assume that there are six factors influencing

the entire system: E1, E2, E3, E4, E6, and E8.

- Total EF= calculates the weights of (E1+ E2+ E3+ E4+ E6+E8).

- Total EF= (4.5).

- EF = 1.4 + (-0.03 × Total EF).

- EF= 1.4 + (-0.03 × 4.5).

- EF= (1.265).

- ECF of entire system= (1.265).

 Step4. Calculating the Complexity of Tasks.

- CTM = UT × TCF × EF.

- CTM=19*0.945*1.265.

- CTM=22.7.

- Complexity tasks of Retrieval Agent are (22.7).

 Complexity Calculation of Need Determination Agent Tasks.

Need determination agent consists of two main tasks, one actor and two transactions as

illustrate in Figure 5.38.

Table 5.23: The weights of environmental complexity factors (ECF)

79

Step1. Calculating the unadjusted tasks.

o Step1.1. Determining the Unadjusted Task Weight as Table 5.24:

Step1.2. Determining the Unadjusted Actors Weight (UAW) as Table 5.25.

Actor Complexity Actor Weight Number of Actors UAW of (NDA)

Simple 1 0 1 × 0

NDA

Tasks actors Transections

2 1 2

Task Complexity Task Weight Number of Tasks UTW of (NDA)

Simple 5 2 5 × 2

Average 10 0 0

Complex 15 0 0

Unadjusted Task Weight (UTW) 5 × 2 + 10 × 0 + 15 × 0=10

 Gather User's

requirements

Need Determination Agent Tasks

NDA
Show queries to

the User

User

Figure 5.38: An overview of need determination agent tasks

Table 5.24: The UTW of Need Determination Agent

81

Average 2 0 2 × 0

Complex 3 1 3 × 1

Unadjusted Actor Weight (UAW) 1 × 0 + 2 × 0 + 3 × 1=3

Table 5.25: The UAW of need determination agent

- UT= UTW+UAW.

- UT=10+3.

- UT of NDA is (13).

 Step2. Calculating technical complexity factors.

- TCF of NDA is (0.945).

 Step3. Calculating Environmental Complexity Factor.

- ECF of NDA is (1.265).

 Step4. Calculating Complexity Tasks.

- CTM = UT × TCF × EF.

- CTM=13*0.945*1.265.

- CTM=15.5

- Complexity tasks of NDA (15.5).

 Complexity Calculation of Profiling Agent Tasks

Profiling agent consists of eight main tasks, one actor and eight transactions as illustrate in

Figure 5.39.

81

 Step1. Calculating the unadjusted tasks.

o Step1.1. Determining the Unadjusted Task Weight as Table 5.26.

Task Complexity Task Weight Number of Tasks UTW of (PA)

Simple 5 0 0

Average 10 0 0

Complex 15 8 15*8

Unadjusted Task Weight (UTW) 5 × 0 + 10 × 0 + 15 × 8=120

Profiling Agent

Tasks actors Transections

8 1 8

 Checking user Profile

 Monitoring new user

behavior

 Building active user

profile
Gathering relevance feed back

Updating the existing

profile

Gathering explicit

preferences for new

user

Gathering explicit

preferences for

active user

 Monitoring active

user behavior

Profiling Agent

Profiling Agent Tasks

User New/Active

Figure 5.39: An overview of profiling agent tasks

Table 5.26: The unadjusted tasks weight of profiling agent

82

Step1.2. Determines Unadjusted Actor Weight (UAW) as Table 5.27.

Actor Complexity Actor Weight Number of Actors UAW of (PA)

Simple 1 0 1 × 0

Average 2 0 2 × 0

Complex 3 1 3 × 1

Unadjusted Actor Weight (UAW) 1 × 0 + 2 × 0 + 3 × 1=3

- UT= UTW+UAW.

- UT=120+3.

- UT of Profiling Agent is (123).

 Step2. Calculating the technical complexity factors.

- TCF of Profiling Agent is (0.945).

 Step3. Calculating the Environmental Complexity Factor.

- ECF of Profiling Agent is (1.265).

 Step4. Calculating the Complexity Tasks.

- CTM = UT × TCF × EF.

- CTM=123*0.945*1.265.

- CTM=147.03.

