| M L s |

[ioss |

Prediction of Software Reliability Using
Unified Modeling Language

By
Abdelghani younis abdelghani

Supervisor

Dr. mohamed khlaif

This dissertation was submitted in Partial Fulfillment of the
Requirements for Master's Degree of computer science.

University of Benghazi
Faculty of Information Technology

July 2018

Copyright © 2018.All rights reserved, no part of this dissertation may be reproduced
in any form, electronic or mechanical, including photocopy , recording scanning , or
any information , without the permission in writhing from the author or Faculty of

Information Technology university of Benghazi.

dga e Al o3 e s e sl e A slra (g1 280 sy ¥ A gine 2018 aakall G5 sia
G e Jsanll (53 (g gasall o Jamasill gl g gacill A8y yhay ASilSsa 5l A g i€ Aais
(8 y Al e slacall 4585 K 5 Calgall (e S

University of Benghazi Faculty of information

Technology

Department of Computer science

Prediction of software reliability using unified modeling language

By
Abdelghani Younis Abdelghani

This Thesis was Successfully Defended and Approved on10.7.2018

Supervisor

Dr. Moharﬂgd Ahmed Khlaif
Signature: e,

..

Dr. Tarig Ali ELshheibia (Internal examiner)
ST

.Signature: ““"{:ﬁfi_.——,gb

Dr. Abdelhamead M. Abdelkafy 5 External examiner)
Signature: \‘1 [./l

(Dean of Faculty) (Director of Graduate studies and training)

DEDICATION

All praise to Allah, today we fold the days' tiredness and the errand summing up

between the cover of this humble work.

To the utmost knowledge lighthouse, to our greatest and most honoured prophet

Mohamed - May peace and grace from Allah be upon him.

To the Spring that never stops giving, to my mother who weaves my happiness with

strings from her merciful heart .

To whom he strives to bless comfort and welfare and never stints what he owns to
push me in the success way who taught me to promote life stairs wisely and patiently,

to my dearest father.

To whose love flows in my veins, and my heart always remembers them, to my

brothers.

To my dear wife
With all the love and appreciation to the companion of my heart that came with me
towards the dream step by step we sowed together and harvested together and we will

stay together, Allah willing.

To those who taught us letters of gold and words of jewel of the utmost and sweetest
sentences in the whole knowledge. Who reworded to us their knowledge simply and
from their thoughts made a lighthouse guides us through the knowledge and success

path, To our honoured teachers and professors.

Acknowledgement

| would like to thank and appreciate Allah Almighty who guided me to prepare this
research.

| wish to express my deep sense of gratitude to my supervisor Dr. Mohamed khlaif,
for his outstanding guidance and support which helped me in completing my thesis
work.

| would also like to thank Dr. kanz , for her valuable assistance and help to fulfill my
work.

Besides my advisors, it is a matter of great privilege for me to present this project to
my dissertation external examiner, for corporation and being a part of this work.
Words are inadequate in offering my thanks to miss. hiba, for continuous support and
cooperation

Last, but not least, I would like to express my heartfelt thanks to my mother, my
brothers for unconditional support and encouragement to pursue my interests, for
listening to my complaints and frustrations, and for believing in me, my friends and
colleagues for their help and wishes for the successful completion of this project.

LIST OF CONTENTS

Contents Page No.
CoPYIIGNt © 2018 ...ttt ii
EXamination COMMITIEEooveiiiieiieie et iii
[=To [o= U1 o] o ISP iv
ACKNOWIEAGEMENTS......ceiiiie et re e e e sreeee s v
LISt OF CONTENTS ...ttt ettt st ne e vi
LISt OF TADIES ..o viii
LISE OF FIQUIES ..ttt bbb IX
List of Abbreviations OR SYMBOLSccccoiiiiiiieiiee e X
IS 0 AN o] o 1=] T Lot OSSPSR Xi
ADSTIACT ...ttt Xii
CRAPLET L.ttt bbbttt 1
1.1 BACKGIOUNG ..ottt 1
1.2 Statement Of ProbIEM ..o 2
1.3 AIMS OF THE STUAYcveeiieccecce e ne e 2
1.4 Objectives Of The StUAY........ccciiiiiiece e 3
1.5 METNOUOIOGY ...ttt 3
1.6 Scope ANd LIMITALIONcoiiiiiiiiiieiec e 4
1.7 Significance Of STUAYcveiiiiiie e 4
1.8 Structure Of The DISSErtationcccerieiiiieriiie e 4
CRAPLET 2.t bbbt 5
2 LITErature REVIEW ...c.vvoviiciieie ettt sreente e sneenneenennes 5
2.1 Historical BaCKgroUndccccoiiioiiiiiieeiie sttt 5
2.2 Software Reliability ANAlYSIScccoviiiiiiie e 6

2.2.1 Salient Features Of Software Failuresccoocvvieviiiniie v 6

2.2.2 FAIlUIE DAta.......ccceieiiieiiieie ettt 7

2.2.3 Software Reliability Measurement And Modelingcccccoooviviiiiiinnnnnn. 7

2.2.4 Classification Of MOGEIScooiiiiiiiiieiese e 8

2.2.5 Reliability Parameters........ccccoveiiiiieieeiecie et se e 9

Vi

2.2.6 Operational Profilesccccooviieii i 10

2.2.7 Black-Box Reliability AnalysiScccevviieiiiiiiic e 11
2.2.8 White-Box Reliability ANalysis.........cccooviiiiiiiiiiieec e, 14
CRAPLET 3.ttt 18
3L OBSEIVALION ...ttt bbb 18
3.2 APPrOACH OVEIVIBWceviiriiiiieiieesie st see st e ste et ste e ssaesreesesraesreenaeaneenreas 18
3.3 Stages Of The APPrOACHociiiiiiiiiee e 19
3.3.1 Identify Use Case AN ACKON.......ccooeiiiiiiiiiieeeeee e, 19
3.3.2 Identify Probability Of ACHVItY........cccooveiiiiiiiccece e 20
3.3.3 Identify Component INteraction...........ccccocvevieiieiieie e 21
3.3.4 Calculate Component Reliabilityc.cooiiiiiiiiiiiiiiccee, 21
3.3.5 Failure Rate PrediCtioncccovieeiiiieiie e 22
3.3.6 Reliability Prediction Of SYStemcccccovveiiiiiiieie e 23
(O T o) SO PSRURSURPSURRP 25
4.1 The Goal Of EXPEITMENT......ccviiiiiiieieieee e 25
4.2 The Environment Of EXPEIIMENT.........ccoiiiiiiiiiiseseeeeeee e 25
4.3 Stages Of The EXPEIIMENTcccciiiiiiieic ettt 27
4.4 The Results Of The EXPErimeNntccccoveiiiiiiii e 28
4.4.1 Black Box Model (Yamada)ccccceveiiiiiiiiiiieee e, 29
4.4.2 AdAItiVE MOELceiieeee e 29
4.4.3 PropoSed MOUELc.ccviiuieiicic et 30
(O T o)] TSSO UUSSURSTROSRRPPS 37
5.1 CONCIUSION ...ttt ettt este et e s e nreenaeereenseeneaneenreas 37
R C =T =] 0TSSR 39
F AN o] o 1=] o [o= TSSOSO OTRTPRSUPPRN 43
ADStract in ArabiC LaANQUAGEeoiviiiie ettt 67

Vii

LIST OF TABLES

Table Page no.
Table 3 : Expected method failure rate 22
Table 3.1 : Expected method failure rate in a scenario 22
Table 3.2 : Transition Probability Metrics 23
Table 4 : Experimental results 29
Table 4.1 : Classes Failure 29
Table 4.2 : probability of actor usage 30
Table 4.3 : Association probability 30
Table 4.4 : Use case usage of system 32
Table 4.5 : Expected Failure Rate Method for Use case 1 33
Table 4.6 : Component Failure Rate for Use case 1 33
Table 4.7 : Scenario Reliability for Use case 1 34
Table 4.8 : System Reliability 35

viii

LIST OF FIGURES

Figure Page no.
Figure 2 : Relationships between failures, errors 7
Figure 2.1 : shows the classification of software reliability models 9
Figure 2.2 : The stages of the operational profile 11
Figure 2.3 : Residual Defects 11
Figure 2.4 : Concave and S-Shaped Models 13
Figure 2.5 : Scheme of the architecture based analysis process 14
Figure 2.6 : classification of architecture-based software reliability 15
Figure 2.7 : path based model 15
Figure 2.8 : state based model 17
Figure 3 : The interaction of component 18
Figure 3.1 : Component different usage 18
Figure 3.2 : System in Use Case Diagram. 19
Figure 3.3 : Identifying Activities 21
Figure 3.4 : Component Interactions 21
Figure 3.5 : Markov Chain for Activity Diagram 23
Figure 3.6 : System Reliability Calculation 24
Figure 4 : System application 25
Figure 4.1 : Parking Garage Automation 26
Figure 4.1 : System sequence diagram for use casel 27
Figure 4.3 : Procedures of Experiment 28
Figure 4.4 : Graphical diagram for system reliability 36

LIST OF Abbreviation

abbreviation

Meaning

IEEE Institute of Electrical and Electronics Engineers
UML Unified Modeling Language
SRT-PRO Software Reliability Professional Tool
OOP Object Oriented Programming

NHPP Non-Homogeneous Poisson Process
TBF Time Between Failure

FC Fault Count

FS Fault Seeding

Fl Failure intensity

IDB Input Domain Based

SRE Software Reliability Engineering

OP Operational Profile

SRGMs Software Reliability Growth Models
DFR Decreasing Failure Rate

DTMC Dicrete -Time Markov Chain

COTS Commercial Off-The-Shelf

LOC Line Number Of Code

BP Busy period

CCN Cyclomatic Complexity Number

http://www.itl.nist.gov/div898/handbook/apr/section1/apr172.htm

LIST OF APPENDICES

Appendix Page no.
Appendix A : Dataset for using operational profile in general 43
Appendix B : Dataset for using operational profile in details 48
Appendix C : Dataset for methods in the project 50
Dataset for methods transition and related 54

Appendix D :

Xi

Prediction of Software Reliability Using Unified Modeling
Language

By
Abdelghani younis abdelghani

Supervisor
Dr. mohamed khlaif

Abstract

As software reliability studies attracted great deal of attention, the current study
addresses one of the important challenges of software reliability analysis. White box
reliability analysis approach provides useful information that generates more precise
decisions by identifying the unreliable and untrustworthy critical parts. Moreover,
tracing potential unreliable parts in early phases are difficult due unavailability of
executable code.

Theoretically, white box reliability prediction approach supports prediction in the
design phase. Therefore, the proposed approach divides the reliability analysis process
into six stages, in which design artifacts such use case diagram and activity, sequence
diagram are utilized. The proposed approach also predicts the system reliability by
estimating the method level failure intensity through the busy periods and complexity
weight values. These weight values calculate the probability of an activity being
transferred to a complete state using a Markov chain. Furthermore, it is possible to
simulate change in the system reliability when the system operational profile is

changed.
Practically, experimental study was conducted to evaluate the proposed approach

applicability. The results of the study show that technique can predict software

reliability more accurately and simulates profile changes.

xii

CHAPTER 1

1 INTRODUCTION

1.1 Background

The increase use of computer-based systems for any application such as medical,
nuclear or any critical aspect in modern society require software should be highly
developed in terms of quality, which, in turn, should be continually managed and
improved. Where, one failure in the system can cause huge loss .Therefore, many
efforts have been devoted to enhancement of software quality and focus on an
important aspect which is reliability

Institute of Electrical and Electronics Engineers (IEEE) defines reliability as "The
ability of a system or component to perform its required functions under stated
conditions for a specified period of time " (Khan and Malik,2017). The reliability of
software system is measured by the removal of these errors. Most of the software
reliability models are based on time between software failures or the number of
failures in execution time period. Where, examination of structure is not taken into
account, execution time not be the only factor to estimate the behavior of application
failure (Lyu, 1996).

The changes related to software system quality such the changes in architecture are
costly when the changes take place in later phase of the software development life
cycle. Therefore, early assessment of the reliability is very important, But this is
difficult given the inadequacy execution information.

When time-based reliability models used the overestimated values were represented
in the increase between failure events. Therefore, latter test cases are less likely to
reveal faults this means that only depending on the time between failure does not
produce acceptable results (Alrmuny,2014).

There are many analytical models for software reliability estimation e.g, the Goel-
Okumoto, Jelinski-Moranda and Musa-Okumoto (M-O) models etc, are based on the
time domain. Generally, there are restrictions on the current techniques of analysis of
reliability as evaluation process delayed to the system test phase, thus major design

decisions have already been taken (Krajcuskova,2007), (Everett,1999).

