

A Framework to enhance the process of

potential faults detection

at early stages of software development

life cycle

By

Fatima Faraj Musbah Saeid

Supervisor

Dr.Mohamed Hagal

This Thesis was submitted in Partial Fulfillment of the

Requirements for Master's Degree of Science in Software

Engineering

University of Benghazi

Faculty of Information Technology

February 2022

ii

Copyright © 2022. All rights reserved, no part of this thesis may be

reproduced in any form, electronic or mechanical, including photocopy,

recording scanning, or any information, without the permission in writhing

from the author or the directorate of graduate studies and training of

Benghazi university.

محفوظة. لا يسمح اخذ اي معلومة من اي جزء من هذه الرسالة على هيئة 2022حقوق الطبع
نسخة إلكترونية أو ميكانيكية بطريقة التصوير أو التسجيل أو المسح الضوئي أو المسح الضوئي

 .أو إدارة الدراسات العليا والتدريب بجامعة بنغازيمن دون الحصول على إذن كتابي من المؤلف

iii

University of Benghazi

 A Framework to enhance the process of

potential faults detection

 at early stages of software development

life cycle

By

Fatima Faraj Saeid

This Thesis was Successfully Defended and Approved on . . 2022

Supervisor
Dr. Mohammed Hagal

Signature: ……………………….……………………………..

Dr………………..……….…..……. (Internal examiner)

Signature: ……………………….……………………………..

Dr……………..…………….……… (External examiner)

Signature: …………………………………..………………….

(Dean of Faculty) (Director of Graduate studies and training)

Faculty of information

Technology

iv

Dedication

I'd like to take this opportunity to express my heartfelt gratitude to

my parents, sisters, and brothers for their unwavering love,

encouragement, and patience over the years.

I also owe gratitude to all of my kind friends who have supported

me at every turn.

Fatima Faraj Saeid

v

Acknowledgments

 First and foremost, I want to express my gratitude to ALLAH, who has provided

everything I need to finish this project.

My profound gratitude goes to my supervisor, Dr. Mohammed Hagal, for his

tremendous direction, unending support, and all of the fruitful discussions we had from

the beginning of this project until the final thesis revisions..

I owe a great debt of appreciation to Mr. Bilal Jabour, who graciously assisted and

advised me throughout my study period.

Fatima Faraj Saeid

vi

List of Contents

Table Page no

Copyright©……………………………………………………………………................ii

Examination Committee……………………………………………………………..… iii

Dedication………………………………………………………………………..............iv

Acknowledgments….....……………………………………………………………….… v

List of Contents…………………………………………………………………….…… vi

List of Tables………………………………………………………………………….…viii

List of Figures……………………………………………………………………………..ix

List of Abbreviations and Symbols …………………………………………………….……x

Abstract………………………………………………………………………..…….….…xi

Chapter 1: Introduction……………………………………………………………………1

 1.1 Problem statement………………………………………………………….….... 3

 1.2 Research questions………………………………………………………….…....3

 1.3 Aims and objectives……………………………………………………… .. .…..…4

 1.4 Importance of the study………………………………………………….……….4

 1.5Scope and limitation…………………………………………………………..….. 4

 1.6 Overview of the study……………………………………………………….…....5

Chapter 2: Background and Literature Survey…………………………………….…...… 6

 2.1 Requirements validation activity………………………………………….….….6

 2.1.1 Requirements validation techniques……………………………………….... 7

 2.2 Coupling……………………………………………………………………….....8

 2.3 The testing process………………………………………………………..… …10

 2.4 Literature survey………………………………………………………….…. ... 13

 2.4.1 General background………………………………………………..……...13

 2.4.2 Requirement issues .…………………………………………………….....15

 2.4.3 Coupling issues …………………………………………………………...19

Chapter 3: The Proposed Approach … ………………………………………...….....23

 3.1 Requirements validation process improvement……………………………….... 24

 3.2 Coupling and its testing process optimization……………………………….......29

vii

 3.2.1 Coupling precedence………………………………………………………... 29

 3.2.2 Types of coupling…………………………………………………………… 30

Chapter 4: Case Study…………………………………………………………………... 40

 4.1 Scenario……………………………………………………………………….…. 40

 4.1.1 Requirements characteristics traceability………………………………….… 41

 4.1.2 Design coupling traceability…………………………………………………...….. 49

Chapter 5: Result and Discussion……………………………………………………….. 55

Conclusion and future work……………………………………………………........... 59

References………………………………………………………………………….……. 60

viii

List of Tables

Table Page no.

Table 2.1. Studies and characteristics of the requirements addressed in
them

19

 resource tableRequirement Table 3.1
25

 onsistency traceability tableAn example of cTable 3.2
27

Table 3.3. Data coupling testing process
31

 process coupling testingStamp .3.4 Table

33

 process coupling testing Control .3.5 Table

35

 process coupling testingCommon 3.6. Table

37

Table 3.7. Content coupling testing process 39

Table 4.1. Requirement resource table 41

Table 4.2. Consistency traceability table 47

Table 4.3. An example of data coupling between two components 49

Table 4.4 An example of stamp coupling between two components 50

Table 4.5. An example of control coupling between two components 52

Table 4.6. An example of common coupling between two components 53

Table 4.7. An example of content coupling between two components

54

ix

List of Figures

Figure
Page

Number

Figure 1.1: Major phases of the SDLC models
1

Figure 1.2: Requirements engineering process
2

Figure 2.1: Types of coupling adapted
9

Figure 3.1: Overview of the proposed framework
23

Figure 3.2 : Activity diagram with swimlanes example
26

Figure 3.3 : Activity diagram with swimlanes to trace the consistency
between requirements 28

Figure 3.4: An example of coupling precedence
30

Figure 3.5 : Data coupling between different software components
30

Figure 3.6 : Stamp coupling between two components
32

Figure 3.7 : Control coupling between two components example
34

Figure 3.8 : Common coupling between two components
36

Figure 3.9 : Content coupling between two components
38

Figure 4 .1 : Activity diagram with swimlanes for "Add new book"
42

Figure 4.2 : Activity diagram with swimlane for "Borrow book"
43

Figure 4.3 : Activity diagram with swimlane for "Remove book"
44

Figure 4.4 : Activity diagram with swimlane for "Browse books info "
44

Figure 4.5 : Activity diagram with swimlane for "Returns Book "
45

Figure 4.6 : Activity diagram with swimlane for" Book Booking"
46

Fig 4.7 : Activity diagram with swimlane to trace the consistency
between two requirements 48

x

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation Meaning

BVA Boundary value analysis

 CA Afferent coupling

 CBO Coupling between objects

 CE Efferent coupling

ECP Equivalence class partitioning

OO Object oriented

 PSOs Property specifications patterns

RE Requirement Engineering

 SDLC Software development Life cycle

SRS Software requirements specification

SVM Support vector machine

xi

A Framework to enhance the process of potential faults

detection at early stages of software development life cycle

By

Fatima Faraj Saeid

Supervisor

Dr. Mohamed Hagal

 ABSTRACT

The process of developing high-quality software depends on the extent to which it

meets what is required of it completely and correctly. As a result, the requirements

validation process and the testing phase are considered as the most critical stages for

ascertaining exactly what the product will offer. Many efforts have been made to

prepare methods and techniques to facilitate the testing process and ensure its quality.

However, there is a lack of focus on test cases which can lead to potential flaws such as

requirements and design coupling difficulties.

 As a result, this thesis has been working on providing a comprehensive framework

that enables software developers to focus on the underlying errors in an organized

documentation manner, as well as to be supportive and complementary to the various

processes of validation and testing, by focusing on the requirements validation process

and the design coupling testing. A case study was presented in this thesis to clarify the

mechanism of the proposed framework, in which the framework demonstrates a clear

mechanism for focusing on potential faults by following requirements in the

requirements engineering stage and testing the interaction between software

components (design coupling).

Keywords: Requirements engineering, software engineering, design coupling, SDLC,

potential faults.

1

Chapter 1

Introduction

This chapter provides an overview of the testing process in the software

development life cycle, at early stages, research problem and scope.

Software development has begun to control and organize large areas of our life

activities, and this space expands every day. It is necessary to have a way in order to

manage software development, from the moment an idea is conceived through the

stages of development until it is released (i.e., in order to arrive at a product that meets

the requirements of its stakeholders).

The Software Development Life Cycle (SDLC) is a sequential process in which to

create or maintain software. It includes various stages that start from the stage of

requirements elicitation to the stage of software maintenance. There are a wide range of

models and methodologies that development teams use to develop software systems,

which provides a framework for planning and monitoring the software development

from the outset (Leau et al., 2012; Akinsola et al., 2020).

SDLC includes a set of different phases, starting with the functional system

requirements, followed by design and implementation phases, then testing comes in.

Carefully organization of these phases improves the performance and efficiency of

software projects, whereas disregarding inherited errors/bugs between these phases

weakens their roles.(Tuteja & Dubey, 2012 ; Nidamanuri, 2021). The main steps of the

SDLC are depicted in Figure 1.1

Figure 1.1:Major phases of SDLC models (Akinsola et al., 2020)

2

It is obvious from figure 1.1, that the requirements engineering stage is the first

stage in the SDLC on which the other stages of software development rely. The

importance of this stage is to understand the stakeholders' needs, and then document

what their software system will do. This stage consists of several activities:

requirements elicitation, requirements analysis, requirements documentation,

requirements validation, and requirements management. This referred to as the

requirements engineering(RE) process (Darwish, 2016). Figure 1.2 illustrates the

activities involved of this stage.

Figure 1.2: Requirements Engineering process (Darwish, 2016)

Furthermore, the requirements validation activity aims to guarantee that the

requirements are correct and accurate, Thus writing the requirements in a clear and

unambiguous manner is critical.

On the other hand, as known, the software testing process is a late stage in which

the emphasis is on requirements specification and the software operation. This may

overlook some inherent errors (potential faults) that testers may not notice. For

example, the inconsistency in requirements or the complexity of the association

between software components (i.e., high coupling between the components) can cause

such errors. Therefore, by potential faults, we mean errors that the system testers may

overlook, with regard to the inconsistency of the main components and subcomponents

related or dependent on them, in a manner that ensures their consistency, accuracy and

completeness, as well as design coupling between software components. Therefore, the

proposed work aims to improve the software testing process by detecting potential

3

errors at early stages of the SDLC. This can be considered as a complementary process

to the software testing stage.

1.1 Problem statement

Software passes through many stages during its development process, from the

requirements elicitation stage to its operation and maintenance stages. However, many

software systems may fail to run or may encounter some problems while running. This

may be due to some potential faults, such as requirements issues, or as a result of high

coupling between software components. This will contribute to the spread of errors

among these components, which may cost a lot of effort and time to maintain them. As

a result, these effects on building clear and precise requirements. Hence, these require

focusing on familiarity with many factors that help build robust requirements. Some of

these factors are the requirements must be complete, correct, consistent, necessary, and

traceable.

Furthermore, increasing the coupling process between the software components

during the design stage is a negative factor in creating a coherent software design, since

high-coupling software is more prone to the spread of errors among the components.

This study introduces a framework that helps to improve the software testing

process. As a result, it minimizes potential faults that are often rooted in a number of

stages of software development.

1.2 Research questions

The primary research questions of the research problem can be summarized as

follows:

Q1: What types of potential errors may contribute to software weakness or failure?

Q2: What are the most important methods to enhance the process of detecting potential

errors during the SDLC's early stages?

Q3: What is the proposed approach for improving the process of detecting potential

defects during the SDLC early stages?

4

Q4: Which parties benefits the most from enhancing the process of detecting potential

defects during the SDLC early stages?

