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Binomial Beta H-likelihood method. 
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In practice, clustered binary responses are very prevalent, where binary data is naturally 
grouped by sampling techniques. Clusters are often unequal in size in some areas of studies, 
such as medicine, education and others. The most suitable models for binary data clusters of 
unbalanced sizes are the Hierarchical Generalized Linear Model (HGLM), where the random 
term over-dispersion counts; and it is k known as clustered binary data. Current techniques 
for estimating parameters in (HGLM) are many, but these techniques do not allow over disper-
sion to be distinct from cluster to cluster. Where clustered binary data resulted in over-varia-
tion, that reasonable to conclude the unequal size of clustered binary data may have been dis-
tinct variations for distinct clusters. By ignoring the chance of shifting over variability between 
clusters, test statistics may be inflated in the Type I error rates. In this paper, the binomial beta 
(BB) (HGLM) method has been altered to account for distinct variations across separate clus-
ters. In order to explore whether the Adjusted Scale Binomial Beta (ASBB) method is more 
suitable than the (BB) technique for dealing with over-dispersion for unequal cluster binary 
data models, the author was used simulation, the adjusted method was compared to the orig-
inal "existing" technique in terms of, Type I error rate, estimator standard errors and power. 
(ASBB) h-likelihood “adjusted” method was comparable to BB "existing" technique, as it has a 
less standard error and the Type I error was acceptable. Moreover, Type I error inflated in 
“exist method” (BB) h-likelihood.  
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1. Introduction 

The nested structure or the clustered data is one of the experi-
mental designs where the variables have an implicit hierarchy. 
Clusters may be balanced or unbalanced, which means that the size 
of the cluster is equal or unequal. There are many explanations for 
unequal clusters; see for more information on unbalanced (Milli-
ken et al., 1992). The differential size of clusters may lead from ran-
domly missing vector components for a clustered multivariate out-
come or if fields vary in the number components in the vector for 
evaluation. Different cluster sizes can lead to varying cluster dis-
persions. There may be two sources of variation for a nested model 
with a binary response. The first source of variation is the variation 
between clusters, which represents the variation from cluster to 
cluster. The second is the intra-cluster variation that reflects the 
random variation between the responses in each cluster. For bi-
nary data that are clustered with variation at each stage, the linear 
model used, which assumes that the dependent variable is normal, 
it would be more appropriate to use the linear model extension, 
which is a generalized linear model. The generalized linear model 
(GLM) includes dependent variables that follow any probability 
distribution in the exponential family of distributions. The expo-
nential family has many useful distributions for example Normal, 
Binomial, Poisson, Multinomial, Gamma, Negative Binomial, and 
others, for more details see (McCullagh and Searle, 2001). Assum-
ing a normal distribution is convenient, but it is not always the best 
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choice in a HGLM (Lee and Nelder, 1996). Applied hypothesis tests 
in the GLM do not require normality for dependent variable, nor do 
they require homogeneity of variances. Hence, GLMs can be used 
when the dependent variables follow any distributions other than 
the normal distribution and the variances are not constant; more 
details in (El-Saeiti, 2013). 

Cluster design with binary outcomes is very common in study 
fields, particularly in medical studies. The nested structure with an 
unbalanced cluster size may lead to more variability between clus-
ters. The hierarchical generalized linear model (HGLM) technique 
is used to account for additional variability caused by distinct clus-
ter sizes. The most popular techniques, such as quasi-likelihood, 
penalized quasi-likelihood, and extended quasi-likelihood, allow 
for over-dispersion; however, present techniques handle over-var-
iation as a constant for all clusters. It is common not to apply these 
methods to modifications in over-dispersion. Unqualified clustered 
binary data may have separate cluster dispersions. It is prevalent 
not to apply these techniques to changes in over-dispersion. Un-
qualified clustered binary data may have distinct dispersions for 
separate clusters. It is sensible to believe that unequal clustered bi-
nary data may have distinct dispersion for distinct clusters, but the 
present techniques have ignored this option. 

El-Saeiti, (2014) and El-Saeiti, (2015) proved the current HGLM 
methods do not deal with different dispersion for different clusters. 
By neglecting to account, for different dispersion in binary data 
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with unequal clusters, Type I error rate may be inflated, power may 
be low and efficiency may be lost. The author modified Binomial 
Beta h-Likelihood method for solving the problem. Adjusted Scale 
Binomial Beta (ASBB) to account for over-dispersion in unequal 
clustered binary data better than current Binomial Beta (BB) h-
likelihood techniques. The adjusted Scale Binomial Beta h-likeli-
hood enables a distinct scale parameter for the Beta distribution 
for each cluster to account for over-dispersion. 