The methods of software reliability analysis can be categorized in two ways : white
and black box reliability analysis. The major difference between the two methods is
that the former considers the internal structure of the software estimates the system
reliability and can be used in earlier stages of software development, especially at
design time to identify critical components. The latter method estimates system
reliability from failure history that are collected during operation phase and ignoring
software structure called a software reliability growth model and The reason of
naming it reliability growth is that the models that are used in black box reliability
analysis generally assume that bugs are fixed right after they are identified and there
is no case of inserting additional bugs during the debugging phase (Krka et al,2009).
Measuring reliability or predicting it in earlier allow developers of software
engineering to correct errors and enhancement it.

1.2 Statement of problem

Many research efforts have been made to develop models of software reliability, but
no single model can be suitable for everyone. The proposed models are based on
different assumptions and techniques. Analytical models have been introduced
focusing on the data collected during the testing phase and ignoring the structure of
the software. This keeps the information hidden about the internal interaction
mechanism among the software components. In addition, they use statistical methods
that are difficult to apply if there is insufficient data to test.

The research will focus on predicting the reliability of the software earlier so there
will be more flexibility for the developers in making design decisions and determining
the parts that need reviewing rather than looking at the system as a whole
(Alrmuny,2014).

1.3 Aims of the study

With the growing complexity of applications reliability analysis. Therefore, the
research in the area of software reliability analysis has gained prominence. So, The
aims of this dissertation as following :

1- The primary objective of this study is to introduce the ability of software

reliability early prediction.

2- Explore architectural alternatives based on component reliability.

3- Analyze the sensitivity of the application reliability.

4- Relate application reliability to its architecture and individual component
reliabilities.

Finally, this dissertation to introduce a technique that will support early applicability.
The results of this dissertation can help the practitioners of software reliability
prediction in earlier to choose the appropriate methods for quality assurance.

1.4 objectives of the study

Most of the existing models have been criticized for being too detailed or complex.
The approaches developed in this work provide basis to solve problems of software

reliability prediction and The objectives of this study are given below :
1- To identify bottlenecks reliability for each components.

2- To simplify the process of reliability tracing by the parts of software rather than

all.

3- To improve the quality of the software through enhancing reliability of the

component.

4- To make analysis easy to trace the changes of reliability according to the

operational profile.

This prediction uses design artifacts Unified Modeling Language (UML), which is
able to extract in the early phase.

1.5 Methodology

In order to develop highly reliable software in an effective manner, the analysis
should be performed in the early stage of the software development life cycle that

requires the following:

1- Investigate previous researches and the literature review that related with my

work in order to focus on white box reliability prediction aspect.

2- Collect the requirement documents and architectural specifications that related

with the case study.

3- Analysis and Design the case study to extract the artifacts based on UML
(Bell,2003).

4- Construct the proposed approach to extract the parameters and data to analysis.

5- Comparing the result with previous work.

1.6 Scope and limitation

The study covers white box reliability analysis in terms of inter-component

interactions in operational profile by using (UML) diagrams to express component

relationships when the software system is developed with object oriented
programming (OOP), The study will not cover the failure behavior models based on
the test time information that collected during the system testing phases.

1.7 Significance of study

White box reliability analysis uses the software’s internal information and early

artifacts such as requirements and architectural specification to predict the reliability

in the early phase. It is will help developer before principal design decisions are made
to improving the quality of software.

1.8 Structure of the dissertation

The study is organized as follows :

Chapter 1: Includes Introduction, which contains the subject background and
determines the context of the dissertation in the statement of the
problem, aims and objectives of the study as well as limitations and
methodology that will be followed,

Chapter 2: Familiarizes the concepts and methods related to the software reliability
and the previous studies related to the subject and Give a glance about
white and black box reliability analysis;

Chapter 3: Represents the core this study and offers the approach that attempt to
overcome the cons of the existing models;

Chapter 4: Includes the focuses on experimental case study; and comparative the
results with other.

Chapter 5: Concludes the study by show the obtained results.

CHAPTER 2

2 LITERATURE REVIEW

2.1 Historical Background

The estimation of software reliability used statistical models such as historical data of
similar projects or organizations or direct software measures (Blischke and
Murthy,2011).

Software reliability correctness has been highlighted as early as 1975- 1976 by
Parnas (Parnas,1975). Black box method is Prevalent and Several critiques have
appeared in the literature one of this ignore information and reliabilities about of the
components (Hamlet,1992). And the examples of software reliability models are
Jelinski-Moranda Model, Generalized Goel NHPP Model (Tausworthe and
Lyu,1996), and Goel-Okumoto Model, Verrall Model (Yang and Chao,1995). These
models have advantages and disadvantages and specific assumptions.

Dimov et al. (Dimov et al,2010) use testing methods to generate data for reliability
analysis from small survey, but without much detail of test results to reliability
model parameters. Moreover, it focuses on testing of existing systems. Chen et al
(Chen et al,1992). Due to the saturation effect add structural coverage to traditional
time-based software reliability until excludes test cases that do not increase coverage.

Murphy et al. (Murphy and Gent,1995). Focuses techniques of systems already
deployed such as questionnaires, customer service calls or bug reports and does not
discuss derive reliability model parameters. Mannhart et al. (Mannhart et al,2007),
compare available methods for modeling expert judgment, and discuss their limits
when applied to software reliability prediction.

GosSeva-Popstojanova and Trivedi’s white box reliability models divide into path-
based, state-based, and additive models. Paths of execution is original source of
analysis of first, calculating the possibility a component transferred to other
component, additive models do not consider software architecture explicitly
(Goseva,2000).

The problem, in the literature consigning the estimation used at later stages of
software development. Therefore, Software reliability prediction techniques are

important at early stages of development life cycle, over the same data.

We are interested in studying the reliability because we believe Unreliability has a
number of consequences, as poor reliability can have negative implications on Safety,

Cost of repair, maintenance and Reputation.
2.2 Software reliability analysis

In this respect, researcher will review aspects related to research in the field of
software reliability, in terms of reliability analysis, which includes a look at the
causes of program and data failure as well as the relationship, measuring and
modeling the reliability of the software. Additionally, he will classify the models and
reliability parameters, which deemed one of the most important pillars of measure the
reliability, along with the operational profile and its relationship with reliability.
Finally, he will review the reliability analysis in terms of both black and white
reliability analysis boxes.

2.2.1 Salient features of software failures

e Each application at least unique and a little differences in the code may mean
large differences in the behavior of the application.

e Application faults are caused by hidden design flaws. So, application faults are
static and exist from the day the application was written until the day they get
fixed.

e Application reliability depends on the amount and quality of corrections not

on time.

e Commercial software application of 350000 lines of code can contain over
2000 programming errors. In other word, average of six software faults for

every 1000 lines of code written, that is Result of a research study.

e The significance of the fault affects repair time: a more significant fault is
prioritized and corrected promptly, whereas an inconsequential bug may be
left to stay in the system for the whole of its life cycle.

e Software in huge systems is inversely proportional to application size.

e When the application is deployed in the operational phase it is usually

installed in many places and operational conditions differ from place to place.

Therefore, failure data, if collected, comes from different sources
(Karanta,2006).

2.2.2 Failure data
When we are talking about failure data, we define these terms and other related
software reliability terminology. To prevent confusion in the rest of our work, we

will adhere to the definitions.

e Failure occurs when the user perceives that a software program ceases to
deliver the service or occurs when the delivered service deviates from the

correct one.

e Fault is uncovered when either a failure of the program occurs, or an internal
error is detected within the program. The cause of the failure or the internal

error is said to be a fault. It is also referred as a “bug”.

e Error service failure means deviation of an external system state from the
correct system state. This deviation is called an error. Figure 2 indicate the

mutual relationship between them (Avizienis et al,2004).

... Fault activation Error propagation failure causation fault
—> — > —>

Figure 2 : Relationships between failures and errors (Avizienis et al,2004).

2.2.3 Software Reliability Measurement and Modeling

Software reliability measurement includes estimation and prediction

e Estimation used statistical inference techniques to failure data that obtained
during system test, This is a measure regards the achieved reliability from the
past until the current point. This technique is suitable for testing the system or
an operational stage. In other word, When failure data are available the

estimation techniques can be used.

e Prediction is an activity determines future software reliability based on
available software metrics and it is used when failure data are not available

and prediction involves different techniques (Shanmugam and Florence,2012).

2.2.4

Classification of Models
Software reliability models are divided based on failure history and data
requirements, respectively (Shanmugam and Florence,2012).

Failure History: This type can be classified according to the nature of the
failure process studied as indicated below.

Time between failure models (TBF Models): The process under study is the
time between failures. It is assumed that the time between (i-1) th and (i)th
failure is a random variable. There are some failure rate models such as :
Jelinski and Moranda Model, Schick and Wolverton Model and Goel and

Okumoto Imperfect Debugging Model.

Fault count models (FC Models): The random variable of interest is the
number of faults (failures) occurring during specified time intervals. And
The key models in this class are Shooman exponential model, Musa

execution time model and Discrete reliability growth model.

Fault seeding models (FS Models): A Program has unknown number of

indigenous Faults. To this, a known number of faults are seeded.

Input domain based models (IDB Models): In this approach, a set of test
cases is generated from the input covering the operational profile of the
input. Usually the input domain is partitioned into a set of equivalent

classes, each of which is usually associated with a program path.

Data requirements: They can be grouped into two main groups as Empirical

Models and Analytic Models.

Empirical Models: An Empirical model develops relationship or a set of
relationship between measures and a suitable software metrics such as

program complexity using empirical results available from past data.

Analytic Models: They requires some form of data gathered from software
failures. It is based on fitting of a suitable distribution with required
assumptions for simplicity on a set of data gathered during software testing.

Figure 2.1 show classification of software reliability models.

Al
M Software reliability model]

I | 1
u based on data requirments L{ based on failure history]

l—'_l
Empirical analytlcal
models models

Figure 2.1 : shows the classification of software reliability models (Shanmugam and
Florence,2012).

2.2.5 Reliability parameters
The input parameters of architecture-based reliability analysis are divided into
three categories: failure parameters, behavioral parameters and execution

environment parameters.

e Failure parameters: they describe the failure behavioral of an element
(system, components, scenarios, methods etc). There are three types of failure
models (Gokhale and Trivedi,2006), (Gokhale,2007).

- Probability of failure (reliability) R: It is the most frequently used parameter
and it is the probability that software will cause a failure of a system. So,

essentially treats the components (and other elements) as black boxes.

- Constant failure rate A : It is more accurate than probability of failure and
defined as the number of failure occurrences per unit of time. Therefore, it

can consider time spent in the component during the execution.

- Time-dependent failure intensity A(t): It is account for the dependent
executions of components in case of loops and defined as a rate of change of

expected number failures with respect to time.

e Behavioral parameters: The behavioral parameters model, the operational
profile of the system and it specification is a challenging process, especially at
design time. The information for the specification can be gathered by
profiling, by collecting the software usage statistics or partially by studying

behavioral unified modeling language diagrams (Brosch et al,2012).

2.2.6

Execution environment parameters: Some reliability prediction approaches
consider the execution environment, in which the system is deployed. And the
execution environment parameters are often supplied by hardware vendors and

infrastructure providers (Distefano and Puliafito,2009).
Operational profiles

Software can fail due to the inputs it receives from the external environment.

So, The reliability of a software-based product depends on how the computer and

other external elements will use it. The reliability estimate depends on testing the

product as if it were in the field. The operational profile (OP), a quantitative

characterization of how the software will be used, is therefore essential in any

Software Reliability Engineering (SRE) application. Developing an operational

profile for a system involves one or more of the following five steps (Musa,1993)

Customer profile: Customer profile consists of an array of independent
customer types and is the individual, group or organization, each of these
types of customers may be expected to utilize the spreadsheet in a
substantially different way. The customer profile is the list of customer types
and the associated probabilities. These probabilities are simply the proportions

of time that each type of customer would be using the system.

User profile: Users of systems may be different from the customers of
application product. A user is a person, group, or institution that operates, as
opposed to acquire, the system. The user profile is the set of user types and

their associated probabilities of using the system.

System-mode profile: System mode is a way that a system can operate. Most
systems have more than one mode of operation. For example, system testing

may take place in batch mode or user-interactive mode.

Functional profile: After a good system mode profile has been developed, the
focus should turn to evaluation of each system mode for the functions
performed during that mode, and then assigning probabilities to each of the
functions. Functions are essentially tasks that an external entity such as a user

can perform with the system.

10

e Operational profile itself: Determine the elements involved in determining
operational profiles from functions. A function may comprise several
operations. In turn, operations are made up of many run types. Grouping run
types into operations partitions the input space into domains. A domain can be
partitioned into sub domains, or run categories. The process of operational

profile stages can be shown in Figure 2.2

Customer Profile
User Profile

System- Mode Profile
Function Profile
Operational Profile

Test Case Profile

Figure 2.2 : The stages of the operational profile (Musa,1993).

