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Exact solution for local fractional Diffusion and Wave Equations
on Cantor Sets
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Research Summary:

In this paper, the local fractional homotopy perturbation method and the local
fractional Sumudu transform are used to study diffusion and wave equations defined on
Cantor sets with the fractal conditions with local fractional derivatives. The LFSHPM
analytical method minimizes the computational size and may be applied directly to fractional
differential equations without any linearization, discretization of variables, transformation, or
restrictive assumptions. It provides series solutions that converge quickly in a few iterations.
The proposed analytical method is successfully applied to diffusion and wave equations
defined on cantor sets with fractal conditions, and proved to be highly efficient and

computational accurate.

Key words: local fractional homotopy perturbation method, local fractional Sumudu

transform, Diffusion equation, Wave equation.
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Abstract: To solve the diffusion and wave equations on the Cantor set, the local fractional

Sumudu homotopy perturbation method (LFSHPM) is used. In the local sense, the operators
are used. The local fractional Sumudu homotopy perturbation method, which is the coupling
method of the local fractional homotopy perturbation method and the Sumudu transform, is
used to obtain non-differentiable approximate solutions. Illustrative examples are provided to
show the new algorithm's excellent accuracy and fast convergence.
1. Introduction
In the last fiveteen years, local fractional calculus has played a significant role in fields
ranging from fundamental research to engineering [1-3], and it has been used to a diverse set
of complicated issues in physics, biology, mechanics, and transdisciplinary domains [4,5].
Various methods, for example, the Adomian decomposition method [6], the variational
iteration method [7,8], the homotopy perturbation method [9-12], the fractional iteration
method [13, 14], the fractal Laplace and Fourier transforms [15], the Sumudu decomposition
method [16], the homotopy perturbation Sumudu transform method [17,18], the homotopy
analysis method [19], the heat balance integral method [20], and the fractional variational
iteration method [21].
Many processes in science and engineering rely on diffusion equations, such as the diffusion
of dissolved substances in solvent liquids, neutrons in a nuclear reactor, and Brownian
motion, whereas wave equations describe the motion of a vibrating string (see [22, 23] and
the references therein).
The diffusion equation for Cantor sets was recently presented in [24] as "local fractional
diffusion equation.”
e _gz2 i), ®
where a®? is the fractal diffusion constant, which is a measure of the spreading efficiency of
the underlying material, and the local fractional wave equation is stated as follows [25, 26]:
o%°u(x,t) g% o%°u(x,t) _
ot 20 ox 20

The following is how the paper is structured. Section 2 introduces the principles of local

0, 2

fractional calculus theory that will be employed in this study. The local fractional Sumudu
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homotopy pertubation method is presented in Section 3. The solutions to the diffusion and

wave equations in Cantor set conditions are presented in Section 4. Our conclusions are
presented in Section 5.

2. Local Fractional Derivative and Local Fractional Sumudu Transform

Definition 1. [25,26] In fractal space, let f (x)eC, (a, £), local fractional derivative of

f (x) of order o the point x =X is given by

—f (0)(XO): lim A% (f (x)-f (Xo)’

dO'
DJf (Xq) =
<f (o) dx? X=X, (X =Xg)°

(3)

X =X,

Where A% (f (x)—f (xo) =T(+1) (F (x)~F (Xg))-

Definition 2. [25,26] A partition of the interval [a, 8] is denoted by (tj,tj.),
j=0,..,N -1, tg=a and ty = with At; =t;,;—tjand At =max{Aty,Al,..}. Local
fractional integral of f (x) in the interval [, 8] is given by

1
[(o+1) «

Definition 3. [25, 26] In fractal space, the Mittage-Leffler function, the hyperbolic sine and

ol gt (x)= j t)@dt)? = Zf(t ) (At;)7. (4)