Q5: How the proposed framework work will be evaluated?

1.3 Aims and objectives

1.3.1 This study attempts to achieve the following aims:

 Improve the software development process by reducing the potential errors at the

early stages of the SDLC.

 Formulate a framework to enhance the process of detecting potential faults at

early stages of the SDLC.

1.3.2 In the same context, this study has the following objectives:

 Supporting software testers in detecting the potential errors at early stages of the

SDLC.

 Developing a framework to improve software-testing process, as well as to assist

software testers.

 Identifying the most significant effects of improving the process of detecting

potential faults at the early stages of the SDLC.

 Appling the proposed framework on case study.

 Evaluating the result obtained from the case study.

1.4 Importance of this study

The importance of this study can be described as the follows:

 Emphasizing the need of improving the software testing process by focusing on

potential flaws early at the SDLC.

 Determining the impact of some factors on enhancing the process of detecting

potential faults at early stages of SDLC.

 Creating a framework that is complementary to the software-testing phase and

assisting software testers in improving the testing process.

1.5 Scope and limitation

1.5.1 Scope

The focus of this study is on the accuracy of requirements in terms of Complete,

Necessary, Correct, and Consistency, as well as design coupling, which arises from the

5

interaction between the components, thus the field of this research focuses on the

potential requirements faults and coupling testing in the design, which does not replace,

but rather supports the testing process.

1.5.2 Limitation

This study only addresses the faults inherent at the early stage (i.e., the inherent

problems of requirements and design coupling in the software design stage) and does

not address the other stages of the SDLC.

1.6 Overview of this study

 This thesis introduces a framework for potential faults testing as a complementary

process to software testing, as the study focuses on the early stages (i.e., requirements

and design) of the SDLC, which is one of the most essential stages of software

development to limit the spread of errors. The framework describes the two-stage

dilemmas that assist testers in detecting errors (faults) before they spread, saving time

,effort and lowering the burden on the final testing process.

This first chapter (Introduction) presents the study by outlining the general context

of the SDLC, research problem, research questions , research aims and objectives.

Chapter 2 (Background and Literature survey) provides an overview of the two

phases of the study (the requirements and the design phase), as well as a reviewing

previous literature for the research topic through which the problems to be addressed in

this study will be arrived at.

Chapter 3 (The proposed approach) presents the proposed framework to reduce the

potential problems at the early stages of the SDLC.

Chapter 4 (Case Study) presents the application of the proposed framework to a

case study of an electronic library system.

Chapter 5 demonstrates the findings of the study in greater depth.

6

Chapter 2

Background and Literature survey

This chapter includes four sections. The first section provides a brief background

on the importance of requirements validation. The second section introduces coupling

design process, which has an significant and triple effect in the software process that

should be given more attention. The third section presents a brief general background

on the software testing process. The fourth section focuses on the related work in the

field of testing, which revolves around the study and efforts made in software testing,

with regard to validating requirements and design coupling issues.

2.1 Requirements validation activity

The most essential activity in the requirements engineering (RE) stage is

requirements validation, consequently, it is necessary to delve a little bit to give an

overview of this stage, and thus the role and responsibility of this activity will become

clear.

RE stage is the first and most important stage in the SDLC, as it focuses on

collecting and understanding the requirements of the stakeholders in an appropriate way

for collecting clear requirements about what the software system is expected to perform.

As a result, it is thought to have a significant impact on all subsequent stages. Whereas

engineering requirements focus on understanding the purpose of the software system to

be built and gathering system requirements by collecting and extracting them from the

stakeholders. Then thoroughly analyzing and documenting, which leads to building a

software system that clearly performs what is required of it. Furthermore, the primary

goal of Requirements Engineering is to guide development toward the production of a

correct product. Hence, one of the problems with developing clear requirements at the

time is the differing views of the stakeholders on them. So, if requirements are not

specified properly, the system will cause a lot of problems that will be expensive to

repair. Moreover, Effectiveness of requirements validation is the activity responsible for

validating the requirements that have been documented, in order to ensure their

correctness and accuracy, as well as resolving any ambiguities or inconsistencies

therein. After ensuring the accuracy of these requirements, they are documented and

forwarded to the next stage, which will focus on designing the system and how it will be

7

built (Nidamanuri, 2021). In addition, The cost of software testing will be reduced if

testers are involved from the early stages of the development process (Graham, 2002)

(Lawrence et al., 2001).

On the other hand, when testing is taken into account at the requirements stage,

defects are detected early. As a result, software projects will be more robust in terms of

design, implementation, and maintenance. Studies have shown that the goal of adding

testing into the SDLC can be summarized as follows: (1) defects that are subsequently

discovered have a root cause (i.e., poor requirements), and (2) if the error is detected

early, it will not be too expensive to fix (Pandey and Batra, 2013). In conclusion,

According to NASA findings, “problems that are not found until testing are at least 14

times more costly to fix than if the problem was found in the requirements phase”

(Pandey & Batra, 2013).

Thus, the requirements stage should include the integration verification process

later, in which the components of the software interact correctly with one another,

additionally, the design verification process should not neglect checking the consistency

of the software architecture and its requirements (Maia & Souza, 2018). Therefore,

checking the coupling between components early must be taken in consideration.

Furthermore, detecting requirements conflicts causes problems in the development

of software systems, delays their development, and exceeds the proposed cost of

producing them. However, the process of conflict detection is critical for verifying

requirements, and detecting the conflict is a significant challenge in and of itself. (Guo

et al., 2021).

2.1.1 Requirements validation techniques

The goal of using requirements validation techniques is to ensure the validity of

those requirements and document them in a way that ensures the success of the software

system later. There are many requirements validation techniques, so a brief look at a

few of them will be given(Anas et al., 2016):

 Inspection

Inspections are a technique of manually checking requirements in order to ensure

that they are correct and meet the needs of stakeholders.

8

 Prototyping

Prototyping facilitates the process of validating requirements, by attempting to

simulate the system to be developed. It is an effective tool when there is uncertainty

about the correctness and completeness of requirements, by creating an environment of

understanding between developers and stakeholders.

 Requirements testing

The objective of this technique is to create test cases for all requirements that are

documented in the software requirements specification (SRS). However, this technique

is rather expensive, so it necessitates the assistance experts in the field of requirements

engineering testing in order to be performed in a timely manner.

 Viewpoint-oriented requirements validation

The purpose of this technique is to facilitate the process of extracting requirements,

by giving space to the different points of view, and then preparing an approach for

negotiating these views in order to resolve the contradictions and ambiguities that

surround the generation of valid requirements.

2.2 Coupling

Functional independence of software components is required to reduce the

propagation of software errors between them, and there are two criteria for measuring

this: coupling and coherence. Where coupling determines the degree to which each

component is dependent on the other. It also demonstrates the strength of the link

between these two components, and the degree of complexity of the software product is

determined (Shweta Sharma & Srinivasan, 2013).

Furthermore, because coupling is one of the basic characteristics (principles) of

software systems, several standards and procedures for coupling have been proposed in

order to support software development to ensure the quality and validity of the software

product. Understanding the coupling (i.e. interaction between the components) is useful

in many program development or maintenance activities in terms of quality, detection of

errors and the effects of changes that may occur (Bavota, Dit, Oliveto, Penta, et al.,

2013)

9

In addition, there are several types of coupling, which can be classified from high

to low level. Figure 2.1 depicts such types (Shweta Sharma & Srinivasan, 2013).

Figure 2.1: Types of coupling adapted from (Shweta Sharma & Srinivasan, 2013)

Data coupling: data coupling occurs when parameters are passed between more

than one component.

Stamp coupling: stamp coupling occurs when an object or data structure is passed

between components.

Control coupling: control coupling occurs when parameters are passed between two

components causing an effect on the internal content of the second component.

Common coupling: common coupling occurs when many components use the same

parameters.

Content coupling: content coupling occurs when a component changes the contents

of another component.

Cohesion means that the less dependence between software components on each

other’s, the greater the strength of their cohesion and this contributed to the less spread

of errors between them. As a result, the low of coupling leads to a higher cohesion and

vice versa (Shweta Sharma & Srinivasan, 2013).

Moreover, in object oriented systems coupling and cohesion contribute to measure

the strength of the interaction between the classes, methods, and attributes. And thus

knowing the complexity of the program, which will negatively affect the interacting

components in terms of the spread of errors (Shweta Sharma & Srinivasan, 2013).

Control
Coupling

Content
coupling

Control
Coupling

pling

Common
coupling

pling

Stamp
coupling

Data

coupling

Lowest
Coupling

Highest
Coupling

10

To facilitate the software development process, the problem is divided into several

problems (divide and conquer) which leads to controlling it, but on the other hand, the

integration process between these parts is a challenge to its accuracy, due to the

excessive interaction between them, (i.e., the high coupling) (Kamble et al., 2017). That

is, when the divided problem was fragmented and several components were generated,

it became easier to control. However, some components may aggravate interaction, and

perhaps excessive interaction, resulting in the complexity of the interaction, which leads

to high coupling, which is a major cause of the spread of errors between the interacting

components.

The clarification of these types, as well as the proposed mechanism for tracking and

testing these types, are presented in greater detail in Chapter 3.

2.3 The testing process

Software testing is an essential phase of the software development cycle. Because

the main objective of this process is to ensure that the software meets their

specifications (Vanmali et al., 2002;Umar, 2020).So, a good testing process is an

essential component of software development that is effective in terms of high quality

and appropriate cost (Causevic et al., 2010;Cunningham et al., 2019) .It is a process

whose function is to verify the validity, completeness, quality and fulfill the

specifications required for the developed software. It consists of many activities that are

carried out in order to detect and correct errors in the developed system before the

product is delivered (Yin & Ding, 2012).

Software testing is a large area that mainly contains technical and non-technical

testing fields. It includes, for example, requirements specifications, design,

implementation, and administrative problems in software engineering (Nidhra &

Dondeti, 2012). To guarantee the success of software objectives, software

testing should concentrate on verification and validation (Sawant et al., 2012).

Moreover, due to its importance in the success of the software, there is a growing

concern in improving the implementation of this practice (Shilpa Sharma et al., 2020).

Hence, focusing on this process must take into account the potential errors mentioned in

the preceding paragraphs.

11

 Despite the fact that, corporations test their software, many of them nevertheless

contain bugs that differ in their effect. Whereas, sometimes it can be difficult to imagine

how a missed test might have a costly effect. This could be due to the fact that testers

are underqualified to undertake software testing, particularly if the product is

complicated.(Whittaker, 2000).

There are numerous types of software testing that are frequently used in software

development, and among these techniques are black box testing and white box testing

(Freeman, 2002).

A. Black box testing

Black box testing is a technique in which the tester does not know the internal

structure of the code. The test is performed by executing the software. It can be a test

for a function such as (integration test) or non-functional (performance test). Test cases

are built according to the requirements specifications. This test can be applied to all

levels of software testing operations such as unit levels, system integration, and

acceptance testing. Black box testing is also known as functional, specification-based,

box closing, behavioral, and I / O tests(Umar, 2020).

The black box test plays an important role in the software testing process. It

validates the system functions. This test is based on the system requirements extracted

from the customer. Therefore, it is possible to identify incomplete or unexpected

requirements and can be addressed later. It is a test from the viewpoint of users. One of

the main tasks of the black box with all inputs, whether they are valid or invalid from

the customer's point of view (Nidhra & Dondeti, 2012). However, potential errors may

not be taken into account, especially in the absence of a mechanism to help testers

detect them.