2.2.7 Black-box reliability analysis

They focus mostly on quantification of failures and down-times and employed in later
stages of software development or they are used on systems that are already deployed.
This type of models analyze the reliability of the whole application while ignoring its
internal structure. The main representative of this type is Software Reliability Growth
Models (SRGMs) (Aggarwal and Gupta,2014). And Figure 2.3 shown Defect

detection rates with time

Total Defects

Residual Defects

Number Defects Discovered
of

Defects

Test Time

Figure 2.3 : Residual Defects (Aggarwal and Gupta,2014) .

e Software reliability growth model: A software reliability growth model is one
of the fundamental techniques used to assess software reliability

quantitatively. Software reliability growth models can be used as an indication

11

of the number of failures that may be encountered after the software has
shipped and thus as an indication of whether the software is ready to ship.
Thus, SRGM is used to determine when to stop testing to attain a given
reliability level, and These models attempt to statistically correlate defect
detection data with known functions such as an exponential function.
Therefore, have a parameter that relates to the total number of defects
contained in a set of code. If we know this parameter and the current number
of defects discovered, we know how many defects remain in the code. Figure
2.3 , shows the number of residual defects that helps us decide whether the
code is ready to ship and how much more testing is required if we decide the
code is not ready to ship(Kashyap and Rana,2015), (Mohd and Nazir,2012).

Research efforts in software reliability engineering have been conducted over the
past three decades. As result, There are many software reliability growth models, and
many ways to represent the data that is used to create those models, and some
researchers believe that each organization needs to try several approaches to
determine what works best for them.

Software reliability growth models have been grouped into two classes of models
concave and S-shaped. Both the s-shape and concave curve depict the asymptotic
behavior i.e. a finite asymptotic value is attained by both the curves because the fault
rate plunges down steadily as the defects are detected and repaired during the tenure
of testing.

- Concave shaped models: The Concave shaped models are Decreasing Failure
Rate (DFR) models. In these models the failure rate decreases at a constant
pace as the number of faults are detected and removed. The idea behind DFR
is that as the given predetermined number of errors are detected and
removed, the software reliability improves. In these models when failure data
is supplied as input, the failure rate reduces steadily and becomes constant
after some time, during the testing tenure. The constant decrease in the
failure rate is attributed to regular detection and removal of the faults at a
constant pace during the testing. Goel-Okumoto, Musa and Jelinksi-

Moranda models are amongst the earliest concave shape models.

- S- shaped models: The models depicting S-shape patterns also demonstrate

the asymptotic behavior similar to the concave model. The failure data which

12

is used to plot the curve is analyzed in two phases of software testing. In the
early phase, the testing is comparatively less effective than the later phase
because the testing team performs testing using the same test cases as used
by the development team, therefore the failure rate decreases. This is the
reason why the curve attains the inward bulge. Later on, in the application
testing phase, the new defects are uncovered. Yamada Weibull Effect, Pham
and Nordmann models are amongst the earliest S- shape models. Figure 2.4
shows the difference between the two models (Mohd and Nazir,2012).

Nugil:ber Number
Def of
etects Defects
Concave S—Shap ed
Test Time Test Time

Figure 2.4 : Concave and S-Shaped Models (Mohd and Nazir,2012).

e Test code coverage: Is a measure that describes the degree to which certain
elements of the source code have been tested. In other word, it has been used
as an indicator of testing effectiveness. It proposed as a possible solution for
some drawbacks of SRGMs. The larger part of software’s structure is
exercised by tests, the more faults will be detected and reliability will grow
(An and Zhu,2010).

The technique can be applied as source code instrumentation (compiled and the test
cases are executed) and data collection can be done automatically by specialized code
coverage tools. The code coverage is measured by four code coverage criteria are
block cover, decision coverage, C-use and P-use. And, coverage per test case,
according to equation 2 (Gokhale and Trivedi,1999) :

Number of x covered by test case

X Coverage — e i e (2)

Total number of x

Where, x is the given coverage criterion and The basic coverage criteria are Statement
(or block) coverage, Branch (or decision) coverage, C-use coverage and P-use

coverage.

13

(SRGMs) have been used to estimate reliability by using the time dependent failure

data. When, these models were used notable overestimation of reliability was

observed. Thus, the fact that latter test cases are less likely to reveal faults that reside

in uncovered portions of the code, a saturation state occurs (Alrmuny,2014).

2.2.8 White-box reliability analysis

In order to predict the system reliability in the early phase, the available sources, such

as requirements documentation and design diagrams are processed to extract a failure

model for the system. To determine the characteristics of erroneous behaviors. The

system failure model is then combined with the architectural specification and

reliability parameters estimation to finally produce system reliability estimation (Krka

et al,2009). Reliability prediction process can be shown in Figure 2.5.

documentatio

architectural
specification

/

Reliability

parameters

/

Requirements =>

1

A
=

3

=

2
Failure model Failure
Derivation => model

2
Reliability &
Analysis
technique

N

4 Reliability
estimation

Figure 2.5 : Scheme of the architecture based analysis process (Krka et al,2009).

Based on the way the architectural model is mapped to a formal model, white box

reliability estimation models can be classified into three major types : path based,

state based and additive based models (Goseva,2000). The classification of

architecture-based software reliability models by Figure 2.6 (Gokhale,2007).

14

\ Architecture -Based Software Reliability Prediction ‘
State Based Path Based

| Simulation l | Analytic | | Execution ‘ l Simulation ‘ | Algorithmic |

Figure 2.6 : classification of architecture-based software reliability.

e Path-based models: A path is an independent sequence of components or
statements to carry out a system function (Yacoub et al,1999). The
architecture of the application is represented by enumeration of the possible
execution paths through the application, Path based models easy to get
information if the software is already implemented. In spite of that, it is not
easy to analyze all execution paths before implementation (Cortellessa and
Cukic,2002), (Rodrigues et al,2005).

The count of paths can be done, by simulation or by analysis of scenarios based on
UML sequence diagrams. Where the nodes represent the components and edges
represent possible transitions between the components. Figure 2.7 shows a system

function with a path (path N) that executes the {1,3,4,7} components in order.

\

y

/

0O 44— W

\
/”
N

o Jj—A s J—f
N

Figure 2.7 : path based model .

shooman model is one of the representative path based models (Shooman,1976). It is

assumed that the probability of failure for a path (f) and the frequency of the

15

execution path (gq) are known. The accumulative failure number in N system

executions is calculated, according equation(2.1) as follows:

k
nf = Nf1ql + Nf2q2 + -+ Nfkqk = NZ figi 2.1)
i=1

Number of paths N close infinity. Thus, the probability of failure of an execution run

IS given according equation(2.2)

Qs = limn_,w% = lefiqi v (2.2)

the reliability of system Rs according equation(2.3) as follows:

Rs=1-Qs e (2.3)

The biggest problem of path-based approaches is not easy for analyzers to predict all
execution paths before doing implementation. Another problem occurs when there is a
loop on the execution path may lead to infinite paths.

e State based models: The estimate system reliability in state based models by
showing individual components as individual states, and calculating the
possibility of one component being transferred to other component. The
transition probability between components through operational profile
(Gokhale and Trivedi,2002),(Reussner et al,2003).

State based models include the failure state (F) and the complete state (c), edge that
transfers to a complete state (c), and edges that are transferred as failures from all the
components, are added. The transfer possibility of edges that lead to the failed state is
assigned as 1-R;.

The underlying state space model can have several formal representations. The most
frequently used is a Dicrete-Time Markov Chain (DTMC) to find the possibility of
the system(Goseva and Trivedi,2001).

The problem of State based models, when the number of state increase because of an
increased number of components, the number of interactions happening between
components increase. Therefore, causing a state explosion, It becomes difficult to
analyze a large software system, and The example of state-based model shows in

Figure 2.8.

16

1-R1

R, P13

1-R3

Figure 2.8 : state based model .

e Additive based models: This type consider the software architecture only
implicitly, do not consider software architecture explicitly (Goseva,2000),
(Everett,1999). Divide the system into subsystems, and each sub-system is
measured separately, where it is assumed that all the sub systems are tested

thoroughly, by adding all the sub system failure rates As(t) as follows:

AS()= AL(t) + 22(0) + +An(t). i (2.4)
The problem of this model assumes that all the sub system are operated without
architecture information exchanges.

The most of the existing models are generally useful, but they have limits. Do not
consider analyzing of reliability in the early phase, because a lack of execution
information and difficult to predict all execution paths without operating the software.
Difficulty in get quantitative results. Therefore, make the software quality better will
be limited.

17

CHAPTER 3

3.1 Observation

The state based model is suitable when analyzing systems, it expresses their
component calling relationship with a call graph, but when the components expand,
this method does not apply the Object Oriented Programming (OOP) features.

That component interaction works as a sequential process in the existing model. In
other hand, normally several components interact with each other to carry out a
certain task in the OOP. Figure 3 indicate the work in a bidirectional manner among
components.

R1p1,2

o

A

=

Figure 3 : The interaction of component.

The component transition always has the same context in the existing models. But
the process of actual components varies depending on the kind of public interface the
component provides. Thus, method level, must be taken into account. Figure 3.1

shows different usage of components.

M1

» R(m1)

M2

Rlp12 l |:> RmlPmi |:> 1 R(m2)
M3
@ R(m3)

Figure 3.1 : Component different usage.

A\ 4

A 4

3.2 Approach Overview
Considering the factors mentioned earlier, The proposed approach consist of six

stages where, first three stages focus on analysis the system to assigning the usage

18

probability for each level by using UML diagram such as use case diagram, the
activity diagram and sequence diagram. So, many of artifacts in the early phases of
the life cycle provided by UML diagrams, and the rest of stages focus on calculating
the component failure rates. Finally, we calculated the reliability and probability to
estimate reliability of each level.

3.3 Stages of the approach

3.3.1 Identify use case and actor

In stagel. We utilize use case diagram to show the operational profile. The
operational profile has been defined in chapter2. Use case diagram is a graphic
depiction of the interactions among the elements of a system. It is possible to
distinguish actor and use case. The former refers to the systems user and the later
refers to the system usage, then indicate their association (Bell,2003). The indication
[Pactor] is possibility that each actor will utilize the system, [Passociation] is the
possibility that each actor will utilize the use case, Through these, we infer the
likelihood of execution of one use case scenario which is [Puc]. Figure 3.2 shows the

operational profile in use case diagram. Equations 3, 3.1, 3.2 show the rules of

calculation
p actor (x) Puc(basey), Pextends (v,z)
P association (X,y) - -
<< extends >>
Actor 1 pactor (x)
<inehde >> © P association (x,y)
& Usecase3
P include (y,z)
P association (x,y) Actor2
Figure 3.2 : System in Use Case Diagram.
Where :
szl Puc(x) =1 e (3)
2x=1 Pactor (X) =1 eeeeeeeeeeaenn (31)
Y«—1 Passociation (x,y) =1 - (3.2)

19

In addition, in UML modeling there are more types of relationships such as inclusive
relationships and extended relationships. The relationships can be added to the model
when use case is in common in to two or more use case. According to equation 3.3.

Pinclude (x, }/) =1 ceereereenrerenns (3.3).

Moreover, the developer can use the relationship to identify that one use case
extends the behavior of another use case. Extension is a directed relationship that
specifies how and when the behavior defined in usually supplementary (optional).
Extending use case can be inserted into the behavior defined in the extended use case.
Extract relationships can be added to a model.

The probabilities of each type of use case are according to the equations 3.4, 3.5 and
3.6 are as follows:

P uc(base y) = Y,—1{P actor (x) * P association (x,y)} . (3.4)
P uc(include z) = Y, ,—1{P actor (x) * P association (x,y) * P include (y,)}.(3.5)
P uc(extend z) = Y ,—1{P actor (x) * P association (x,y) * P extends (y, z)}.(3.6)

The calculation of use case probability take all these relations into account
according to the equation 3.7.

P use case(x) = P uc(base x) + P uc(include x) + P uc(extend x) (3.7)

The proportion of derived probability in the system, Pnorm(x), is the probability that
will be used by each use case, the value can be obtained by means of equation 3.8.

p norm (x) = % (3.8)
3.3.2 Identify probability of activity
In stage2. We analysis each use case to show its activity, with assumption that one use
case scenario has one key activity list. Activity list is the procedures of processing
applied use case scenario, This activity is process unit in the test. The probability of
the activity being spread to the next activity. The model derives the probability of
activity transition possibility that includes multiple components. Figure 3.3 indicate

identify activities.