- Complexity tasks of Profiling Agent are (147.03).

 Complexity Calculation of Filtering Agent Tasks

Filtering agent consists of eleven main tasks, four actors and eleven transactions as illustrate in

Figure 5.40.

Table 5.27: The UAW of profiling agent

83

 Step1. Calculating unadjusted tasks.

o Step1.1. Determining Unadjusted Task Weight as Table 5.28:

Task Complexity Task Weight Number of Tasks UTW of (FA)

Simple 5 0 0*5

Average 10 11 11*10

Complex 15 0 0*15

Unadjusted Task Weight (UTW) 5 × 0 + 10 × 11 + 15 × 0=110

FA

Tasks

11

actors

4

Transections

11

Requesting

books from

retrieval agent

Filtering Agent

 Applying

approaches

KB

Comparing the

active user profile

with the

 Removing the

book that user has

known before

Comparing the

recommendation list

with the available

books list

Removing the

unavailable book

from the

recommendation list

 Transferring the

recommendations

to GUI

 Transferring the

translated books

to GUI

 CBF

 C

F Filtering

NDA

TA

Profiling

Retrieval

Recommendat

ions List

Books

List

Availab

le

Books

Transla

ted

books

Figure 5.40: An overview of filtering agent tasks

Table 5.28: The UTW of filtering agent

84

Step1.2. Determining Unadjusted Actors Weight (UAW) as Table 5.29.

Actor Complexity Actor Weight Number of Actors UAW of (FA)

Simple 1 0 1 × 0

Average 2 4 2 × 4

Complex 3 0 3 × 0

Unadjusted Actor Weight (UAW) 1 × 0 + 2 × 4 + 3 × 0=8

- UT= UTW+UAW.

- UT=110+8.

- UT of Filtering Agent is (118).

 Step2. Calculating the technical complexity factors.

- TCF of Filtering Agent is (0.945).

 Step3. Calculating the Environmental Complexity Factor.

- ECF of Filtering Agent is (1.265).

 Step4. Calculating the Complexity Tasks.

- CTM = UT × TCF × EF.

- CTM=118*0.945*1.265.

- CTM=141.5.

- Complexity tasks of Filtering Agent are (141.5).

 Complexity Calculation of Translation Agent Tasks.

Translation agent consists of four main tasks, three actors and four transactions as illustrate in

Figure 5.41.

Table 5.29: The UAW of filtering agent

85

Step1. Calculating the unadjusted tasks.

o Step1.1. Determining the Unadjusted Task Weight as Table 5.30.

Task Complexity Task Weight Number of Tasks UTW of (TA)

Simple 5 0 0*5

Average 10 04 4*10

Complex 15 0 0*15

Unadjusted Task Weight (UTW) 5 × 0 + 10 × 4 + 15 × 0=40

Table 5.30: The UTW of translation agent

Step1.2. Determining Unadjusted Actor Weight (UAW) as Table 5.31.

TA

Tasks

4

actors

3

Transections

4

 Receiving requests of

translation from NDA

Translation Agent Tasks

Translation Agent

 Sending the translation

requests to BBS

Receiving the

translated books

from BBS

NDA

BBS

Translations

process

Books translating

requests

 Sending the

translated books to

FA

FA

Figure 5.41: An overview of translation agent tasks

86

Actor Complexity Actor Weight Number of Actors UAW of (TA)

Simple 1 0 1 × 0

Average 2 2 2 × 1

Complex 3 1 1 × 1

Unadjusted Actor Weight (UAW) 1 × 0 + 2 × 2+ 3 × 1=7

- UT= UTW+UAW.

- UT=40+7.

- UT of Translation Agent is (47).

 Step2. Calculating the technical complexity factors.

- TCF of Translation Agent is (0.945).

 Step3. Calculating the Environmental Complexity Factor.

- ECF of Translation Agent is (1.265).

 Step4. Calculating the Complexity Tasks.

- CTM = UT × TCF × EF.

- CTM=47*0.945*1.265.

- CTM=56.1.

- Complexity tasks of Translation Agent (56.1).

 Calculating the CTM for Overall System.

- In this section, the complexity of multi-agents systems tasks is calculated by summation of

CTM to each agent.