 The black box testing process takes place from the beginning of the software

development. So, testing team must be involved in all stages of software development,

where test scenarios must be prepared to cover these stages (Nidhra & Dondeti, 2012).

The black box test has the advantage that testers do not need to have prior

knowledge of a particular programming language nor knowledge about how to

implement it. Another advantage that It helps test requirements for ambiguity or

12

inconsistency. Hence, it is preferable that the testing process be carried out by

independent testers (Nidhra & Dondeti, 2012;Dashti & Basin, 2020). In addition to,

equivalence class partitioning (ECP) and boundary value analysis (BVA) are two kinds

of black box testing, where ECP assumes that system be tested using valid and invalid

inputs while BVA focuses on the edge (boundary) of the inputs (Hedaoo & Khandelwal,

2017).

B. White-box testing

White box testing is a technique in which a tester is familiar with the internal

structure of the software to be tested. In this test, it is necessary to know the source code

because the test cases depend on the implementation of the program entity. The internal

structure of the software and the testing skills are used to design test cases , and thus to

fix errors discovered in the tested code (Umar, 2020).

White box testing is done at a low design level to test the operation of the software.

It also applies to all parts of system development, mainly unit testing, integration

testing, and system testing (Nidhra & Dondeti, 2012).

Black and white boxes testing are important, thus, both specifications and code

procedures must be covered to ensure that the intended goal of building the software is

achieved (Nidhra & Dondeti, 2012).

C. Gray-box testing

 The gray box testing is a hybrid between the white box testing and the black box

testing. The gray box testing technique is used to test software specifications as well as

internal work. Also, the internal structure of the software must be understood, because it

is considered more than a black box test and also less than being a white box test

(Sawant et al., 2012;Umar, 2020).

 In addition to the foregoing, “Discovering the design defects in software, is

equally difficult, for the same reason of complexity. Because software and any digital

systems are not continuous, testing boundary values are not sufficient to guarantee

correctness. All the possible values need to be tested and verified, but complete testing

is infeasible ” (Tuteja & Dubey, 2012). This may cause some potential errors. Hence, it

is not easy to assess the design quality of software, because design is not expressed by

13

strict rules but rather through guidelines and reasoning. A successful approach to

assessing design quality depends on detection strategies (Wettel & Lanza, 2008). For

example high coupling can be due to error propagation reasons. Thus, coupling is an

important characteristic of software systems, which has a direct impact on the coherence

of the software and for this the coupling between the components of the software will

affect its quality, especially with regard to ease of discovering errors (Poshyvanyk et al.,

2009).

Moreover, for ease of testing and maintenance at a later time, developers need

accurate knowledge of the structure of the software components and their interactions

(i.e., the degree of coupling between these components should be clearly understood).

This will be useful for later maintenance (Poshyvanyk et al., 2009).

 From the above, we could conclude that, the more the process of depending the

components of the software on each other, the greater so-called Triple effect which may

be due to a defect in the design of one of these components.

2.4 Literature survey

The software testing phase is one of the most important phases in the software

development cycle, as it ensures that the software has met the requirements correctly

and in accordance with what was documented in the requirements engineering phase.

However, this process always needs to develop and improve in techniques used for that,

because it requires follow-up development in building software systems.

This section gives a view on the studies related to the issues of requirements and

coupling design, as it progresses by giving a historical overview of the efforts made in

this field, and then by giving a survey of the previous available studies that tried to find

ways and methods to solve the dilemmas of these issues.

2.4.1 General background

 Tsai et al (1997) presented a model of software system development life cycle

named as "Test design stages processed model" (TSP), and they stressed that iterative

test design stages should be incorporated at each phase of the software development

14

lifecycle. However, a clear mechanism for detecting potential errors has not been

explored.

 Bose & Srinivasan (2005) conducted a study on how to diagnose software errors.

Three artificial intelligence techniques were used: "spectrum kernel, SVM, and

semantic latent analysis ", and these techniques showed encouraging results. Their focus

was on detecting errors during the implementation phase only. This may neglect the

potential errors, such as requirements issues and issues of design coupling.

 Zheng et al(2006) explained that no single technology can detect all errors. They

also pointed out that the techniques for analyzing errors represented in customer reports

about the problems that appear in the software. Their study were conducted on three

large software systems that were developed in Nortel Networks , and they stated that

statistical analysis can be effective for identifying problem modules. Also, it can be

considered as a complementary to the other fault-detection techniques. This encourages

that stress on potential errors must be included in the testing techniques that undertake

to ensure testing of the correctness of the software.

 Eichinger et al(2008) conducted a study to discover errors in the software

development process. An approach has been presented in order to locate errors that are

not predefined or unfamiliar. As for known and familiar errors, the approach increases

the accuracy of their identification. They have used graph mining to significantly locate

errors. The approach achieved excellent results, but the focus was on the

implementation phase. In order to ensure quality of software systems, all stages should

be verified.

Tuteja & Dubey (2012) presented a study in which they identified a list of testing

methods that could be applied at each stage of the SDLC, and recommended testing at

each of these stages is necessary. This reinforces the intent of this thesis, since potential

errors are emphasized at an early stage.

Kaur & Singh (2014) conducted a study on analyzing and comparing a number of

testing techniques, in order to determine which is better at detecting errors. However,

their conclusion is that not all errors can be found in software systems. Thus, this leaves

open the possibility of further research to improve the testing process.

15

Dhanalaxmi et al(2015) conducted a general study on error detection techniques in

an effort to build high quality software, and indicated that there is no general

mechanism for testing that is applicable to all software systems. They concluded that,

there is a need for testing techniques to help improve commercial software.

Wong et al(2016) presented an overview of some software techniques for tracking

errors, by conducting a survey of many masters and doctoral studies from 1977 to 2014,

and they used the questionnaire to find relevant studies in order to identify possible

errors in the techniques used. Most of the studies focused on bugs during software

implementation. However, this study did not address the issues of requirements and

issues of coupling design.

Yusupbekov et al(2017) developed a framework for errors prediction using data

mining and intelligent decision support system technique. Associative rules are used in

data mining for the traceability of objects hierarchy can be used as a basis of better

analysis and gaining additional knowledge to detect and analyze errors. Where they

indicated that this work can contribute to the development of requirements for software

systems, and to update them in general if the associated rules are well formulated.

Nevertheless potential errors still not included.

2.4.2 Requirement issues

Creating requirements with excellent characteristics is one of the most important

factors that contribute to the success of the program later, and for this reason, efforts

have been made, and continue to be made to introduce approaches and methods that

contribute to improving the generation of requirements and thus ensuring that they flow

well to later stages of development.

Hagal & H.Fazzani (2013) introduced an approach aimed to reduce contradictions

and ambiguity in software requirements and increase requirements consistency. To

capture the degree of requirement inconsistency, use case map (UCMS) is used to

visually represent all requirements, and a UML use case diagram is used to represent

system functions. The approach did not pay attention to other potential errors such as

incompleteness and design coupling issues that may contribute to the software weakness

or failure.

16

Patel & Gandhi (2014) proposed an algorithm to eliminate requirements

inconsistency. The algorithm checks the rules that software requirements specification

must follow. So if these rules are broken, inconsistency will arise, which can then be

fixed. The focus in this approach was only on requirements consistency , while the other

requirements issues were neglected.

Kamalrudin & Sidek (2015) presented a review to verify requirements and

consistency in order to identify gaps in the requirements specifications. They discussed

the different types of techniques used in requirements inconsistency. The models used

for semi-formal specifications were discussed. Map representations for searching papers

related to consistency determines the technique most commonly used. The presented

approach is abstract, and did not address the other issues of requirements such as

completeness and necessity.

Gigante, Gargiulo, & Ficco (2015) conducted a study was based on a survey of the

basic concepts that must be considered to check the requirements verification, and they

proposed an approach to illustrate requirement overlapping. According to the study,

there is a great difficulty regarding the completeness of the requirements, and semantic

web can be a promising approach for resolving this issue. In order to find

methodologies and techniques that solve most of the concerns that may occur in

requirements, such as completeness, contradiction, and others, in-depth research is still

required.

Stachtiari et al.(2018) a model-based approach was introduced to validate

requirements and translate them into system design. In the requirements phase, they

used instantiating textual templates, and user defined maps to get unambiguous

requirements. In the design phase, the functions of the system were built on the basis of

templates of components, and they proposed a phase for checking the design model.

They pointed out that the accuracy of the requirements is the foundation for all of the

preceding.

Riaz et al. (2019) conducted a survey on tools and techniques used to detect

ambiguity in natural language requirements from 2003 to 2013. The study revealed the

popularity of using these tools and techniques based on citations, and also identified a

number of the most important techniques used in this field. This study inspired the work

17

of this thesis to present an approach that can help improve or complement the tools that

have been proposed.

Yang et al. (2019) developed a tool named "Requirements validation through an

automatic prototyping" that can automatically detect the inconsistencies in the

requirements by generating a number of prototypes that are tested on four case studies

where the results are satisfactory, and they concluded that, the tool can be improved

later to verify the requirements. This research motivated the work in this thesis to

improve and develop methods for solving requirements issues, which could help to

support any requirement quality improvement process.

Langenfeld et al.(2019) introduced a real-time requirement analysis approach aims

to transfer the analysis problem to real-time requirements. They translate the formal

requirements into an executable program, and then analyze this program as an open

source program by using the "ULTIMATE REQANALYZER". They indicated that

numerous problems have been identified as serious flows that lead to major problems in

subsequent stages of system development. The study did not go into great detail on the

testing process, especially with regard to the potential errors that are the focus of this

thesis.

Narizzano et al.(2019) conducted a study on an expansion of property

specifications patterns (PSOs) that considers the internal consistency of functional

requirements, and the results demonstrated that the proposed approach can check

specification consistency. They stated that their experiments were carried out on nearly

two thousand requirements, and that their future work will concentrate on translating

natural requirements into patterns.

Hadar et al.(2019) presented an empirical study on requirement inconsistency,

taking practitioners' perspectives on it and attempting to identify some dilemmas that

contribute to requirement inconsistency. They indicated that the strategies for managing

consistency in detecting errors will greatly enhance the consistency process. The

research presented in this thesis aims to improve requirements challenges, rather than

just consistency.

Sulaiman et al.(2019) investigated the inconsistency between the activity diagram

and the class diagram, pointing out that the activity diagram should consistently

18

describe the functions of the class, and emphasizing that the inconsistency occurs when

the elements to be described overlap.

Mayr-Dorn et al. (2021) presented an approach to assisting and guiding engineers

in resolving the inconsistency, and they note that prototypes may contribute to

improving the deviation, but they also note that this is rarely addressed in practice. This

prompted the emergence of several tools that may contribute to improving this process.

As a result, further research into the requirements problems is required.

Guo et al. (2021) proposed algorithms for analyzing the characteristics of natural

language requirements, and they used heuristic rules to determine a number of conflicts

over a number of open requirements datasets. They pointed out that the proposed

algorithms gave good results, and that this work requires further investigation.

As previously stated and indicated, most studies dealt with some aspects in a

private or abstract manner, in contrast to what was done in this study, which provided

an organized framework for tracking the mentioned issues in order to preserve the

important characteristics that the requirements must have (Table 2.1 bellow shows a

sample of the available studies and the characterstics that has been addressed, even

partially or in an abstract way).

