
i

Prediction of Software Reliability Using

Unified Modeling Language

By

Abdelghani younis abdelghani

Supervisor

Dr. mohamed khlaif

This dissertation was submitted in Partial Fulfillment of the

Requirements for Master's Degree of computer science.

University of Benghazi

Faculty of Information Technology

July 2018

ii

Copyright © 2018.All rights reserved, no part of this dissertation may be reproduced

in any form, electronic or mechanical, including photocopy , recording scanning , or

any information , without the permission in writhing from the author or Faculty of

Information Technology university of Benghazi.

أٌ يعهىيخ يٍ أٌ جضء يٍ هزِ انشسبنخ عهً هُئخ لا َسًخ ثأخز, يذفىظخ. 2018 دمىق انطجع

َسخخ انكزشوَُخ أو يُكبَُكُخ ثطشَمخ انزصىَش أو انزسجُم أو انًسخ يٍ دوٌ انذصىل عهً إرٌ

 .كزبثٍ يٍ انًؤنف أو كهُخ رمُُخ انًعهىيبد جبيعخ ثُغبصٌ

iii

iv

DEDICATION

All praise to Allah, today we fold the days' tiredness and the errand summing up

between the cover of this humble work.

To the utmost knowledge lighthouse, to our greatest and most honoured prophet

Mohamed - May peace and grace from Allah be upon him.

To the Spring that never stops giving, to my mother who weaves my happiness with

strings from her merciful heart .

To whom he strives to bless comfort and welfare and never stints what he owns to

push me in the success way who taught me to promote life stairs wisely and patiently,

to my dearest father.

To whose love flows in my veins, and my heart always remembers them, to my

brothers.

To my dear wife

With all the love and appreciation to the companion of my heart that came with me

towards the dream step by step we sowed together and harvested together and we will

stay together, Allah willing.

To those who taught us letters of gold and words of jewel of the utmost and sweetest

sentences in the whole knowledge. Who reworded to us their knowledge simply and

from their thoughts made a lighthouse guides us through the knowledge and success

path, To our honoured teachers and professors.

v

Acknowledgement

I would like to thank and appreciate Allah Almighty who guided me to prepare this

research.

I wish to express my deep sense of gratitude to my supervisor Dr. Mohamed khlaif,

for his outstanding guidance and support which helped me in completing my thesis

work.

I would also like to thank Dr. kanz , for her valuable assistance and help to fulfill my

work.

Besides my advisors, it is a matter of great privilege for me to present this project to

my dissertation external examiner, for corporation and being a part of this work.

Words are inadequate in offering my thanks to miss. hiba, for continuous support and

cooperation

Last, but not least, I would like to express my heartfelt thanks to my mother, my

brothers for unconditional support and encouragement to pursue my interests, for

listening to my complaints and frustrations, and for believing in me, my friends and

colleagues for their help and wishes for the successful completion of this project.

vi

LIST OF CONTENTS

Contents Page No.

Copyright © 2018 .. ii

Examination Committee ... iii

Dedication ... iv

Acknowledgements ... v

List of Contents .. vi

List of Tables ... viii

List of Figures .. ix

List of Abbreviations OR SYMBOLS ... x

List of Appendices .. xi

Abstract ... xii

Chapter 1 .. 1

1.1 Background .. 1

1.2 Statement Of Problem ... 2

1.3 Aims Of The Study ... 2

1.4 Objectives Of The Study ... 3

1.5 Methodology ... 3

1.6 Scope And Limitation ... 4

1.7 Significance Of Study ... 4

1.8 Structure Of The Dissertation ... 4

Chapter 2 .. 5

2 Literature Review ... 5

2.1 Historical Background ... 5

2.2 Software Reliability Analysis .. 6

 2.2.1 Salient Features Of Software Failures ... 6

 2.2.2 Failure Data ... 7

 2.2.3 Software Reliability Measurement And Modeling 7

 2.2.4 Classification Of Models .. 8

 2.2.5 Reliability Parameters .. 9

vii

 2.2.6 Operational Profiles .. 10

 2.2.7 Black-Box Reliability Analysis .. 11

 2.2.8 White-Box Reliability Analysis ... 14

Chapter 3 .. 18

3.1 Observation .. 18

3.2 Approach Overview ... 18

3.3 Stages Of The Approach ... 19

 3.3.1 Identify Use Case And Actor ... 19

 3.3.2 Identify Probability Of Activity ... 20

 3.3.3 Identify Component Interaction ... 21

 3.3.4 Calculate Component Reliability ... 21

 3.3.5 Failure Rate Prediction .. 22

 3.3.6 Reliability Prediction Of System ... 23

Chapter 4 .. 25

4.1 The Goal of Experiment... 25

4.2 The Environment Of Experiment.. 25

4.3 Stages Of The Experiment .. 27

4.4 The Results Of The Experiment ... 28

 4.4.1 Black Box Model (Yamada) ... 29

 4.4.2 Additive Model .. 29

 4.4.3 Proposed Model ... 30

Chapter 5 .. 37

5.1 Conclusion .. 37

References .. 39

Appendices ... 43

Abstract in Arabic Language ... 67

viii

LIST OF TABLES

Page no. Table

22 Table 3 : Expected method failure rate

22 Table 3.1 : Expected method failure rate in a scenario

23 Table 3.2 : Transition Probability Metrics

29 Table 4 : Experimental results

29 Table 4.1 : Classes Failure

30 Table 4.2 : probability of actor usage

30 Table 4.3 : Association probability

32 Table 4.4 : Use case usage of system

33 Table 4.5 : Expected Failure Rate Method for Use case 1

33 Table 4.6 : Component Failure Rate for Use case 1

34 Table 4.7 : Scenario Reliability for Use case 1

35 Table 4.8 : System Reliability

ix

LIST OF FIGURES

Page no. Figure

7 Figure 2 : Relationships between failures, errors

9 Figure 2.1 : shows the classification of software reliability models

11 Figure 2.2 : The stages of the operational profile

11 Figure 2.3 : Residual Defects

13 Figure 2.4 : Concave and S-Shaped Models

14 Figure 2.5 : Scheme of the architecture based analysis process

15 Figure 2.6 : classification of architecture-based software reliability

15 Figure 2.7 : path based model

17 Figure 2.8 : state based model

18 Figure 3 : The interaction of component

18 Figure 3.1 : Component different usage

19 Figure 3.2 : System in Use Case Diagram.

21 Figure 3.3 : Identifying Activities

21 Figure 3.4 : Component Interactions

23 Figure 3.5 : Markov Chain for Activity Diagram

24 Figure 3.6 : System Reliability Calculation

25 Figure 4 : System application

26 Figure 4.1 : Parking Garage Automation

27 Figure 4.1 : System sequence diagram for use case1

28 Figure 4.3 : Procedures of Experiment

36 Figure 4.4 : Graphical diagram for system reliability

x

LIST OF Abbreviation

Meaning abbreviation

Institute of Electrical and Electronics Engineers IEEE

Unified Modeling Language UML

Software Reliability Professional Tool SRT-PRO

Object Oriented Programming OOP

Non-Homogeneous Poisson Process NHPP

Time Between Failure TBF

Fault Count FC

Fault Seeding FS

Failure intensity FI

Input Domain Based IDB

Software Reliability Engineering SRE

Operational Profile OP

Software Reliability Growth Models SRGMs

Decreasing Failure Rate DFR

Dicrete -Time Markov Chain DTMC

Commercial Off-The-Shelf COTS

Line Number Of Code LOC

Busy period BP

Cyclomatic Complexity Number CCN

http://www.itl.nist.gov/div898/handbook/apr/section1/apr172.htm

xi

LIST OF APPENDICES

Page no. Appendix

43 Appendix A : Dataset for using operational profile in general

48 Appendix B : Dataset for using operational profile in details

50 Appendix C : Dataset for methods in the project

54 Appendix D : Dataset for methods transition and related

xii

Prediction of Software Reliability Using Unified Modeling

Language

By

Abdelghani younis abdelghani

Supervisor

Dr. mohamed khlaif

Abstract

As software reliability studies attracted great deal of attention, the current study

addresses one of the important challenges of software reliability analysis. White box

reliability analysis approach provides useful information that generates more precise

decisions by identifying the unreliable and untrustworthy critical parts. Moreover,

tracing potential unreliable parts in early phases are difficult due unavailability of

executable code.

 Theoretically, white box reliability prediction approach supports prediction in the

design phase. Therefore, the proposed approach divides the reliability analysis process

into six stages, in which design artifacts such use case diagram and activity, sequence

diagram are utilized. The proposed approach also predicts the system reliability by

estimating the method level failure intensity through the busy periods and complexity

weight values. These weight values calculate the probability of an activity being

transferred to a complete state using a Markov chain. Furthermore, it is possible to

simulate change in the system reliability when the system operational profile is

changed.

 Practically, experimental study was conducted to evaluate the proposed approach

applicability. The results of the study show that technique can predict software

reliability more accurately and simulates profile changes.

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

The increase use of computer-based systems for any application such as medical,

nuclear or any critical aspect in modern society require software should be highly

developed in terms of quality, which, in turn, should be continually managed and

improved. Where, one failure in the system can cause huge loss .Therefore, many

efforts have been devoted to enhancement of software quality and focus on an

important aspect which is reliability

 Institute of Electrical and Electronics Engineers (IEEE) defines reliability as "The

ability of a system or component to perform its required functions under stated

conditions for a specified period of time " (Khan and Malik,2017). The reliability of

software system is measured by the removal of these errors. Most of the software

reliability models are based on time between software failures or the number of

failures in execution time period. Where, examination of structure is not taken into

account, execution time not be the only factor to estimate the behavior of application

failure (Lyu, 1996).

 The changes related to software system quality such the changes in architecture are

costly when the changes take place in later phase of the software development life

cycle. Therefore, early assessment of the reliability is very important, But this is

difficult given the inadequacy execution information.

 When time-based reliability models used the overestimated values were represented

in the increase between failure events. Therefore, latter test cases are less likely to

reveal faults this means that only depending on the time between failure does not

produce acceptable results (Alrmuny,2014).

 There are many analytical models for software reliability estimation e.g, the Goel-

Okumoto, Jelinski-Moranda and Musa-Okumoto (M-O) models etc, are based on the

time domain. Generally, there are restrictions on the current techniques of analysis of

reliability as evaluation process delayed to the system test phase, thus major design

decisions have already been taken (Krajcuskova,2007), (Everett,1999).

2

 The methods of software reliability analysis can be categorized in two ways : white

and black box reliability analysis. The major difference between the two methods is

that the former considers the internal structure of the software estimates the system

reliability and can be used in earlier stages of software development, especially at

design time to identify critical components. The latter method estimates system

reliability from failure history that are collected during operation phase and ignoring

software structure called a software reliability growth model and The reason of

naming it reliability growth is that the models that are used in black box reliability

analysis generally assume that bugs are fixed right after they are identified and there

is no case of inserting additional bugs during the debugging phase (Krka et al,2009).

Measuring reliability or predicting it in earlier allow developers of software

engineering to correct errors and enhancement it.

1.2 Statement of problem

Many research efforts have been made to develop models of software reliability, but

no single model can be suitable for everyone. The proposed models are based on

different assumptions and techniques. Analytical models have been introduced

focusing on the data collected during the testing phase and ignoring the structure of

the software. This keeps the information hidden about the internal interaction

mechanism among the software components. In addition, they use statistical methods

that are difficult to apply if there is insufficient data to test.

 The research will focus on predicting the reliability of the software earlier so there

will be more flexibility for the developers in making design decisions and determining

the parts that need reviewing rather than looking at the system as a whole

(Alrmuny,2014).

1.3 Aims of the study

With the growing complexity of applications reliability analysis. Therefore, the

research in the area of software reliability analysis has gained prominence. So, The

aims of this dissertation as following :

1- The primary objective of this study is to introduce the ability of software

reliability early prediction.

 2- Explore architectural alternatives based on component reliability.

 3- Analyze the sensitivity of the application reliability.

3

4- Relate application reliability to its architecture and individual component

reliabilities.

Finally, this dissertation to introduce a technique that will support early applicability.

The results of this dissertation can help the practitioners of software reliability

prediction in earlier to choose the appropriate methods for quality assurance.