- In original architecture design (before applying FG4Complexity approach) there are five

agents, so, we can calculate the total CTM as following:

Table 5.31: The UAW of translation agent.

87

- Total CTM =

- Total(CTM) =(174.03)+(141.5)+(15.5)+(22.7)+(56.1)

 Total (CTM) of original AD= (409.8).

 To measure the architecture design after applying FG4 Complexity we should

remove the translation agent as shown below.

Total CTM =

Total (CTM) = (174.03) + (141.5) + (15.5) + (22.7).

 Total (CTM) of AD after applying the FG4Complexity approach =(353.7).

 Comparison by Results and the Assessment

o The Comparison:

In this section of research work, results of architectural designs are compared after have been

measured by Complexity Tasks Measurement as Table 5.32 shows.

The Architecture design Assessment

After applying FG4Complexityapproach Original AD

CTM CTM

353.7 409.8

Figure 5.42 illustrates the results of CTM.

Table 5.32: The assessment to CTM before and after applying the FG4Complexity approach

CTM

Profiling, Filtering, Need determination, Retrieval, and Translation Agents

CTM

Profiling, Filtering, Need determination, and Retrieval Agents

88

Figure 5.42: The results of (CTM) measurment

 The Assessment

o In Terms of Analysis:

- Using use case maps improves the understandability of agent tasks (Agent

responsibilities) and the interactions which occur in the system, and this enables us to

avoid the complexity in the early stages of architecture design.

- Decreasing the complexity by clarifying the basic modularity of software system

depending on (major components and their relationships).

o In Terms of Architecture Design Form:

- Classifying the AD into two forms. Basically, this classification gradually allows us to

understand the essential components and their relationships. As a result, more

comprehended information will be displayed in the second architecture design form.

- Using clearing notations plays a major role in recognizing the system components and

their communications in a natural way.

- Avoiding the additional function that was not required in a system such as illustrated in

FGABS3 also contributes to the decrease of the complexity.

Figure 5.43 shows the architectural design before and after applied FG4Comlexity approach.

89

Figure 5.43: Displaying the AD before and after applying the FG4Complexity approach

Original

AD

The AD after applying FG4Complexity approach

Tran
slated

 B
o

o
ks

 R
eco

m
m

en
d

atio
n

s

R
eq

u
irem

en
ts

Other Agents

R
esp

o
n

ses
 Request translation of books

 Applying

 KB Approach

CBF Approach CF Approach

BBS

RA FA

Other user profile information

NDA PA

GUI

 User Login

User-Req

-Relevance feedback
 (Implicit, explicit)
- Explicit preferences
- Implicit preferences

TA
 T-Req-M

 User's

Profile Lists

KB

Rule Base Info

BDB

BR

P:m

Give me a list of available books

Available books

Translated book

P:m

P:m

P:m

Sending Books
Receiving Books

Receiving Books

P:m

There is recommendation

request

 Active user

profile List

 Info-M

Req-M Info-M

 Req-M

Info-M

Info-M

91

5.9. Summary

This chapter introduced the case study: Books Recommendations System, which is based on

multi agents systems. Hence, it applied all factors and guidelines proposed in FG4Complexity

approach on the case study. In addition, it introduced the CTM method to measure the system

before and after applying the proposed approach. And finally it illustrated the assessment of

FG4complexity of architecture design in terms of analysis and form.

91

CHAPTER 6

Conclusion and Future Work

6.1. The Conclusion

This thesis describes a method to reduce the complexity of architecture design to multi-agents

systems. This method includes set of guidelines related to abstraction, modularity and

modeling concepts. It labels as "FG4complexity" and discusses the decrease of complexity

which usually occurs during the interactions among agents. In other side, the research

developes a method entitled (CTM) to estimate the complexity of multi-agents systems, based

on use case point method by adding some modifications on this method to adapt it with agent

environment. This modification aims at estimating the complexity of the tasks in each agent,

the complexity of every actor connected with agents, the technical complexity factors, the

complexity of environment and the complexity of the tasks assigned to all agents. The

FG4complexity approach is useful for large systems such as recommendation systems that are

based on multi-agents systems to avoid the complexity problems found in the most existing

architectures. Thus, it enhances the quality standards, the reduction of complexity from

architecture design, and eventually reinforces the reusability concept.