19

Table 2.1. Studies and characteristics of the requirements addressed in them

Study
Requirements characterstics

Necessity Correctness Completeness Consistency

(Hagal & H.Fazzani, 2013) √

(Patel & Gandhi, 2014) √

(Kamalrudin & Sidek, 2015) √

(Gigante, Gargiulo, & Ficco, 2015) √

(Stachtiari et al., 2018) √

(Riaz et al., 2019) √

(Yang et al., 2019) √

(Narizzano et al., 2019) √

(Hadar et al., 2019) √

(Sulaiman et al., 2019) √

(Mayr-Dorn et al., 2021) √

(Guo et al., 2021) √

The proposal approach √ √ √ √

2.4.3 Coupling issues

High coupling tracking poses a challenge for software testers, because increasing

coupling represents an increase in dependency between software components, which

weakens the role of software modularity, where modularity is regarded as an important

concept in designing high-quality software.

Shweta Sharma & Srinivasan (2013) conducted a review work on the types of static

and dynamic coupling and coherence metrics in OO systems to capture their limitations

and what improvements are needed. The study found that static metrics can be used in

the early stages of software systems, but they do not support testability. Testing neglects

the testing of potential errors at early stages of SDLC.

Bavota, Dit, Oliveto, Di Penta, et al. (2013) presented an empirical study to help

software developers to learn about class coupling mechanisms. It aims to capture the

extent to which metrics capture structural, semantic, and dynamic coupling. The

research was carried out on three open source Java programs. The results demonstrate

that a large proportion of the couplings are captured from the semantic and structural

20

measures that complement each other. In general, the fundamental types of coupling are

not addressed. Furthermore, they ignored the design stage and concentrated solely on

the implementation phase, particularly in Java programs.

Geetika & Singh (2014) investigated the validation of static and dynamic metrics

for object coupling. The test was carried out on open source Java programs, with the

results classified into three levels: class, method, and message. Their conclusion is that

static and dynamic metrics are not the same behavior in object-oriented programs.

Emphasis is placed on later stage, where coupling errors should be considered early at

the design stage in order to improve the quality of the software.

Kumar & Chauhan (2015) introduced a method for prioritizing test cases, as this

method focuses on the coupling information between program units in order to identify

the critical unit that may affect the rest of the units and cause errors, as well as to

prioritize the test cases. This approach was applied to a software case study containing

ten components, where the results indicated that the approach is capable of detecting the

critical component. Focusing on the priority of the test case is good in order to reduce

the spread of errors, but because this study focused on the implementation phase, the

potential errors at early stages of the SDLC were overlooked.

Razafimahatratra et al.(2017) presented a method for detecting coupling types in a

sequence diagram and re-designed a component with a high coupling. Furthermore, they

stated that, an algorithm for coupling detection was introduced. The approach was tested

in a case study, and the results were adopted in a fuzzy architecture for validation. They

concluded that, their results demonstrated that the approach assist software developers

to obtain high-quality software. The algorithm dealt with a definition of the types of

coupling in abstract manner, without taking the detection process into account.

Kamble et al.(2017) presented the identification of a coupling pattern when trying

to integrate parts of software system. They added some features to the pattern to show

the complexity of coupling resolving. They recommended that more research in this

field should be conducted.

 Alenezi & Magel (2017) proposed a new coupling metric for software entities that

combines structural and semantic relationships. An empirically study was conducted on

three different applications, and they concluded that the new coupling metric is useful

21

for classes impact changes. They stated that more studies on the proposed metric are

required on software re-modularization and refactoring.

Anwer et al. (2017) carried out an empirical study on the effect of coupling on fault

prediction errors, which was conducted on seven open source Java programs. Three of

the coupling metrics were chosen: afferent coupling (CA), efferent coupling (CE) and

coupling between objects (CBO).The results showed that, the CE has the best

correlation with the defects among the selected metrics. This study does not include

design coupling in more details, especially in testing.

 Fregnan et al. (2019) conducted a survey on most of the coupling relationships and

metrics that were proposed in studies from 2002 to 2017. They introduced a complete

classification of these relationships and categorized the coupling relationships into four

groups: structural, dynamic, semantic, and logical. They also added a fifth classification

that includes coupling metrics, but it is not incorporated in other classifications. In

addition to that they also clarified the tools through which the coupling relationships

were discovered. This effort did not focus on design stage testing, especially design

coupling.

Rizwan et al. (2020) conducted a study based on evaluating seven coupling metrics

on their impact on software fault prediction. Support vector machine is used to classify

errors prediction. Experiments were performed on 87 different data sets to evaluate

these metrics of errors detection . The results of these experiments demonstrated that

coupling metrics are effective in detecting errors. The testing process does not indicate

to the known types of coupling that take place between the components, (i.e. the testing

issues of coupling design not clearly included).

Yusuf & Hammad (2020) suggested an approach to measure coupling between

classes by tokens extraction for the classes, and then matching these tokens with other

classes according to coupling measures metrics. This work encouraged the preparation

of a more detailed framework to address this abstract work.

Furthermore, Miholca & Onet-Marian (2020) stated that, several studies have

attempts to develop metrics to measure dependence between software source files. The

focus was on the implementation phase, and they indicated the difficulty of tracking all

types of coupling. However, more effort is required to move from abstract work to

22

simplified implementation work that makes it easier for developers to track the process

of coupling between software components.

In light of the foregoing, the majority of studies in the existing literature have

concentrated on the implementation phase or have addressed these challenges in an

abstract manner. This may not take into account the errors that occur as a result of

neglecting potential errors. Therefore, introducing a framework that enhances the testing

process early in the SDLC, especially with regard to potential errors is required. This

framework can be considered as complement to the testing process rather than a

substitute for existing testing techniques.

23

Chapter 3

The proposed approach

 As mentioned before, potential fault testing is a crucial process in the SDLC that

effects the cost and development time of the software. Where the scope of this study

will focus on the early stages of SDLC: Requirements and Design. At the requirement

stage, the work idea concentrates on the validity of the requirements by applying some

solutions for testing requirements such as necessity, correctness, completeness and

consistency. So the discovery of errors at the early stage reduces the spread of errors

during the subsequent stages. On the other side, the design coupling issues are the

primary cause for potential errors at the design stage because the strong interconnection

between software components which causes scattered errors between these components.

The proposed framework is depicted in Figure 3.1.

Figure3.1: Overview of the proposed framework

24

3.1 Requirements validation process improvement

The requirements stage, as is well known, is the first and most important phase in

the SDLC. Completing this stage successfully improves software quality and decreases

development time and cost. Requirements success must take into account that it may

pose a significant challenge, especially with regard to validating requirements

properties, which if neglected will result in potential errors. Completeness, necessity,

correctness, and consistency are examples of these characteristics. Therefore, successful

requirements validation is an integrated process for improving potential faults testing.

Hence, requirements cannot be considered excellent unless they meet the mentioned

characteristics. Therefore, enhancing these characteristics is one of this study's

objectives.

 Necessity

"Necessary" is defined by Merriam-Webster as "so important that you must do it or

have it absolutely necessary" (Merriam-Wbster, 2021).Therefore, a requirement to be

necessary means that there will be violation in the system's functionality if this

characteristic is missed. As previously stated, the requirements stage is an integrated

process, so it will be misleading if the requirements engineer puts some requirements

which he assume necessary, and therefore he documented them by chance or consider

that they are important to the system. While the mistake is to add them without

referring to their sources (i.e. stakeholders or documents)(Saavedra et al., 2013) .

In addition, determining requirements and knowing their sources is an essential and

important process. This process will not be complete without clarity and correctness of

these requirements, which is a difficult process that requires more effort to maintain

what is mentioned in several researches..

The relationship between requirements and their sources is depicted in Table 3.1.

25

Table 3.1: Requirement resource table

 Req1 Req2 Req3 …………… Reqn

Source1 x

Source2 x X

Source n

The table, for example, illustrates the sources 1,2, and n, as well as their

related requirements, where the character "x" denotes the relationship between the

requirement and its resource.

 Completeness

When something is said to be complete, it usually means that no necessary

information are missing to be fit for use or serve its intended purpose. The Merriam-

Webster dictionary defines complete as “having all necessary parts, elements, or

steps” (Merriam-Wbster, 2021). This is consistent with our intuitive understanding.

Moreover, for a set of requirements, this means that there are no other requirements

necessary for the set of related requirements to fulfill their collective purpose or

mission of defining what a given system must be and do, with respect to some

specified context(Carson et al., 2004) (Marques & Yelisetty, 2019)

Hence, completeness totally depends on the understanding of stakeholders’

requirements and meeting these requirements in the way that they need nothing else.

To confirm the completeness of the requirements, the process of clarifying them is

important. So, UML activity diagram with swimlanes is proposed to clarify the

requirements, where the interaction between the activities in each requirement, and who

are responsible for each zone are illustrated. Figure.3.2 depicts an activity diagram with

swimlanes.

26

Activity diagram with swimlanes example .2: 3 Figure

 Correctness

It means that the correctness of the requirements matches (reflects) the user's real

needs, and it emphasizes that they are correct, unambiguous and not repetitive. So, its

correctness will affect the part of the program related to it, and then a program is

considered correct if it behaves as expected on each element of its input domain

(Zowghi & Gervasi, 2003;Kamalrudin & Sidek, 2015). Furthermore, the word

“correct” may have many interpretations (i.e. need more clarification) (Gigante,

Gargiulo, Ficco, et al., 2015) .This gives us the motivation to study the requirements

correctness in more depth.

Hence, this characteristic can be considered as a complementary characteristic to

the two processes of Necessity and Completeness. So each requirement will be

improved if it has been declared as in the figure 3.2 and table 3.1. Moreover, to

complement the necessity table, its validity must be confirmed by the relevant

stakeholder.

27

 Consistency

 The process of requirements consistency is regarded as critical in order to

guarantee accuracy. This means that no requirements in a specification contradict each

other, where all terms have the same interpretation (Zowghi & Gervasi, 2003). This

requirement uses terms consistently with their specified meanings, so requirement

should not contradict with other requirement ,as well as be understood precisely in the

same way by every person who reads (Sommerville, 2011; Acharya et al., 2005).

Requirement descriptions must be complete, with no ambiguity or carelessness for

any of the governing conditions. Furthermore, some requirements must be performed

after others or have some common parts. Therefore, the dependency between these

requirements and the common part in them should be considered and not violated.

These parts can be activity(s), conditions, or rules. For example, in order for a student to

register his subjects, he must first complete his admission process by considering the

required conditions. This means that the process of tracking the dependency of the

requirements on each other is necessary ,as well as knowing the common parts between

them, which should be considered and not violated in any of them. Table 3.2 illustrates

a requirement consistency example.

Table 3.2: An example of consistency traceability table

common activity,

condition or
consistency rules

Requirements

Req3 Req2 Req1

Requirements

 x x

Req1

x Req2

x

Req3

The common activity, condition, or consistency rules column in the preceding table

illustrates the consistency action(s) that should not be neglected in the related

requirements.

In addition, requirements gathering in a complete form will ensure that

requirements are excellent and free of violations. Here, are some factors that increases

the degree of requirements violations:

1. Stakeholders have different views.

28

2. Contradiction between the original (root) and its dependent requirements is not

allowed. For example "Req1" must be done before "Req2" and must not violate any

of the rules that "Req1" subjected to.

Figure 3.3 below clarifies the activities that are common in more than one

requirement (i.e., what activities or conditions must be contained in each of the two

requirements). The dotted activity shows the common process that must be included in

each of the two requirements. For instance, activity "a4" in "requirementi" is the same as

the activity "b7" in "requirementJ".

Requirement name Requirement name

Figure 3.3: Activity diagram with swimlane to trace the consistency between requirements

Where the dotted circle in the preceding diagram depicts the consistency activity, which

represents the process or rules in both components that should not be ignored(common).