20

? Activity digram

Activity 1

v P1,2
Activity 2

v P23
Activity 3

‘

Figure 3.3 : Identifying Activities

3.3.3 Identify component Interaction

Stage3. In this stage we can determine interaction within and between components by
using a sequence diagram, each component that can be estimated was utilized by
counting the time methods of component which named (busy period). Figure 3.4

shows the process of interaction between the components and the busy period.

Sequence digram

Coml Com2

Activity 1 gl
Method 1 busy

period

Method 2 [

Figure 3.4 : Component Interactions .

3.3.4 Calculation of Component Reliability.

Stage4. Derive the sequence diagram reliability with utilized component method level
failure rate, and call count of each method (BP). The component failure rate May be
known through, either historical data, additive model or commercial off-the-shelf
software (COTS), We need to assign the method level failure rate with the component
failure rate, as the proposed model requires that. In the additive model component

failure rate At (t) at time t can be assigned as in equation 3.9.

21

A =2A1() + 22(t) + .o . FAN(D) ... (3.9)

The method failure rate (0) can be assigned by multiplying the component failure
rates by complexity weight value. Consequently, statement line number (LOC) per
method, or cyclomatic complexity can be used for the complexity weighted value.

Table 3 shows the method failure rate derivation.

Table 3 : Expected method failure rate .

Component Method Complexity Method Failure
Component | Failure Rates(f) Name Weight Rate(0)
Value(w)
Method1 | W™ §
ClassA | ...
Method2 | W™ §

We can derive the method failure rate for the scenario, according to equation 3.10 as

follows:
Mfi=1- (1 —enbr ... (3.10)

Finally, method failure rate for a scenario and component level reliability for all
components are derived from the equations 3.11, 3.12, respectively. Table 3.1 shows
the calculation process (Cortellessa et al,2002).

Table 3.1 : Expected method failure rate in a scenario.

Method Method Busy Period | Method Failure Rate in the scenario
Name Failure Rates(Count Mfl = 1- (1 — 8PP
6)
Method1 | ... | ... | .
Component Failure rate in the Scenario cfi=Ymfi ... (3.11)
Component Level Reliability Rscenario=1-Ycfi (3.12)

3.3.5 Failure rate prediction.
The probability for each activity transfer to the next activity happening after the
scenario reliability (stage 4) (Singh et al,2001). To get the probability of the activities

in the key activity diagram being executed and finished correctly, we add complete

22

and failure state. And derive the probability 1-Ri, which is the probability of transfer
happening from each activity (i) to failure. Figure 3.5 shows DTMC activity diagram.

1-Rt R1P 1,2
F
S 1ZR2
R2 P 2,3
1-R3

Figure 3.5 : Markov Chain for Activity Diagram

The probabilities of being transferred to the failure state and the component state can

be calculated with DTMC, as shown in table 3.2.

In addition, Rusecase is the probability of all activities in the key diagram being
successfully operated and transferred to complete becomes the probability of one use

case being successfully operated.

Table 3.2 : Transition Probability Metrics (Kashyap and Rana,2015) .

C F N1 N Nn
C 1 0 0 0 | 0
F 0 1 0 0 | e 0
N1 0 1-R1 0 RIPI2Z | coeeeeeneen R1,P1n
N2 0 1-R2 0 0 | e R2,P2n
Nn-1 0 1-Rn-1 0 0 Rn-1,P(n-1)j Rn-1,P(n-1)n
NN Rn 1-Rn 0 0 0 0

3.3.6 Reliability prediction of System
Finally, the reliability of the system can be achieved through multiplying Pnorm by

Rusecase. Figure 3.6 show the process and equation 3.13 as follows:

23

% Pnorm(1)*Rusecase(1) Pnorm (1)*Rusecase()

Pnorm (3)*Rusecase(?)

practor (x)
Pnorm (4) Rusecased) P " %
pactor.(x)
Figure 3.6 . System Reliability Calculation
Rsystem = Y{Pnorm(x) * Rusecase(x)} (3.13)

Where, Pnorm is a normalization of each use case’s execution probability and

Rusecase is the use case successfully operating.

24

CHAPTER 4

4.1 The goal of experiment

Here, we carried out a case study of software system to find out whether the suggested
approach was valid, and the technique is applicable in the early stage or not. Then the
predicted result will be compared to the reliability derived by the black box model in
the actual testing phase.

4.2 The environment of experiment

Parking garage automation (reserve your spot) (Edwards et al). Figure 4 shows the
software in general. The system will allow customer to place online reservations that
include date, time and duration of stay. The garage is also being remodeled so that
the parking decks above ground level will be accessible only by an elevator that will
lift vehicles to different decks. The garage relies on camera based license plate
recognition software to track vehicles as they enter and exit the garage. Additionally,
the garage also employs sensors on the parking spots to recognize which spots have
been occupied and which is free.

If the software cannot recall the necessary information or if the license plate
recognition software is not able to read the license plate, the elevator will not function
and the software would prompt the customer to manually input their membership
number at the terminal next to the vehicle elevator for it to proceed.

If a registered customer forgets to make a reservation and decides to use the garage,
he may be allowed to take a walk-in parking spot without a registration if there are
any available spots. These types of customers are known as walk-in customers. If the
software recognizes the vehicle registration number but cannot find an existing
reservation to the customer who owns the vehicle the customer will have to specify

the expected duration and time of departure using the terminal at the vehicle elevator.

==

S3. Occupancy photosensor

—
Elevator keypad /

s2.

Satcaniera

%

Figure 4 : system application.

25

In order to restrict people from making reservations they cannot meet, the system has
broken down reservations into two groups, confirmed and guaranteed. A confirmed
reservation is when a registered used places a reservation, but does not have a credit
card on file. A guaranteed reservation is when a registered customer has done the
same, but has a credit card on file and uses it when placing their reservation.

If a customer with a confirmed reservation fails to show up after reserving a spot,
the spot will be held reserved for a 30-minute grace period, in during which the
customer can park on his reserved spot and be billed for the full reserved period. If the
customer does not show up to claim his spot during the grace period, the parking spot
will be marked unreserved. With a guaranteed reservation, the customer can arrive to
their spot anytime during the requested interval and will be charged to their card for
that interval. Figure 4.1 show parking garage automation use case diagram. And

Figure 4.2 show system sequence diagram for use case 1.

F—

System Adrrin

Figure 4.1: Parking Garage Automation Use Case Diagram

26

system sequence diagram UC_1

A l

system |
Regersterd
customer
select function (" make reservation™)
=
\
\ prompt for reservation info H
< :
enter reservation info i
<
'4
[
| verify
reservation

single reservation made

™
€
i

Figure 4.2: system sequence diagram for use case 1.

The main objective is designing a sophisticated system that maximizes occupancy
and profit while allowing the customer to easily get access to his vehicle. This means
the equipment design and even components of the product should follow a fully
described documentation process and the device should meet strict standards of
documentation, developmental testing, production testing, and maintenance. If there is
wrong or system halt due to software calculation error or bugs, the system can
automatically shutdown. As a result, the system guarantees high reliability.

4.3 Stages of the experiment

The experiment was carried out as shown in Figure 4.3. The first step is to
extract the design artifacts, such as the use case, sequence and activity diagram
based on requirements, and architectural specification.

The test target have been formed with 100 revision on the source repository and
chose the list of modification changes that happened due to bug/fix to count each
revisions and each classes number of faults. Based on this failure information, it has
been derived the failure and the system failure data. The tool have been used
(SRTpro) software reliability tool professional to extract the results by the tester of
project (Park and Baik,2015).

27

The approach mentioned in chapter 3 will be applied on project-related datasets
Parking garage automation as extracting the results. There will be also a copy of data
sets in the appendices.

The data of the black box model reliability has been compared it with the data of the
proposed model results, and the additive model results.

Finally, Unlike the black box model and the additive model, the proposed model
can be distinguished through a real applied result that reliability simulation due to

operational profile change. Figure 4.3 shows the Procedures of Experiment.

Project artifact Repositry
Requirements Architecture Implemented Faul
documentatio specification code .au :
\ \ historv

NANE

v \ vy Models \ v Classes Data
Use case Activity Sequence
diagram diagram diagram
Classes failure data
Probabilitv Classes
reliability
A 4
Classes Additive
Proposed Model reliability Model
OE—1

Reliability by

Reliability by
Proposed Model

Reliability Simulation
for Operational
profile

Additive Model

Figure 4.3: Procedures of Experiment.
4.4 The results of the experiment
The proposed model can be derived the system reliability by classes failure data
derived from the design model and repository which that producible from early phase
artifacts. The comparison of these data with the data derived from the additive model
and the black box model to confirm accurately how can the system reliability can be

predicted, as seen in Table 4.

28

Table 4 : Experimental results

Approach Yamada Additive Model | Proposed Model

Model Type | Black box model | White box model | White box model
System 0.9832 0.9571 0.9658

Reliability

Difference - 2.61% 1.74%

4.4.1 Black box model (Yamada)
The analysis of the failure data derived from the software repository, can see
cumulative failure count an S-shaped curve (black box). The system reliability result
derived through the Yamada S-shaped model is 0.9832
4.4.2 Additive model
The additive model derives the failure intensity simply with the sub-system (classes)
failure intensity. The sum of these component failure rates is 0.429 and the entire
system reliability according to the following:
assuming, the tests was run ten times (0.429/10 = 0.0429), then system reliability is
(1-0.0429 = 0.9571).

Table 4.1 : Classes Failure

Class Name Fl

Camera Operator 0.0861
Elevator Operator 0.0587
Sensor Operator 0.0116
Status Display 0.0168
Controller 0.0662
Authorization 0.0120
Account 0.0396

Reservation 0.003

Customers 0.0054
Garage 0.0200
Car 0.0041
PGAfirst 0.1055
TOTAL 0.429

29

4.4.3 Proposed model

Table 4.2 : Probability of actor usage

The reliability of the project with the proposed approach as explained in chapter 3, by
analyzing the operational profile of the system by the session. It is clear that the ratio
of the use of each actor to the system, as well as the proportion of the use of each
actor to use case, which is known as association probability. By analyzing the session
for 100 users, the possibilities in the tables below were determined. Tables 4.2 and 4.3

show actors probability and association probability, to derive system use case.

Actor Times utilize system | P actor
Registered Customer 53 0.53
Unregistered Customer 20 0.2
System Admin 7 0.07
Elevator Keypad 4 0.04
Elevator Display 4 0.04
Elevator Camera 4 0.04
Spot Sensors 5 0.05
Exit Camera 1 0.01
Timer 2 0.02

Table 4.3 : Association probability

Actor Times | Use Case | P association P uc (x)
(xy)

Registered Customer 20 Ul 0.377 0.53*0.377*100
=19.981

Registered Customer 15 U2 0.283 0.53*0.283*100
=14.999

Registered Customer 10 U3 0.189 0.53*0.189*100
=10.017

Registered Customer 5 U4 0.094 0.53*0.094*100
=4.982

Registered Customer 1 us 0.019 0.53*0.019*100
=1.007

30

Registered Customer 2 U9 0.038 0.53*0.038*100
=2.014
Unregistered Customer 3 U2 0.15 0.20*0.15*100
=3
Unregistered Customer 17 U5 0.85 0.20*0.85*100
=17
System Admin 7 U6 1 0.07*1*100=7
Elevator Keypad 4 U2 1 0.04*1*100=4
Elevator Display 4 U2 1 0.04*1*100=4
Elevator Camera 4 U2 1 0.04*1*100=4
Spot Sensors 5 U2 1 0.05*1*100=5
Exit Camera 1 U2 1 0.01*1*100=1
Timer 2 u13 1 0.02*1*100=2
Registered Customer - U2 ->U10 0.283 0.53*0.283*1*100
=14.999
Registered Customer - u3->Ul10 0.189 0.53*0.189*1*100
=10.017
Registered Customer - U4 ->U10 0.094 0.53*0.094*1*100
=4.982
Registered Customer - U4 ->U7 0.094 0.53*0.094*1*100
=4.982
Registered Customer - Ul->U10 0.377 0.53*0.377*1*100
=19.981
Registered Customer - us ->Uu10 0.019 0.53*0.019*1*100
=1.007
Unregistered Customer - U2 ->U10 0.15 0.20*0.15*1*100
=3
System Admin - U6 - > U10 1 0.07*1*1*100=7
System Admin - U6 - > U1l 0.5 0.07*1*0.6*100
=4.2
System Admin - U6 - > U12 0.5 0.07*1*0.4*100
=238
Total 165.968

31

Table 4.4 shows each use case's working probability

Table 4.4 : Use case usage of system

Use Case System Use Case P norm (X)
Ul Reserve (19.981/165.968)*100
=13.039
U2 Park (35.999/165.968)*100
=21.690
U3 Manage Account (10.017/165.968)*100
= 6.035
U4 View Reservation (4.982/165.968)*100
=3.001
U5 Register (17/165.968)*100
=10.242
U6 Manage Garage (7/165.968)*100
= 4218
u7 Edit Reservation (4.982/165.968)*100
= 3.001
us Register Vehicle (1.007/165.968)*100
= 0.607
U9 Edit Vehicle (2.014/165.968)*100
= 1.213
uU10 Authenticate User (59.979/165.968)*100
= 36.139
U1l Set Prices (4.2/165.968)*100
= 2.530
ul12 Inspect Usage History (2.8/165.968)*100
=1.867
uU13 Monthly Billing (2/165.968)*100
= 1.205

Calculating each use case reliability using the DTMC obtained in step 5 (see Table

4.7). Where, the value of classes failure rate was calculated of similar classes

32

in

other similar systems and the cyclomatic complexity number (CCN) is used to obtain

the value complexity of method. Tables 4.5 and 4.6 indicate the calculation method

respectively, and for further details see chapter 3 stage 4.