1.4 objectives of the study

Most of the existing models have been criticized for being too detailed or complex.

The approaches developed in this work provide basis to solve problems of software

reliability prediction and The objectives of this study are given below :

1- To identify bottlenecks reliability for each components.

2- To simplify the process of reliability tracing by the parts of software rather than

all.

3- To improve the quality of the software through enhancing reliability of the

component.

4- To make analysis easy to trace the changes of reliability according to the

operational profile.

This prediction uses design artifacts Unified Modeling Language (UML), which is

able to extract in the early phase.

1.5 Methodology

In order to develop highly reliable software in an effective manner, the analysis

should be performed in the early stage of the software development life cycle that

requires the following:

1- Investigate previous researches and the literature review that related with my

work in order to focus on white box reliability prediction aspect.

2- Collect the requirement documents and architectural specifications that related

with the case study.

3- Analysis and Design the case study to extract the artifacts based on UML

(Bell,2003).

4- Construct the proposed approach to extract the parameters and data to analysis.

5- Comparing the result with previous work.

4

1.6 Scope and limitation

The study covers white box reliability analysis in terms of inter-component

interactions in operational profile by using (UML) diagrams to express component

relationships when the software system is developed with object oriented

programming (OOP), The study will not cover the failure behavior models based on

the test time information that collected during the system testing phases.

1.7 Significance of study

White box reliability analysis uses the software’s internal information and early

artifacts such as requirements and architectural specification to predict the reliability

in the early phase. It is will help developer before principal design decisions are made

to improving the quality of software.

1.8 Structure of the dissertation

The study is organized as follows :

Chapter 1: Includes Introduction, which contains the subject background and

determines the context of the dissertation in the statement of the

problem, aims and objectives of the study as well as limitations and

methodology that will be followed;

Chapter 2: Familiarizes the concepts and methods related to the software reliability

and the previous studies related to the subject and Give a glance about

white and black box reliability analysis;

Chapter 3: Represents the core this study and offers the approach that attempt to

overcome the cons of the existing models;

Chapter 4: Includes the focuses on experimental case study; and comparative the

results with other.

Chapter 5: Concludes the study by show the obtained results.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Historical Background

The estimation of software reliability used statistical models such as historical data of

similar projects or organizations or direct software measures (Blischke and

Murthy,2011).

 Software reliability correctness has been highlighted as early as 1975- 1976 by

Parnas (Parnas,1975). Black box method is Prevalent and Several critiques have

appeared in the literature one of this ignore information and reliabilities about of the

components (Hamlet,1992). And the examples of software reliability models are

Jelinski-Moranda Model, Generalized Goel NHPP Model (Tausworthe and

Lyu,1996), and Goel-Okumoto Model, Verrall Model (Yang and Chao,1995). These

models have advantages and disadvantages and specific assumptions.

 Dimov et al. (Dimov et al,2010) use testing methods to generate data for reliability

analysis from small survey, but without much detail of test results to reliability

model parameters. Moreover, it focuses on testing of existing systems. Chen et al

(Chen et al,1992). Due to the saturation effect add structural coverage to traditional

time-based software reliability until excludes test cases that do not increase coverage.

 Murphy et al. (Murphy and Gent,1995). Focuses techniques of systems already

deployed such as questionnaires, customer service calls or bug reports and does not

discuss derive reliability model parameters. Mannhart et al. (Mannhart et al,2007),

compare available methods for modeling expert judgment, and discuss their limits

when applied to software reliability prediction.

 Goševa-Popstojanova and Trivedi’s white box reliability models divide into path-

based, state-based, and additive models. Paths of execution is original source of

analysis of first, calculating the possibility a component transferred to other

component, additive models do not consider software architecture explicitly

(Goseva,2000).

 The problem, in the literature consigning the estimation used at later stages of

software development. Therefore, Software reliability prediction techniques are

important at early stages of development life cycle, over the same data.

6

 We are interested in studying the reliability because we believe Unreliability has a

number of consequences, as poor reliability can have negative implications on Safety,

Cost of repair, maintenance and Reputation.

2.2 Software reliability analysis

In this respect, researcher will review aspects related to research in the field of

software reliability, in terms of reliability analysis, which includes a look at the

causes of program and data failure as well as the relationship, measuring and

modeling the reliability of the software. Additionally, he will classify the models and

reliability parameters, which deemed one of the most important pillars of measure the

reliability, along with the operational profile and its relationship with reliability.

Finally, he will review the reliability analysis in terms of both black and white

reliability analysis boxes.

2.2.1 Salient features of software failures

 Each application at least unique and a little differences in the code may mean

large differences in the behavior of the application.

 Application faults are caused by hidden design flaws. So, application faults are

static and exist from the day the application was written until the day they get

fixed.

 Application reliability depends on the amount and quality of corrections not

on time.

 Commercial software application of 350000 lines of code can contain over

2000 programming errors. In other word, average of six software faults for

every 1000 lines of code written, that is Result of a research study.

 The significance of the fault affects repair time: a more significant fault is

prioritized and corrected promptly, whereas an inconsequential bug may be

left to stay in the system for the whole of its life cycle.

 Software in huge systems is inversely proportional to application size.

 When the application is deployed in the operational phase it is usually

installed in many places and operational conditions differ from place to place.

7

Therefore, failure data, if collected, comes from different sources

(Karanta,2006).

2.2.2 Failure data

When we are talking about failure data, we define these terms and other related

software reliability terminology. To prevent confusion in the rest of our work, we

will adhere to the definitions.

 Failure occurs when the user perceives that a software program ceases to

deliver the service or occurs when the delivered service deviates from the

correct one.

 Fault is uncovered when either a failure of the program occurs, or an internal

error is detected within the program. The cause of the failure or the internal

error is said to be a fault. It is also referred as a “bug”.

 Error service failure means deviation of an external system state from the

correct system state. This deviation is called an error. Figure 2 indicate the

mutual relationship between them (Avizienis et al,2004).

Figure 2 : Relationships between failures and errors (Avizienis et al,2004).

2.2.3 Software Reliability Measurement and Modeling

 Software reliability measurement includes estimation and prediction

 Estimation used statistical inference techniques to failure data that obtained

during system test, This is a measure regards the achieved reliability from the

past until the current point. This technique is suitable for testing the system or

an operational stage. In other word, When failure data are available the

estimation techniques can be used.

 Prediction is an activity determines future software reliability based on

available software metrics and it is used when failure data are not available

and prediction involves different techniques (Shanmugam and Florence,2012).

… . Fault activation Error propagation failure causation fault

………..

8

2.2.4 Classification of Models

Software reliability models are divided based on failure history and data

requirements, respectively (Shanmugam and Florence,2012).

 Failure History: This type can be classified according to the nature of the

failure process studied as indicated below.

- Time between failure models (TBF Models): The process under study is the

time between failures. It is assumed that the time between (i-1) th and (i)th

failure is a random variable. There are some failure rate models such as :

Jelinski and Moranda Model, Schick and Wolverton Model and Goel and

Okumoto Imperfect Debugging Model.

- Fault count models (FC Models): The random variable of interest is the

number of faults (failures) occurring during specified time intervals. And

The key models in this class are Shooman exponential model, Musa

execution time model and Discrete reliability growth model.

- Fault seeding models (FS Models): A Program has unknown number of

indigenous Faults. To this, a known number of faults are seeded.

- Input domain based models (IDB Models): In this approach, a set of test

cases is generated from the input covering the operational profile of the

input. Usually the input domain is partitioned into a set of equivalent

classes, each of which is usually associated with a program path.

 Data requirements: They can be grouped into two main groups as Empirical

Models and Analytic Models.

- Empirical Models: An Empirical model develops relationship or a set of

relationship between measures and a suitable software metrics such as

program complexity using empirical results available from past data.

- Analytic Models: They requires some form of data gathered from software

failures. It is based on fitting of a suitable distribution with required

assumptions for simplicity on a set of data gathered during software testing.

Figure 2.1 show classification of software reliability models.

9

Figure 2.1 : shows the classification of software reliability models (Shanmugam and

Florence,2012).

2.2.5 Reliability parameters

The input parameters of architecture-based reliability analysis are divided into

three categories: failure parameters, behavioral parameters and execution

environment parameters.

 Failure parameters: they describe the failure behavioral of an element

(system, components, scenarios, methods etc). There are three types of failure

models (Gokhale and Trivedi,2006), (Gokhale,2007).

- Probability of failure (reliability) R: It is the most frequently used parameter

and it is the probability that software will cause a failure of a system. So,

essentially treats the components (and other elements) as black boxes.

- Constant failure rate λ : It is more accurate than probability of failure and

defined as the number of failure occurrences per unit of time. Therefore, it

can consider time spent in the component during the execution.

- Time-dependent failure intensity λ(t): It is account for the dependent

executions of components in case of loops and defined as a rate of change of

expected number failures with respect to time.

 Behavioral parameters: The behavioral parameters model, the operational

profile of the system and it specification is a challenging process, especially at

design time. The information for the specification can be gathered by

profiling, by collecting the software usage statistics or partially by studying

behavioral unified modeling language diagrams (Brosch et al,2012).

Software reliability model

based on data requirments

Empirical
models

analytical
models

based on failure history

TBF FS FC IDB

10

 Execution environment parameters: Some reliability prediction approaches

consider the execution environment, in which the system is deployed. And the

execution environment parameters are often supplied by hardware vendors and

infrastructure providers (Distefano and Puliafito,2009).

2.2.6 Operational profiles

Software can fail due to the inputs it receives from the external environment.

So, The reliability of a software-based product depends on how the computer and

other external elements will use it. The reliability estimate depends on testing the

product as if it were in the field. The operational profile (OP), a quantitative

characterization of how the software will be used, is therefore essential in any

Software Reliability Engineering (SRE) application. Developing an operational

profile for a system involves one or more of the following five steps (Musa,1993)

:

 Customer profile: Customer profile consists of an array of independent

customer types and is the individual, group or organization, each of these

types of customers may be expected to utilize the spreadsheet in a

substantially different way. The customer profile is the list of customer types

and the associated probabilities. These probabilities are simply the proportions

of time that each type of customer would be using the system.

 User profile: Users of systems may be different from the customers of

application product. A user is a person, group, or institution that operates, as

opposed to acquire, the system. The user profile is the set of user types and

their associated probabilities of using the system.

 System-mode profile: System mode is a way that a system can operate. Most

systems have more than one mode of operation. For example, system testing

may take place in batch mode or user-interactive mode.

 Functional profile: After a good system mode profile has been developed, the

focus should turn to evaluation of each system mode for the functions

performed during that mode, and then assigning probabilities to each of the

functions. Functions are essentially tasks that an external entity such as a user

can perform with the system.

11

 Operational profile itself: Determine the elements involved in determining

operational profiles from functions. A function may comprise several

operations. In turn, operations are made up of many run types. Grouping run

types into operations partitions the input space into domains. A domain can be

partitioned into sub domains, or run categories. The process of operational

profile stages can be shown in Figure 2.2

Figure 2.2 : The stages of the operational profile (Musa,1993).

2.2.7 Black-box reliability analysis

They focus mostly on quantification of failures and down-times and employed in later

stages of software development or they are used on systems that are already deployed.

This type of models analyze the reliability of the whole application while ignoring its

internal structure. The main representative of this type is Software Reliability Growth

Models (SRGMs) (Aggarwal and Gupta,2014). And Figure 2.3 shown Defect

detection rates with time

Figure 2.3 : Residual Defects (Aggarwal and Gupta,2014) .

 Software reliability growth model: A software reliability growth model is one

of the fundamental techniques used to assess software reliability

quantitatively. Software reliability growth models can be used as an indication

12

of the number of failures that may be encountered after the software has

shipped and thus as an indication of whether the software is ready to ship.

Thus, SRGM is used to determine when to stop testing to attain a given

reliability level, and These models attempt to statistically correlate defect

detection data with known functions such as an exponential function.

Therefore, have a parameter that relates to the total number of defects

contained in a set of code. If we know this parameter and the current number

of defects discovered, we know how many defects remain in the code. Figure

2.3 , shows the number of residual defects that helps us decide whether the

code is ready to ship and how much more testing is required if we decide the

code is not ready to ship(Kashyap and Rana,2015), (Mohd and Nazir,2012).