29

3.2 Coupling and its testing process optimization

Due to the difference between the requirements stage and the design stage, the

design stage as it is known focuses on how the system will be built. The coupling

testing process should be done on each module (component),where components

represent parts of a system or application. The high coupling between system

components leads to a marked increase in cost as well errors propagation. While low

coupling (i.e. high cohesion) leads to high quality, cheaper developed, and easier

maintained system (Razafimahatratra et al., 2017).

In addition, coupling is somehow important in software as it builds the internal

interactions between software components which allows it to do what it was designed to

do. But the increase in coupling will play an essential rule in faults spreading between

the coupled components. However, some software developers see that coupling is

necessary, so the problems result from these interactions must be thoroughly validated.

Coupling can come in many types: Content coupling, Common coupling, External

coupling, Control coupling, Stamp coupling, and Data coupling (Razafimahatratra et al.,

2017).

3.2.1 Coupling precedence

To study coupling, a precedence is needed in order to simplify tracking of coupling

testing process. Figure3.4 shows an example of components interactions and levels of

precedence. Where a system is the root and the first level branches represents the main

components, then their dependent branches and so on. So every higher level component

will affect its dependent processes. Beside that it can be seen from the hierarchy that

there is an interaction dependency between component "A" and component "B". Hence

any fault in component "B" will affect component "A", as well as its dependent

components, because as shown in the figure, the dotted arrow from component "A" to

component "B" means that component "A" depends on the component "B".

30

 Figure 3.4: An example of coupling precedence

3.2.2 Types of coupling

A. Data coupling

Whereas data coupling represents the process of interacting between components

by passing data between them (i.e. the dependence of a component on data passed to it

from another component) (Schach, 2011). Figure 3.5 illustrates such process.

Figure 3.5: Data coupling between different software components

To follow the process of data coupling and reduce its impact on the propagation of

errors, table 3.3 bellow is proposed to track the interaction process based on this type of

coupling. It shows the traceability of the data exchange process between two

System

B.2

A

B

B.2.1

B.1 A.1

A.2

.2

A.2.1

V

.2.11

A.1.1

V

.2.11

 B.1.1

Level0

Level1

Level2

Level3

Data i
Data j

Componenti

Componentj

31

components (for example, ComponentI and ComponentJ), and the testing process

required in that exchange.

Table 3.3: Data coupling testing process

.he date of the testTTesting date:

 .the testof ime TTesting time:

.Tester nameTester:

.Pass/Fail: The type of test being performed

.he result of the testTTest Result:

.rite down the found faultsWSummary of failures:

Component: Component name.

Type of test Pass/fail Tester Testing

Time

Testing Date

 Test to pass

 Test to fail

Componentj Componenti

Testing

Boundary Value Analysis:

Inputs edge: ----------------

partitions Input value Expected result

< min fail

min pass

max pass

>max fail

Equivalence Class Partitioning:

valid type----------

Invalid valid

Partitions2 Partitions1 Partition2 Partition1

parameter (s)

Summary of failures :---

 Test Result:

 Pass

 Fail

Valid Invalid Invalid
min max

>=min and <=max <min >max

32

Testing: the required test types.

Boundary Value Analysis (BVA): Boundary testing of data sent from one component to

another (permissible range/inputs edge). It represents the inputs' edge, which can be the

length of the parameter, the value of the parameter, etc.

Equivalence Class Partitioning: Splitting exchanged data into different equivalence data

classes (valid and invalid data inputs).

B. Stamp coupling

 Stamp coupling occurs between components when data are passed by parameters

using a data structure containing arguments (data items), where the called component

may not operate on all the data items of the received data structure (Fregnan et al.,

2019).

Figure 3.6 bellow illustrates an example of the data structure that is passed from

one component to another Where the first component sends student data to the second

component, and the second component retrieves the student's GPA from the data

structure (student record) sent to it.

Figure 3.6: Stamp coupling between two components

The proposed stamp coupling is illustrated in Table3.4 below. Furthermore, the passed

data structure may contain fields that are unnecessary for the receiving component. The

table contains the required test processes, which were also explained in the previous

type of coupling. This type of coupling testing requires testing the data elements that

will be used by the destination component, as shown in the table as "Data

structure/object contents."

<<Componentj>>

GPA

<<Componenti>>

Student record

33

Table 3.4: Stamp coupling testing process

Note: The table contents description is similar to that found in table 3.3

Type of test Pass/fail Tester Testing

Time

Testing Date

 Test to pass

 Test to fail

Component j

 Componenti

Testing (For each data item)

Boundary Value Analysis

Inputs edge: ------------------

partitions Input value Expected result

< min fail

min pass

max pass

> max fail

Equivalence Class Partitioning:

Valid Type: --------------

Invalid valid

Partitions2 Partitions1 Partition2 Partition1

Data structure | object name …

Contents

Summary of failures :---

 Test Result:

 pass

 fail

valid Invalid Invalid
min max

>=min and <=max <min >max

34

C. Control coupling

This type of coupling is meant to provide one component control over another's

implementation (i.e., the component is affected by the data sent by the other component,

and any change will affect the controller and controlled components) (Maia & Souza,

2018). In an example of control coupling, a component that retrieves either student

name or GPA depending on the value of a flag/control data (Search criteria) is

illustrated (Figure3.7).

 between two components example couplingControl :73.Figure

Table3.5 bellow demonstrates the proposed form of control coupling, where the

process of interaction between two components depends on the flag (control data)

passed from the one component to another (for example, between "componenti" and

"componentj"). All paths of the second component will be tested to ensure that the

interaction does not cause any errors.

St
u

d
e

n
ts

 o
f

sp
e

ci
fi

c

d
e

p
ar

tm
e

n
t

D
e

p
ar

tm
e

n
t

St
u

d
e

n
t

in
fo

rm
at

io
n

St
u

d
e

n
t I

D

<<Componentj>>

Students DB

<<Componenti>>

Inquiries

35

Table 3.5: Control coupling testing process

Where the control coupling process test represents the necessity of executing the

required command from the first component. This may contain a flag that determines

the execution process, in which the second component receives the command and the

ability to execute is confirmed, then the first component is informed of the result of the

process, whether it was done correctly or not.

Type of test Pass/fail Tester Testing

Time

Testing Date

 Test to pass

 Test to fail

Componentj

 Componenti

 Path 1: Path name

Test Result:

 Pass

 fail

…………………………………………

Path 2: Path name

Test Result:

 Pass

 fail

 ………………………………………… .

Path N: Path name

Test Result:

 Pass

 fail

Flag/control data

Summary of failures :

 Test Result:

 pass

 fail

36

D. Common coupling

In this type of coupling interactions between coupled components comes from

using the same common variable (Schach, 2011 ; Fregnan et al., 2019). Therefore, any

modification in this common variable will be spread inadvertently across all the

interacted components. the test should focus on changing or modifying that variable in

order to avoid having a wrong influence on the interacting components. Figure 3.8

depicts the idea of such a coupling.

Common Coupling between two components : 8Figure 3.

Table 3.6 bellow shows the precedence in modifying the shared data and it may

happen for a component to deal with shared data more than once. So, after the

interaction process between the two components, the common variable(s)/data should

tested to see if they are changed in an undesirable way or not working properly.

Furthermore, this traceability must be performed on all interacting and shared

components of this variable(s)/data.

Common Variable(s)/data

 Component j Component j

37

Table 3.6: Common coupling testing process

 Testing Date Testing Time Tester Type of test

Pass/fail

 Test to pass

 Test to fail
Common(Shared)

variable(s)
Componenti

Componentj

Testing

Boundary Value Analysis:

Inputs edge: ----------------

Equivalence Class Partitioning:

Valid type: ---------------------------

 valid Invalid

Partitions1

Partitions2

Partitions3

Partitions4

Common variable test(s):
 pass
 fail

partitions Input value Expected result

< min fail

min pass

max pass

>max fail

Testing

Boundary Value Analysis:

 Inputs edge: ----------------

Equivalence Class Partitioning:

Valid type: ---------------------------

 valid Invalid

Partitions1

Partitions2

Partitions3

Partitions4

partitions Input value Expected result

< min fail

 min pass

 max pass

>max fail

Summary of failures : ---

Test result:

 pass

 fail

Note: The table contents description is the same as expressed previously in table 3.3.

Valid Invalid Invalid
min max

>=min and <=max <min >max

Valid Invalid Invalid
min max

>=min and <=max <min >max

38

E. Content coupling

This type of coupling occurs when one component modifies or depends on the

internal work of another component (Fregnan et al., 2019). The aggregation relationship

in an object oriented can be considered as an example of content association, where the

base class affects the aggregated class. In the composition aggregation, for example,

destroying a base class means destroying its aggregated classes. Figure 3.9 depicts the

idea of content coupling (where the direction head of dashed arrow indicates to the

controller component). Moreover, if any change or modification is made to the

controlled component, it may play the role of controller component.

Therefore, the dependent component must have the necessary protection to ensure

that it is not affected by the component interacting with it, and does not allow it to be

changed in it unless there is a permissible necessity.

Figure 3.9: content coupling between two components

The process of the effect of one component on the internal composition of the other

component is depicted in Table 3.7 below (i.e., In other words, the negative influence

between the interacting components is not allowed). So, it must be ensured that this

interaction does not negatively affect the interacted components, whether by

modification or deletion.

Component

I

Component

J

Updates Updates

39

Table 3.7: Content coupling testing process

Note: The table contents description is the same as expressed previously in table 3.3.

Type of test Pass/fail Tester Testing

Time

Testing Date

 Test to pass

 Test to fail

Componentj Componenti

Testing

Boundary Value Analysis:

Inputs edge: ----------------

partitions Input value Expected result

<min fail

min pass

max pass

>max fail

Equivalence Class Partitioning:

valid type----------

Invalid valid

Partitions2 Partitions1 Partition2 Partition1

Command

Summary of failures : --

 --

 Test Result

 pass

 fail

Valid Invalid Invalid
min max

>=min and <=max <min >max

40

Chapter 4

Case Study

In this chapter, a simple library system is used to demonstrate how the framework

is applied.

4.1 Scenario

This system aims to replace the usage of manual procedures in a library, such as

Book borrowing records, List of participants, Books records, and etc. What makes it

easier to manage the library and keep resources in the same time. This system will be

operated by an admin who can access using his credentials with full permissions to add,

remove, lend, and organize books. Also, keep informed about all records without any

extra effort.

Admin responsibilities

a. Add/Remove books with all related information.

b. Lend/Return books and update system data.

c. Add/Remove participants and organize participants needs.

d. Help participants to find their needed books.

Book lending policy

e. Books lent to participants only.

f. Participant can borrow only three books simultaneously.

g. No books can be borrowed for more than two weeks.

h. There will be a penalty if the participant kept the book for more than two weeks.

Operational procedures

a. Anyone who registers on the systems is considered a participant, and thus has

access to all library services. Registration begins with the filling of a registration

form, after which the administrator enters these data into the system, makes a

user profile, then issues a participation card.

b. Once he get his participation card he can borrow books as needed following

book lending policy.

c. The admin enters the borrowing information (participant, book, borrowing date).

d. Participant can renew borrowing date for the book once more before retrieval.

41

e. There will be a penalty if the participant keeps the book for more than two

weeks without renewing the borrowing.

f. Participant can fill Suggestions/Notes form if he had any.

4.1.1 Requirements characteristics traceability

The requirements phase is the first and most important phase in the SDLC, as is

well known. Successful completion of this phase increases software quality while also

reducing development time and expense. In this section, the stages of the proposed

framework will be applied in relation to the issues of the requirements stage aimed at

improving the requirements in terms of Completeness, Necessity, Correctness, and

Consistency.