Table 4.5 : Expected Failure Rate Methods for Use case 1

Class Complexity Expected
Class Failure Method Weight Failure Of
Rate (F) Value (W) | Each Method
(6)
Make 4 0.012
reservation
Available 3 0.009
Reservation 0.003 reservations
Specific_ 2 0.006
date and time
Set reservation 2 0.006
Table 4.6 : Class Failure Rate for Use case 1
Expected Method
Method Failure Of Busy Failure Rate
Each Method | period In The Results
(0) Scenario
Make 0.012 2 1-(1-0.012)A2 0.0238
reservation
Available_ 0.009 2 1-(1-0.009)A2 0.0179
reservations
Specific_ 0.006 2 1-(1-0.006)A2 0.0119
date and time
Set reservation 0.006 1 1-(1-0.006)A1 0.006

The probability of transition Pi,j between the modules or methods, Ni and Nj be :

33

according to the probability of transition between methods during the examination of
100 cases, thus :

Transition from (Make reservation) to (Available_reservations) was (100) times, so
P12=1 and transition from (Available_reservations) to (Specific_ date and time)
was (100) times, so P23=1 , P34=1.00

And calculate the reliability of each transition are :

R Pi2= 1*0.9762 , RP23=1*%09821 , R P34=1.00*0.9881

Table 4.7 is the same as the transition matrix, and to avoid confusion we will refer to

it matrix W. Thus, the matrix W represents scenario reliability for use case 1 and

also transition matrix.

Table 4.7 : Scenario Reliability for Use case 1

ul. C F 1 2 3 4

C 1 0 0 0 0 0

F 0 1 0 0 0 0

1. Make reservation 0 0.0238 | 0 |0.9762 0 0

2. Available 0 0.0179| O 0 0.9821 0
reservations

3. Specific_ 0 0.0119| O 0 0 0.9881

date and time

4. Set reservation | 0.994 | 0.006 | O 0 0 0

If we derived the probability of control being transferred to complete by using
DTMC, it can be shown that (Cheung,1980).

1 0
0 1
0 0.0238
0 0.0179
0 0.0119
0.994 0.0060

(=2 e>Ji e Bl en R e B o)

Then extract the matrix Q which represents the following :

34

0 0.9762 0 0
0= 0 0 0.9821 0

1o 0 0 0.9881
0 0 0 0

To solve matrix Q we apply the equation 4.1

R=S@ANRN ., (4.1) (Cheung,1980).
Where, S=[(I1—Q)~!], and I is Identity Matrix
R = S(1,4) R4
(1)*(0.994) = 0.994.

The result 0.994 that reached by this method, we derived the entire use case reliability
is displayed in Table 4.7.

The system reliability derived with the proposed model is 96.58, which is within
of the reliability result derived from black box model. Table 4.8 shows the results

Table 4.8 : System Reliability

P R P*R
Reserve 13.039 0.994 12.960
Park 21.690 0.9252 20.067
Manage Account 6.035 0.9011 5.438
View Reservation 3.001 0.0059 2.793
Register 10.242 0.9000 9.217
Manage Garage 4.218 0.8113 3.422
Edit Reservation 3.001 0.8823 2.647
Register Vehicle 0.607 0.9655 0.586
Edit Vehicle 1.213 0.8622 1.045
Authenticate User 36.139 0.9300 33.609
Set Prices 2.530 0.8012 2.027
Inspect Usage History 1.867 0.8500 1.586
Monthly Billing 1.205 0.9210 1.109
SYSTEM RELIABILITY 96.58

35

Figure 4.4 shows the graphical diagram for system reliability.

Syatem Reliability

Figure 4.4: Graphical diagram for system reliability.

In general, The proposed model calculate the entire system reliability by deriving the
reliability and probability of each system usage level, system activity level, and
component interaction level. When, developing the early phase of the system, is hard
to accurately predict the operational profile. So, the approach can run a simulation to
derive the change of the system reliability due to these types of profile changes.

36

CHAPTER 5

5.1 Conclusions and future research

The first chapter presents a summary of the study and demonstrates its aspects,
objectives, limitations, and the adopted methodology. The second chapter includes a
review of relevant prior studies, definitions, software reliability, and as well as adding
the interrelation among reliability models and displays the concepts related to white
and black boxes. Furthermore, it demonstrates the concept of operational profile and
its impact on measuring the reliability, which was ignored in many previous studies.
This concept is a fundamental prop in this study. The third chapter represents
approach supports early prediction of software reliability, as it is the main task. This
approach consists of six main steps by which prediction of software reliability. The
fourth chapter lies in the case study to evaluate the approach applicability. Parking
garage automation, Through the experiment, the prediction of the approach was
evaluated by comparison with existing models the Yamada S-shaped black box model
and the additive model. The experimental results show that the proposed method can
simulate reliability changes that occur due to operational profile change.

We have encountered some difficulties in terms of shortage of information about the
system and its components in an early stage of development. This problem led to
difficulty in discovery the source of available information at designing time, which
means that it requires understanding the system behavior first. It also caused trouble
in applying appropriate mathematical equations, as the study is concerning software
engineering. Thus, it necessitates deeper research for the basics of statistics and
mathematics in order to reach precise results.

This work paves the way for more research. The obtained evaluation results indicate
that this method will provide prediction of software reliability in the context of early
stages of its development. It will also concentrate the future research in finding out
hybrid methodology of integrating the information from different sources. Introducing
hierarchical method will have another scope in research about software reliability.
Accuracy of predictions also needs improvement through sensitivity analysis.

Generally, Software-related environment changes rapidly in unpredictable manner.
Therefore, reliability of software has to be predicted through the operational profile

effect. In design of the early stage of the system, the prediction of operational profile

37

accuracy is difficult. This, in turn, leads to changes in the operational appearance of
the test and the operational stage. The proposed method can run an simulate to extract

the system reliability change due to these types of changes in operational profile.

38

References :

=
1

4

ol
1

\‘
1

(0 0]
1

10-

11-

12-

Khan, H.H. and Malik, M.N., 2017. Software Standards and Software
Failures: A Review With the Perspective of Varying Situational
Contexts. IEEE Access, 5, pp.17501-17513.

Lyu, M.R., 1996. Handbook of software reliability engineering.

Alrmuny, D., 2014, April. A Comparative Study of Test Coverage-Based
Software Reliability Growth Models. In Information Technology: New
Generations (ITNG), 2014 11th International Conference on (pp. 255-259).
IEEE.

Krajcuskova, Z., 2007, April. Software reliability = models.
In Radioelektronika, 2007. 17th International Conference (pp. 1-4). IEEE.

Everett, W.W., 1999. Software component reliability analysis. In Application-
Specific Systems and Software Engineering and Technology, 1999.
ASSET'99. Proceedings. 1999 IEEE Symposium on (pp. 204-211). IEEE.

Krka, I., Edwards, G., Cheung, L., Golubchik, L. and Medvidovic, N., 2009. A
Comprehensive Exploration of Challenges in Architecture-Based Reliability
Estimation, Architecting Dependable Systems V1.

Blischke, W.R. and Murthy, D.P., 2011. Reliability: modeling, prediction, and
optimization (Vol. 767). John Wiley & Sons.

Parnas, D.L., 1975, April. The influence of software structure on reliability.
In ACM SIGPLAN Notices (Vol. 10, No. 6, pp. 358-362). ACM.

Hamlet, D., 1992. Are we testing for true reliability?. IEEE software, 9(4),
pp.21-27.

Tausworthe, R.C. and Lyu, M.R., 1996. A generalized technique for
simulating software reliability. IEEE Software, 13(2), pp.77-88.

Yang, M.C. and Chao, A., 1995. Reliability-estimation and stopping-rules for
software testing, based on repeated appearances of bugs. IEEE Transactions
on Reliability, 44(2), pp.315-321.

Dimov, A., Chandran, S.K. and Punnekkat, S., 2010, June. How do we collect
data for software reliability estimation?. In Proceedings of the 11th

39

International Conference on Computer Systems and Technologies and
Workshop for PhD Students in Computing on International Conference on
Computer Systems and Technologies (pp. 155-160). ACM.

13-Chen, M.H., Horgan, J.R., Mathur, AP. and Rego, V.J., 1992. A
time/structure based model for estimating software reliability. Purdue
University, SERC-TR-117-P.

14- Murphy, B. and Gent, T., 1995. Measuring system and software reliability
using an automated data collection process. Quality and reliability engineering
international, 11(5), pp.341-353.

15- Mannhart, A., Bilgic, A. and Bertsche, B., 2007, January. Modeling expert
judgment for reliability prediction-comparison of methods. In Reliability and
Maintainability Symposium, 2007. RAMS'07. Annual (pp. 1-6). IEEE.

16- Goseva-Popstojanova, K. and Trivedi, K., 2000. Architecture based software

reliability.

17- Shanmugam, L. and Florence, L., 2012. An overview of software reliability
models. International Journal of Advanced Research in Computer Science and

Software Engineering, 2(10).

18- Avizienis, A., Laprie, J.C., Randell, B. and Landwehr, C., 2004. Basic
concepts and taxonomy of dependable and secure computing. IEEE
transactions on dependable and secure computing, 1(1), pp.11-33.

19-Musa, J.D., 1993. Operational profiles in software-reliability
engineering. IEEE software, 10(2), pp.14-32.

20- Gokhale, S.S. and Trivedi, K.S., 2006. Analytical models for architecture-
based software reliability prediction: A unification framework. IEEE
Transactions on reliability, 55(4), pp.578-590.

21- Gokhale, S.S., 2007. Architecture-based software reliability analysis:
Overview and limitations. IEEE Transactions on dependable and secure
computing, 4(1).

22- Brosch, F., Koziolek, H., Buhnova, B. and Reussner, R., 2012. Architecture-
based reliability prediction with the palladio component model. IEEE
Transactions on Software Engineering, 38(6), pp.1319-1339.

40

23- Distefano, S. and Puliafito, A., 2009. Dependability evaluation with dynamic
reliability block diagrams and dynamic fault trees. IEEE Transactions on

Dependable and Secure Computing, 6(1), pp.4-17.

24-Cortellessa, V., Singh, H. and Cukic, B., 2002, July. Early reliability
assessment of UML based software models. In Proceedings of the 3rd

international workshop on Software and performance (pp. 302-309). ACM.

25-Rodrigues, G.N., Rosenblum, D.S. and Uchitel, S., 2005, January. Using
Scenarios to Predict the Reliability of Concurrent Component-Based Software
Systems. In FASE (Vol. 5, pp. 111-126).

26- Gokhale, S.S. and Trivedi, K.S., 2002. Reliability prediction and sensitivity
analysis based on software architecture. In Software Reliability Engineering,
2002. ISSRE 2003. Proceedings. 13th International Symposium on (pp. 64-
75). IEEE.

27-Reussner, R.H., Schmidt, H.W. and Poernomo, I.H., 2003. Reliability
prediction for component-based software architectures. Journal of systems and
software, 66(3), pp.241-252.

28- Everett, W.W., 1999. Software component reliability analysis. In Application-
Specific Systems and Software Engineering and Technology, 1999.
ASSET'99. Proceedings. 1999 IEEE Symposium on (pp. 204-211). IEEE

29- Karanta, 1., 2006. Methods and problems of software reliability
estimation. VTT WP, 63, p.57.

30- Kashyap, E. and Rana, A., 2015, December. A Comparative Study of S-shape
and Concave Software Reliability Growth Models. In Computational
Intelligence and Communication Networks (CICN), 2015 International
Conference on (pp. 1452-1455). IEEE.

31-Aggarwal, G. and Gupta, V.K. 2014. Software Reliability Growth
Model. International Journal of Advanced Research in Computer Science and
Software Engineering, 4(1).

32- Mohd, R. and Nazir, M., 2012. Software reliability growth models: Overview
and applications. InJournal of Emerging Trends in Computing and

Information Sciences VOL.