6.2. The Future Work

For future work, other aspects of architecture design could be addressed to attempt to make the

proposed approach more effective. Those aspects may be represented in the style, design

patterns, documentation and etc. Correspondingly, the research will introduce more effective

means including guidelines for complexity measurements. In other words, assisting developers

of systems based multi –agents systems to select suitable measurements for their systems.

Measuring the complexity of architecture design of systems through other measuring

techniques, e.g., to measure the coupling among agents. Finally, we hope to apply the

FG4complexity approach on other larger and more complex systems.

92

REFERENCES

Abdelaziz, T., Elammari, M., Unland, R., & Branki, C. (2010). MASD: Multi-Agent Systems

Development Methodology. Multiagent and Grid Systems Journal, 6(1), 71-101 .

Ahmed Taki, Z. S. (2014). Formal Specification of Multi-Agent System Architecture. Paper

presented at the International Conference on Advanced Aspects of Software Engineering ICAASE,

ALGERIA .

Ahmed.A, I. B. (2013). From UML 2.0 Interaction Fragments to PROMELA using a Graph

Transformation Approach. Paper presented at the The International Arab Conference on

Information Technology (ACIT’2013), Tunisia .

Akerkar, R., & Sajja, P. (2010). Knowledge-based systems: Jones & Bartlett Publishers.

Al-Masree, H. K. (2015). Extracting Entity Relationship Diagram (ERD) from relational database

schema. International Journal of Database Theory and Application, 8(3), 15-26 .

Alenezi, M., & Almustafa, K. (2015). Empirical analysis of the complexity evolution in open-

source software systems. International Journal of Hybrid Information Technology, 8(2), 257-266 .

Alenezi, M., & Zarour, M. (2015). Modularity measurement and evolution in object-oriented open-

source projects. Paper presented at the Proceedings of the The International Conference on

Engineering & MIS 2015.

Aleryani, A. Y. (2016). Comparative Study between Data Flow Diagram and Use Case Diagram.

International Journal of Scientific and Research Publications, 6(3), 124-127 .

Alessandro Garcia, U. K., Carlos Lucena. (2008). On the modularity assessment of aspect-oriented

multiagent architectures: a quantitative study. International Journal of Agent-Oriented Software

Engineering, 2 .

Alhumaidan, F. (2012). A critical analysis and treatment of important UML diagrams enhancing

modeling power. Intelligent Information Management, 4(05), 231 .

Anirban Sarkar ,N. C. D. (2012). Measuring Complexity of Multi-Agent System Architecture.

IEEE .

Bartz, R. (2013). Mapping data models of the standardized automotive testing data storage to the

unified modeling language Industrial Technology (ICIT), 2013 IEEE International Conference on

(pp. 1327-1332). South Africa: IEEE.

Bhardwaj, M. S. (2015). A Framework for Designing Modeling and Analysis Agent Based Software

Systems. Paper presented at the 4th International Conference on System Modeling & Advancement

in Research Trends (SMART), Beijing, China .

93

Bouwers, E. a. V., Joost and Lilienthal, Carola and van Deursen, Arie. (2010). A Cognitive Model

for Software Architecture Complexity. IEEE, 152-155 .

Broersen, J., Dastani, M., & van der Torre, L. (2005). Beliefs, obligations, intentions, and desires

as components in an agent architecture. International Journal of Intelligent Systems, 20(9), 893-

919 .

Burke, R. (2002). Hybrid Recommender Systems:Survey and Experiments. User Modeling and

User-Adapted Interaction, 12(1), 33 1 - 370 .

Castillo, H. (2007). Hybrid Content-Based Collaborative-Filtering Music Recommendations. MSc.,

University of Twente, Netherlands .

Chakraborty, A., Baowaly, M. K., Arefin, A., & Bahar, A. N. (2012). The role of requirement

engineering in software development life cycle. Journal of emerging trends in computing and

information sciences, 3(5), 723-729 .

Chaptini, B. H. (2005). Use of discrete choice models with recommender systems. PHD.,

Massachusetts Institute of Technology, Cambridge. USA .

Chin, K. O., Gan, K. S., Alfred, R., Anthony, P., & Lukose, D. (2014). Agent Architecture: An

Overviews. Transactions on science and technology, 1(1), 18-35 .