 Research efforts in software reliability engineering have been conducted over the

past three decades. As result, There are many software reliability growth models, and

many ways to represent the data that is used to create those models, and some

researchers believe that each organization needs to try several approaches to

determine what works best for them.

 Software reliability growth models have been grouped into two classes of models

concave and S-shaped. Both the s-shape and concave curve depict the asymptotic

behavior i.e. a finite asymptotic value is attained by both the curves because the fault

rate plunges down steadily as the defects are detected and repaired during the tenure

of testing.

- Concave shaped models: The Concave shaped models are Decreasing Failure

Rate (DFR) models. In these models the failure rate decreases at a constant

pace as the number of faults are detected and removed. The idea behind DFR

is that as the given predetermined number of errors are detected and

removed, the software reliability improves. In these models when failure data

is supplied as input, the failure rate reduces steadily and becomes constant

after some time, during the testing tenure. The constant decrease in the

failure rate is attributed to regular detection and removal of the faults at a

constant pace during the testing. Goel-Okumoto, Musa and Jelinksi-

Moranda models are amongst the earliest concave shape models.

- S- shaped models: The models depicting S-shape patterns also demonstrate

the asymptotic behavior similar to the concave model. The failure data which

13

is used to plot the curve is analyzed in two phases of software testing. In the

early phase, the testing is comparatively less effective than the later phase

because the testing team performs testing using the same test cases as used

by the development team, therefore the failure rate decreases. This is the

reason why the curve attains the inward bulge. Later on, in the application

testing phase, the new defects are uncovered. Yamada Weibull Effect, Pham

and Nordmann models are amongst the earliest S- shape models. Figure 2.4

shows the difference between the two models (Mohd and Nazir,2012).

Figure 2.4 : Concave and S-Shaped Models (Mohd and Nazir,2012).

 Test code coverage: Is a measure that describes the degree to which certain

elements of the source code have been tested. In other word, it has been used

as an indicator of testing effectiveness. It proposed as a possible solution for

some drawbacks of SRGMs. The larger part of software’s structure is

exercised by tests, the more faults will be detected and reliability will grow

(An and Zhu,2010).

The technique can be applied as source code instrumentation (compiled and the test

cases are executed) and data collection can be done automatically by specialized code

coverage tools. The code coverage is measured by four code coverage criteria are

block cover, decision coverage, C-use and P-use. And, coverage per test case,

according to equation 2 (Gokhale and Trivedi,1999) :

X coverage =
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐱 𝐜𝐨𝐯𝐞𝐫𝐞𝐝 𝐛𝐲 𝐭𝐞𝐬𝐭 𝐜𝐚𝐬𝐞

𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐱
 ………………(2)

Where, x is the given coverage criterion and The basic coverage criteria are Statement

(or block) coverage, Branch (or decision) coverage, C-use coverage and P-use

coverage.

14

 (SRGMs) have been used to estimate reliability by using the time dependent failure

data. When, these models were used notable overestimation of reliability was

observed. Thus, the fact that latter test cases are less likely to reveal faults that reside

in uncovered portions of the code, a saturation state occurs (Alrmuny,2014).

2.2.8 White-box reliability analysis

In order to predict the system reliability in the early phase, the available sources, such

as requirements documentation and design diagrams are processed to extract a failure

model for the system. To determine the characteristics of erroneous behaviors. The

system failure model is then combined with the architectural specification and

reliability parameters estimation to finally produce system reliability estimation (Krka

et al,2009). Reliability prediction process can be shown in Figure 2.5.

Figure 2.5 : Scheme of the architecture based analysis process (Krka et al,2009).

 Based on the way the architectural model is mapped to a formal model, white box

reliability estimation models can be classified into three major types : path based,

state based and additive based models (Goseva,2000). The classification of

architecture-based software reliability models by Figure 2.6 (Gokhale,2007).

Requirements
documentatio

n

architectural
specification

Reliability
parameters

Failure model
Derivation

 Reliability
Analysis

technique

Failure
model

Reliability
estimation

1

2

3

3

4

15

Figure 2.6 : classification of architecture-based software reliability.

 Path-based models: A path is an independent sequence of components or

statements to carry out a system function (Yacoub et al,1999). The

architecture of the application is represented by enumeration of the possible

execution paths through the application, Path based models easy to get

information if the software is already implemented. In spite of that, it is not

easy to analyze all execution paths before implementation (Cortellessa and

Cukic,2002), (Rodrigues et al,2005).

The count of paths can be done, by simulation or by analysis of scenarios based on

UML sequence diagrams. Where the nodes represent the components and edges

represent possible transitions between the components. Figure 2.7 shows a system

function with a path (path N) that executes the {1,3,4,7} components in order.

Figure 2.7 : path based model .

shooman model is one of the representative path based models (Shooman,1976). It is

assumed that the probability of failure for a path (f) and the frequency of the

7

6

4

2

5

1

3

16

execution path (q) are known. The accumulative failure number in N system

executions is calculated, according equation(2.1) as follows:

𝑛𝑓 = 𝑁𝑓1𝑞1 + 𝑁𝑓2𝑞2 + ⋯ + 𝑁𝑓𝑘𝑞𝑘 = 𝑁 𝑓𝑖𝑞𝑖 …… (2.1)
𝑘

𝑖=1

Number of paths N close infinity. Thus, the probability of failure of an execution run

is given according equation(2.2)

 𝑄𝑠 = lim𝑛→∞
𝑛𝑓

𝑁
= 𝑓𝑖𝑞𝑖𝑘

𝑖=1 ………… (2.2)

the reliability of system Rs according equation(2.3) as follows:

 Rs = 1- Qs …….. (2.3)

The biggest problem of path-based approaches is not easy for analyzers to predict all

execution paths before doing implementation. Another problem occurs when there is a

loop on the execution path may lead to infinite paths.

 State based models: The estimate system reliability in state based models by

showing individual components as individual states, and calculating the

possibility of one component being transferred to other component. The

transition probability between components through operational profile

(Gokhale and Trivedi,2002),(Reussner et al,2003).

State based models include the failure state (F) and the complete state (c), edge that

transfers to a complete state (c), and edges that are transferred as failures from all the

components, are added. The transfer possibility of edges that lead to the failed state is

assigned as 1-Ri.

 The underlying state space model can have several formal representations. The most

frequently used is a Dicrete-Time Markov Chain (DTMC) to find the possibility of

the system(Goševa and Trivedi,2001).

 The problem of State based models, when the number of state increase because of an

increased number of components, the number of interactions happening between

components increase. Therefore, causing a state explosion, It becomes difficult to

analyze a large software system, and The example of state-based model shows in

Figure 2.8.

17

Figure 2.8 : state based model .

 Additive based models: This type consider the software architecture only

implicitly, do not consider software architecture explicitly (Goseva,2000),

(Everett,1999). Divide the system into subsystems, and each sub-system is

measured separately, where it is assumed that all the sub systems are tested

thoroughly, by adding all the sub system failure rates λs(t) as follows:

𝜆s(t)= 𝜆1(t) + 𝜆2(t) + …….+ 𝜆n(t)……………. (2.4)

The problem of this model assumes that all the sub system are operated without

architecture information exchanges.

 The most of the existing models are generally useful, but they have limits. Do not

consider analyzing of reliability in the early phase, because a lack of execution

information and difficult to predict all execution paths without operating the software.

Difficulty in get quantitative results. Therefore, make the software quality better will

be limited.

1

2

3

C

F

R, P12

R, P12

R3

R, P13

1-R1

1- R2

1-R3

18

CHAPTER 3

3.1 Observation

The state based model is suitable when analyzing systems, it expresses their

component calling relationship with a call graph, but when the components expand,

this method does not apply the Object Oriented Programming (OOP) features.

 That component interaction works as a sequential process in the existing model. In

other hand, normally several components interact with each other to carry out a

certain task in the OOP. Figure 3 indicate the work in a bidirectional manner among

components.

Figure 3 : The interaction of component.

 The component transition always has the same context in the existing models. But

the process of actual components varies depending on the kind of public interface the

component provides. Thus, method level, must be taken into account. Figure 3.1

shows different usage of components.

Figure 3.1 : Component different usage.

3.2 Approach Overview

Considering the factors mentioned earlier, The proposed approach consist of six

stages where, first three stages focus on analysis the system to assigning the usage

R1 p1,2

3

1

2

3

1

2

1

2

R1 p1,2

1

2

R m1 P m1

1

M1

M2

M3

R(m1)

R(m2)

R(m3)

19

probability for each level by using UML diagram such as use case diagram, the

activity diagram and sequence diagram. So, many of artifacts in the early phases of

the life cycle provided by UML diagrams, and the rest of stages focus on calculating

the component failure rates. Finally, we calculated the reliability and probability to

estimate reliability of each level.

3.3 Stages of the approach

3.3.1 Identify use case and actor

In stage1. We utilize use case diagram to show the operational profile. The

operational profile has been defined in chapter2. Use case diagram is a graphic

depiction of the interactions among the elements of a system. It is possible to

distinguish actor and use case. The former refers to the systems user and the later

refers to the system usage, then indicate their association (Bell,2003). The indication

[Pactor] is possibility that each actor will utilize the system, [Passociation] is the

possibility that each actor will utilize the use case, Through these, we infer the

likelihood of execution of one use case scenario which is [Puc]. Figure 3.2 shows the

operational profile in use case diagram. Equations 3, 3.1, 3.2 show the rules of

calculation

Figure 3.2 : System in Use Case Diagram.

 Where :

 𝑃𝑢𝑐 𝑥 = 1𝑥=1 ………………(3)

 𝑃𝑎𝑐𝑡𝑜𝑟 𝑥 = 1𝑥=1 ……………(3.1)

 𝑃𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑥, 𝑦 = 1 𝑥=1 ……(3.2)

20

In addition, in UML modeling there are more types of relationships such as inclusive

relationships and extended relationships. The relationships can be added to the model

when use case is in common in to two or more use case. According to equation 3.3.

𝐏𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑥, 𝑦 = 1 ………………(3.3).

 Moreover, the developer can use the relationship to identify that one use case

extends the behavior of another use case. Extension is a directed relationship that

specifies how and when the behavior defined in usually supplementary (optional).

Extending use case can be inserted into the behavior defined in the extended use case.

Extract relationships can be added to a model.

The probabilities of each type of use case are according to the equations 3.4, 3.5 and

3.6 are as follows:

 𝐏 uc base y = {𝐏 actor x ∗ 𝐏 association x, y }𝐱=𝟏 …. 3.4

𝐏 uc include z = {𝐏 actor x ∗ 𝐏 association x, y ∗ 𝐏 include (y, z)}𝐱,𝐲=𝟏 .(3.5)

𝐏 uc extend z = {𝐏 actor x ∗ 𝐏 association x, y ∗ 𝐏 extends (y, z)}𝐱,𝐲=𝟏 .(3.6)

 The calculation of use case probability take all these relations into account

according to the equation 3.7.

 𝐏 use case x = 𝐏 uc base x + 𝐏 uc include x + P uc(extend x) ……. 3.7

 The proportion of derived probability in the system, Pnorm(x), is the probability that

will be used by each use case, the value can be obtained by means of equation 3.8.

𝐩 norm x =
𝐩 usecase (x)

 𝐩 usecase (all)
 ……… 3.8

3.3.2 Identify probability of activity

In stage2. We analysis each use case to show its activity, with assumption that one use

case scenario has one key activity list. Activity list is the procedures of processing

applied use case scenario, This activity is process unit in the test. The probability of

the activity being spread to the next activity. The model derives the probability of

activity transition possibility that includes multiple components. Figure 3.3 indicate

identify activities.

21

Figure 3.3 : Identifying Activities

3.3.3 Identify component Interaction

Stage3. In this stage we can determine interaction within and between components by

using a sequence diagram, each component that can be estimated was utilized by

counting the time methods of component which named (busy period). Figure 3.4

shows the process of interaction between the components and the busy period.

Figure 3.4 : Component Interactions .

3.3.4 Calculation of Component Reliability.

Stage4. Derive the sequence diagram reliability with utilized component method level

failure rate, and call count of each method (BP). The component failure rate May be

known through, either historical data, additive model or commercial off-the-shelf

software (COTS), We need to assign the method level failure rate with the component

failure rate, as the proposed model requires that. In the additive model component

failure rate λt (t) at time t can be assigned as in equation 3.9.