2. Theoretical Background 

In generalized linear models (GLM) where the model includes 
both fixed and random effects, it is referred to as generalized linear 
mixed models (GLMM) or hierarchical generalized linear models 
(HGLM) (Lee and Nelder, 1996). Hierarchical generalized linear 
models enable additional error parts in the linear predictors of 
generalized linear models. The distribution of these components is 
not needed to be normal, enabling a wider class of models. In gen-
eralized hierarchical linear models, any distribution in the expo-
nential family may be followed by response and random effects. As 
such, the HGLM is more suited to clustered data than the GLM. 

By assuming that the conditional dependent variable Y|u is bi-
nomial, and assuming that beta distribution for the random effect, 
the distribution of the conditional response and the random effect 
is fully defined; in this case, the appropriate estimation method is 
h−Likelihood (Lee and Nelder, 1996). 

The HGLM formula for Binomial Beta h-likelihood according to 
(Lee and Nelder, 1996) is 

1. Yij |ui ∼ Bin(n, pij), . . . ui ∼ Beta (γ, λ), 

2. ηij = xijβ + v(ui), 

3. ηij = logit (pij), 

The adjusted H-likelihood is used to obtain estimates of param-
eters if a random effect has a bet distribution with different scale 
parameters, λi, to account for over-dispersion due to dissimilarity 
of cluster sizes. Hierarchical Generalized Linear Model (HGLM) under 
Adjusted Scale Binomial Beta h-likelihood scheme of estimation 
may be written in the following three components 

1.  Yij |ui ∼ Bin(n, pij), . . . ui ∼ Beta (γ, λi), 

2.  ηij = xijβ + v(ui), 

3.  ηij = logit (pij), 

Where Y is dependent variable follow binomial distribution with 
parameters n, and variance-covariance pij,. The parameter ui is the 
random effect following the beta distribution with mean equal to γ, 
and λi is the varying scale from cluster to cluster. ηij is the system-
atic component, and v is the transformation of ui to occur linearly 
with xij β. β is the fixed-parameter, xij is explanatory variable for 
fixed effects jth observation in ith cluster, and g is the link function 
which is logit for binomial distribution; more details are in the dis-
sertations of El-Saeiti, (2013) and Lalonde,(2009). The objective of 

this modified method is to allow dispersion to differ in clusters of 
distinct sizes and to allow variations to differ from cluster to cluster 
instead of a steady amount of variations, which is one. 

3. Material and methods 

The author generates two data sets, one for the "original 
method" Binomial Beta BB method, and the second data set for the 
"modified method" Adjusted Binomial Beta; defined parameters 
and generated values, random effect variable, and calculated the 
probability of the response variable. The distribution of Poisson 
generated an unequal number of topics per cluster for the unbal-
anced size of the cluster. Where the mean for the Poisson distribu-
tion was the mean for the number of observations for each cluster. 
By selecting separate mean cluster sizes (𝑛= 10, 25, 100), the writer 
reveals the distinction in statistical output for the distinct sample 
sizes. In this document, the described number of clusters [K=20, 
50], the cluster size for the unbalanced cluster is the mean number 
of cluster observations per cluster. For each combination of cluster 
number "K" and observation number "n," 1,000 data sets were gen-
erated for each case (BB) and (ABB) for the calculation of power, 
type I error and standard error. Revise El-Saeiti, (2013) for expla-
nation of the simulation steps. Power was estimated as the percent-
age of correct significance detection for β1, while the rate for Type 
I error was estimated as the percentage of inaccurate significance 
detection for β2. The author used the hglm function in the HGLM 
package in R for the original binomial beta h-likelihood method. Us-
ing the hglm function, an estimation of parameters β and t-statistics 
with p-values is obtained. By simulation, an average of 1,000 esti-
mates was calculated for β1, β2, power of the hypothesis test for β1, 
Type I error of the hypothesis test for β2, and standard error for β1. 
The adjusted h-likelihood is to obtain a different beta distribution 
scale for a random variable to account for over-dispersion. For the 
adjusted h-likelihood' binomial-beta HGLM,' the investigator 
writes the h-likelihood function after changing and uses the maxLik 
function in the maxLik package for maximum likelihood in the R 
program. Henningsen and Toomet (2011) explained the maxLik 
function. By using a loop inside the function to account for the dis-
tinct scale that the researcher is adjusting, and by using maxLik to 
estimate β.  