Chris F. Kemerer, M. C. P. (2009). The Impact of Design and Code Reviews on Software Quality.

IEEE, VOL. 35(4 .)

Cohen, T. T. a. R. (2000). Hybrid Recommender Systems for Electronic Commerce. in the 17th

National Conference on Artificial Intelligence AAAI .

Darcy, D. P., Daniel, S. L., & Stewart, K. J. (2010). Exploring Complexity in Open Source

Software: Evolutionary Patterns, Antecedents, and Outcomes. Paper presented at the hicss.

De Bruin, H. a. v. V., Hans. (2003). Quality-driven software architecture composition. Journal of

Systems and Software, Elsevier, 66(3), 269--284 .

Elammari, M., & Lalonde, W. (1999). An agent-oriented methodology: High-level and

intermediate models. Paper presented at the Proc. of the 1st Int. Workshop. on Agent-Oriented

Information Systems.

Engin, G., Aksoyer, B., Avdagic, M., Bozanlı, D., Hanay, U., Maden, D., & Ertek ,G. (2014). Rule-

based expert systems for supporting university students. Procedia Computer Science, 31, 22-31 .

Evesti, A. (2007). Quality-oriented software architecture development. Paper presented at the

International Conference on Information Technology: Coding and Computing (ITCC'05), Las

Vegas, NV, USA .

Far, B. H. (2002). Software Agents: Quality, Complexity and Uncertainty Issues. IEEE. doi:

10.1109/COGINF.2002.1039290

94

Francisca Losavio and Ledis Chirinos, N. L. a. A. R.-C. (2003a). Quality Characteristics for

Software Architecture. JOURNAL OF OBJECT TECHNOLOGY, 2 .

Francisca Losavio and Ledis Chirinos, N. L. a. A. R.-C. (2003b). Quality Characteristics for

Software Architecture*. ETH Zurich, Chair of Software Engineering, 2 .

frerjani, R. N. A .A. E. (2010). Towards A General Architecture for Building Intelligent, Flexible,

and Adaptable Recommender System Based on MAS Technology. post graduation, benghazi IEEE

journal .

Ghasemi, M., Sharafi, S. M., & Arman, A. (2015). Towards an Analytical Approach to Measure

Modularity in Software Architecture Design. JSW, 10(4), 465-479 .

Ghazal Keshavarz, D. N. M., Dr. Mirmohsen Pedram (2011). Metric for Early Measurement of

Software Complexity. International Journal on Computer Science and Engineering (IJCSE) 3 .

Goel, A. K., Rugaber, S., & Vattam, S. (2011). Structure, behavior, and function of complex

systems: The structure, behavior, and function modeling language. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 23(01), 23-3 5 .

Haber, A. a. R., Holger and Rumpe, Bernhard and Schaefer, Ina. (2011). Delta Modeling for

Software Architectures. Paper presented at the Tagungsband des Dagstuhl-Workshop MBEES .

Hanseth, O. a. L., Kall. (2010). Design theory for dynamic complexity in information

infrastructures: the case of building internet. Springer, 15, 1-19 .

Isinkaye, F., Folajimi, Y., & Ojokoh, B. (2015). Recommendation systems: Principles, methods

and evaluation. Egyptian Informatics Journal, 16(3), 261-273 .

ISO. (2016). ISO/IEC 25023 Systems and software engineering — Systems and software Quality

Requirements and Evaluation (SQuaRE) — Measurement of system and software product quality.

Itmazi, J. (2005). Flexible Learning Management System To Support Learning In The Traditional

And Open Universities .

Iván García-Magariño, M. C., Valeria Seidita. (2010). A metrics suite for evaluating agent-oriented

architectures. ACM .

Jomi Fred Hubner, J. S. S., and Olivier Boissier2. (2007). Prioritizing Quality Specifications of

Multi-agent Systems. Paper presented at the IAENG (International Association of Engineers),

London (UK .)

Karageorgos, A. a. M., Nikolay and Thompson, Simon. (2003). A Design Complexity Evaluation

Framework for

Agent-Based System Engineering Methods. Springer .

Keating, M. (2000). measuring design quality by measuring design complexity. IEEE Computer

Society Washington, 314 .