22

𝛌 t = 𝛌1 t + 𝛌2 t + …… . . +𝛌n(t) (3.9)

The method failure rate (θ) can be assigned by multiplying the component failure

rates by complexity weight value. Consequently, statement line number (LOC) per

method, or cyclomatic complexity can be used for the complexity weighted value.

Table 3 shows the method failure rate derivation.

Table 3 : Expected method failure rate .

Component

Component

Failure Rates(f)

Method

Name

Complexity

Weight

Value(w)

Method Failure

Rate(θ)

Class A

……..

Method 1 ……. W* f

Method 2 ……. W* f

We can derive the method failure rate for the scenario, according to equation 3.10 as

follows:

MfI = 1- (𝟏 − 𝛉𝐈)𝒃𝒑 ……….. 3.10

Finally, method failure rate for a scenario and component level reliability for all

components are derived from the equations 3.11, 3.12, respectively. Table 3.1 shows

the calculation process (Cortellessa et al,2002).

Table 3.1 : Expected method failure rate in a scenario.

Method

Name

Method

Failure Rates(

θ)

Busy Period

Count

Method Failure Rate in the scenario

MfI = 1- (𝟏 − 𝛉𝐈)𝐛𝐩

Method 1 ….. ….. ……

Component Failure rate in the Scenario 𝒄𝒇𝒊 = 𝒎𝒇𝒊 ……….. (3.11)

Component Level Reliability 𝑹𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝟏 − 𝒄𝒇𝒊 ……….. (3.12)

3.3.5 Failure rate prediction.

The probability for each activity transfer to the next activity happening after the

scenario reliability (stage 4) (Singh et al,2001). To get the probability of the activities

in the key activity diagram being executed and finished correctly, we add complete

23

and failure state. And derive the probability 1-Ri, which is the probability of transfer

happening from each activity (i) to failure. Figure 3.5 shows DTMC activity diagram.

Figure 3.5 : Markov Chain for Activity Diagram

The probabilities of being transferred to the failure state and the component state can

be calculated with DTMC, as shown in table 3.2.

In addition, Rusecase is the probability of all activities in the key diagram being

successfully operated and transferred to complete becomes the probability of one use

case being successfully operated.

Table 3.2 : Transition Probability Metrics (Kashyap and Rana,2015) .

 C F N1 N2 …………… Nn

C 1 0

0 1

0 1-R1

0 1-R2

… ….

0 1-Rn-1

Rn 1-Rn

0 0 ……………

……………

……………

……………

……………

Rn-1,P(n-1)j

0

0

F 0 0 0

N1 0 R1,P12 R1,P1n

N2 0 0 R2,P2n

…. …… ….. ……..

Nn-1 0 0 Rn-I,P(n-1)n

Nn 0 0 0

3.3.6 Reliability prediction of System

Finally, the reliability of the system can be achieved through multiplying Pnorm by

Rusecase. Figure 3.6 show the process and equation 3.13 as follows:

24

Figure 3.6 . System Reliability Calculation

 𝑹𝑠𝑦𝑠𝑡𝑒𝑚 = {𝑷𝑛𝑜𝑟𝑚 𝑥 ∗ 𝑹𝑢𝑠𝑒𝑐𝑎𝑠𝑒 𝑥 } ……….. (3.13)

Where, Pnorm is a normalization of each use case’s execution probability and

Rusecase is the use case successfully operating.

25

CHAPTER 4

4.1 The goal of experiment

Here, we carried out a case study of software system to find out whether the suggested

approach was valid, and the technique is applicable in the early stage or not. Then the

predicted result will be compared to the reliability derived by the black box model in

the actual testing phase.

4.2 The environment of experiment

Parking garage automation (reserve your spot) (Edwards et al). Figure 4 shows the

software in general. The system will allow customer to place online reservations that

include date, time and duration of stay. The garage is also being remodeled so that

the parking decks above ground level will be accessible only by an elevator that will

lift vehicles to different decks. The garage relies on camera based license plate

recognition software to track vehicles as they enter and exit the garage. Additionally,

the garage also employs sensors on the parking spots to recognize which spots have

been occupied and which is free.

 If the software cannot recall the necessary information or if the license plate

recognition software is not able to read the license plate, the elevator will not function

and the software would prompt the customer to manually input their membership

number at the terminal next to the vehicle elevator for it to proceed.

 If a registered customer forgets to make a reservation and decides to use the garage,

he may be allowed to take a walk-in parking spot without a registration if there are

any available spots. These types of customers are known as walk-in customers. If the

software recognizes the vehicle registration number but cannot find an existing

reservation to the customer who owns the vehicle the customer will have to specify

the expected duration and time of departure using the terminal at the vehicle elevator.

Figure 4 : system application.

26

 In order to restrict people from making reservations they cannot meet, the system has

broken down reservations into two groups, confirmed and guaranteed. A confirmed

reservation is when a registered used places a reservation, but does not have a credit

card on file. A guaranteed reservation is when a registered customer has done the

same, but has a credit card on file and uses it when placing their reservation.

 If a customer with a confirmed reservation fails to show up after reserving a spot,

the spot will be held reserved for a 30-minute grace period, in during which the

customer can park on his reserved spot and be billed for the full reserved period. If the

customer does not show up to claim his spot during the grace period, the parking spot

will be marked unreserved. With a guaranteed reservation, the customer can arrive to

their spot anytime during the requested interval and will be charged to their card for

that interval. Figure 4.1 show parking garage automation use case diagram. And

Figure 4.2 show system sequence diagram for use case 1.

Figure 4.1: Parking Garage Automation Use Case Diagram

27

Figure 4.2: system sequence diagram for use case 1.

 The main objective is designing a sophisticated system that maximizes occupancy

and profit while allowing the customer to easily get access to his vehicle. This means

the equipment design and even components of the product should follow a fully

described documentation process and the device should meet strict standards of

documentation, developmental testing, production testing, and maintenance. If there is

wrong or system halt due to software calculation error or bugs, the system can

automatically shutdown. As a result, the system guarantees high reliability.

4.3 Stages of the experiment

The experiment was carried out as shown in Figure 4.3. The first step is to

extract the design artifacts, such as the use case, sequence and activity diagram

based on requirements, and architectural specification.

 The test target have been formed with 100 revision on the source repository and

chose the list of modification changes that happened due to bug/fix to count each

revisions and each classes number of faults. Based on this failure information, it has

been derived the failure and the system failure data. The tool have been used

(SRTpro) software reliability tool professional to extract the results by the tester of

project (Park and Baik,2015).

28

The approach mentioned in chapter 3 will be applied on project-related datasets

Parking garage automation as extracting the results. There will be also a copy of data

sets in the appendices.

 The data of the black box model reliability has been compared it with the data of the

proposed model results, and the additive model results.

 Finally, Unlike the black box model and the additive model, the proposed model

can be distinguished through a real applied result that reliability simulation due to

operational profile change. Figure 4.3 shows the Procedures of Experiment.

Figure 4.3: Procedures of Experiment.

4.4 The results of the experiment

The proposed model can be derived the system reliability by classes failure data

derived from the design model and repository which that producible from early phase

artifacts. The comparison of these data with the data derived from the additive model

and the black box model to confirm accurately how can the system reliability can be

predicted, as seen in Table 4.

Reliability Simulation
for Operational

profile

Reliability by

Proposed Model

Reliability by

Additive Model

Proposed Model

Additive
Model

Classes

reliability

Probability Classes

reliability

Project artifact

Requirements
documentatio

n

Architecture
specification

Implemented
code

Models

Use case
diagram

Activity
diagram

Sequence
diagram

Classes Data

Classes failure data

Repositry

 Fault
history

29

Table 4 : Experimental results

Approach Yamada Additive Model Proposed Model

Model Type Black box model White box model White box model

System

Reliability
0.9832 0.9571 0.9658

Difference - 2.61% 1.74%

4.4.1 Black box model (Yamada)

The analysis of the failure data derived from the software repository, can see

cumulative failure count an S-shaped curve (black box). The system reliability result

derived through the Yamada S-shaped model is 0.9832

4.4.2 Additive model

The additive model derives the failure intensity simply with the sub-system (classes)

failure intensity. The sum of these component failure rates is 0.429 and the entire

system reliability according to the following:

assuming, the tests was run ten times (0.429/10 = 0.0429), then system reliability is

(1 – 0.0429 = 0.9571).

Table 4.1 : Classes Failure

Class Name FI

Camera Operator 0.0861

Elevator Operator 0.0587

Sensor Operator 0.0116

Status Display 0.0168

Controller 0.0662

Authorization 0.0120

Account 0.0396

Reservation 0.003

Customers 0.0054

Garage 0.0200

Car 0.0041

PGAfirst 0.1055

TOTAL 0.429

30

4.4.3 Proposed model

The reliability of the project with the proposed approach as explained in chapter 3, by

analyzing the operational profile of the system by the session. It is clear that the ratio

of the use of each actor to the system, as well as the proportion of the use of each

actor to use case, which is known as association probability. By analyzing the session

for 100 users, the possibilities in the tables below were determined. Tables 4.2 and 4.3

show actors probability and association probability, to derive system use case.

Table 4.2 : Probability of actor usage

Actor Times utilize system P actor

Registered Customer 53 0.53

Unregistered Customer 20 0.2

System Admin 7 0.07

Elevator Keypad 4 0.04

Elevator Display 4 0.04

Elevator Camera 4 0.04

Spot Sensors 5 0.05

Exit Camera 1 0.01

Timer 2 0.02

Table 4.3 : Association probability

Actor Times Use Case P association

(x,y)

P uc (x)

Registered Customer 20 U1 0.377 0.53*0.377*100

= 19.981

Registered Customer 15 U2 0.283 0.53*0.283*100

= 14.999

Registered Customer 10 U3 0.189 0.53*0.189*100

= 10.017

Registered Customer 5 U4 0.094 0.53*0.094*100

= 4.982

Registered Customer 1 U8 0.019 0.53*0.019*100

= 1.007

31

Registered Customer 2 U9 0.038 0.53*0.038*100

= 2.014

Unregistered Customer 3 U2 0.15 0.20*0.15*100

= 3

Unregistered Customer 17 U5 0.85 0.20*0.85*100

= 17

System Admin 7 U6 1 0.07*1*100=7

Elevator Keypad 4 U2 1 0.04*1*100=4

Elevator Display 4 U2 1 0.04*1*100=4

Elevator Camera 4 U2 1 0.04*1*100=4

Spot Sensors 5 U2 1 0.05*1*100=5

Exit Camera 1 U2 1 0.01*1*100=1

Timer 2 U13 1 0.02*1*100=2

Registered Customer - U2 - > U10 0.283 0.53*0.283*1*100

= 14.999

Registered Customer - U3 - > U10 0.189 0.53*0.189*1*100

= 10.017

Registered Customer - U4 - > U10 0.094 0.53*0.094*1*100

= 4.982

Registered Customer - U4 - > U7 0.094 0.53*0.094*1*100

=4.982

Registered Customer - U1 - > U10 0.377 0.53*0.377*1*100

= 19.981

Registered Customer - U8 - > U10 0.019 0.53*0.019*1*100

= 1.007

Unregistered Customer - U2 - > U10 0.15 0.20*0.15*1*100

= 3

System Admin - U6 - > U10 1 0.07*1*1*100=7

System Admin - U6 - > U11 0.5 0.07*1*0.6*100

= 4.2

System Admin - U6 - > U12 0.5 0.07*1*0.4*100

= 2.8

Total 165.968

32

Table 4.4 shows each use case's working probability

Table 4.4 : Use case usage of system

Use Case System Use Case P norm (x)

U1 Reserve (19.981/165.968)*100

= 13.039

U2 Park (35.999/165.968)*100

= 21.690

U3 Manage Account (10.017/165.968)*100

= 6.035

U4 View Reservation (4.982/165.968)*100

= 3.001

U5 Register (17/165.968)*100

= 10.242

U6 Manage Garage (7/165.968)*100

= 4.218

U7 Edit Reservation (4.982/165.968)*100

= 3.001

U8 Register Vehicle (1.007/165.968)*100

= 0.607

U9 Edit Vehicle (2.014/165.968)*100

= 1.213

U10 Authenticate User (59.979/165.968)*100

= 36.139

U11 Set Prices (4.2/165.968)*100

= 2.530

U12 Inspect Usage History (2.8/165.968)*100

= 1.867

U13 Monthly Billing (2/165.968)*100

= 1.205

Calculating each use case reliability using the DTMC obtained in step 5 (see Table

4.7). Where, the value of classes failure rate was calculated of similar classes in

33

other similar systems and the cyclomatic complexity number (CCN) is used to obtain

the value complexity of method. Tables 4.5 and 4.6 indicate the calculation method

respectively, and for further details see chapter 3 stage 4.