 Necessary

The relationships between requirements and their sources are included in table 4.1

Table 4.1: requirement resource table

 Add new

Book

Borrow

Book

Search

Book

Remove

Book

 Browse

books info

 Book returns

 Librarian x x x x x x

Participant x x x x

 Completeness

Figure 4.1 to Figure 4.6 depict the description of the above requirements, and

illustrate the completion of activities flow .

42

Figure 4.1: Activity diagram with swimlane for "Add a new book"

43

Figure 4.2: Activity diagram with swimlane for "Borrow a book"

44

Figure 4.3: Activity diagram with swimlane for "Remove a book"

Figure 4.4: Activity diagram with swimlane for "Browse books info"

45

Figure 4.5: Activity diagram with swimlane for "Return a Book"

46

Figure 4.6: Activity diagram with swimlane for " Booking a Book "

47

 Consistency

The process of tracking the consistency between the requirements is depicted in Table

4.2 below.

Table 4.2: . Consistency traceability table

 Requirements

 Add a

new book

Book a

book

Browse

 books info

Retrieve

a book

Remove

a book

Borrow a

Book

Add a new book

Book a book X Check number

of borrowed

books

Browse books info

Retrieve a book

Remove a book

Borrow a book

R
eq

ui
re

m
e
n
ts

C
o

m
m

o
n

a
c
ti

v
it

y
,

c
o

n
d

it
io

n
 o

r

c
o

n
s
is

te
n

c
y

 r
u

le
s

48

Requirement: Borrow a Book Requirement: Book a Book

Fig 4.7: Activity diagram with swimlane to trace the Consistency between two

requirements

In the above figure, "Check number of borrowed books" (i.e. "Participant can

borrow?") represents the rule or condition that should be considered.

49

4.1.2 Design coupling traceability

The stages of the proposed framework will be applied to tracking component

coupling types in this section.

 Data coupling

Table 4.3: An example of data coupling between two components

As the "Search a Book" component has passed the book number ("BookID") to the

component "Browse book", where this pass shows the data association. Thus, the sent

data must be verified for its integrity to avoid the negative affect on the required result.

In this example, the boundary concentrated on the length of the parameter (i.e., the

number of digits that the parameter "Book ID" consists of).

Type of test Pass/fail Tester Testing Time Testing Date/Time

 Test to pass

 Test to fail

 Fatima 15:00 12/11/2021

Componentj: Browse Books Componenti: Search a Book

Parameter : BookID

Boundary Value Analysis:

Inputs edge: length from 5 to 20 integer digits

partitions Input value Expected result

<min 4 Fail

min 5 pass

max 20 pass

>max 21 Fail

Equivalence Class Partitioning:

Valid type: integer value

invalid valid

Partitions4 Partitions3 Partitions2 Partitions1 Partitions1

Blank field Special

Chars
A-Z a-z 0-9

 Search a book (BookID)

Summary of failures : No failure found

 Test Result:

 Pass

 fail

valid
Invalid Invalid 5 20

>=min and <=max <min >max

50

 Stamp coupling

Table4.4. An example of stamp coupling between two components

Type of test Pass/fail Tester Testing Time Testing Date

 Test to pass

 Test to fail

Fatima 15:15

12/11/2021

Component J: Store Book

Component I : : Add Book) UI (

Data structure : Book

Parameters : IDBook ,Title , Author , Year

Parameter : IDBook

Boundary Value Analysis:

Inputs edge: length from 5 to 20 integer digits

Equivalence Class Partitioning:
Valid type: integer value

Parameter : Title

Boundary Value Analysis:

inputs edge: string value from to 50 characters

Equivalence Class partition (Valid Type: Alphabetic

characters (small/capital or mixed)

Invalid valid

Partitions3 Partitions2 Partitions1 Partitions2 Partitions1

Blank

field

Special

Chars

9-0 a-z A-Z

partitions Input value Expected result

<min 4 Fail

min 5 pass

max 20 pass

>max 21 Fail

invalid valid

Partitions4 Partitions3 Partitions2 Partitions1 Partitions1

Blank field Special
Chars

A-Z

a-z 0-9

partitions Input value Expected result

<min 4 Characters Fail

min 5 Characters pass

max 50 Characters pass

>max 51 Characters Fail

AddNewBook (Book)

Valid
Invalid Invalid 5 20

>=min and <=max <min >max

Valid
Invalid Invalid 5 50

>=min and <=max <min >max

51

Parameter : Author
Boundary Value Analysis(BVA) (inputs edge: string value

from5 to 30 characters)

Equivalence Class partition (Valid Type: Alphabetic

characters (small/capital or mixed)

Invalid valid

Partitions3 Partitions2 Partitions1 Partitions2 Partitions1

Blank

field

Special

Chars

9-0 a-z A-Z

Parameter : Year
Boundary Value Analysis:

Inputs edge: length 4 integer digits

Equivalence Class partition

Valid type: integer value

Invalid valid

Partitions4 Partitions3 Partitions2 Partitions1 Partitions1

Blank

field

Special

Chars

A-Z a-z 0-9

partitions Input value Expected result

<min 4 Characters Fail

min 5 Characters pass

max 30 Characters pass

>max 31 Characters Fail

partitions Input value Expected result

<min 3 Fail

min 4 pass

max 4 pass

>max 5 Fail

Summary of failures: No failure found

Test Result:

 pass

 fail

The object is passed from the "Add Book" component to the "Store Book" component.

Then, the "Store Book" perform the required tests to ensures that the data is correct

before it is stored in the database.

Valid
Invalid Invalid 5 30

>=min and <=max <min >max

Valid
Invalid Invalid 4 4

>=min and <=max <min >max

52

 Control coupling

Table 4.5 : An example of control coupling between two components

Type of test Pass/fail Tester Testing Time Testing Date

 Test to pass

 Test to fail

Fatima 15:30

12/11/2021

Component J: Search Book

Component I : Browse a Book

Path 1: search by book title

Test Result:

 Pass

 fail

Browse a Book (book title)

Path 2: search by bookID

Test Result:

 Pass

 fail

Browse a Book (bookID)

Summary of failures: No failure found

Test Result:

 pass

 fail

The "Browse Book" component controls the path of the search component, where

the search criterion (for example, "Book title") is passed and the appropriate path (here,

search by "BookID") is selected, despite there are many paths to search (for example,

the search can be done using BookID , Book title and so on).

53

 Common coupling

Table 4.6. An example of common coupling between two components.

 Testing Date Testing Time Tester Type of test

Pass/fail

12/11/2021 15:30 Fatima Test to pass

 Test to fail
Common(Shared)

variable(s)
Componenti: Browse book

Component: Update

BookID Parameter : BookID
Boundary Value Analysis:

Inputs edge: length from 5 to 20 integer

digits

Equivalence Class Partitioning

 Valid type: integer value

 valid Invalid

Partitions1 0-9 a-z

Partitions2 A-Z

Partitions3 Special Chars

Partitions4 Blank field

Common variable test(s):
 Pass

 Fail

partitions Input value Expected result

< min 4 Fail

min 5 pass

max 20 pass

>max 21 Fail

Parameter : BookID
Boundary Value Analysis:

Inputs edge: length from 5 to 20 integer digits

Equivalence Class Partitioning

 Valid type: integer value

 valid Invalid

Partitions1 0-9 a-z

Partitions2 A-Z

Partitions3 Special Chars

Partitions4 Blank field

partitions Input value Expected result

< min 4 Fail

min 5 pass

max 20 pass

>max 21 Fail

Summary of failures: No failure found

Test result:

 pass

 fail

In this example, "BookID" parameter which is the common variable, should be

controlled and kept constant in both components.

Valid Invalid Invalid 5 20

>=min and <=max <min >max

Valid Invalid Invalid 5 20

>=min and <=max <min >max

54

 Content coupling

Table 4.7 :An example of content coupling between two components

Type of test Pass/fail Tester Testing Time Testing Date

 Test to pass

 Test to fail

Fatima 15:39

12/11/2021

Componentj: RemoveBorrow (BookID)

Componenti : Remove a Book

Parameter : BookID
Valid type: integer value

Boundary Value Analysis:

Inputs edge: length from 5 to 20 integer digits

Equivalence Class Partitioning:

Valid type: integer value

partitions Input value Expected result

<min 4 Fail

min 5 pass

max 20 pass

>max 21 Fail

invalid valid

Partitions4 Partitions3 Partitions2 Partitions1 Partitions1

Blank field Special
Chars

A-Z a-z 0-9

Remove a book (BookID)

Summary of failures: No failure found

 Test Result:

 pass

 fail

For example, if you delete the book data, you will also delete the borrowing data,

because the borrowing data is entirely dependent on the book data.

valid
Invalid Invalid 5 20

>=min and <=max <min >max

55

Chapter 5

Result and Discussion

This chapter will summarize the results of this research, by providing an overview

of the effort and contributions made in this research, and also compared with the

previous efforts. This is an attempt to reduce the potential errors in the phase of

requirements building and coupling the design of software components where this work

will aid developers in taking these issues into account and not ignoring them in the

future.

The software testing process requires a great effort in order to obtain an accurate

system that meets what is required of it, and for this reason it is regarded as one of the

most essential stages of the SDLC, where researchers are constantly striving to improve.

However, the emphasis in the testing phase does not preclude comprehensive

testing of the preceding stages, as the potential errors are considered among the most

important of these problems that did not receive great attention at an early stage. Hence,

the requirements stage contains a number of issues that impede software success, as

ambiguity and inaccuracy of requirements, many efforts have been made in this area,

and it still needs further study and improvement. According to available studies, there is

no comprehensive framework that includes trying to identify and then solve these

problems as early as possible.

This thesis investigated a number of potential faults at the early stages of SDLC

(i.e., requirements issues and design coupling), with the goal of developing a general

framework to track these errors according to an organized mechanism, which can later

be considered a supplementary process to the testing phase and contribute to easing

software developers' work in capturing these issues. In its first part, the framework

focuses on contributing to the improvement of the software requirements tracking

process by defining a set of tracking tables specially designed for this purpose. These

tables will contribute to reducing these issues. Compared to previous efforts made in

this subject, most of them focused on some issues and neglected others, and many of

those efforts dealt with these issues in an abstract manner. Such efforts are expressed in

(Yang et al., 2019 ; Riaz et al., 2019 ; Kamalrudin & Sidek, 2015; Gigante, Gargiulo, &

56

Ficco, 2015; Mayr-Dorn et al., 2021 ; Sulaiman et al., 2019;Hadar et al., 2019; Patel &

Gandhi, 2014).

In addition, potential bugs inherited from the requirements stage may hinder

successful software design. Furthermore, due to a lack of focus on design coupling

tracking, the design stage itself may contain potential problems. As is well known,

software component dependence on one another (i.e., coupling) is undesirable,

especially if some mistakes occur in one of those components and subsequently spread

to other software components. Efforts in this area are still limited and that additional

research and study are needed (Razafimahatratra et al., 2017; Shweta Sharma &

Srinivasan, 2013). Furthermore, no comprehensive mechanism has been identified to

address these dilemmas, as compared to what has been proposed in this thesis, some of

these studies are shown in (Bavota, Dit, Oliveto, Di Penta, et al., 2013;Geetika &

Singh, 2014; Alenezi & Magel, 2017; Anwer et al., 2017; Kumar & Chauhan, 2015)

which focused only on coupling detection in the implementation phase, as these efforts

did not limit the spread of potential faults that are addressed in this thesis.