95

Kendall, E. A. a. M., Margaret T. and Jiang, Chong H. (1997). THE APPLICATION OF OBJECT-

ORIENTED ANALYSIS TO AGENT BASED SYSTEMS. JOOP ,9(1 ,)56-62 .

Khan, Y. A., & Mahmood, S. (2012). Deriving Sequence Diagrams from Use Case Map Scenario

Specifications .

Kirandeep Kaur, B. J., Rekha Rani. (2013). Analysis of Gold Plating: A Software Development

Risk. International Journal of Computer Science and Communication Engineering, 2(1 .)

Kl¨ugl, F. (2008). Measuring Complexity of Multi-agent Simulations – An Attempt Using Metrics.

Springer, 128-138 .

Kruchten, P. (1995). Architectural Blueprints—The ―4+1‖ View Model of Software Architecture.

IEEE

Lawgali, A. (2017). TRACEABILITY OF UNIFIED MODELING LANGUAGE DIAGRAMS

FROM USE CASE MAPS. International Journal of Software Engineering & Applications

(IJSEA) .

Lenhart, P., & Herzog, D. (2016). Combining Content-based and Collaborative Filtering for

Personalized Sports News Recommendations. CBRecSys 2016, 3 .

Leopold, H., Mendling, J., Reijers, H. A., & La Rosa, M. (2014). Simplifying process model

abstraction: Techniques for generating model names. Information Systems, 39, 134-151. Retrieved

from

Luiz, J. (2009). The Many Faces of Complexity in Software

Design.

M. Montaner, B. L., and J. De La. (2003). A Taxonomy of Recommender Agents on the Internet.

Artificial Intelligence Review, 19(4), 285–330 .

Malika Addou, S. M. (2011). A new approach of designing Multi-Agent SystemsInternational

Journal of Advanced Computer Science and Applications, (Vol. 2): (IJACSA) International Journal

of Advanced Computer Science and Applications .

Markic, I. a. S., Maja and Maras, Josip. (2014). Intelligent Multi Agent Systems for Decision

Support in Insurance Industry Information and Communication Technology, Electronics and

Microelectronics (MIPRO) (pp. 1118--1123): IEEE.

Mary Shaw, R. D., Daniel V. Klein, Theodore L. Ross, David M. Young, Gregory Zelesnik.

(1995 .)Abstractions for Software Architecture and Tools to Support Them. IEEE Transactions on

software engineering, 21(4), 314--335. doi: 10.1109/32.385970

Medeiro, F., Pérez-Verdú, B., & Rodríguez-Vázquez, A. (2013). Top-down design of high-

performance sigma-delta modulators (Vol. 480): Springer Science & Business Media.

Meli, R., & Santillo, L. (1999). Function point estimation methods: A comparative overview. Paper

presented at the Proceedings of FESMA.

96

Mirakhorli, M. a. C., Hong-Mei and Kazman, Rick. (2015 .)Mining Big Data for Detecting,

Extracting and Recommending Architectural Design Concepts Proceedings of the First

International Workshop on BIG Data Software Engineering (pp. 15--18): IEEE press.

Misra, S. (2011). An approach for the empirical validation of software complexity measures. Acta

Polytechnica Hungarica, 8(2), 141-160 .

Moertini, V. S., Heriyanto, S., & Nugroho, C. D. (2014). REQUIREMENT ANALYSIS METHOD

OF E-COMMERCE WEBSITES DEVELOPMENT FOR SMALL-MEDIUM ENTERPRISES,

CASE STUDY: INDONESIA. International Journal of Software Engineering & Applications,

5(2), 11 .

Mohamed, N. a. S., Raja Fitriyah Raja and Endut, Wan Rohana Wan. (2013). The Use of

Cyclomatic Complexity Metrics in Programming Performance’s Assessment. Procedia-Social and

Behavioral Sciences, 90, 497--503 .

Muli, E. a. K., James. (2015). A multi-agent based model for self motivated learners: self study

tool. International Journal of Advanced Computer Research, 5, 298 .

Obando, J. (2008). Methodology to obtain the user's Human Values Scale from Smart User

Models .

Oprea, M. (2004). Applications of multi-agent systems. In R. R. (Ed.), Information Technology

(Vol. 157, pp. 239-270). Boston, MA: Springer.