Table 1 summarizes all results obtained from the simulation for 
the comparison between the binomial beta estimation method and 
the adjusted binomial beta estimation method based on point  esti-

mation of 𝛽1 ; 𝛽2 , Type I error, and Standard error. The values of 
the statistical power that we got were very close and equal to one, 
and are then released from comparing BB and ABB h-likelihood 
method table. 

In the Figs. 1-4, the values of comparing BB and ABB h-likeli-
hood method are explained. Fig. 1 and Fig. 2 show the Type I Error 
by using Binomial- Beta and adjusted Binomial- Beta h-likelihood. 

While Fig. 3 and Fig. 4 explain the standard Error for 𝛽1 by using 
Binomial- Beta and adjusted Binomial- Beta h-likelihood. 

 

Table 1.  

Comparing BB and ABB h-likelihood method 

Cluster Sample size Binomial-Beta Adjusted Binomial-Beta 

 𝑛𝑖 𝛽1 𝛽2 Type I error Standard Error 𝛽1 𝛽2 Type I error Standard Error 

K=20 

10 0.211 -0.009 0.143 0.04729659 0.217 0.004 0.058 0.05579434 

25 0.202 0.005 0.096 0.02872977 0.213 0.001 0.054 0.03393393 

100 0.201 0.003 0.107 0.01431681 0.213 0.003 0.071 0.0169782 

          

K=50 

10 0.208 0.007 0.092 0.02909505 0.217 0.014 0.057 0.03438107 

25 0.203 0.004 0.07 0.01813028 0.218 0.006 0.063 0.02149756 

100 0.198 0.002 0.091 0.009000959 0.213 0.002 0.085 0.01066414 
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Fig 1. Type I Error using Binomial-Beta 

 

Fig 2. Type I Error using Adjusted Binomial-Beta 

 

Fig 3. Standard Error for 𝛽1 using Binomial- Beta 

 

Fig 4. Standard Error for 𝛽1 using Adjusted Binomial- Beta 

 

4. Results and Discussion 

Table 1 shows that the statistical power is approximately one, 
since unbalanced data is considered an unequal number of data 
units over the K clusters. Generate distributions of 10, 25, and 100 
from Poisson at random. This implies that the amount of observa-
tion ' sample sizes' for each mix is big, roughly 200 sample sizes for 
each combination. The size of the sample may have an impact on 
the power of each technique due to a higher sample size. In all sim-
ulations carried out as mentioned above, Estimation of the param-
eters points, Type I error, and SE of the simulations shown in the 
past Comparing BB and ABB h-likelihood method and graphs. The 
statistical power was calculated from the simulation outcomes 
when the rejected hypothesis H0: β2=0 was correct. Calculate by 
simulation how many times the test is significant for 1000 times. 
Power is the percentage of the amount rejected correctly calcu-
lated. The greater the power, the better the method, is difficult to 
decide because the power is 1, and high for two techniques because 
the sample size is big for each mix. It is sensible elevated power for 
large sample size, there is no difference between two techniques in 
power, and two techniques operate well by power for large sample 
size. Methods operate well according to the power of the large sam-
ple size. Type I error rates were calculated as the percentage of p 
values less than 0.05 in the null hypothesis H0: β1=0 of no treatment 
impact when wrongly rejected. The smallest value of Type I error 
is better in statistics. As indicted in Fig. 1 and Fig. 2 the adjusted 
binomial beta has the lowest type I error value in all cases, which 
means the best technique if we decide on the type I error. The SE 
was calculated as an average of 1000 SEs of the β1 estimates. The 
standard error, which explained in Fig. 3 and Fig. 4 for treatment, 
is to demonstrate whether or not the efficacy is improving. It is a 
simulation calculator. The smaller SE represents a smaller variabil-
ity, or greater accuracy, of the estimation of the parameter (Heo 
and Leon, 2005).  

5. Conclusion 

From the above, two techniques are unbiased for the parame-
ters and work better for large clusters. Good to understand that the 
adjusted binomial beta has produced good outcomes for binary 
outcomes. The adjusted binomial beta provides a better assess-
ment than the binomial beta technique with information that has 
over-dispersion. 
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