Table 4.5 : Expected Failure Rate Methods for Use case 1

Class

Class

Failure

Rate (F)

Method

Complexity

Weight

Value (W)

Expected

Failure Of

Each Method

(θ)

Reservation

0.003

Make

reservation

4 0.012

Available_

reservations

3 0.009

Specific_

date and time

2 0.006

Set reservation 2 0.006

Table 4.6 : Class Failure Rate for Use case 1

Method

Expected

Failure Of

Each Method

(θ)

Busy

period

Method

Failure Rate

In The

Scenario

Results

Make

reservation

0.012 2 1-(1-0.012)˄2 0.0238

Available_

reservations

0.009 2 1-(1-0.009)˄2 0.0179

Specific_

date and time

0.006 2 1-(1-0.006)˄2 0.0119

Set reservation 0.006 1 1-(1-0.006)˄1 0.006

The probability of transition Pi,j between the modules or methods, Ni and Nj be :

34

according to the probability of transition between methods during the examination of

100 cases, thus :

Transition from (Make reservation) to (Available_reservations) was (100) times, so

P1,2 = 1 and transition from (Available_reservations) to (Specific_ date and time)

was (100) times, so P2,3 = 1 , P3,4 = 1.00

And calculate the reliability of each transition are :

R P1,2= 1*0.9762 , R P2,3= 1*0.9821 , R P3,4= 1.00*0.9881

Table 4.7 is the same as the transition matrix, and to avoid confusion we will refer to

it matrix W. Thus, the matrix W represents scenario reliability for use case 1 and

also transition matrix.

Table 4.7 : Scenario Reliability for Use case 1

U1 . C F 1 2 3 4

C 1 0 0 0 0 0

F 0 1 0 0 0 0

1. Make reservation 0 0.0238 0 0.9762 0 0

2. Available_

reservations

0 0.0179 0 0 0.9821 0

3. Specific_

date and time

0 0.0119 0 0 0 0.9881

4. Set reservation 0.994 0.006 0 0 0 0

If we derived the probability of control being transferred to complete by using

DTMC, it can be shown that (Cheung,1980).

W =

1 0 0 0 0 0
0 1 0 0 0 0
0 0.0238 0 0.9762 0 0
0 0.0179 0 0 0.9821 0
0 0.0119 0 0 0 0.9881

0.994 0.0060 0 0 0 0

Then extract the matrix Q which represents the following :

35

Q =

0 0.9762 0 0
0 0 0.9821 0
0 0 0 0.9881
0 0 0 0

To solve matrix Q we apply the equation 4.1

R = S(1,n) Rn (4.1) (Cheung,1980).

Where , S= [(I − Q)−1] , and I is Identity Matrix

R = S(1,4) R4

(1)*(0.994) = 0.994.

The result 0.994 that reached by this method, we derived the entire use case reliability

is displayed in Table 4.7.

The system reliability derived with the proposed model is 96.58, which is within

of the reliability result derived from black box model. Table 4.8 shows the results

Table 4.8 : System Reliability

 P R P*R

Reserve 13.039 0.994 12.960

Park 21.690 0.9252 20.067

Manage Account 6.035 0.9011 5.438

View Reservation 3.001 0.0059 2.793

Register 10.242 0.9000 9.217

Manage Garage 4.218 0.8113 3.422

Edit Reservation 3.001 0.8823 2.647

Register Vehicle 0.607 0.9655 0.586

Edit Vehicle 1.213 0.8622 1.045

Authenticate User 36.139 0.9300 33.609

Set Prices 2.530 0.8012 2.027

Inspect Usage History 1.867 0.8500 1.586

Monthly Billing 1.205 0.9210 1.109

 SYSTEM RELIABILITY 96.58

36

Figure 4.4 shows the graphical diagram for system reliability.

Figure 4.4: Graphical diagram for system reliability.

In general, The proposed model calculate the entire system reliability by deriving the

reliability and probability of each system usage level, system activity level, and

component interaction level. When, developing the early phase of the system, is hard

to accurately predict the operational profile. So, the approach can run a simulation to

derive the change of the system reliability due to these types of profile changes.

0

5

10

15

20

25

30

35

40

Syatem Reliability

37

CHAPTER 5

5.1 Conclusions and future research

The first chapter presents a summary of the study and demonstrates its aspects,

objectives, limitations, and the adopted methodology. The second chapter includes a

review of relevant prior studies, definitions, software reliability, and as well as adding

the interrelation among reliability models and displays the concepts related to white

and black boxes. Furthermore, it demonstrates the concept of operational profile and

its impact on measuring the reliability, which was ignored in many previous studies.

This concept is a fundamental prop in this study. The third chapter represents

approach supports early prediction of software reliability, as it is the main task. This

approach consists of six main steps by which prediction of software reliability. The

fourth chapter lies in the case study to evaluate the approach applicability. Parking

garage automation, Through the experiment, the prediction of the approach was

evaluated by comparison with existing models the Yamada S-shaped black box model

and the additive model. The experimental results show that the proposed method can

simulate reliability changes that occur due to operational profile change.

 We have encountered some difficulties in terms of shortage of information about the

system and its components in an early stage of development. This problem led to

difficulty in discovery the source of available information at designing time, which

means that it requires understanding the system behavior first. It also caused trouble

in applying appropriate mathematical equations, as the study is concerning software

engineering. Thus, it necessitates deeper research for the basics of statistics and

mathematics in order to reach precise results.

 This work paves the way for more research. The obtained evaluation results indicate

that this method will provide prediction of software reliability in the context of early

stages of its development. It will also concentrate the future research in finding out

hybrid methodology of integrating the information from different sources. Introducing

hierarchical method will have another scope in research about software reliability.

Accuracy of predictions also needs improvement through sensitivity analysis.

 Generally, Software-related environment changes rapidly in unpredictable manner.

Therefore, reliability of software has to be predicted through the operational profile

effect. In design of the early stage of the system, the prediction of operational profile

38

accuracy is difficult. This, in turn, leads to changes in the operational appearance of

the test and the operational stage. The proposed method can run an simulate to extract

the system reliability change due to these types of changes in operational profile.

39

References :

1- Khan, H.H. and Malik, M.N., 2017. Software Standards and Software

Failures: A Review With the Perspective of Varying Situational

Contexts. IEEE Access, 5, pp.17501-17513.

2- Lyu, M.R., 1996. Handbook of software reliability engineering.

3- Alrmuny, D., 2014, April. A Comparative Study of Test Coverage-Based

Software Reliability Growth Models. In Information Technology: New

Generations (ITNG), 2014 11th International Conference on (pp. 255-259).

IEEE.

4- Krajcuskova, Z., 2007, April. Software reliability models.

In Radioelektronika, 2007. 17th International Conference (pp. 1-4). IEEE.

5- Everett, W.W., 1999. Software component reliability analysis. In Application-

Specific Systems and Software Engineering and Technology, 1999.

ASSET'99. Proceedings. 1999 IEEE Symposium on (pp. 204-211). IEEE.

6- Krka, I., Edwards, G., Cheung, L., Golubchik, L. and Medvidovic, N., 2009. A

Comprehensive Exploration of Challenges in Architecture-Based Reliability

Estimation, Architecting Dependable Systems VI.

7- Blischke, W.R. and Murthy, D.P., 2011. Reliability: modeling, prediction, and

optimization (Vol. 767). John Wiley & Sons.

8- Parnas, D.L., 1975, April. The influence of software structure on reliability.

In ACM SIGPLAN Notices (Vol. 10, No. 6, pp. 358-362). ACM.

9- Hamlet, D., 1992. Are we testing for true reliability?. IEEE software, 9(4),

pp.21-27.

10- Tausworthe, R.C. and Lyu, M.R., 1996. A generalized technique for

simulating software reliability. IEEE Software, 13(2), pp.77-88.

11- Yang, M.C. and Chao, A., 1995. Reliability-estimation and stopping-rules for

software testing, based on repeated appearances of bugs. IEEE Transactions

on Reliability, 44(2), pp.315-321.

12- Dimov, A., Chandran, S.K. and Punnekkat, S., 2010, June. How do we collect

data for software reliability estimation?. In Proceedings of the 11th

40

International Conference on Computer Systems and Technologies and

Workshop for PhD Students in Computing on International Conference on

Computer Systems and Technologies (pp. 155-160). ACM.

13- Chen, M.H., Horgan, J.R., Mathur, A.P. and Rego, V.J., 1992. A

time/structure based model for estimating software reliability. Purdue

University, SERC-TR-117-P.

14- Murphy, B. and Gent, T., 1995. Measuring system and software reliability

using an automated data collection process. Quality and reliability engineering

international, 11(5), pp.341-353.

15- Mannhart, A., Bilgic, A. and Bertsche, B., 2007, January. Modeling expert

judgment for reliability prediction-comparison of methods. In Reliability and

Maintainability Symposium, 2007. RAMS'07. Annual (pp. 1-6). IEEE.

16- Goseva-Popstojanova, K. and Trivedi, K., 2000. Architecture based software

reliability.

17- Shanmugam, L. and Florence, L., 2012. An overview of software reliability

models. International Journal of Advanced Research in Computer Science and

Software Engineering, 2(10).

18- Avizienis, A., Laprie, J.C., Randell, B. and Landwehr, C., 2004. Basic

concepts and taxonomy of dependable and secure computing. IEEE

transactions on dependable and secure computing, 1(1), pp.11-33.

19- Musa, J.D., 1993. Operational profiles in software-reliability

engineering. IEEE software, 10(2), pp.14-32.

20- Gokhale, S.S. and Trivedi, K.S., 2006. Analytical models for architecture-

based software reliability prediction: A unification framework. IEEE

Transactions on reliability, 55(4), pp.578-590.

21- Gokhale, S.S., 2007. Architecture-based software reliability analysis:

Overview and limitations. IEEE Transactions on dependable and secure

computing, 4(1).

22- Brosch, F., Koziolek, H., Buhnova, B. and Reussner, R., 2012. Architecture-

based reliability prediction with the palladio component model. IEEE

Transactions on Software Engineering, 38(6), pp.1319-1339.

41

23- Distefano, S. and Puliafito, A., 2009. Dependability evaluation with dynamic

reliability block diagrams and dynamic fault trees. IEEE Transactions on

Dependable and Secure Computing, 6(1), pp.4-17.

24- Cortellessa, V., Singh, H. and Cukic, B., 2002, July. Early reliability

assessment of UML based software models. In Proceedings of the 3rd

international workshop on Software and performance (pp. 302-309). ACM.

25- Rodrigues, G.N., Rosenblum, D.S. and Uchitel, S., 2005, January. Using

Scenarios to Predict the Reliability of Concurrent Component-Based Software

Systems. In FASE (Vol. 5, pp. 111-126).

26- Gokhale, S.S. and Trivedi, K.S., 2002. Reliability prediction and sensitivity

analysis based on software architecture. In Software Reliability Engineering,

2002. ISSRE 2003. Proceedings. 13th International Symposium on (pp. 64-

75). IEEE.

27- Reussner, R.H., Schmidt, H.W. and Poernomo, I.H., 2003. Reliability

prediction for component-based software architectures. Journal of systems and

software, 66(3), pp.241-252.

28- Everett, W.W., 1999. Software component reliability analysis. In Application-

Specific Systems and Software Engineering and Technology, 1999.

ASSET'99. Proceedings. 1999 IEEE Symposium on (pp. 204-211). IEEE

29- Karanta, I., 2006. Methods and problems of software reliability

estimation. VTT WP, 63, p.57.

30- Kashyap, E. and Rana, A., 2015, December. A Comparative Study of S-shape

and Concave Software Reliability Growth Models. In Computational

Intelligence and Communication Networks (CICN), 2015 International

Conference on (pp. 1452-1455). IEEE.