Pang, G. K.-H. (2000). BLACKBOARD ARCHITECTURE FOR INTELLIGENT CONTROL .

Pohl, K (.2010 .) Requirements engineering: fundamentals, principles, and techniques: Springer

Publishing Company, Incorporated.

Ross, D. T., Goodenough, J. B., & Irvine, C. (1975). Software engineering: process, principles, and

goals. Computer, 8(5), 17-27 .

Rudenko, D., & Borisov, A. (2007). An overview of blackboard architecture application for real

tasks. Paper presented at the Scientific Proceedings Of Riga Technical University, Ser.

S.Mary Helan Felista1, S. S., S. Jebapriya3. (2014). A Genteel Requirement Engineering for Web

Applications. International Journal of Innovative Research in Computerand Communication

Engineering, 2(5 .)Saleh, E. M. (2014). Architecture for Design Pattern Selection

based on Multi-Agent System. post graduation, benghazi university .

Sara Maalal, M. A. (2011). A new approach of designing Multi-Agent Systems. (IJACSA)

International Journal of Advanced Computer Science and Applications, , Vol. 2, No. 11, 2011 .

Saxena, V., & Kumar, S. (2012). Impact of coupling and cohesion in object-oriented technology.

Journal of Software Engineering and Applications, 5(09), 671 .

97

Sękala, A., Foit, K., Banaś, W., & Kost, G. (2015). Design of robotic work cells using object-

oriented and agent-based approaches. Journal of Achievements in Materials and Manufacturing

Engineering, 73(2 .)

Serebrenik, A. (2014). Software architecture: Introduction

Sharma, T. (2012). Quantifying Quality of Software Design to Measure the Impact of Refactoring

Computer Software and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th

Annual (pp. 266--271): IEEE.

Shehory, O. (1998). Architectural Properties of MultiAgent Systems .

Shehory, O. a. S., Arnon. (2001). Evaluation of modeling techniques for agent-bases systems.

Paper presented at the Proceedings of the 5th International Conference on Autonomous Agents,,

New York .

Sinha, B. R. a. D., Pradip Peter and Amin, Mohammad and Badkoobehi, Hassan. (2013).

SOFTWARE COMPLEXITY MEASUREMENT USING MULTIPLE CRITERIA. Journal of

Computing Sciences in Colleges, 28, 1 55--162 .

So Young Moon, R. Y. C. K. (2013a). Verification of Requirements Extraction and Prioritization

Based on Goal Oriented Use Case Approach by using Use Case Points. nternational Journal of

Software Engineering and Its Applications, 7(4), 105-114 .

So Young Moon, R. Y. C. K. (2013b). Verification of Requirements Extraction and Prioritization

Based on Goal Oriented Use Case Approach by using Use Case Points. International Journal of

Software Engineering and Its Applications, 7 .

STARON, M. (2016). SOFTWARE COMPLEXITY METRICS IN GENERAL AND IN THE

CONTEXT OF ISO 26262 SOFTWARE VERIFICATION REQUIREMENTS. Scandinavian

Conference of Systems and Software Safety, 1-23. doi: 10.13140/RG.2.1.1531.1763

Straub, J. (2014). Comparing the blackboard architecture and intelligent water drops for

spacecraft cluster control. Paper presented at the AIAA SPACE 2014 Conference and Exposition.

Taylor, R. N., Medvidovic, N., & Dashofy, E. M. (2009). Software architecture: foundations,

theory, and practice: Wiley Publishing.

Tekinerdogan, B., & Demirli, E. (2013). Evaluation framework for software architecture viewpoint

languages. Paper presented at the Proceedings of the 9th international ACM Sigsoft conference on

Quality of software architectures.

Thitisathienkul, P & ,.Prompoon, N. (2015). Quality assessment method for software requirements

specifications based on document characteristics and its structure. Paper presented at the

Trustworthy Systems and Their Applications (TSA), 2015 Second International Conference on.

98

Tran-Cao, D., Abran, A., & Lévesque, G. (2001). Functional complexity measurement. Paper

presented at the Proceedings of the „International Workshop on Software Measurement

(IWSM'01)‖, Montreal, Quebec, Canada.