I'(e 1)A

hyperbolic cosine are defined as

mo
E_(x¢ O0<o <], 5
-(x7)= Zr(m 17 ©)
o) X(2m+1)6
sinh_(x%) = , 0<o<], 6
o (%) Eor((2m+1)a+1) . ©)
o 0 X2m0'
cosh,(x7)=> ——— 0<o<Ll (7

mo ' (2m o +1)

By using the local fractional derivative (3) and the equation (5) it can be easily shown that

d o X mo X (m_l)o—
dxa[l“(m O'+1)]:1“((m ~No+1) 8

Definition 4. [27, 28] The local fractional Sumudu transform of f (x) is defined by
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TS, [f (x)]=G,(5)= F(;ﬂ)j E, (-67x°) f;—):f)(d x)?,0<o <1,
0

The following inverse formula of (9 ) is defined as
"$ 1[G, (8)]=f (x),0<o<1.

Properties of local fractional Sumudu Transform

tg | X7 |_s0
7| T(c+1) ’

Theorem 1.

1. Local fractional Sumudu transform of local fractional derivative is defined by
g |d " (x)|_ 1
o d X mo - 5m o

60(5) 1 kaako-f (0)

5ma k=0 atkO'

m-1
Gg(a)—kzofs""f ko) (0)

2. Local fractional Sumudu transform of local fractional integral is defined by
", ol F (x) | =67 G, (6).

3. Local Fractional Sumudu Homotopy perturbation Method
Consider the local fractional partial differential equations shown below:
L u(x,t)+R u(x,t)=g,(x,t),

(9)

(10)

(11)

(12)

(13)

(14)

Where L is the linear local fractional operator, R, is the linear local fractional operator of

order the last then L_ and g, (x,t) is given function.

By applying a local fractional Sumudu transform (denoted in this paper by I S, ) on each

side of equation (14 ), we get

TS, Lou(x.t)]="s,[a(x,t)]-"s [Rou(x,t)].

We have based on the properties of this transform.

(15)
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Ts,[u(x,t)]="s,[a(x,t)-Ryu(x,t)]

ko
G, (5)='3 o7 U0,
k=0 otke

16
+5M s [g(x,t)-Ryu(x,t)]. (19

Operating with the Sumudu inverse on both sides of Equation (16) gives

migkoy(x,0) tke

u(x.t)=2

& otk T(ko+l) -
st 67 s, [9(x,t)-Reu(x,1)]]

Now we apply the homotopy perturbation method (HPM).

u(x,t):iP”“un(x,t). (18)

n=0

Substituting Equation (17) in Equation (18), we get

0 m-1 ko ko
S P, (1) = 3 D)
n=0 ko ot'? I(ko+1l)

+P”""3;{5”‘0”Sa{g(x,t)—Ra(i P”"un(x,t)j H

n=0

(19)

Equating the terms with identical powers of P, we can obtain a series of equations as the

follows:

m—lak"u(x O) tka If o —
pPO: )= : st o™ s )]
uO(X ) kZ::O atko‘ F(ko_+1)+ o |: 0|:g(x ):|:|

P u(x,t)=-"5_ [ém”'fSG[Rauo(x,t)ﬂ,

P":u, (x,t)=-"5_ [5m“'fSG[RGun_1(x,t)]], (20)
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proceeding in the same manner, the rest of the components u, (x,t) can be completely

found and the series solution is thus entirely determined. We approximate the analytical
solution u ( x,t) by truncated series as:

o]

u(x,t)=> u,(x,t). (21)

n=0

4. Applications

In this section, four examples for diffusion and wave equations on cantor sets will

demonstrate the efficiency of local fractional Sumudu homotopy perturbation method

Example 1.Consider the following diffusion equation on Cantor sets:

0°u(x,t) 0°u(x.t)
ot ox 20

subject to the initial condition

-0, O<o<1 (22)

X o
u(x,0)= : 23
0) I'(c+1) 3)
We structure the iterative relation using relation (19) as
s _ » o%°u, (x ,t
E%P“nmai)ﬂuxﬁwF”“”s;[5“”saﬂ;%P“ﬂ—5f%—ljﬂ. (24)