41

33- Shooman, M.L., 1976, October. Structural models for software reliability
prediction. In Proceedings of the 2nd international conference on Software

engineering (pp. 268-280). IEEE Computer Society Press.

34- Goseva-Popstojanova, K. and Trivedi, K.S., 2001. Architecture-based
approach to reliability assessment of software systems. Performance
Evaluation, 45(2), pp.179-204.

35-An, J. and Zhu, J., 2010, June. Software reliability modeling with integrated
test coverage. In Secure Software Integration and Reliability Improvement
(SSIRI), 2010 Fourth International Conference on (pp. 106-112). IEEE.

36-Gokhale, S.S. and Trivedi, K.S., 1999. A time/structure based software
reliability model. Annals of Software Engineering, 8(1-4), pp.85-121.

37-Edwards, M., Wasserman, E., Hassan, A. and Antialon, J., System

Specification and Design: Parking Garage Automation. Interaction, 50, p.50.

38- Park, J. and Baik, J., 2015. Improving software reliability prediction through
multi-criteria based dynamic model selection and combination. Journal of
Systems and Software, 101, pp.236-244.

39-Cheung, R.C., 1980. A user-oriented software reliability model. IEEE
transactions on Software Engineering, (2), pp.118-125.

40- Singh, H., Cortellessa, V., Cukic, B., Gunel, E. and Bharadwaj, V., 2001,
November. A bayesian approach to reliability prediction and assessment of
component based systems. In Software Reliability Engineering, 2001. ISSRE
2001. Proceedings. 12th International Symposium on (pp. 12-21). IEEE.

41- Yacoub, S.M., Cukic, B. and Ammar, H.H., 1999. Scenario-based reliability
analysis of component-based software. In Software Reliability Engineering,

1999. Proceedings. 10th International Symposium on (pp. 22-31). IEEE.

42-Bell, D., 2003. UML basics: An introduction to the Unified Modeling
Language. The Rational Edge.

42

Appendix A

Dataset for using operational profile in general

Project_name Parking Garage Automation

Produced by Matt Edwards, Eric Wasserman, Abdul Hassan, Juan Antialon

Tested by State Of Flow , Eclipse Metrics

Activity User_Type Date Exec_time Logon_type Remote

1 Registered Customer Hit#H#H HHHHH direct HHHHH
2 Admin Hit# HitHH direct HiHH#
3 Registered Customer HHH HHHHH direct HHHH
4 Elevator Camera T HiHHH# direct it
5 Elevator Display HitH# HitHHE direct HitHH
6 Elevator Keypad HiH# HitHHE direct HitHHE
7 Registered Customer HHH HiHHH direct HiHHH
8 Registered Customer HHH HHHH direct HiHHH
o] Registered Customer HHH HiHHH direct HiHHH
10 Registered Customer HitH# HitHHE direct HitHHE
11 Registered Customer HiHH HHHHH direct HHHHH
12 New_Cust HitHH HHHHH direct HHHHH
13 Registered Customer Tt HiHHH# direct HiHHH#
14 New_Cust HitHH HHHHH direct HHHHH

43

Activity User_Type Date Exec_time Logon_type Remote
15 Admin HiH# HAHHH direct HAHHH
16 New_Cust HitH# HiHHE direct HiHHHE
17 New_Cust HitH# HiHHE direct HiHHHE
18 Registered Customer HH#H#H HiHHH direct HitHHH
19 Registered Customer HitH# HitHH# direct HitHH#
20 Registered Customer HitH# HitHH# direct HitHH#
21 Registered Customer HitH# HitHH# direct HitHH#
22 New_Cust HitH#H HHHHH direct HHHHH
23 Exit Camera HitHH Hitt direct HitiH
24 New_Cust HitH#H HHHHH direct HHHHH
25 Registered Customer HitH# HitHHE direct HitHH
26 Registered Customer HiH# HitHHE direct HitHHE
27 Registered Customer HiH# HitHHE direct HitHH
28 New_Cust HiH# HHHHH direct HHHHH
20 Registered Customer HitH# HitHH#H direct HitH##H
30 Registered Customer HitH# HitHH#H direct HitH##H
31 Registered Customer T HiHHH# direct it
32 New_Cust HitHH HHHHH direct HHHHH
33 Spot Sensor HitHH HHHHH direct HHHHH
34 Timer HiHH Hit direct Hi
35 New_Cust HitH# HiHHH direct HiHHH
36 Registered Customer HHH HHHH direct HiHHH

44

Activity User_Type Date Exec_time Logon_type Remote
37 New_Cust HiH# Hithi direct Hithi#
38 New_Cust HitH# HiHHE direct HiHHHE
39 Registered Customer HHH#H HiHHH direct HitHHH
40 Elevator Camera HH#H#H HiHHH direct HitHHH
41 Elevator Display HHH HHHH direct HHHH
42 Elevator Keypad HHH HHHH direct HHHH
43 Registered Customer HitH# HitHH# direct HitHH#
44 New_Cust HitH#H HHHHH direct HHHHH
45 Elevator Camera HHH HHHH direct HiHHH
46 Elevator Display HHH HHHH direct HiHHH
47 Elevator Keypad HitH# HitHHE direct HitHH
48 Spot Sensor HiH# Hithid direct it
49 Registered Customer HiH# HitHHE direct HitHH
50 Registered Customer HitH# HitHH#H direct HitH##H
51 Registered Customer HitH# HitHH#H direct HitH##H
52 Spot Sensor HiHH HHHH direct HHHH
53 Registered Customer T HiHHH# direct it
54 Registered Customer HiHH HHHHH direct HHHH
55 Admin HitH# HitH##H direct HitH##H
56 Registered Customer HHH HHHH direct HiHHH
57 Registered Customer HHH HHHH direct HiHHH
58 Registered Customer HHH HHHH direct HiHHH

45

Activity User_Type Date Exec_time Logon_type Remote
59 Registered Customer HHH HHHH direct HiHHH
60 Registered Customer HHH#H HiHHH direct HitHHH
61 Admin HuttH HiHHE direct HiHHHE
62 New_Cust HitH# HiHHE direct HitHiH
63 Registered Customer HitH# HitHH# direct HitHH#
64 New_Cust T HiHHE direct HitHHH
65 Spot Sensor Hit#H#H HHHHH direct HHHHH
66 Registered Customer HHH HHHH direct HiHHH
67 Registered Customer HHH HHHH direct HiHHH
68 Registered Customer HHH HHHH direct HiHHH
69 Registered Customer HHH HiHHH direct HiHHH
70 Registered Customer HiH# HitHHE direct HitHHE
71 Registered Customer HiH# HitHHE direct HitHH
72 Registered Customer T HiHHH# direct it
73 Admin HiH# HHHHH direct HHHHH
74 Admin HiHH HHHH direct HHHH
75 Elevator Camera T HiHHH# direct it
76 Elevator Display HiHH HHHHH direct HHHH
77 Elevator Keypad HiHH HHHHH direct HHHH
78 Spot Sensor HH#H HHHHH direct HHHHH
79 New_Cust Hith HitHitH direct Hithith
80 Registered Customer HHH HHHH direct HiHHH

46

Activity User_Type Date Exec_time Logon_type Remote
81 Registered Customer HitH# HitHH direct HitHH
82 Registered Customer HHH#H HiHHH direct HitHHH
83 Timer HitH# HiHHE direct HiHHHE
84 Registered Customer HH#H#H HiHHH direct HitHHH
85 Registered Customer HitH# HitHH# direct HitHH#
86 Registered Customer HitH# HitHH# direct HitHH#
87 Registered Customer HitH# HitHH# direct HitHH#
88 Registered Customer HHH HHHH direct HiHHH
89 Registered Customer HHH HHHH direct HiHHH
90 New_Cust HitH#H HHHHH direct HHHHH
91 Registered Customer HitH# HitHHE direct HitHH
92 New_Cust HiH# Hithid direct it
03 New_Cust HitH#H HHHHH direct HHHHH
94 Admin HiH# HHHHH direct HHHHH
95 Registered Customer HitH# HitHH#H direct HitH##H
96 Registered Customer HitH# HitHH#H direct HitH##H
97 Registered Customer T HiHHH# direct it
o8 New_Cust HitHH HHHHH direct HHHHH
99 Registered Customer HiHH HHHHH direct HHHHH
100 New_Cust Hith HitHitH direct Hithith

47

Appendix B

Dataset for using operational profile in details

User_Type Method Times
Make_reservation 20
Open_elevator 15
] get_info 10
Registered Customer ;
getreservation 5
Add_ vehicle 1
Update_ vehicle 2
total = 53
pay_walk in 3
New_Cust Create_account 17
total = 20
Update_acc 1
Admin Update_gar 1
setprice 3
Calculate_delay 2
total =7
‘ Timer ‘ Notice_time ‘ 2
total = 2
‘ Elevator Camera ‘ Identify_ license plate ‘ 4
total=4
‘ Elevator Display ‘ Open_elevator ‘ 4

48

User_Type

Method Times

total=4

‘ Elevator Keypad ‘ Open_elevator ‘ 4
total =4

| Exit Camera | Display _exit camera \ 1
total=1

‘ Spot Sensor ‘ setspot occupied ‘ 5
total =5

49

Appendix C

Dataset for methods in the project

Index
Short Name Full Name
cC Cyclomatic Complexity
LOCm Lines of Code in Method
NLS Number of Locals in Scope
NOL Number of Levels
NOP Number of Parameters
BB Busy Period
NOS Number of Statements

N Methods Metrics Values
Method _number Method _name CcC NLS | NOL | BP
1 1.1 Make_reservation 4 4 3 2
2 1.2 Available_reservations 3 2 2 2
3 1.3 Specific_date and time 2 2 2 2
4 1.4 setreservation 2 2 2 1
5 2.1 Open_elevator 2 2 2 2
6 2.2 Identify_license plate 3 2 2 2
7 2.3 getplate 3 2 1 1

50

Methods

Metrics Values

N
Method _number Method _name CcC NLS | NOL | BP
8 2.4 Assign _parking spot 2 2 1 2
9 2.5 Display_ parking spot 2 2 1 2
10 2.6 Display_ camera elevator 2 2 1 2
11 2.7 Display_ sensor assign 2 2 1 2
12 2.8 setspot occupied 1 2 1 2
13 2.9 pay_walk in 3 3 1 3
14 2.10 Display _exit camera 2 1 1 2
15 2.11 Spot _sensor free 2 1 1 1
16 2.12 setspot unoccupied 1 1 2 2
17 3.1 get_info 1 1 1 1
18 3.2 Display_info 2 1 1 1
19 33 Valid_info 2 1 1 1
20 3.4 setinfo 1 1 1 1
21 4.1 getreservation 1 1 1 2
22 5.1 Create_account 3 2 1 2
23 5.2 valid_info 2 1 1 1
24 5.3 setinfo 1 1 2 1
25 6.1 Add_manger 3 1 2 1
26 6.2 Update_acc 3 2 2 1
27 6.3 Add_gar 2 2 2 1
28 6.4 Update _gar 1 2 2 1
29 6.5 setprice 4 1 2 2
30 6.6 Calculate_delay 5 2 2 2

51

Methods

Metrics Values

N
Method _number Method _name CcC NLS | NOL | BP
31 6.7 Del_ customer 2 2 2 2
32 6.8 valid_info 1 1 2 1
33 7.1 Update_ reservation 2 1 2 2
34 7.2 Valid_info 1 1 2 1
35 7.3 Del_ reservation 2 1 2 1
36 8.1 Add_ vehicle 2 1 2 2
37 8.2 Valid_info 1 1 1 1
38 8.3 setinfo 1 1 1 1
39 9.1 Display_info 1 1 1 1
40 9.2 Update_ vehicle 2 1 1 2
Ly 9.3 Del_ vehicle 2 1 1 2
42 9.4 Valid_data 1 1 1 1
43 9.5 setvehicle 1 1 1 2
44 10.1 Fill_data 2 1 1 1
45 10.2 Valid_data 1 1 1 1
46 10.3 getdata 2 1 1 1
47 104 Display_info 2 1 1 1
48 11.1 Gar_location 2 1 1 1
49 11.2 Confirm_reservation rate 2 1 1 1
50 11.3 Penalty fees 3 3 1 2
51 114 setprice 1 1 1 2
52 11.5 getinfo 1 1 1 1
53 11.6 Valid_info 1 1 1 1

52

Methods

Metrics Values

N
Method _number Method _name CcC NLS | NOL | BP
54 11.7 setinfo 1 1 1 1
55 12.1 Search_criteria 2 1 1 2
56 12.2 gethistory 3 1 1 2
57 12.3 vaild_info 2 1 1 1
58 12.4 setinfo 2 1 1 1
59 13.1 Notice_time 3 1 1 2
60 13.2 getcustomers 3 1 1 2
61 13.3 setinfo 2 1 1 1
62 134 Send_Email 2 1 1 2