Tsui, F., Gharaat, A., Duggins, S., & Jung ,E. (2011). Measuring Levels of Abstraction in Software

Development. Paper presented at the SEKE.

Umapathy Eaganathana, M. K. D., Abdifatah Farah Alic. (2016). A STUDY OF OBJECT

ORIENTED SOFTWARE COMPLEXITY AND SIZING MEASURE. International Journal of

Pharmacy & Technology .

van der Ven, J. S., Jansen, A. G., Nijhuis, J. A., & Bosch, J. (2008). Design decisions: The bridge

between rationale and architecture Rationale management in software engineering (pp. 329-348):

Springer.

Wagner, S., Florian. (2011 .)Abstractness, Specificity, and Complexity in Software Design. ACM,

35--42 .

Weyns, D. (2010). Architecture-based design of multi-agent systems: Springer Science & Business

Media.

Wood, M. F., & DeLoach, S. A. (2001). An Overview of the Multiagent Systems Engineering

Methodology. Springer, 19(57 .)

Yan, S. (2014). A Collaborative Filtering Recommender Approach by Investigating Interactions of

Interest and Trust Knowledge Engineering and Management (pp. 173-188): Springer.

Zalewski, A. (2013). Modelling and evaluation of software architectures. Prace Naukowe

Politechniki Warszawskiej. Elektronika .

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2001). Organisational abstractions for the

analysis and design of multi-agent systems. Paper presented at the Agent-oriented software

engineering.

xiv

 الممخص

جودة المعمارية التصورية، حيث الجودة تؤثر بشكل جوىري في معمارية تعتمد عمى الكفؤةتصميم الانظمة المتعددة الوكلاء
النظام البرمجي وتمعب دور رئيسي في وصف المعمارية. بالتالي خواص الجودة كقابمية الفيم، التعقيد، قابمية القراءة، قابمية

بكرة اثناء تطوير المعمارية البرمجية. من الاختبار، وقابمية اعادة الاستخدام وغيرىا يجب ان تؤخذ بعين الاعتبار في مرحمة م
تفاعلات لإنجاز مياميا، التصالات و الكثير من الاالانظمة الكبيرة مثل الانظمة المتعددة الوكلاء تتطمب ان الجذير بالذكر،

اثناء والذي قد يؤدي الى التعقيد في معمارية التصميم. ىذه الاطروحة تحاول توضيح مواضع التعقيد في الذي قد يحدث
عن طريق تقديم طريقة تيدف لوضع وذلك وصف معمارية التصميم من خلال عدة جوانب، التجريد، التجزئة، و النمذجة

مجموعة من الارشادات لتقميل تأثير التعقيد، وضع توضيحات لكل ارشاد، وارشاد مطوري انظمة المتعددة الوكلاء لتصميم
 وقابمة لمفيم.معماريات عالية الجودة، منخفضة التعقيد،

كتب الذي يعتمد بدوره عمى الانظمة المتعددة الوكلاء حيث التعقيد سيتم الالطريقة يتم تطبيقيا عمى حالة دراسة لنظام توصيات
ايضاً سيتم عرض نتائج الذي يعتمد عمى طريقة نقطة حالة الاستخدام. (CTMقياسو عن طريق مقياس تعقيد الوظيفة)

 ق الطريقة.التعقيد قبل وبعد تطبي

 .(RSانظمة المتعددة الوكلاء، المعماريات بشكل عام، خواص الجودة، انظمة التوصيات) :المفتاحية الكممات

لتحسين معماريات التصميم للأنظمة المتعددة الوكلاء طريقة
 عن طريق تقميل جوانب التعقيد

 :قدمت من قبل

 هويده عبدالله عمى المرزكي

 تحت اشراف:

 د. توفيق محمد الطويل

 لمتطمبات الحصول درجة الماجستير في عموم الحاسوب قدمت هذه الرسالة استكمالا

 جامعة بنغازي

 كمية تقنية المعمومات

 7102-7102خريف

	face.pdf
	Copyright.pdf
	signaures.pdf
	Dedication.pdf
	Acknowledgments.pdf
	contents.pdf
	Abstract.pdf
	All1.pdf
	الملخص.pdf
	الواجهة العربية1.pdf