31- Aggarwal, G. and Gupta, V.K., 2014. Software Reliability Growth

Model. International Journal of Advanced Research in Computer Science and

Software Engineering, 4(1).

32- Mohd, R. and Nazir, M., 2012. Software reliability growth models: Overview

and applications. In Journal of Emerging Trends in Computing and

Information Sciences VOL.

42

33- Shooman, M.L., 1976, October. Structural models for software reliability

prediction. In Proceedings of the 2nd international conference on Software

engineering (pp. 268-280). IEEE Computer Society Press.

34- Goševa-Popstojanova, K. and Trivedi, K.S., 2001. Architecture-based

approach to reliability assessment of software systems. Performance

Evaluation, 45(2), pp.179-204.

35- An, J. and Zhu, J., 2010, June. Software reliability modeling with integrated

test coverage. In Secure Software Integration and Reliability Improvement

(SSIRI), 2010 Fourth International Conference on (pp. 106-112). IEEE.

36- Gokhale, S.S. and Trivedi, K.S., 1999. A time/structure based software

reliability model. Annals of Software Engineering, 8(1-4), pp.85-121.

37- Edwards, M., Wasserman, E., Hassan, A. and Antialon, J., System

Specification and Design: Parking Garage Automation. Interaction, 50, p.50.

38- Park, J. and Baik, J., 2015. Improving software reliability prediction through

multi-criteria based dynamic model selection and combination. Journal of

Systems and Software, 101, pp.236-244.

39- Cheung, R.C., 1980. A user-oriented software reliability model. IEEE

transactions on Software Engineering, (2), pp.118-125.

40- Singh, H., Cortellessa, V., Cukic, B., Gunel, E. and Bharadwaj, V., 2001,

November. A bayesian approach to reliability prediction and assessment of

component based systems. In Software Reliability Engineering, 2001. ISSRE

2001. Proceedings. 12th International Symposium on (pp. 12-21). IEEE.

41- Yacoub, S.M., Cukic, B. and Ammar, H.H., 1999. Scenario-based reliability

analysis of component-based software. In Software Reliability Engineering,

1999. Proceedings. 10th International Symposium on (pp. 22-31). IEEE.

42- Bell, D., 2003. UML basics: An introduction to the Unified Modeling

Language. The Rational Edge.

43

Appendix A

Dataset for using operational profile in general

Activity User_Type Date Exec_time Logon_type Remote

1 Registered Customer #### ##### direct #####

2 Admin #### ##### direct #####

3 Registered Customer #### ##### direct #####

4 Elevator Camera #### ##### direct #####

5 Elevator Display #### ##### direct #####

6 Elevator Keypad #### ##### direct #####

7 Registered Customer #### ##### direct #####

8 Registered Customer #### ##### direct #####

9 Registered Customer #### ##### direct #####

10 Registered Customer #### ##### direct #####

11 Registered Customer #### ##### direct #####

12 New_Cust #### ##### direct #####

13 Registered Customer #### ##### direct #####

14 New_Cust #### ##### direct #####

Project_name Parking Garage Automation
 Produced by Matt Edwards, Eric Wasserman, Abdul Hassan, Juan Antialon

Tested by State Of Flow , Eclipse Metrics

44

Activity User_Type Date Exec_time Logon_type Remote

15 Admin #### ##### direct #####

16 New_Cust #### ##### direct #####

17 New_Cust #### ##### direct #####

18 Registered Customer #### ##### direct #####

19 Registered Customer #### ##### direct #####

20 Registered Customer #### ##### direct #####

21 Registered Customer #### ##### direct #####

22 New_Cust #### ##### direct #####

23 Exit Camera #### ##### direct #####

24 New_Cust #### ##### direct #####

25 Registered Customer #### ##### direct #####

26 Registered Customer #### ##### direct #####

27 Registered Customer #### ##### direct #####

28 New_Cust #### ##### direct #####

29 Registered Customer #### ##### direct #####

30 Registered Customer #### ##### direct #####

31 Registered Customer #### ##### direct #####

32 New_Cust #### ##### direct #####

33 Spot Sensor #### ##### direct #####

34 Timer #### ##### direct #####

35 New_Cust #### ##### direct #####

36 Registered Customer #### ##### direct #####

45

Activity User_Type Date Exec_time Logon_type Remote

37 New_Cust #### ##### direct #####

38 New_Cust #### ##### direct #####

39 Registered Customer #### ##### direct #####

40 Elevator Camera #### ##### direct #####

41 Elevator Display #### ##### direct #####

42 Elevator Keypad #### ##### direct #####

43 Registered Customer #### ##### direct #####

44 New_Cust #### ##### direct #####

45 Elevator Camera #### ##### direct #####

46 Elevator Display #### ##### direct #####

47 Elevator Keypad #### ##### direct #####

48 Spot Sensor #### ##### direct #####

49 Registered Customer #### ##### direct #####

50 Registered Customer #### ##### direct #####

51 Registered Customer #### ##### direct #####

52 Spot Sensor #### ##### direct #####

53 Registered Customer #### ##### direct #####

54 Registered Customer #### ##### direct #####

55 Admin #### ##### direct #####

56 Registered Customer #### ##### direct #####

57 Registered Customer #### ##### direct #####

58 Registered Customer #### ##### direct #####

46

Activity User_Type Date Exec_time Logon_type Remote

59 Registered Customer #### ##### direct #####

60 Registered Customer #### ##### direct #####

61 Admin #### ##### direct #####

62 New_Cust #### ##### direct #####

63 Registered Customer #### ##### direct #####

64 New_Cust #### ##### direct #####

65 Spot Sensor #### ##### direct #####

66 Registered Customer #### ##### direct #####

67 Registered Customer #### ##### direct #####

68 Registered Customer #### ##### direct #####

69 Registered Customer #### ##### direct #####

70 Registered Customer #### ##### direct #####

71 Registered Customer #### ##### direct #####

72 Registered Customer #### ##### direct #####

73 Admin #### ##### direct #####

74 Admin #### ##### direct #####

75 Elevator Camera #### ##### direct #####

76 Elevator Display #### ##### direct #####

77 Elevator Keypad #### ##### direct #####

78 Spot Sensor #### ##### direct #####

79 New_Cust #### ##### direct #####

80 Registered Customer #### ##### direct #####

47

Activity User_Type Date Exec_time Logon_type Remote

81 Registered Customer #### ##### direct #####

82 Registered Customer #### ##### direct #####

83 Timer #### ##### direct #####

84 Registered Customer #### ##### direct #####

85 Registered Customer #### ##### direct #####

86 Registered Customer #### ##### direct #####

87 Registered Customer #### ##### direct #####

88 Registered Customer #### ##### direct #####

89 Registered Customer #### ##### direct #####

90 New_Cust #### ##### direct #####

91 Registered Customer #### ##### direct #####

92 New_Cust #### ##### direct #####

93 New_Cust #### ##### direct #####

94 Admin #### ##### direct #####

95 Registered Customer #### ##### direct #####

96 Registered Customer #### ##### direct #####

97 Registered Customer #### ##### direct #####

98 New_Cust #### ##### direct #####

99 Registered Customer #### ##### direct #####

100 New_Cust #### ##### direct #####

48

Appendix B

Dataset for using operational profile in details

User_Type Method Times

Registered Customer

Make_reservation 20

Open_elevator 15

get_info 10

getreservation 5

Add_ vehicle 1

Update_ vehicle 2

total = 53

New_Cust
pay_walk in 3

Create_account 17

total = 20

Admin

Update_acc 1

Update_gar 1

setprice 3

Calculate_delay 2

total = 7

Timer Notice_time 2

total = 2

Elevator Camera Identify_ license plate 4

total = 4

Elevator Display Open_elevator 4

49

User_Type Method Times

total = 4

Elevator Keypad Open_elevator 4

total = 4

Exit Camera Display _exit camera 1

total = 1

Spot Sensor setspot occupied 5

total = 5

50

Appendix C

Dataset for methods in the project

Index

Short Name Full Name
CC Cyclomatic Complexity

LOCm Lines of Code in Method

NLS Number of Locals in Scope

NOL Number of Levels

NOP Number of Parameters

BB Busy Period

NOS Number of Statements

N Methods Metrics Values

 Method _number Method _name CC NLS NOL BP
1 1.1 Make_reservation 4 4 3 2
2 1.2 Available_reservations 3 2 2 2
3 1.3 Specific_date and time 2 2 2 2
4 1.4 setreservation 2 2 2 1
5 2.1 Open_elevator 2 2 2 2
6 2.2 Identify_ license plate 3 2 2 2
7 2.3 getplate 3 2 1 1

51

N Methods Metrics Values

 Method _number Method _name CC NLS NOL BP
8 2.4 Assign _parking spot 2 2 1 2
9 2.5 Display_ parking spot 2 2 1 2
10 2.6 Display_ camera elevator 2 2 1 2
11 2.7 Display_ sensor assign 2 2 1 2
12 2.8 setspot occupied 1 2 1 2
13 2.9 pay_walk in 3 3 1 3
14 2.10 Display _exit camera 2 1 1 2
15 2.11 Spot _sensor free 2 1 1 1
16 2.12 setspot unoccupied 1 1 2 2
17 3.1 get_info 1 1 1 1
18 3.2 Display_info 2 1 1 1
19 3.3 Valid_info 2 1 1 1
20 3.4 setinfo 1 1 1 1
21 4.1 getreservation 1 1 1 2
22 5.1 Create_account 3 2 1 2
23 5.2 valid_info 2 1 1 1
24 5.3 setinfo 1 1 2 1
25 6.1 Add_manger 3 1 2 1
26 6.2 Update_acc 3 2 2 1
27 6.3 Add_gar 2 2 2 1
28 6.4 Update_gar 1 2 2 1
29 6.5 setprice 4 1 2 2
30 6.6 Calculate_delay 5 2 2 2

52

N Methods Metrics Values

 Method _number Method _name CC NLS NOL BP
31 6.7 Del_ customer 2 2 2 2
32 6.8 valid_info 1 1 2 1
33 7.1 Update_ reservation 2 1 2 2
34 7.2 Valid_info 1 1 2 1
35 7.3 Del_ reservation 2 1 2 1
36 8.1 Add_ vehicle 2 1 2 2
37 8.2 Valid_info 1 1 1 1
38 8.3 setinfo 1 1 1 1
39 9.1 Display_info 1 1 1 1
40 9.2 Update_ vehicle 2 1 1 2
41 9.3 Del_ vehicle 2 1 1 2
42 9.4 Valid_data 1 1 1 1
43 9.5 setvehicle 1 1 1 2
44 10.1 Fill_data 2 1 1 1
45 10.2 Valid_data 1 1 1 1
46 10.3 getdata 2 1 1 1
47 10.4 Display_info 2 1 1 1
48 11.1 Gar_location 2 1 1 1
49 11.2 Confirm_reservation rate 2 1 1 1
50 11.3 Penalty fees 3 3 1 2
51 11.4 setprice 1 1 1 2
52 11.5 getinfo 1 1 1 1
53 11.6 Valid_info 1 1 1 1

53

N Methods Metrics Values

 Method _number Method _name CC NLS NOL BP
54 11.7 setinfo 1 1 1 1
55 12.1 Search_criteria 2 1 1 2
56 12.2 gethistory 3 1 1 2
57 12.3 vaild_info 2 1 1 1
58 12.4 setinfo 2 1 1 1
59 13.1 Notice_time 3 1 1 2
60 13.2 getcustomers 3 1 1 2
61 13.3 setinfo 2 1 1 1
62 13.4 Send_Email 2 1 1 2