 Based on the foregoing, the contributions of the thesis can be summarized as follows:

 Contribute to introduce a mechanism for detecting a number of potential faults

at early stage of the SDLC (according to what was inquired in Research

question No.1). Where the focus was on studying what the excellent

requirements require in terms of conditions ,as well as an in-depth study of

previous studies, especially with regard to those errors that are usually ignored

or not focused on deeply in the process of validating requirements and

designing coupling. In order to clarify what was mentioned in Research

question No. 2, the most important proposed ways to solve the problem of

potential errors were addressed in parts of it in an abstract or custom manner,

such as what was done in the study (Sulaiman et al., 2019), which commented

on finding the contradiction (ambiguity) between the activity diagram and the

class diagram. Compared to the study in this thesis, the suggested framework

will help to facilitate the process of tracking these dilemmas. Where this study

adopts a hierarchical mechanism that begins by making sure of the accuracy of

the requirements, in terms of their necessity first. Table 3.1 was proposed to

track the requirements and the sources belonging to them. Where this study

57

aims that the requirements are not created or captured except according to the

existence of their sources. Then, follows these requirements in order to ensure

their validity, accuracy, completeness and unambiguity. Also, an activity

diagram with swimlanes is proposed to illustrate the process of completing each

requirement in order to indicate that these requirements have been accurately

understood (Figure 3.2). In addition, the process of requirements consistency is

a difficult process, and therefore adequate clarification of it is important, so that

any dilemmas leading to inconsistency are captured. From here, and to

complement the role played by the previous figure (Figure 3.2) in the process of

clarifying the requirements. Failing may occur in part or (parts) common in the

requirements that must be considered in all of them (table 3.2). Also, an activity

diagram with swimlanes was proposed as a parallel process to clarify the

common requirements in a specific part or parts. This means that the conditions

or activities that should be inclined in both should be tracked, thus not missed

into one of them.

 Where most of the studies dealt with one aspect of the problems, for

example, consistency or dealing with them in an abstract way is difficult for

developers to focus on these dilemmas (Kamalrudin & Sidek, 2015).

 In addition to the foregoing, the emphasis in the design phase has been on

tracking the design coupling of software components and trying to capture the

interaction between software components. A number of different of coupling

types have been studied, and tracking tables for these types of coupling have

been proposed to supplement the answer to research question No.2. These

tables attempted to track the interaction of software components, with a focus

on testing that interaction and capturing errors that may arise. Good tracking of

that interaction will help to ensure that errors do not spread among those

components when an error arise in any of the interacting components. Among

the testing mechanisms that have been adopted are Boundary value analysis and

Equivalence class partitioning, in addition to the tests complementary to that

process.

 As an organizational process for unifying the framework's contents (Figure 3.1),

and as an explanation for the question contained in Research question NO.3,

58

which includes a query about how to detect potential error problems. This thesis

introduced an integrated general framework that helps to reduce errors in the

requirements and design stages. It also highlights the significance of addressing

dilemmas with a piercing eye that tracks the emergence of these dilemmas and

alerts them.

 With regard to the parties that will benefit from the proposed framework

(Research question No.4), the proposed framework seeks to be a

complementary mechanism for the software testing phase in the SDLC, with the

aim of improving it. Where stakeholders (requesters of the required software)

will benefit. This is because their software will perform what is required of it

without potential errors that appear later and hinder the continued success of

their software. In addition, software development teams themselves will be

encouraged to consider potential errors, due to a simplified framework that will

help them easily track the quality of the software they are developing, in terms

of correctness and accuracy.

 As for ascertaining the possibility of applying the proposed framework

(Research question No.5), which was discussed by a number of specialists.

Then building a case study in which all the items of the proposed framework

were applied (i.e., starting with tracking requirements and ending with the

process of tracing the coupling between software components). Where the

differences between the dilemmas involved in the requirements problems and

the design of the coupling have been clarified with examples for each of the

cases included in the framework.

Finally, as a general recommendation, ignoring requirements issues and not tightly

controlling the coupling of software components will significantly decrease the

reliability and scalability of the software later on, as well as cause latent faults that

are expensive to maintain. As a result. Addressing these issues early at SDLC will

reduce the cost of reworking or maintaining software systems later on.

59

Conclusion and Future work

Requirements issues and excessive software coupling are among the most important

causes of potential faults that disrupt building successful software. An organized

framework has been proposed in this thesis that contributes to tracking requirements in

terms of complete, correct, consistent, and necessary in order to reduce the resulting

errors that may be passed to later stages. Some tracking tables and graphical diagrams

have been suggested to make it easier to track these problems. In addition, as high

coupling between components is considered undesirable, especially excessive

interaction, it is mainly considered as a significant contributor to the propagation of

errors between software components, which if not taken into account will lead to week

software development. From this point of view, the proposed framework included an

organized mechanism for tracking coupling design, where special tables are prepared to

track some of the coupling types such as: content coupling, common coupling, control

coupling, stamp coupling, and data coupling. From here, it can be concluded, that the

proposed framework will support developers in improving their software. Finally,

evaluating the results of this framework was carried out based on the preparation of a

simplified case study to clarify the mechanism of its work, which we hope would have

accomplished the desired result.

As a future work, several case studies can be applied on this framework, and the

recommendations received through the application can be taken into account; as a

contribution to its improvement later. In addition, Applying Natural Language

Processing (NLP) concepts can be considered as another trend through which the

framework can be improved later by analyzing requirements scenarios and trying to

help capture their issues early.

60

References

Acharya, S., Mohanty, H., & George, C. (2005). Domain consistency in requirements

specification. Proceedings - International Conference on Quality Software, 2005(9),

231–238. https://doi.org/10.1109/QSIC.2005.24

Akinsola, J. E. T., Ogunbanwo, A. S., Okesola, O. J., Odun-Ayo, I. J., Ayegbusi, F. D.,

& Adebiyi, A. A. (2020). Comparative Analysis of Software Development Life Cycle

Models (SDLC). Computer Science On-Line Conference, 310–322.

https://doi.org/10.1007/978-3-030-51965-0_27

Alenezi, M., & Magel, K. (2017). Empirical evaluation of a new coupling metric:

Combining structural and semantic coupling. International Journal of Computers and

Applications, 36(1), 34–44. https://doi.org/10.2316/Journal.202.2014.1.202-3902

Anas, H., Ilyas, M., Tariq, Q., & Hummayun, M. (2016). Requirements Validation

Techniques: An Empirical Study. International Journal of Computer Applications,

148(14), 5–10. https://doi.org/10.5120/ijca2016910911

Anwer, S., Adbellatif, A., Alshayeb, M., & Anjum, M. S. (2017). Effect of coupling on

software faults: An empirical study. Proceedings of 2017 International Conference on

Communication, Computing and Digital Systems, C-CODE 2017, October 2018, 211–

215. https://doi.org/10.1109/C-CODE.2017.7918930

Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., & De Lucia, A. (2013).

An empirical study on the developers’ perception of software coupling. Proceedings -

International Conference on Software Engineering, 692–701.

https://doi.org/10.1109/ICSE.2013.6606615

Bavota, G., Dit, B., Oliveto, R., Penta, M. Di, Poshyvanyk, D., & Lucia, A. De. (2013).

An Empirical Study on the Developers ’ Perception of Software Coupling. In 2013 35th

International Conference on Software Engineering (ICSE), 692–701.

Bose, R. P. J. C., & Srinivasan, S. H. (2005). Data Mining Approaches to Software

Fault Diagnosis. In 15th International Workshop on Research Issues in Data

Engineering: Stream Data Mining and Applications (RIDE-SDMA’05), 45–52.

https://doi.org/10.1109/RIDE.2005.9

61

Carson, R. S., Aslaksen, E., Caple, G., Davies, P., Gonzales, R., Kohl, R., & Sahraoui,

A.-E.-K. (2004). 5.1.3 Requirements Completeness. INCOSE International Symposium,

14(1), 930–944. https://doi.org/10.1002/j.2334-5837.2004.tb00546.x

Causevic, A., Sundmark, D., & Punnekkat, S. (2010). An Industrial Survey on

Contemporary Aspects of Software Testing. In 2010 Third International Conference on

Software Testing, Verification and Validation, 393–401.

https://doi.org/10.1109/ICST.2010.52

Cunningham, S., Gambo, J., Lawless, A., Moore, D., & Yilmaz, M. (2019). Software

Testing : A Changing Career. In European Conference on Software Process

Improvement, 731–742.

Darwish, N. R. (2016). Requirements Engineering in Scrum Framework Requirements

Engineering in Scrum Framework. September. https://doi.org/10.5120/ijca2016911530

Dashti, M. T., & Basin, D. (2020). A Theory of Black-Box Tests. ArXiv Preprint

ArXiv: 2006, 1–30.

Dhanalaxmi, B., Naidu, G. A., & Anuradha, K. (2015). A Review on Software Fault

Detection and Prevention Mechanism in Software Development Activities. 17(6), 25–

30. https://doi.org/10.9790/0661-17652530

Eichinger, F., Klemens, B., & Huber, M. (2008). Improved Software Fault Detection

with Graph Mining. Proceedings of the 6th International Workshop on Mining and

Learning with Graphs (MLG) at ICML, c, 1–3. https://doi.org/10.5445/IR/1000008547

Freeman, H. (2002). Software Testing. IEEE Instrumentation & Measurement

Magazine, September, 48–50.

Fregnan, E., Baum, T., Palomba, F., & Bacchelli, A. (2019). A survey on software

coupling relations and tools. Information and Software Technology, 107(November

2018), 159–178. https://doi.org/10.1016/j.infsof.2018.11.008

Geetika, R., & Singh, P. (2014). Empirical investigation into static and dynamic

coupling metrics. ACM SIGSOFT Software Engineering Notes, 39(1), 1–8.

https://doi.org/10.1145/2557833.2557847

62

Gigante, G., Gargiulo, F., & Ficco, M. (2015). A semantic driven approach for

requirements verification. Studies in Computational Intelligence, 570, 427–436.

https://doi.org/10.1007/978-3-319-10422-5_44

Gigante, G., Gargiulo, F., Ficco, M., & Pascarella, D. (2015). A semantic driven

approach for consistency verification between requirements and FMEA. Studies in

Computational Intelligence, 616, 403–413. https://doi.org/10.1007/978-3-319-25017-

5_38

Graham, D. (2002). Requirements and Testing : IEEE Software, 19(5), 15–17.

Guo, W., Zhang, L., & Lian, X. (2021). Automatically detecting the conflicts between

software requirements based on finer semantic analysis. Information and Software

Technology, 1–18.

Hadar, I., Zamansky, A., & Berry, D. M. (2019). The inconsistency between theory and

practice in managing inconsistency in requirements engineering. Empirical Software

Engineering, 24(6), 3972–4005. https://doi.org/10.1007/s10664-019-09718-5

Hagal, M. A., & H.Fazzani, F. (2013). A Use Case Map as a Visual Approach to

Reduce the Degree of Inconsistency. International Conference on Computer Systems

and Industrial, 0–3. https://doi.org/10.1109/iccsii.2012.6454384

Hedaoo, A. H., & Khandelwal, A. (2017). Study of Dynamic Testing Techniques.

International Journal of Advanced Research in Computer Science and Software

Engineering, 7(4), 322–330. https://doi.org/10.23956/ijarcsse/v7i4/0136

Kamalrudin, M., & Sidek, S. (2015). A review on software requirements validation and

consistency management. International Journal of Software Engineering and Its

Applications, 9(10), 39–58. https://doi.org/10.14257/ijseia.2015.9.10.05

Kamble, S., Jin, X., Niu, N., & Simon, M. (2017). A Novel Coupling Pattern in

Computational Science and Engineering Software. Proceedings - 2017 IEEE/ACM 12th

International Workshop on Software Engineering for Science, SE4Science 2017, 9–12.

https://doi.org/10.1109/SE4Science.2017.10

63

Kaur, M., & Singh, R. (2014). A Review of Software Testing Techniques. International

Journal of Electronic and Electrical Engineering, 7(5), 463–474.