53

Appendix D

Dataset for methods transition and related

Meth Use Case Class Failure Intensity of Execution
N . . State | Meth _Num .
_Num associated associated class Times
1 1.1 Reserve Reservation 0.003 non 1.1 0
2 1.1 Reserve Reservation 0.003 To 1.2 100
3 1.1 Reserve Reservation 0.003 To 1.3 0
4 1.1 Reserve Reservation 0.003 To 1.4 0
5 1.2 Reserve Reservation 0.003 To 1.1 0
6 1.2 Reserve Reservation 0.003 non 1.2 0
7 1.2 Reserve Reservation 0.003 To 1.3 100
8 1.2 Reserve Reservation 0.003 To 14 0
9 13 Reserve Reservation 0.003 To 1.1 0
10 1.3 Reserve Reservation 0.003 To 1.2 0
11 1.3 Reserve Reservation 0.003 non 1.3 0
12 1.3 Reserve Reservation 0.003 To 1.4 100
13 1.4 Reserve Reservation 0.003 - - -
14 2.1 Park Elevator Operator 0.0587 non 2.1 0
15 2.1 Park Elevator Operator 0.0587 To 2.2 86
16 2.1 Park Elevator Operator 0.0587 To 2.3 0
17 2.1 Park Elevator Operator 0.0587 To 2.4 0
18 2.1 Park Elevator Operator 0.0587 To 2.5 0
19 2.1 Park Elevator Operator 0.0587 To 2.6 0
20 2.1 Park Elevator Operator 0.0587 To 2.7 0
21 2.1 Park Elevator Operator 0.0587 To 2.8 0

54

Meth Use Case Class Failure Intensity of Execution
N . . State | Meth _Num .
_Num associated associated class Times

22 2.1 Park Elevator Operator 0.0587 To 2.9 14
23 2.1 Park Elevator Operator 0.0587 To 2.10 0
24 2.1 Park Elevator Operator 0.0587 To 2.11 0
25 2.1 Park Elevator Operator 0.0587 To 2.12 0
26 2.2 Park Camera Operator 0.0861 To 2.1 0
27 2.2 Park Camera Operator 0.0861 non 2.2 0
28 2.2 Park Camera Operator 0.0861 To 2.3 100
29 2.2 Park Camera Operator 0.0861 To 2.4 0
30 2.2 Park Camera Operator 0.0861 To 2.5 0
31 2.2 Park Camera Operator 0.0861 To 2.6 0
32 2.2 Park Camera Operator 0.0861 To 2.7 0
33 2.2 Park Camera Operator 0.0861 To 2.8 0
34 2.2 Park Camera Operator 0.0861 To 2.9 0
35 2.2 Park Camera Operator 0.0861 To 2.10 0
36 2.2 Park Camera Operator 0.0861 To 2.11 0
37 2.2 Park Camera Operator 0.0861 To 2.12 0
38 2.3 Park Camera Operator 0.0861 To 2.1 0
39 2.3 Park Camera Operator 0.0861 To 2.2 0
40 2.3 Park Camera Operator 0.0861 non 2.3 0
41 2.3 Park Camera Operator 0.0861 To 2.4 100
42 2.3 Park Camera Operator 0.0861 To 2.5 0
43 2.3 Park Camera Operator 0.0861 To 2.6 0
44 2.3 Park Camera Operator 0.0861 To 2.7 0
45 2.3 Park Camera Operator 0.0861 To 2.8 0
46 2.3 Park Camera Operator 0.0861 To 2.9 0

55

Meth Use Case Class Failure Intensity of Execution
N . . State | Meth _Num .
_Num associated associated class Times

47 2.3 Park Camera Operator 0.0861 To 2.10 0
48 2.3 Park Camera Operator 0.0861 To 2.11 0
49 2.3 Park Camera Operator 0.0861 To 2.12 0
50 24 Park Sensor Operator 0.0116 To 2.1 0
51 2.4 Park Sensor Operator 0.0116 To 2.2 0
52 2.4 Park Sensor Operator 0.0116 To 2.3 0
53 2.4 Park Sensor Operator 0.0116 non 2.4 0
54 2.4 Park Sensor Operator 0.0116 To 2.5 100
55 2.4 Park Sensor Operator 0.0116 To 2.6 0
56 2.4 Park Sensor Operator 0.0116 To 2.7 0
57 2.4 Park Sensor Operator 0.0116 To 2.8 0
58 2.4 Park Sensor Operator 0.0116 To 2.9 0
59 2.4 Park Sensor Operator 0.0116 To 2.10 0
60 2.4 Park Sensor Operator 0.0116 To 2.11 0
61 2.4 Park Sensor Operator 0.0116 To 2.12 0
62 2.5 Park Sensor Operator 0.0116 To 2.1 0
63 2.5 Park Sensor Operator 0.0116 To 2.2 0
64 2.5 Park Sensor Operator 0.0116 To 2.3 0
65 2.5 Park Sensor Operator 0.0116 To 2.4 0
66 2.5 Park Sensor Operator 0.0116 non 2.5 0
67 2.5 Park Sensor Operator 0.0116 To 2.6 100
68 2.5 Park Sensor Operator 0.0116 To 2.7 0
69 2.5 Park Sensor Operator 0.0116 To 2.8 0
70 2.5 Park Sensor Operator 0.0116 To 2.9 0
7 2.5 Park Sensor Operator 0.0116 To 2.10 0

56

Meth Use Case Class Failure Intensity of Execution
N . . State | Meth _Num .
_Num associated associated class Times
72 2.5 Park Sensor Operator 0.0116 To 2.11 0
73 2.5 Park Sensor Operator 0.0116 To 2.12 0
74 2.6 Park Camera Operator 0.0861 To 2.1 0
75 2.6 Park Camera Operator 0.0861 To 2.2 0
76 2.6 Park Camera Operator 0.0861 To 2.3 0
77 2.6 Park Camera Operator 0.0861 To 2.4 0
78 2.6 Park Camera Operator 0.0861 To 2.5 0
79 2.6 Park Camera Operator 0.0861 non 2.6 0
80 2.6 Park Camera Operator 0.0861 To 2.7 100
81 2.6 Park Camera Operator 0.0861 To 2.8 0
82 2.6 Park Camera Operator 0.0861 To 2.9 0
83 2.6 Park Camera Operator 0.0861 To 2.10 0
84 2.6 Park Camera Operator 0.0861 To 2.11 0
85 2.6 Park Camera Operator 0.0861 To 2.12 0
86 2.7 Park Sensor Operator 0.0116 To 2.1 0
87 2.7 Park Sensor Operator 0.0116 To 2.2 0
88 2.7 Park Sensor Operator 0.0116 To 2.3 0
89 2.7 Park Sensor Operator 0.0116 To 2.4 0
90 2.7 Park Sensor Operator 0.0116 To 2.5 0
91 2.7 Park Sensor Operator 0.0116 To 2.6 0
92 2.7 Park Sensor Operator 0.0116 non 2.7 0
93 2.7 Park Sensor Operator 0.0116 To 2.8 100
94 2.7 Park Sensor Operator 0.0116 To 2.9 0
95 2.7 Park Sensor Operator 0.0116 To 2.10 0
96 2.7 Park Sensor Operator 0.0116 To 2.11 0

57

Meth Use Case Class Failure Intensity of State | Meth Num Execution

N _Num associated associated class - Times
97 2.7 Park Sensor Operator 0.0116 To 2.12 0
98 2.8 Park Sensor Operator 0.0116 - - -
99 2.9 Park Elevator Operator 0.0587 To 2.1 0
100 2.9 Park Elevator Operator 0.0587 To 2.2 100
101 2.9 Park Elevator Operator 0.0587 To 2.3 0
102 2.9 Park Elevator Operator 0.0587 To 2.4 0
103 2.9 Park Elevator Operator 0.0587 To 2.5 0
104 2.9 Park Elevator Operator 0.0587 To 2.6 0
105 2.9 Park Elevator Operator 0.0587 To 2.7 0
106 2.9 Park Elevator Operator 0.0587 To 2.8 0
107 2.9 Park Elevator Operator 0.0587 non 2.9 0
108 2.9 Park Elevator Operator 0.0587 To 2.10 0
109 2.9 Park Elevator Operator 0.0587 To 2.11 0
110 2.9 Park Elevator Operator 0.0587 To 2.12 0
111 2.10 Park Camera Operator 0.0861 To 2.1 0
112 2.10 Park Camera Operator 0.0861 To 2.2 0
113 2.10 Park Camera Operator 0.0861 To 2.3 0
114 2.10 Park Camera Operator 0.0861 To 2.4 0
115 2.10 Park Camera Operator 0.0861 To 2.5 0
116 2.10 Park Camera Operator 0.0861 To 2.6 0
117 2.10 Park Camera Operator 0.0861 To 2.7 0
118 2.10 Park Camera Operator 0.0861 To 2.8 0
119 2.10 Park Camera Operator 0.0861 To 2.9 0
120 2.10 Park Camera Operator 0.0861 non 2.10 0
121 2.10 Park Camera Operator 0.0861 To 2.11 100

58

Meth Use Case Class Failure Intensity of State | Meth Num Execution

N _Num associated associated class - Times
122 2.10 Park Camera Operator 0.0861 To 2.12 0
123 2.11 Park Sensor Operator 0.0116 To 2.1 0
124 2.11 Park Sensor Operator 0.0116 To 2.2 0
125 2.11 Park Sensor Operator 0.0116 To 2.3 0
126 2.11 Park Sensor Operator 0.0116 To 2.4 0
127 2.11 Park Sensor Operator 0.0116 To 2.5 0
128 2.11 Park Sensor Operator 0.0116 To 2.6 0
129 2.11 Park Sensor Operator 0.0116 To 2.7 0
130 2.11 Park Sensor Operator 0.0116 To 2.8 0
131 2.11 Park Sensor Operator 0.0116 To 2.9 0
132 2.11 Park Sensor Operator 0.0116 To 2.10 0
133 2.11 Park Sensor Operator 0.0116 non 2.11 0
134 2.11 Park Sensor Operator 0.0116 To 2.12 100
135 2.12 Park Sensor Operator 0.0116 - - -
136 3.1 Manage Account Account 0.0396 non 3.1 0
137 3.1 Manage Account Account 0.0396 To 3.2 100
138 3.1 Manage Account Account 0.0396 To 33 0
139 3.1 Manage Account Account 0.0396 To 3.4 0
140 3.2 Manage Account Account 0.0396 To 3.1 0
141 3.2 Manage Account Account 0.0396 non 3.2 0
142 3.2 Manage Account Account 0.0396 To 3.3 100
143 3.2 Manage Account Account 0.0396 To 3.4 0
144 3.3 Manage Account Account 0.0396 To 3.1 0
145 3.3 Manage Account Account 0.0396 To 3.2 0
146 3.3 Manage Account Account 0.0396 To 3.3 0

59

Meth Use Case Class Failure Intensity of Execution
N . . State | Meth _Num .
_Num associated associated class Times

147 3.3 Manage Account Account 0.0396 To 3.4 100
148 3.4 Manage Account Account 0.0396 - - -
149 4.1 View Reservation Reservation 0.003 - - 100
150 5.1 Register customers 0.0054 non 5.1 0
151 5.1 Register customers 0.0054 To 5.2 100
152 5.1 Register customers 0.0054 To 5.3 0
1563 5.2 Register customers 0.0054 To 5.1 0
154 5.2 Register customers 0.0054 non 5.2 0
155 5.2 Register customers 0.0054 To 5.3 100
156 5.3 Register customers 0.0054 - - -
157 6.1 Manage Garage Garage 0.02 non 6.1 0
158 6.1 Manage Garage Garage 0.02 To 6.2 0
159 6.1 Manage Garage Garage 0.02 To 6.3 0
160 6.1 Manage Garage Garage 0.02 To 6.4 0
161 6.1 Manage Garage Garage 0.02 To 6.5 0
162 6.1 Manage Garage Garage 0.02 To 6.6 0
163 6.1 Manage Garage Garage 0.02 To 6.7 100
164 6.2 Manage Garage Garage 0.02 To 6.1 0
165 6.2 Manage Garage Garage 0.02 non 6.2 0
166 6.2 Manage Garage Garage 0.02 To 6.3 0
167 6.2 Manage Garage Garage 0.02 To 6.4 0
168 6.2 Manage Garage Garage 0.02 To 6.5 0
169 6.2 Manage Garage Garage 0.02 To 6.6 0
170 6.2 Manage Garage Garage 0.02 To 6.7 100
171 6.3 Manage Garage Garage 0.02 To 6.1 0