The following approximations are generated by comparing the coefficients with similar
powers of P 7 in Eq. (24):

N
Po":uo(x,t): ,
I'o+1)
20 ]
PO-:Ul(X,t)Ifso.1|:5o-lfso—|:auo—2(x’t)j| :O’
ox <7
PZO‘ ‘u (X t)_ |fs—1 56 IfS azo-ul(x 1t) 1] -0
“H2\M o o 8X20 1] !
20, 7]
P%ﬁu4x¢)="sgl{50”sa{giiégﬁl =0, (25)

and so on.



o

University of Benghazi olkiy dxaly
Faculty of Education Almarj 4 asall — &gyl &412
Global Libyan Journa! ISSN 2518-5845

Global Libyan Journal dgallell &gglll &lyall

2021 / 9.¢.194 /\-)Mlg \sg,l;lthu_lt

The local fractional series solution is hence

u(x,t)=iun(x,t)=r();il).

(26)

The result is the same as the one which is obtained by the local fractional series expansion
method and local fractional Laplace variational iteration method [29, 30].

Example 2.Consider the following diffusion equation on Cantor sets:

o%u(x,t) x2°  8%%u(x,t)

=0, O0<o<], (27)
ot e I'2oc+1) ox2°
subject to the initial condition
X 20
u(x,0)=————. (28)
2o+l

We structure the iterative relation using relation (19) as

< pho 3 nolfe-1| colf x27 & o 02U (X,1)
EOP Uy (X,t) =u(x,0)+P 30{5 s{[—r(zml)nzop o ]H.(zg)

The following approximations are generated by comparing the coefficients with similar

powers of P 7 in Eq. (29):

XZG

rRo+1)’

i 20 20
Paiul(x,t)zlf8;1 66"80_ X 0 UO(X1t)
I'2o+1) ox2°

PO tugp(x,t) =

i XZJ
I'(2o +1)

X20' 0':| XZO' to

T20+1)" | T(20+1) [(o+])’

_lfg-t
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20 20
P2y, (x,t)="s 1| 5o Mg | X 07Uy (x,1)
r2oc+1) ox2°

P x 27 t?
_lfg1| solfg
I'2o+1) I'(c+1)

i Dl xgP T
_ffst) X s20
I'(20+1)

X
" T(20+) [(20+1)’

P (1) = " S;{ﬁ" i S({az"uz(x 1) H

a 20'
§ (30)
F XZG t30
" T'(260+1) T(Bo+1)’
and so on.
The local fractional series solution is hence
0 20 o 20 30
u(x,t)=> u,(xt)= X 14— ol ol 4o
n=0 2o+l I'c+1) T'(2oc+1) T (3oc+))
- X20‘ © tka
TQo+1) 2 T(k o+1)
20
X
L Al 31
I'2o+1) 0( ) 1)

The result is the same as the one which is obtained local fractional series expansion method
and local fractional Laplace variational iteration method [29, 30].

Example 3.Consider the following wave equation on Cantor sets:

o2%u(x,t) B x29  8%%u(x,t)

=0, O<o< 32
2% T@Qo+l) x% . (32)
subject to the initial condition

20 o,
u(x,0)=—X U0 _y (33)

rRo+1)"  oat°

We structure the iterative relation using relation (19) as



VAl i,

University of Benghazi olkiy dxaly
Faculty of Education Almarj ! asall — gyl &y12
Global Libyan Journa) ISSN 2518-5845
Global Libyan Journal dgallell dgy il lyall
202 1 / 94.194 / OMLQ @Ldl sugll
0 (e} o
ZP”"un(x,t)zu(x,O)Jra ux.0) _t
n=0 a7 TI(o+1) (34)
o 7|\ r(2o+1) 5 x %

The following approximations are generated by comparing the coefficients with similar

powers of P 7 in Eq. (34):