54

Appendix D

Dataset for methods transition and related

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
1 1.1 Reserve Reservation 0.003 non 1.1 0
2 1.1 Reserve Reservation 0.003 To 1.2 100
3 1.1 Reserve Reservation 0.003 To 1.3 0
4 1.1 Reserve Reservation 0.003 To 1.4 0
5 1.2 Reserve Reservation 0.003 To 1.1 0
6 1.2 Reserve Reservation 0.003 non 1.2 0
7 1.2 Reserve Reservation 0.003 To 1.3 100
8 1.2 Reserve Reservation 0.003 To 1.4 0
9 1.3 Reserve Reservation 0.003 To 1.1 0
10 1.3 Reserve Reservation 0.003 To 1.2 0
11 1.3 Reserve Reservation 0.003 non 1.3 0
12 1.3 Reserve Reservation 0.003 To 1.4 100
13 1.4 Reserve Reservation 0.003 - - -
14 2.1 Park Elevator Operator 0.0587 non 2.1 0
15 2.1 Park Elevator Operator 0.0587 To 2.2 86
16 2.1 Park Elevator Operator 0.0587 To 2.3 0
17 2.1 Park Elevator Operator 0.0587 To 2.4 0
18 2.1 Park Elevator Operator 0.0587 To 2.5 0
19 2.1 Park Elevator Operator 0.0587 To 2.6 0
20 2.1 Park Elevator Operator 0.0587 To 2.7 0
21 2.1 Park Elevator Operator 0.0587 To 2.8 0

55

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
22 2.1 Park Elevator Operator 0.0587 To 2.9 14
23 2.1 Park Elevator Operator 0.0587 To 2.10 0
24 2.1 Park Elevator Operator 0.0587 To 2.11 0
25 2.1 Park Elevator Operator 0.0587 To 2.12 0
26 2.2 Park Camera Operator 0.0861 To 2.1 0
27 2.2 Park Camera Operator 0.0861 non 2.2 0
28 2.2 Park Camera Operator 0.0861 To 2.3 100
29 2.2 Park Camera Operator 0.0861 To 2.4 0
30 2.2 Park Camera Operator 0.0861 To 2.5 0
31 2.2 Park Camera Operator 0.0861 To 2.6 0
32 2.2 Park Camera Operator 0.0861 To 2.7 0
33 2.2 Park Camera Operator 0.0861 To 2.8 0
34 2.2 Park Camera Operator 0.0861 To 2.9 0
35 2.2 Park Camera Operator 0.0861 To 2.10 0
36 2.2 Park Camera Operator 0.0861 To 2.11 0
37 2.2 Park Camera Operator 0.0861 To 2.12 0
38 2.3 Park Camera Operator 0.0861 To 2.1 0
39 2.3 Park Camera Operator 0.0861 To 2.2 0
40 2.3 Park Camera Operator 0.0861 non 2.3 0
41 2.3 Park Camera Operator 0.0861 To 2.4 100
42 2.3 Park Camera Operator 0.0861 To 2.5 0
43 2.3 Park Camera Operator 0.0861 To 2.6 0
44 2.3 Park Camera Operator 0.0861 To 2.7 0
45 2.3 Park Camera Operator 0.0861 To 2.8 0
46 2.3 Park Camera Operator 0.0861 To 2.9 0

56

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
47 2.3 Park Camera Operator 0.0861 To 2.10 0
48 2.3 Park Camera Operator 0.0861 To 2.11 0
49 2.3 Park Camera Operator 0.0861 To 2.12 0
50 2.4 Park Sensor Operator 0.0116 To 2.1 0
51 2.4 Park Sensor Operator 0.0116 To 2.2 0
52 2.4 Park Sensor Operator 0.0116 To 2.3 0
53 2.4 Park Sensor Operator 0.0116 non 2.4 0
54 2.4 Park Sensor Operator 0.0116 To 2.5 100
55 2.4 Park Sensor Operator 0.0116 To 2.6 0
56 2.4 Park Sensor Operator 0.0116 To 2.7 0
57 2.4 Park Sensor Operator 0.0116 To 2.8 0
58 2.4 Park Sensor Operator 0.0116 To 2.9 0
59 2.4 Park Sensor Operator 0.0116 To 2.10 0
60 2.4 Park Sensor Operator 0.0116 To 2.11 0
61 2.4 Park Sensor Operator 0.0116 To 2.12 0
62 2.5 Park Sensor Operator 0.0116 To 2.1 0
63 2.5 Park Sensor Operator 0.0116 To 2.2 0
64 2.5 Park Sensor Operator 0.0116 To 2.3 0
65 2.5 Park Sensor Operator 0.0116 To 2.4 0
66 2.5 Park Sensor Operator 0.0116 non 2.5 0
67 2.5 Park Sensor Operator 0.0116 To 2.6 100
68 2.5 Park Sensor Operator 0.0116 To 2.7 0
69 2.5 Park Sensor Operator 0.0116 To 2.8 0
70 2.5 Park Sensor Operator 0.0116 To 2.9 0
71 2.5 Park Sensor Operator 0.0116 To 2.10 0

57

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
72 2.5 Park Sensor Operator 0.0116 To 2.11 0
73 2.5 Park Sensor Operator 0.0116 To 2.12 0
74 2.6 Park Camera Operator 0.0861 To 2.1 0
75 2.6 Park Camera Operator 0.0861 To 2.2 0
76 2.6 Park Camera Operator 0.0861 To 2.3 0
77 2.6 Park Camera Operator 0.0861 To 2.4 0
78 2.6 Park Camera Operator 0.0861 To 2.5 0
79 2.6 Park Camera Operator 0.0861 non 2.6 0
80 2.6 Park Camera Operator 0.0861 To 2.7 100
81 2.6 Park Camera Operator 0.0861 To 2.8 0
82 2.6 Park Camera Operator 0.0861 To 2.9 0
83 2.6 Park Camera Operator 0.0861 To 2.10 0
84 2.6 Park Camera Operator 0.0861 To 2.11 0
85 2.6 Park Camera Operator 0.0861 To 2.12 0
86 2.7 Park Sensor Operator 0.0116 To 2.1 0
87 2.7 Park Sensor Operator 0.0116 To 2.2 0
88 2.7 Park Sensor Operator 0.0116 To 2.3 0
89 2.7 Park Sensor Operator 0.0116 To 2.4 0
90 2.7 Park Sensor Operator 0.0116 To 2.5 0
91 2.7 Park Sensor Operator 0.0116 To 2.6 0
92 2.7 Park Sensor Operator 0.0116 non 2.7 0
93 2.7 Park Sensor Operator 0.0116 To 2.8 100
94 2.7 Park Sensor Operator 0.0116 To 2.9 0
95 2.7 Park Sensor Operator 0.0116 To 2.10 0
96 2.7 Park Sensor Operator 0.0116 To 2.11 0

58

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
97 2.7 Park Sensor Operator 0.0116 To 2.12 0
98 2.8 Park Sensor Operator 0.0116 - - -
99 2.9 Park Elevator Operator 0.0587 To 2.1 0

100 2.9 Park Elevator Operator 0.0587 To 2.2 100
101 2.9 Park Elevator Operator 0.0587 To 2.3 0
102 2.9 Park Elevator Operator 0.0587 To 2.4 0
103 2.9 Park Elevator Operator 0.0587 To 2.5 0
104 2.9 Park Elevator Operator 0.0587 To 2.6 0
105 2.9 Park Elevator Operator 0.0587 To 2.7 0
106 2.9 Park Elevator Operator 0.0587 To 2.8 0
107 2.9 Park Elevator Operator 0.0587 non 2.9 0
108 2.9 Park Elevator Operator 0.0587 To 2.10 0
109 2.9 Park Elevator Operator 0.0587 To 2.11 0
110 2.9 Park Elevator Operator 0.0587 To 2.12 0
111 2.10 Park Camera Operator 0.0861 To 2.1 0
112 2.10 Park Camera Operator 0.0861 To 2.2 0
113 2.10 Park Camera Operator 0.0861 To 2.3 0
114 2.10 Park Camera Operator 0.0861 To 2.4 0
115 2.10 Park Camera Operator 0.0861 To 2.5 0
116 2.10 Park Camera Operator 0.0861 To 2.6 0
117 2.10 Park Camera Operator 0.0861 To 2.7 0
118 2.10 Park Camera Operator 0.0861 To 2.8 0
119 2.10 Park Camera Operator 0.0861 To 2.9 0
120 2.10 Park Camera Operator 0.0861 non 2.10 0
121 2.10 Park Camera Operator 0.0861 To 2.11 100

59

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
122 2.10 Park Camera Operator 0.0861 To 2.12 0
123 2.11 Park Sensor Operator 0.0116 To 2.1 0
124 2.11 Park Sensor Operator 0.0116 To 2.2 0
125 2.11 Park Sensor Operator 0.0116 To 2.3 0
126 2.11 Park Sensor Operator 0.0116 To 2.4 0
127 2.11 Park Sensor Operator 0.0116 To 2.5 0
128 2.11 Park Sensor Operator 0.0116 To 2.6 0
129 2.11 Park Sensor Operator 0.0116 To 2.7 0
130 2.11 Park Sensor Operator 0.0116 To 2.8 0
131 2.11 Park Sensor Operator 0.0116 To 2.9 0
132 2.11 Park Sensor Operator 0.0116 To 2.10 0
133 2.11 Park Sensor Operator 0.0116 non 2.11 0
134 2.11 Park Sensor Operator 0.0116 To 2.12 100
135 2.12 Park Sensor Operator 0.0116 - - -
136 3.1 Manage Account Account 0.0396 non 3.1 0
137 3.1 Manage Account Account 0.0396 To 3.2 100
138 3.1 Manage Account Account 0.0396 To 3.3 0
139 3.1 Manage Account Account 0.0396 To 3.4 0
140 3.2 Manage Account Account 0.0396 To 3.1 0
141 3.2 Manage Account Account 0.0396 non 3.2 0
142 3.2 Manage Account Account 0.0396 To 3.3 100
143 3.2 Manage Account Account 0.0396 To 3.4 0
144 3.3 Manage Account Account 0.0396 To 3.1 0
145 3.3 Manage Account Account 0.0396 To 3.2 0
146 3.3 Manage Account Account 0.0396 To 3.3 0

60

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
147 3.3 Manage Account Account 0.0396 To 3.4 100
148 3.4 Manage Account Account 0.0396 - - -
149 4.1 View Reservation Reservation 0.003 - - 100
150 5.1 Register customers 0.0054 non 5.1 0
151 5.1 Register customers 0.0054 To 5.2 100
152 5.1 Register customers 0.0054 To 5.3 0
153 5.2 Register customers 0.0054 To 5.1 0
154 5.2 Register customers 0.0054 non 5.2 0
155 5.2 Register customers 0.0054 To 5.3 100
156 5.3 Register customers 0.0054 - - -
157 6.1 Manage Garage Garage 0.02 non 6.1 0
158 6.1 Manage Garage Garage 0.02 To 6.2 0
159 6.1 Manage Garage Garage 0.02 To 6.3 0
160 6.1 Manage Garage Garage 0.02 To 6.4 0
161 6.1 Manage Garage Garage 0.02 To 6.5 0
162 6.1 Manage Garage Garage 0.02 To 6.6 0
163 6.1 Manage Garage Garage 0.02 To 6.7 100
164 6.2 Manage Garage Garage 0.02 To 6.1 0
165 6.2 Manage Garage Garage 0.02 non 6.2 0
166 6.2 Manage Garage Garage 0.02 To 6.3 0
167 6.2 Manage Garage Garage 0.02 To 6.4 0
168 6.2 Manage Garage Garage 0.02 To 6.5 0
169 6.2 Manage Garage Garage 0.02 To 6.6 0
170 6.2 Manage Garage Garage 0.02 To 6.7 100
171 6.3 Manage Garage Garage 0.02 To 6.1 0

61

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
172 6.3 Manage Garage Garage 0.02 To 6.2 0
173 6.3 Manage Garage Garage 0.02 non 6.3 0
174 6.3 Manage Garage Garage 0.02 To 6.4 0
175 6.3 Manage Garage Garage 0.02 To 6.5 0
176 6.3 Manage Garage Garage 0.02 To 6.6 0
177 6.3 Manage Garage Garage 0.02 To 6.7 100
178 6.4 Manage Garage Garage 0.02 To 6.1 0
179 6.4 Manage Garage Garage 0.02 To 6.2 0
180 6.4 Manage Garage Garage 0.02 To 6.3 0
181 6.4 Manage Garage Garage 0.02 non 6.4 0
182 6.4 Manage Garage Garage 0.02 To 6.5 0
183 6.4 Manage Garage Garage 0.02 To 6.6 0
184 6.4 Manage Garage Garage 0.02 To 6.7 100
185 6.5 Manage Garage Garage 0.02 To 6.1 0
186 6.5 Manage Garage Garage 0.02 To 6.2 0
187 6.5 Manage Garage Garage 0.02 To 6.3 0
188 6.5 Manage Garage Garage 0.02 To 6.4 0
189 6.5 Manage Garage Garage 0.02 non 6.5 0
190 6.5 Manage Garage Garage 0.02 To 6.6 0
191 6.5 Manage Garage Garage 0.02 To 6.7 100
192 6.6 Manage Garage Garage 0.02 To 6.1 0
193 6.6 Manage Garage Garage 0.02 To 6.2 0
194 6.6 Manage Garage Garage 0.02 To 6.3 0
195 6.6 Manage Garage Garage 0.02 To 6.4 0
196 6.6 Manage Garage Garage 0.02 To 6.5 0