60

Meth Use Case Class Failure Intensity of Execution
N . . State | Meth _Num .
_Num associated associated class Times

172 6.3 Manage Garage Garage 0.02 To 6.2 0
173 6.3 Manage Garage Garage 0.02 non 6.3 0
174 6.3 Manage Garage Garage 0.02 To 6.4 0
175 6.3 Manage Garage Garage 0.02 To 6.5 0
176 6.3 Manage Garage Garage 0.02 To 6.6 0
177 6.3 Manage Garage Garage 0.02 To 6.7 100
178 6.4 Manage Garage Garage 0.02 To 6.1 0
179 6.4 Manage Garage Garage 0.02 To 6.2 0
180 6.4 Manage Garage Garage 0.02 To 6.3 0
181 6.4 Manage Garage Garage 0.02 non 6.4 0
182 6.4 Manage Garage Garage 0.02 To 6.5 0
183 6.4 Manage Garage Garage 0.02 To 6.6 0
184 6.4 Manage Garage Garage 0.02 To 6.7 100
185 6.5 Manage Garage Garage 0.02 To 6.1 0
186 6.5 Manage Garage Garage 0.02 To 6.2 0
187 6.5 Manage Garage Garage 0.02 To 6.3 0
188 6.5 Manage Garage Garage 0.02 To 6.4 0
189 6.5 Manage Garage Garage 0.02 non 6.5 0
190 6.5 Manage Garage Garage 0.02 To 6.6 0
191 6.5 Manage Garage Garage 0.02 To 6.7 100
192 6.6 Manage Garage Garage 0.02 To 6.1 0
193 6.6 Manage Garage Garage 0.02 To 6.2 0
194 6.6 Manage Garage Garage 0.02 To 6.3 0
195 6.6 Manage Garage Garage 0.02 To 6.4 0
196 6.6 Manage Garage Garage 0.02 To 6.5 0

61

Meth Use Case Class Failure Intensity of Execution
N . . State | Meth _Num .
_Num associated associated class Times

197 6.6 Manage Garage Garage 0.02 non 6.6 0
198 6.6 Manage Garage Garage 0.02 To 6.7 100
199 6.7 Manage Garage Garage 0.02 - - -
200 7.1 Edit Reservation Reservation 0.003 non 7.1 0
201 7.1 Edit Reservation Reservation 0.003 To 7.2 0
202 7.1 Edit Reservation Reservation 0.003 To 7.3 100
203 7.2 Edit Reservation Reservation 0.003 To 7.1 0
204 7.2 Edit Reservation Reservation 0.003 To 7.2 0
205 7.2 Edit Reservation Reservation 0.003 To 7.3 100
206 7.3 Edit Reservation Reservation 0.003 - - -
207 8.1 Register Vehicle Car 0.0041 non 8.1 0
208 8.1 Register Vehicle Car 0.0041 To 8.2 100
209 8.1 Register Vehicle Car 0.0041 To 8.3 0
210 8.2 Register Vehicle Car 0.0041 To 8.1 0
211 8.2 Register Vehicle Car 0.0041 non 8.2 0
212 8.2 Register Vehicle Car 0.0041 To 8.3 100
213 8.3 Register Vehicle Car 0.0041 - - -
214 9.1 Edit Vehicle Car 0.0041 non 9.1 0
215 9.1 Edit Vehicle Car 0.0041 To 9.2 90
216 9.1 Edit Vehicle Car 0.0041 To 9.3 10
217 9.1 Edit Vehicle Car 0.0041 To 9.4 0
218 9.1 Edit Vehicle Car 0.0041 To 9.5 0
219 9.2 Edit Vehicle Car 0.0041 To 9.1 0
220 9.2 Edit Vehicle Car 0.0041 non 9.2 0
221 9.2 Edit Vehicle Car 0.0041 To 9.3 0

62

Meth Use Case Class Failure Intensity of State | Meth Num Execution

N _Num associated associated class - Times
222 9.2 Edit Vehicle Car 0.0041 To 9.4 100
223 9.2 Edit Vehicle Car 0.0041 To 9.5 0
224 9.3 Edit Vehicle Car 0.0041 To 9.1 0
225 9.3 Edit Vehicle Car 0.0041 To 9.2 0
226 9.3 Edit Vehicle Car 0.0041 non 9.3 0
227 9.3 Edit Vehicle Car 0.0041 To 9.4 100
228 9.3 Edit Vehicle Car 0.0041 To 9.5 0
229 9.4 Edit Vehicle Car 0.0041 To 9.1 0
230 9.4 Edit Vehicle Car 0.0041 To 9.2 0
231 9.4 Edit Vehicle Car 0.0041 To 9.3 0
232 9.4 Edit Vehicle Car 0.0041 non 9.4 0
233 9.4 Edit Vehicle Car 0.0041 To 9.5 100
234 9.5 Edit Vehicle Car 0.0041 - - -
235 10.1 Authenticate User Authorization 0.012 non 10.1 0
236 10.1 Authenticate User Authorization 0.012 To 10.2 100
237 10.1 Authenticate User Authorization 0.012 To 10.3 0
238 10.1 Authenticate User Authorization 0.012 To 10.4 0
239 10.2 Authenticate User Authorization 0.012 To 10.1 0
240 10.2 Authenticate User Authorization 0.012 non 10.2 0
241 10.2 Authenticate User Authorization 0.012 To 10.3 100
242 10.2 Authenticate User Authorization 0.012 To 10.4 0
243 10.3 Authenticate User Authorization 0.012 To 10.1 0
244 10.3 Authenticate User Authorization 0.012 To 10.2 0
245 10.3 Authenticate User Authorization 0.012 To 10.3 0
246 10.3 Authenticate User Authorization 0.012 To 10.4 100

63

Meth Use Case Class Failure Intensity of State | Meth Num Execution

N _Num associated associated class - Times
247 10.4 Authenticate User Authorization 0.012 - - -
248 111 Set Prices Garage 0.02 non 111 0
249 11.1 Set Prices Garage 0.02 To 11.2 0
250 11.1 Set Prices Garage 0.02 To 11.3 0
251 11.1 Set Prices Garage 0.02 To 11.4 100
252 11.1 Set Prices Garage 0.02 To 11.5 0
253 11.1 Set Prices Garage 0.02 To 11.6 0
254 11.1 Set Prices Garage 0.02 To 11.7 0
255 11.2 Set Prices Garage 0.02 To 11.1 0
256 11.2 Set Prices Garage 0.02 non 11.2 0
257 11.2 Set Prices Garage 0.02 To 11.3 0
258 11.2 Set Prices Garage 0.02 To 11.4 0
259 11.2 Set Prices Garage 0.02 To 11.5 100
260 11.2 Set Prices Garage 0.02 To 11.6 0
261 11.2 Set Prices Garage 0.02 To 11.7 0
262 11.3 Set Prices Garage 0.02 To 11.1 0
263 11.3 Set Prices Garage 0.02 To 11.2 0
264 11.3 Set Prices Garage 0.02 non 11.3 0
265 11.3 Set Prices Garage 0.02 To 11.4 0
266 11.3 Set Prices Garage 0.02 To 115 100
267 11.3 Set Prices Garage 0.02 To 11.6 0
268 11.3 Set Prices Garage 0.02 To 11.7 0
269 11.4 Set Prices Garage 0.02 To 11.1 0
270 11.4 Set Prices Garage 0.02 To 11.2 0
271 11.4 Set Prices Garage 0.02 To 11.3 0

64

Meth Use Case Class Failure Intensity of State | Meth Num Execution

N _Num associated associated class - Times
272 11.4 Set Prices Garage 0.02 non 11.4 0
273 11.4 Set Prices Garage 0.02 To 11.5 0
274 11.4 Set Prices Garage 0.02 To 11.6 100
275 11.4 Set Prices Garage 0.02 To 11.7 0
276 11.5 Set Prices Garage 0.02 To 11.1 0
277 11.5 Set Prices Garage 0.02 To 11.2 0
278 11.5 Set Prices Garage 0.02 To 11.3 0
279 11.5 Set Prices Garage 0.02 To 11.4 0
280 11.5 Set Prices Garage 0.02 To 11.5 0
281 11.5 Set Prices Garage 0.02 To 11.6 100
282 11.5 Set Prices Garage 0.02 To 11.7 0
283 11.6 Set Prices Garage 0.02 To 11.1 0
284 11.6 Set Prices Garage 0.02 To 11.2 0
285 11.6 Set Prices Garage 0.02 To 11.3 0
286 11.6 Set Prices Garage 0.02 To 11.4 0
287 11.6 Set Prices Garage 0.02 To 11.5 0
288 11.6 Set Prices Garage 0.02 To 11.6 0
289 11.6 Set Prices Garage 0.02 To 11.7 100
290 11.7 Set Prices Garage 0.02 - - -
291 12.1 Inspect Usage History Garage 0.02 non 12.1 0
292 12.1 Inspect Usage History Garage 0.02 To 12.2 100
293 12.1 Inspect Usage History Garage 0.02 To 12.3 0
294 12.1 Inspect Usage History Garage 0.02 To 12.4 0
295 12.2 Inspect Usage History Garage 0.02 To 12.1 0
296 12.2 Inspect Usage History Garage 0.02 To 12.2 0

65

Meth Use Case Class Failure Intensity of State | Meth Num Execution

N _Num associated associated class - Times
297 12.2 Inspect Usage History Garage 0.02 To 12.3 100
298 12.2 Inspect Usage History Garage 0.02 To 12.4 0
299 12.3 Inspect Usage History Garage 0.02 To 12.1 0
300 12.3 Inspect Usage History Garage 0.02 To 12.2 0
301 12.3 Inspect Usage History Garage 0.02 To 12.3 0
302 12.3 Inspect Usage History Garage 0.02 To 12.4 100
303 12.4 Inspect Usage History Garage 0.02 - - -
304 13.1 Monthly Billing customers 0.0054 non 13.1 0
305 13.1 Monthly Billing customers 0.0054 To 13.2 100
306 13.1 Monthly Billing customers 0.0054 To 13.3 0
307 13.1 Monthly Billing customers 0.0054 To 13.4 0
308 13.2 Monthly Billing customers 0.0054 To 13.1 0
309 13.2 Monthly Billing customers 0.0054 non 13.2 0
310 13.2 Monthly Billing customers 0.0054 To 13.3 100
311 13.2 Monthly Billing customers 0.0054 To 13.4 0
312 13.3 Monthly Billing customers 0.0054 To 13.1 0
313 13.3 Monthly Billing customers 0.0054 To 13.2 0
314 13.3 Monthly Billing customers 0.0054 non 13.3 0
315 13.3 Monthly Billing customers 0.0054 To 13.4 100
316 13.4 Monthly Billing customers 0.0054 - - -

66

Ladall

Il Cun alaia ¥ e | S 1508 Cuda o8 Cilana) 38 55 0 il 33 o e a2l e
8) aall g lina yall 48 65 g Jilad 8 dlgd) claadll aal da gyl o2a
a3 A (e dBa ST)8 JATY Bake Cilasbae ji55 LS| ilina) 48 5 e il

0S5 o Jainall o) a8 (iiad g Ul (L8 ol s (3 35 el (g Alma 6]
ll B8 o€ 88 ate s el 3Sd) Jaljall 348 Gise e

3l aey (3 5 Cilina yall 8 8 9o Jilat (A) el el Dl g kil ¢ all 8
pladinl Cua dal e Caw () 48 65 gall Qoo dplee ansdy - yiall gl 5 caanalll Al ju
Lty LSl 58l i gl ol Jaladia cdaliiall g alasiaa¥) Alls Jaladie Jin analiaill o) 3al
ae JA e AN ol sl (5 e B8 300 a8l DA (e albaill 48 i e xgs
DAl el) 3 5 dagd g Aipre dagn elal 8 A e Al () 5<5 B i) a5 clele xinY)
Al ahatinly Al Al o AldS Al) Jabill J65 Jlaia) s YA (g
JSl) s oy Lenie albaill 48 65 ga s 488 BlSlaal (Sl (e ¢ GllXS 5 a8 e
Al Lasall)

ol jelal g = i) el (Saadat andil dan jad Al 50 Cu el dalead) Lalil) (g
(oaddll G yuaill Slag g a8 ST IS8 Cllina jall 438 6 e il (S diil) of Al)

| \\\\\3 !/,

. I
e &

PR B

W £ ﬂnﬁliuuuuuuniuulnnu|
- I [T

Faladl) a1 aladiul claapl) Ll gfigar ful
3.4a gall
N L RPRLIP

e Gudg Aallae

iyl s
ciulaf a2 .

asle b sialall daj o Juaal) cibdbial YiaSin) Al oda cuadd
gl

Sy drala
cila glrall A5 A€

2018 s