Kumar, H., & Chauhan, N. (2015). A Coupling Effect Based Test Case prioritization

technique. 2015 2nd International Conference on Computing for Sustainable Global

Developmen(INDIACom), 1341–1345.

Lawrence, B., Wiegers, K., & Ebert, C. (2001). The Top Risks of Requirements

Engineering. IEEE Software, 18(62–63).

Leau, Y., Loo, W. K., Tham, W. Y. T., & Fun, S. (2012). Software Development Life

Cycle AGILE vs Traditional Approaches. 2012 International Conference on Information

and Network Technology (ICINT 2012), 37(Icint), 162–167.

Maia, T., & Souza, M. (2018). A Practical Methodology for DO-178C Data and Control

Coupling Objective Compliance. 236–240.

Marques, J., & Yelisetty, S. (2019). An Analysis of Software Requirements

Specification Characteristics In Regulated Environments. International Journal of

Software Engineering & Applications, 10(6), 1–15.

https://doi.org/10.5121/ijsea.2019.10601

Mayr-Dorn, C., Kretschmer, R., Egyed, A., Heradio, R., & Fernandez-Amoros, D.

(2021). Inconsistency-tolerating guidance for software engineering processes.

Miholca, D. L., & Onet-Marian, Z. (2020). An analysis of aggregated coupling’s

suitability for software defect prediction. Proceedings - 2020 22nd International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC

2020, 141–148. https://doi.org/10.1109/SYNASC51798.2020.00032

Narizzano, M., Pulina, L., Tacchella, A., & Vuotto, S. (2019). Property specification

patterns at work: verification and inconsistency explanation. Innovations in Systems and

Software Engineering, 15(3–4), 307–323. https://doi.org/10.1007/s11334-019-00339-1

64

Nidamanuri, S. R. (2021). Requirements Validation Techniques and Factors Influencing

them Santosh Kumar Reddy Peddireddy (Issue February).

Nidhra, S., & Dondeti, J. (2012). B LACK BOX AND W HITE B OX T ESTING T

ECHNIQUES – A L ITERATURE R EVIEW. International Journal of Embedded

Systems and Applications (IJESA) Vol.2, No.2, June 2012 BLACK, 2(2), 29–50.

https://doi.org/10.5121/ijesa.2012.2204

Pandey, S. K., & Batra, M. (2013). Security Testing in Requirements Phase of SDLC.

International Journal of Computer Applications, 68(9), 31–35.

https://doi.org/10.5120/11609-6985

Patel, K., & Gandhi, P. S. (2014). Inconsistency Measurement and Remove from

Software Requirement Specification. IJEDR1402214 International Journal of

Engineering Development and Research (Www.Ijedr.Org), 2(2), 2655–2659.

Poshyvanyk, D., Marcus, A., Ferenc, R., Gyimóthy, T., & Published. (2009). Using

information retrieval based coupling measures for impact analysis. Empirical Software

Engineering, 14(1), 5–32. https://doi.org/10.1007/s10664-008-9088-2

Razafimahatratra, H., Mahatody, T., Razafimandimby, J. P., & Simionescu, S. M.

(2017). Automatic detection of coupling type in the UML sequence diagram. 2017 21st

International Conference on System Theory, Control and Computing, ICSTCC 2017,

635–640. https://doi.org/10.1109/ICSTCC.2017.8107107

Riaz, M. Q., Butt, W. H., & Rehman, S. (2019). Automatic Detection of Ambiguous

Software Requirements: An Insight. 5th International Conference on Information

Management, ICIM 2019, March, 1–6.

https://doi.org/10.1109/INFOMAN.2019.8714682

Saavedra, R., Ballejos, L., & Ale, M. (2013). Software Requirements Quality

Evaluation: State of the art and research challenges. 1850–2792.

Sawant, A. A., Bari, P. H., & Chawan, P. M. (2012). Software Testing Techniques and

Strategies. International Journal of Engineering Research and Applications (IJERA),

2(3), 980–986.

65

Schach, S. R. (2011). Object-oriented and classical software engineering. In 8 (Ed.),

Ruptures in the Everyday: Views of Modern Germany from the Ground (8th ed.).

https://doi.org/10.5749/j.ctvtv93bw.16

Sharma, Shilpa, Raja, L., & Bhatt, D. P. (2020). Role of ontology in software testing.

Journal of Information and Optimization Sciences, 41(2), 641–649.

https://doi.org/10.1080/02522667.2020.1733196

Sharma, Shweta, & Srinivasan, S. (2013). A review of Coupling and Cohesion metrics

in Object Oriented Environment. International Journal of Computer Science &

Engineering Technology (IJCSET), 4(8), 1105–1111.

Sommerville, I. (2011). Software Engineering. In Clinical Engineering: A Handbook for

Clinical and Biomedical Engineers (9th ed.). https://doi.org/10.1016/B978-0-12-

396961-3.00009-3

Stachtiari, E., Mavridou, A., Katsaros, P., Bliudze, S., & Sifakis, J. (2018). Early

validation of system requirements and design through correctness-by-construction.

Journal of Systems and Software, 145(September 2017), 52–78.

https://doi.org/10.1016/j.jss.2018.07.053

Sulaiman, N., Ahmad, S. S. S., & Ahmad, S. (2019). Logical approach: Consistency

rules between activity diagram and class diagram. International Journal on Advanced

Science, Engineering and Information Technology, 9(2), 552–559.

https://doi.org/10.18517/ijaseit.9.1.7581

Tsai, B., Stobart, S., Parrington, N., & Thompson, B. (1997). Iterative Design and

Testing within the Software Development Life Cycle. 6(December).

Tuteja, M., & Dubey, G. (2012). A Research Study on importance of Testing and

Quality Assurance in Software Development Life Cycle (SDLC) Models. International

Journal of Soft Computing and Engineering (IJSCE), 2(3), 251–257.

Umar, M. A. (2020). A Study of Software Testing : Categories , Levels , Techniques ,

and Types. 1–10.

66

Vanmali, M., Last, M., & Kande, A. (2002). Using a neural network in the software

testing process. International Journal of Intelligent Systems, 17(1), 45–62.

https://doi.org/10.1002/int.1002

Wettel, R., & Lanza, M. (2008). Visually Localizing Design Problems with Disharmony

Maps. In Proceedings of the 4th ACM Symposium on Software Visualization, 155–164.

Whittaker, J. A. (2000). What is software testing? And why is it so hard? IEEE

Software, 17(1), 70–79. https://doi.org/10.1109/52.819971

Wong, W. E., Gao, R., Li, Y., Abreu, R., Wotawa, F., Pan, H., Gregory, W. B., Liblit,

B. R., Peichl, B., He, H., Renieris, E., Riaz, N., Abreu, R., & Wang, X. (2016).

Transactions on Software Engineering A Survey on Software Fault Localization

Transactions on Software Engineering. 5589(November 2014), 1–41.

https://doi.org/10.1109/TSE.2016.2521368

Yang, Y., Ke, W., & Li, X. (2019). RM2PT: Requirements validation through automatic

prototyping. Proceedings of the IEEE International Conference on Requirements

Engineering, 2019-Septe, 484–485. https://doi.org/10.1109/RE.2019.00067

Yin, R., & Ding, X. M. (2012). How to improve the quality of software testing. 2012

International Conference on Systems and Informatics (ICSAI 2012), Icsai, 2533–2536.

Yusuf, A., & Hammad, M. (2020). An Automatic Approach to Measure and Visualize

Coupling in Object-Oriented Programs. 2020 International Conference on Innovation

and Intelligence for Informatics, Computing and Technologies, 3ICT 2020.

https://doi.org/10.1109/3ICT51146.2020.9311962

Yusupbekov, N. R., Gulyamov, S. M., Usmanova, N. B., & Mirzaev, D. A. (2017).

Challenging the ways to determine the faults in software: Technique based on

associative interconnections. Procedia Computer Science, 120, 641–648.

https://doi.org/10.1016/j.procs.2017.11.290

Zheng, J., Member, S., Williams, L., Nagappan, N., & Snipes, W. (2006). On the Value

of Static Analysis for Fault Detection in Software. IEEE Transactions on Software

Engineering, 32(4), 240–253. https://doi.org/10.1109/TSE.2006.38

67

Zowghi, D., & Gervasi, V. (2003). On the interplay between consistency, completeness,

and correctness in requirements evolution. In Information and Software Technology

(Vol. 45, Issue 14). https://doi.org/10.1016/S0950-5849(03)00100-9

Merriam-Webster. (n.d.). Necessary. In Merriam-Webster.com dictionary. Retrieved

May 4, 2021, from https://www.merriam-webster.com/dictionary/necessary

Merriam-Webster. (n.d.). Complete. In Merriam-Webster.com dictionary. Retrieved

May 4, 2021, from https://www.merriam-webster.com/dictionary/complete

إطار عمل لتحسين عملية اكتشاف الأخطاء الكامنة في المراحل المبكرة من دورة
 حياة تطوير البرمجيات

 إعداد

 فاطمة فرج مصباح سعيد

 المشرف

 حجل دد. محم

 الملخص

مطلوب منها بصورة كاملة لما هو مدى تلبيتهاتعتمد عملية بناء برمجيات ذات جودة عالية على

العمليتان المسؤولتان هما تدقيق المتطلبات ومرحلة الاختبار تعتبر عمليتا:. ومن هنا وصحيحة

عداد إالعديد من الجهود بذلت من أجل .البرمجية وبصورة دقيقة من أداءلتأكد بشكل رئيسي على ا

في قصورا لاحظنا آخرمن جانب لكننا .وضمان جودتهاهيل عملية الاختبار أساليب وتقنيات لتس

شاكل , ومن أمثلتها متؤدي الى ظهور أخطاء كامنةقد التي على اختبار الحالاتالتركيز

 . المتطلبات وتصميم الاقتران

الدراسة على تقديم إطار شامل يسهل على مطوري البرمجيات التركيز على هذهعكفت ؛ولهذا

ويكون داعما في المراحل المبكرة من دورة حياة البرمجيات، توثيقي منظمالأخطاء الكامنة بأسلوب

, و اختبار طلباتتدقيق المت تا: عملي تكونحيث .المختلفة ومكملا لمراحل التدقيق والاختبار

 .، هما بؤرة التركيزالاقترانتصميم

2

لية آحيث يبين الاطار ,لية عمل الاطار المقترحآحاله دراسية لتوضيح الرسالةقدمت خلال هذا

من خلال تتبع المتطلبات في مرحلة هندسة المتطلبات حة للتركيز على الاخطاء الكامنةواض

 .الاقتران(التصميمواختبار التفاعل بين المكونات البرمجية)

دورة حياة تطوير , تصميم الاقتران ,ندسة المتطلبات, هندسة البرمجيات: ه فتاحيةالكلمات الم

 .البرمجيات

3

في الكامنةإطار عمل لتحسين عملية اكتشاف الأخطاء
 مجيات من دورة حياة تطوير البر المبكرةالمراحل

 قدمت من قبل:

 فاطمة فرج مصباح سعيد

 تحت إشراف

 د.محمد حجل

هندسة رسالة استكمالا لمتطلبات الحصول على درجة الماجستير فيهذه ال قدمت
 البرمجيات

 جامعة بنغازي

 كلية تقنية المعلومات

 2202 فبراير