XZO'
Poa:uo(x,t):—,
I'2o+1)
i 20 20
pouy ()= "5 | 2o Mg | _X g Uoz(X,t)
I'2o+1) ox<°
i 20
I'2o+1)
_thg1 X?7 26
7 _F(20'+1)
k XZO' t20'
" I'(2o+1) I'2o+1)’
P20y (x.t)= 51| s2o g x27 8%y (x.t) |
L % T\ T(o+1) ox2°
_lg-1| s20lfg x?7 t*
7 71 T(2c+1) T'2o+1)
_lfg1 Lg“
7| T'(2o+1)
X20' t40'

" T(20+1) [(do+1)’

620u2(x 1)

0. _fe-1 20 If
P~ tus(x,t)="S5_ {5 SG{ 20

l

(35)

20

X
" T(Q2o+)T(60+1)’

tGO—
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and so on.
The local fractional series solution is hence

o0 XZG t20‘ t40' t60‘
u(x,t)=> up(x,t)= 1+ + + 4o
n=0 I'2o+1) I'2c+1) TI'(4o+1) TI'(60+1)

1 XZO' ) t2ka
TQo+1) S T(2k o+1)

F o cosh,, (t o ) (36)

The result is the same as the one which is obtained by local fractional series expansion

method and local fractional Laplace variational iteration method [29, 30].

Example 4.Consider the following wave equation on Cantor sets:

02%u(x,t) _ x2%  8%%u(x,t)

=0, O<o< 37
2% TQo+l) ox% - (37)
subject to the initial condition

o 20
u(x,0)=0, AU g, X (38)

ot°  T(2o+1)’

We structure the iterative relation using relation (19) as

e o°u(x,0) t°
P"u (x,t)=u(x,0)+
nZ::O ) = O T

X 20 © aZO'U (X t) (39)
+Pn0|fs—1 520”8 ZPHO' n [ .
g 7\ r@2o+1) 5 ox 2

The following approximations are generated by comparing the coefficients with similar

powers of P 7 in Eq. (39):
X 20 to
IFrRo+1) T (c+1)’

PO% :ug(x t) =
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i 20 20,
_ 0“%Up(x,t)
oy (x.t)= g1 s20 g X 0
1(,0) 7 7| TQ2c+1) ox2°

o] c2otie | X2 t?
_lfg 1| 520 lfg
I'2c+1) I'(oc+1)

| XZG
_F(20'+1)
X2c7 t30’

T T(20+1) FBo+l)’

i 20 20,
O-:Uz(x,t):"sgl 526 IfSO— X a U1§X’t)
I'2o+1) ox<°

ax 20

[ A20
30':u3(x1t):IfS;l|:520' s 0~uy(x 1) ﬂ

:r(2<7+1)1“(7a+1)’E

(40)

and so on.
The local fractional series solution is hence

) 20' o 3o 50 7o
u(x,t)=> u,(x,t)= ( t t t I J

n=0 F(2 +1) | I'(c+1) F(30+1) F(50+1) F(70+1)
2

F(20'+1)

{ kDo

o I'(2k +1) o +1)

>

20
:ﬁsinha (t "). (42)
The result is the same as the one which is obtained by the Local fractional variational
iteration and Decomposition methods and local fractional Laplace variational iteration
method [30, 31].

5. Conclusions

In this paper, the local fractional homotopy perturbation method and the local fractional

Sumudu transform are used to study diffusion and wave equations defined on Cantor sets
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with the fractal conditions with local fractional derivatives. The LFSHPM analytical method

minimizes the computational size and may be applied directly to fractional differential
equations without any linearization, discretization of variables, transformation, or restrictive
assumptions. It provides series solutions that converge quickly in a few iterations. The
proposed analytical method is successfully applied to diffusion and wave equations defined
on cantor sets with fractal conditions, and proved to be highly efficient and computational

accurate.
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