62

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
197 6.6 Manage Garage Garage 0.02 non 6.6 0
198 6.6 Manage Garage Garage 0.02 To 6.7 100
199 6.7 Manage Garage Garage 0.02 - - -
200 7.1 Edit Reservation Reservation 0.003 non 7.1 0
201 7.1 Edit Reservation Reservation 0.003 To 7.2 0
202 7.1 Edit Reservation Reservation 0.003 To 7.3 100
203 7.2 Edit Reservation Reservation 0.003 To 7.1 0
204 7.2 Edit Reservation Reservation 0.003 To 7.2 0
205 7.2 Edit Reservation Reservation 0.003 To 7.3 100
206 7.3 Edit Reservation Reservation 0.003 - - -
207 8.1 Register Vehicle Car 0.0041 non 8.1 0
208 8.1 Register Vehicle Car 0.0041 To 8.2 100
209 8.1 Register Vehicle Car 0.0041 To 8.3 0
210 8.2 Register Vehicle Car 0.0041 To 8.1 0
211 8.2 Register Vehicle Car 0.0041 non 8.2 0
212 8.2 Register Vehicle Car 0.0041 To 8.3 100
213 8.3 Register Vehicle Car 0.0041 - - -
214 9.1 Edit Vehicle Car 0.0041 non 9.1 0
215 9.1 Edit Vehicle Car 0.0041 To 9.2 90
216 9.1 Edit Vehicle Car 0.0041 To 9.3 10
217 9.1 Edit Vehicle Car 0.0041 To 9.4 0
218 9.1 Edit Vehicle Car 0.0041 To 9.5 0
219 9.2 Edit Vehicle Car 0.0041 To 9.1 0
220 9.2 Edit Vehicle Car 0.0041 non 9.2 0
221 9.2 Edit Vehicle Car 0.0041 To 9.3 0

63

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
222 9.2 Edit Vehicle Car 0.0041 To 9.4 100
223 9.2 Edit Vehicle Car 0.0041 To 9.5 0
224 9.3 Edit Vehicle Car 0.0041 To 9.1 0
225 9.3 Edit Vehicle Car 0.0041 To 9.2 0
226 9.3 Edit Vehicle Car 0.0041 non 9.3 0
227 9.3 Edit Vehicle Car 0.0041 To 9.4 100
228 9.3 Edit Vehicle Car 0.0041 To 9.5 0
229 9.4 Edit Vehicle Car 0.0041 To 9.1 0
230 9.4 Edit Vehicle Car 0.0041 To 9.2 0
231 9.4 Edit Vehicle Car 0.0041 To 9.3 0
232 9.4 Edit Vehicle Car 0.0041 non 9.4 0
233 9.4 Edit Vehicle Car 0.0041 To 9.5 100
234 9.5 Edit Vehicle Car 0.0041 - - -
235 10.1 Authenticate User Authorization 0.012 non 10.1 0
236 10.1 Authenticate User Authorization 0.012 To 10.2 100
237 10.1 Authenticate User Authorization 0.012 To 10.3 0
238 10.1 Authenticate User Authorization 0.012 To 10.4 0
239 10.2 Authenticate User Authorization 0.012 To 10.1 0
240 10.2 Authenticate User Authorization 0.012 non 10.2 0
241 10.2 Authenticate User Authorization 0.012 To 10.3 100
242 10.2 Authenticate User Authorization 0.012 To 10.4 0
243 10.3 Authenticate User Authorization 0.012 To 10.1 0
244 10.3 Authenticate User Authorization 0.012 To 10.2 0
245 10.3 Authenticate User Authorization 0.012 To 10.3 0
246 10.3 Authenticate User Authorization 0.012 To 10.4 100

64

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
247 10.4 Authenticate User Authorization 0.012 - - -
248 11.1 Set Prices Garage 0.02 non 11.1 0
249 11.1 Set Prices Garage 0.02 To 11.2 0
250 11.1 Set Prices Garage 0.02 To 11.3 0
251 11.1 Set Prices Garage 0.02 To 11.4 100
252 11.1 Set Prices Garage 0.02 To 11.5 0
253 11.1 Set Prices Garage 0.02 To 11.6 0
254 11.1 Set Prices Garage 0.02 To 11.7 0
255 11.2 Set Prices Garage 0.02 To 11.1 0
256 11.2 Set Prices Garage 0.02 non 11.2 0
257 11.2 Set Prices Garage 0.02 To 11.3 0
258 11.2 Set Prices Garage 0.02 To 11.4 0
259 11.2 Set Prices Garage 0.02 To 11.5 100
260 11.2 Set Prices Garage 0.02 To 11.6 0
261 11.2 Set Prices Garage 0.02 To 11.7 0
262 11.3 Set Prices Garage 0.02 To 11.1 0
263 11.3 Set Prices Garage 0.02 To 11.2 0
264 11.3 Set Prices Garage 0.02 non 11.3 0
265 11.3 Set Prices Garage 0.02 To 11.4 0
266 11.3 Set Prices Garage 0.02 To 11.5 100
267 11.3 Set Prices Garage 0.02 To 11.6 0
268 11.3 Set Prices Garage 0.02 To 11.7 0
269 11.4 Set Prices Garage 0.02 To 11.1 0
270 11.4 Set Prices Garage 0.02 To 11.2 0
271 11.4 Set Prices Garage 0.02 To 11.3 0

65

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
272 11.4 Set Prices Garage 0.02 non 11.4 0
273 11.4 Set Prices Garage 0.02 To 11.5 0
274 11.4 Set Prices Garage 0.02 To 11.6 100
275 11.4 Set Prices Garage 0.02 To 11.7 0
276 11.5 Set Prices Garage 0.02 To 11.1 0
277 11.5 Set Prices Garage 0.02 To 11.2 0
278 11.5 Set Prices Garage 0.02 To 11.3 0
279 11.5 Set Prices Garage 0.02 To 11.4 0
280 11.5 Set Prices Garage 0.02 To 11.5 0
281 11.5 Set Prices Garage 0.02 To 11.6 100
282 11.5 Set Prices Garage 0.02 To 11.7 0
283 11.6 Set Prices Garage 0.02 To 11.1 0
284 11.6 Set Prices Garage 0.02 To 11.2 0
285 11.6 Set Prices Garage 0.02 To 11.3 0
286 11.6 Set Prices Garage 0.02 To 11.4 0
287 11.6 Set Prices Garage 0.02 To 11.5 0
288 11.6 Set Prices Garage 0.02 To 11.6 0
289 11.6 Set Prices Garage 0.02 To 11.7 100
290 11.7 Set Prices Garage 0.02 - - -
291 12.1 Inspect Usage History Garage 0.02 non 12.1 0
292 12.1 Inspect Usage History Garage 0.02 To 12.2 100
293 12.1 Inspect Usage History Garage 0.02 To 12.3 0
294 12.1 Inspect Usage History Garage 0.02 To 12.4 0
295 12.2 Inspect Usage History Garage 0.02 To 12.1 0
296 12.2 Inspect Usage History Garage 0.02 To 12.2 0

66

N

Meth
_Num

Use Case
associated

Class
associated

Failure Intensity of
class

State Meth _Num
Execution

Times
297 12.2 Inspect Usage History Garage 0.02 To 12.3 100
298 12.2 Inspect Usage History Garage 0.02 To 12.4 0
299 12.3 Inspect Usage History Garage 0.02 To 12.1 0
300 12.3 Inspect Usage History Garage 0.02 To 12.2 0
301 12.3 Inspect Usage History Garage 0.02 To 12.3 0
302 12.3 Inspect Usage History Garage 0.02 To 12.4 100
303 12.4 Inspect Usage History Garage 0.02 - - -
304 13.1 Monthly Billing customers 0.0054 non 13.1 0
305 13.1 Monthly Billing customers 0.0054 To 13.2 100
306 13.1 Monthly Billing customers 0.0054 To 13.3 0
307 13.1 Monthly Billing customers 0.0054 To 13.4 0
308 13.2 Monthly Billing customers 0.0054 To 13.1 0
309 13.2 Monthly Billing customers 0.0054 non 13.2 0
310 13.2 Monthly Billing customers 0.0054 To 13.3 100
311 13.2 Monthly Billing customers 0.0054 To 13.4 0
312 13.3 Monthly Billing customers 0.0054 To 13.1 0
313 13.3 Monthly Billing customers 0.0054 To 13.2 0
314 13.3 Monthly Billing customers 0.0054 non 13.3 0
315 13.3 Monthly Billing customers 0.0054 To 13.4 100
316 13.4 Monthly Billing customers 0.0054 - - -

انخلاصخ

دُث رزُبول , عهً انشغى يٍ أٌ دساسبد يىثىلُخ انجشيجُبد لذ جزثذ لذسا كجُشا يٍ الاهزًبو

َهج انًشثع الأثُض فٍ . هزِ الأطشودخ ادذ انزذذَبد انهبيخ فٍ رذهُم يىثىلُخ انجشيجُبد

كًب رىفش يعهىيبد يفُذح لارخبر لشاس أكثش دلخ يٍ خلال رذذَذ , رذهُم يىثىلُخ انجشيجُبد

دُث رعمت الأجضاء انًذزًم أٌ ركىٌ . أجضاء يعُُخ يٍ انزطجُك وانزٍ نٍ رسجت أٌ فشم نهُظبو

. غُش يىثىلخ فٍ انًشادم انًجكشح أيش صعت ثسجت عذو رىفش كىد لبثم نهزُفُز

فٍ انجضء انُظشٌ، َشُش َهج انًشثع الأثُض فٍ رذهُم يىثىلُخ انجشيجُبد وانزٌ َذعى انزُجؤ

دُث اسزخذاو , فٍ يشدهخ انزصًُى، وانُهج انًمزشح َمسى عًهُخ رذهُم انًىثىلُخ إنً سذ يشادم

كًب َزُجأ . أجضاء انزصبيُى يثم يخطط دبنخ الاسزخذاو وانُشبط، يخطط رسهسم أو رزجع انًكىَبد

َهج يىثىلُخ انُظبو يٍ خلال رمذَش شذح فشم يسزىي الأسهىة أو انذانخ يٍ خلال عذد

. الاسزذعبءاد وهٍ انفزشح انزٍ ركىٌ انذانخ يشغىنخ فٍ أداء يهًخ يعُُخ ولًُخ وصٌ انزعمُذ نهذانخ

ويٍ خلال دسبة ادزًبل َمم انُشبط إنً دبنخ كبيهخ وهٍ دبنخ انُجبح ثبسزخذاو سهسهخ

وكزنك ، يٍ انًًكٍ نًذبكبح كُفُخ رغُُش يىثىلُخ انُظبو عُذيب َزى رغُُش انزشكُم . يبسكىف

 .انجبَجٍ انزشغُهٍ نهُظبو

وأظهشد َزبئج . ويٍ انُبدُخ انعًهُخ، أجشَذ دساسخ رجشَجُخ نزمُُى رطجُك انُهج انًمزشح

.انذساسخ أٌ انزمُُخ ًَكٍ انزُجؤ يىثىلُخ انجشيجُبد ثشكم أكثش دلخ وَذبكٍ انزغُُشاد انشخصٍ

التنبؤ بموثوقية البرمجيات باستخدام لغة النمذجة
 المؤحدة

 :قدمت من قبل

 عبدالغني يونس عبدالغني

 تحت إشراف

 محمد أخميف. د

قدمت هذه الرسالة استكمالا لمتطمبات الحصول عمى درجة الماجستير في عموم
 الحاسوب

 جاممة بنغازز

 كمية تقنية المممومات

 يوليو 2018

